Towards a Modular Data Management System Framework

Haralampos Gavriilidis*
Stefano Bortoli'

*Technische Universitat Berlin

ABSTRACT

Today’s data management systems (DMSes) are implemented using
monolithic architectures. This is explained by the fact that, histor-
ically, the DMS market was dominated by commercial solutions.
However, with the advent of open source, lots of alternative DMSes
and DMS components have emerged. Yet, they cannot be easily
integrated because DMSes are still designed as monoliths. We pro-
pose PoLYDMS, our vision towards composable DMSes. The core
idea of PoLYDMS is to split up and wrap individual components
with standardized interfaces, such that a Component Orchestrator
can flexibly construct DMSes out of them. Users can compose new
DMSes by writing small programs in our System Definition Lan-
guage. PoLYDMS allows them to quickly instantiate new DMSes
according to their needs while giving them the opportunity to reuse
existing components. Our proof-of-concept implementation shows
that composing multiple components into a new DMS can yield
additional functionality and better performance.

1