
AN OPTIMIZATION APPROACH FOR USING CONTEXTUAL INFORMATION IN COMPUTER VISION 

Olivier D. Faugeras 
Image Processing Institute 

University of Southern California 
Los Angeles, California 90007, U.S.A. 

ABSTRACT 

Local parallel processes are a very efficient 
way of using contextual information in a very 
large class of problems commonly encountered in 
Computer Vision. An approach to the design and 
analysis of such processes based on the minimiza- 
tion of a global criterion by local computation is 
presented. 

INTRODUCTION 

The problem of assigning names or labels to a 
set of units/objects is central to the fields of 
Pattern Recognition, Scene Analysis and Artificial 
Intelligence. Of course, not all possible names 
are possible for every unit and constraints exist 
that limit the number of valid assignments. These 
constraints may be thought of as contextual 
information that is brought to bear on the particu- 
lar problem, or more boldly as a world model to 
help us decide whether any particular assignment 
of names to units makes sense or not. 

Depending upon the type of world model that 
we are using, the problem can be attacked by 
discrete methods (search and discrete relaxation) 
or continuous methods (continuous relaxation). 
In the first case our contextual information 
consists of a description of consistent/compatible 
labels for some pairs, or more generally n-tuples 
of units. In the second case the description 
includes a numerical measure of their compatibility 
that may or may not be stated in a probabilistic 
framework. Initial estimates of likelihoods of 
name assignments can be obtained from measurements 
performed on the data to be analyzed. Usually, 
because of noise, these initial estimates are 
ambiguous and inconsistent with the world model. 
Continuous relaxation (also sometimes called 
probabilistic relaxation or stochastic labeling) 
is thus concerned with the design and study of 
algorithms that will update the original estimates 
in such a way that ambiguity is decreased and 
consistency (in terms of the world model) is 
increased. 
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More precisely, let us denote by "Lithe finite 
set of N units and by ztthe finite set of M 
possible labels. In the discrete case, the world 
model consists of an n-ary relation RC("L(x,qn. 
The fact that the n-typle {(ul,~,),...,(un,~n)} 
belongs to R means that it is valid to assign name 
ai to unit Ui for i=l,...,n. In the continuous 
case, the world model consists of a function c of 
WQP into a closed interval [a,b] of the real 
line: 

c: (QxZ~)~ + [a,bl 

In most applications [a,bl=[O,l] or [-l,l] and n=2. 
The numbers c(ul,~l,...,un,Rn) measure the compa- 
tibility of assigning label Ri to unit ui for 
i=l ,***, n. Good compatibility is reflected by 
large values of c, incompatibility by small values. 

We will present in this paper two ways of 
measuring the inadequacy of a given labeling of 
units with respect to a world model and show that 
these measures can be minimized using only local 
cooperative computation. We will compare this 
approach with the original probabilistic relaxation 
scheme proposed by Rosenfeld, Hummel and Zucker 
[3] and a matching scheme proposed by Ullman [6]. 
To conclude the section, we will discuss the 
possibility of using Decentralization and 
Decomposition techniques to alleviate the curse of 
dimensionality and show how the Optimization 
approach can be extended very easily to the 
analysis of multilevel, possibly hierarchical, 
systems. 

We will not discuss in this paper any 
specific application. For an early application to 
scene analysis and discussion of some of the 
issues addressed in this paper, see [2]. For 
recent surveys, see [l] and [4]. For an applica- 
tion to graph matching, see [18]. 

I. Basic Optimization Based Probabilistic 
Relaxation Scheme 

We assume that attached to every unit ui are 
measures of certainty pi(a), for kin gthat can be 
thought of loosely as probabilities 

c Pi(R) = ' (1) 
R in ;;e 
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The wor_ld model is embedded in a function c mapping 
m .aL into [O,l], Again, c(ul,R,u2,m) measures 
the compatibility of calling unit ul,~ and unit 
u2,m. This function also allows us to define a 
topological structure on the set of units by 
assigning to every unit Ui and label R in ZT!Z. a set 
Vi(R) of related units uj for which these exists 
at least one label m in 2 such that c(ui,R,uj,m) 
is defined. 

A compatibility vector di is then computed 
for every unit ui that measures the compatibility 
in each label R in Xwith the current labeling at 
related units in Vi(a). The simplest way of 
defining Qi(a) is [l]: 

c Qi(a) = +I uj in v (a) Qij(R) (2) 
i 

where /Vi(g) 1 is the number of units in the set 
Vi(a) and Qij(") is given by: 

Qij (‘) = c C(Ui,R,U j ,m)Pj (ml (3) 
m in 2 

Loosely speaking, Qi(a) will be large if for many 
units U* in Vi(a), the compatible labels (that is 
the labgls m such that c(ui,R,uj,m) is close to 
1) have high probabilisties, and low otherwise. 

In some cases the compatibility coefficients 
may be given a probabilistic interpretation, that 
is c(ui,R,uj,m) is the conditional probability 
pij(R/m) that unit ui is labeled R given that unit 
uj is labeled m. 

The next step in designing the Relaxation 
scheme is to specify a way of combining the two 
sources of information thatwe can use, i.e. the 
initial probabilities and the contextual informa- 
tion, to update the label probabilities. This 
updating should result in a less ambiguous and 
more compatible overall labeling in a sense that 
will remain vague until later on. Rosenfeld et al. 
[3] proposed the following iterative algorithm: 
for every unit ui and every label R in di set 

p(n+l) (a) = 
i 

(4) 

The denominator of the right hand side is simply 
a normalizing factor to ensure that numbers 
p("+l)(~) still add up to one. Intuitively, the 
libels R whose compatibility Qi(a) is larger than 
others will see their probability increase whereas 
the labels with smaller compatibility will see 
their probability decrease. 

One criticism with this approach is that it 
does not take explicitly into account measures of 
the two most important characteristics of a 
labeling of units, namely its consistency and its 

ambiguity. Faugeras and Berthod [5,7,81 have 
proposed several such measures and turned the 
labeling task into a well defined optimization 
problem which can be solved by local computations 
in a network of processors. 

We saw before that we can asso$iate with 
every unit Ui a probakility vector pi and a 
compatibility vector Qi whose components are given 
by equation (2). In general, the vectors di are 
not probability vectors in that their components 
do not sum to 1. This can be easily changed by 
normalizationand we can define: 

qi(a> = 
Qi (‘) 

c Q; (4 
m in i I 

The vectors G, are now probability 
measure of coi&sistency for unit u; 
can be defined as the vector norm1 

(5) 

vectors and a 
(local measure) 

(6) 

where ll*Ilcan be any norm (in practice the 
Euclidean normb Similarly a local measure of 
ambiguity can be defined as 

Hi = R in ~pi(")(l-pi(")) = '-ll~ill~ (7) 

where ~~*~~2 is th e Euclidean norm. Combining the 
two measures yie Ids a local criterion 

Ji = clCi + BHi (8) 

where c1 and 8 weight the relative importance we 
attribute to ambiguity versus consistency. A 
global measure can then be defined over the whole 
set of units by averaging the local measures. 
Using the arithmetic average for example, we 
define 

J= Ji (9) 
all units ui 

The labeling problem can then be stated as follows: 

given an initial labeing {pi '('))of the set 
of units Q, find the local minimum of the 
function J closest to the initial conditions, 
subject to the constraints that the vectors 
p. are probability vectors. More precisely, 
&is implies that 

c pi(R)=1 and pi(~)>0 for all units - 
R in 2 U. 

1 
(gal 

Aside from the fact that we are now confronted to 
a well-defined mathematical problem which can be 
tackled using Optimization techniques, we are also 
sure that some weighted measure of inconsistency 
and ambiguity is going to decrease. 
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As pointed out in [8], one minor drawback with 
the definition (6) of consistency is that its 
n$nimiz%tion implicitly implies the minimization of 
qi and pi and therefore the maximization of the 
entropy term H. (equation (7)). Thus there is an 
inherent problhm with the definition (8) in the 
sense thai consistency and ambiguity tend 
opposite directions. One very simple way 
resolving that contradiction is to define 
measure of both ambiguity and consistency 

J! = 1 -Gi l ;;i 

where 0 denotes the vector inner product, 
definition of a global criterion proceeds 
before: 

J' = 
c J! 

all units u. 1 
1 

and the labeling problem can be stated as 

to go in 
of 
a local 
as 

(10) 

The 
now as 

(111 

(&I, 
replacing J with J'. This is similar to the 
minimal mapping theory developed by Ullman [6] for 
motion correspondence. Given two image frames 
with elements ui in the first one (our units) and 
element k (our names) in the second one, he studied 
the problem of selecting the most plausible 
correspondence between the two frames. Defining the 
cost qi(k) of pairing element ui with element k and 
the variables pi(k) equal to 1 if Ui is paired with 
k and 0 otherwisephe rephrased the motion 
correspondence probl em as a linear programming 
problem by defining the cost function 

(LPI 

513, = c c 
all element u. all element k 

Pi(k)qi(k) 
1 (12) 

which is precisely equation (11). The important 
difference between criteria J' and JA is that the 
costs qi(k) in (12) are not functions of the 
variables pi(k) whereas in (11) they are. In 
particular,minimizing J' is not an LP problem, 
in general. Nevertheless, the parallel between the 
two approaches is interesting and confirms that 
what we called the compatibility coefficients qi(k) 
defined in Eq. (5) are also a measure of the 
satisfaction/profit implied in assigning name k to 
unit u.. 

1 

II. Computational Requirements: Locality, 
Parallelism, Convergence 

As described in [7,9], imagine that we attach 
to the set Q of units and the sets Vi= U 

R in & 
‘i CR) 

a simple network, that isapair <G,R> where G is a 
connected graph and R a set of processors, one for 
each node in the graph. There is a one to one 
correspondence between the units and the nodes of 
the graph on one hand, and the nodes of the graph 
and the processors on the other hand. This in 
turn implies that there is a one to one correspon- 
dence between the neighbors of the ith processor 
ri, i.e., the processors that are connected by 
arcs of G to r., and units in V.. 1 1 

As shown in [7,8], the minimization of 
criteria J or J' can be achieved by using only 
local computation. More precisely, denoting by &7 
(a function of all the vectors $i) either criterion 
J or J', we can attach to every unit ui a local 
gradient vector 

&-k ='Fi(cj) 
a Si 

(13) 

where Fi is a function of the vectors sj of units 
u. in the set Vi of neighbors previously defined. 
Eiplicit formula for the functions F. can be found 
in [4,5,7,8]. The iterative scheme is then defined 
as 

$n+ll +(n> 
i = Pi + p P. 

n l 
(14) 

where p is a positive stepsize and Pi a linear 
project?on operator de$e;T$ped by the constraints 
imposed on the vector pi [5,7], (for example 
that it is a probability vector). The main point 
is that both functions Fi and operator Pi can be 
computed by processor ri by communicating only with 
neighboring processors (local computation) while 
guaranteeing that the cost function 8 will decrease 
globally. 

It was stated before that a large amount of 
parallelism can be introduced in the process of 
minimizing criteria J and J'. This is achieved by 
attaching to every unit ui a processor ri connected 
only to processors r. attached to units u. related 
t0 Uim The global csiterion can then be Minimized 
by having processors ri perform simple operations 
mostly in parallel while a simple sequential 
communication process allows them to work toward 
the final goal in a coordinated fashion. 

If nonetheless our supply of processors is 
limited, we may want to split our original problem 
into several pieces and assign sequentially our 
pool of processors to the different pieces. The 
net result has of course to be the minimization of 
the original global criterion and some coordination 
must therefore take place. 

Solutions to this problem can be found in the 
so-called Decomposition and Decentralization 
techniques which have been developed to solve 
similar problems in Economics, Numerical Analysis, 
Systems Theory and Optical Control [12,13,14,15]. 
Decomposition techniques proceed from an algorithm 
standpoint: we are confronted with a problem of 
large dimensionality and try to substitute for it a 
sequence of problems of smaller dimensionalities. 
Decentralization techniques take a different 
viewpoint: we are confronted with a global problem 
and have at our disposal P decision centers. The 
question is whether it is possible to solve the 
global problem while letting the decision centers 
solve only local problems. The structure of 
criteria J and J' as sums of local measures allows 
us to develop both types of techniques [121. The 
key idea is to partition the set of units. For 
detailed algorithms, see [16]. 



III. Extension to Hierarchical Systems, 
Conclusions 

The optimization approach presented in 
Section I can be extended to the case where 
several labeling problems are present and embedded 
in a pyramid or cone structure with, for example, 
L levels. 

The different levels can be the same picture 
at different spatial resolutions as in [17] or 
represent different states of abstraction. For 
example the lowest level could be the edge element 
level, then the link level [lo], then the level 
dealing with elementary shapes like straight lines, 
ellipses, cubits, etc... These different levels 
form a multilevel system, each level having to 
solve a stochastic labeling problem. 
command vector for level i, that is Gi 

Let Vi be the 
is a NiMi 

dimensional vector, if there are Ni units and Mi 
possible classes, obtained in concatenating the 
probability vectors $j, j=l,...,$i. At leyel i we 
have to minimize a criterion J;(v,.$,.....v,). The 
fact that criterion Ji depends&up& the c&&and 
vectors at other levels accounts for the inter- 
action between the levels. 

A natural, but not always rational, way of 
solving this multilevel problem is to assume that 
every level i (i=l,... ,L) considers as given the 
command vectors of the other levels and minimizes 
its own criterion. The result is a nongcooperative 
equilibrium [12l or Nash point (ul,...,uL) 
verifying: 

Ji(;l,...,zi l,;i,:i+l,...,:L) < J.(;l,...& 1, 
-1 

+ -f 
vi>"i+19"'> L :I 

for all i and c.. This notion can certainly be 
criticized beca?ise by cooperating each of the L 
levels can, in general, improve its situation 
compared with the non-cooperative case. In other 
words, 
(61 

t$e following situation is possible: if 
,..+.,uL) 

set (Ui,.. 
i-y a Nash point, there exists another 

.,uL) of command vectors such that 

Ji(Zi ,...,$) < Ji(;l ,...,:L, for all i. 

This introduces the notion of Pareto points which, 
intuitively, are optimal in the sense that it is 
impossible to find another set of L command vectors 
that will decrease all criteria. It is possible to 
show that under very general conditions [12], Pareto 
points can be obtained by minimizing only one 
criterion! In other words if ?i=(?il,...,zL) is a 
Pareto point, then there exists L positive number 
Al ,...,AL such that 3 is a minimum of criterion 

J$ ,...,-;,) = 
L 

XiJi(;l,...,GL) 
i=l 

the ‘i’s can therefore be interpreted as weigh 
fat tors the different levels have agreed upon. 

.ting 

Another interesting possibility is to assume 
a hierarchical structure within the L levels, level 
1 being the lowest and level L the highest. We 
then have a cascade of optimization problems 

similar to what happens in the price decentraliza- 
tion technique men$ioned i+n section II, where 
level 1 considers v2,... ,vL as given and computes 

+ 
u1 = mJn Jl(Gl,c2,... ,:,I 

3 

This defines zl as a function of !2,... ,; . Then 
levzl $ solve5 th$ probl$m of minimizing kri$erion 
.JJ~ul(v2,...,vL),v2,...,vL) with respect to v2, 

. . . 

Even though the theory of hierarchical multi- 
level systems is still in its infancy it has been 
recognized for some time now [ll] that it carries 
the possibility of solving many difficult problems 
in Economics, Physiology, Biology [13,14,15], 
Numerical Analysis and Systems Theory [12], Optimal 
Control. It is clear that this theory is relevant 
to Image Analysis. 

In conclusion, we think that probabilistic 
relaxation techniques will play a growing role 
in the near future as building blocks of more 
and more complex vision systems. The need to 
quantify the behavior of these relaxation processes 
will become more and more pressing as the 
complexity of the tasks at hand rapidly increases 
and the global optimization framework offers a 
solid basis for this analysis. 
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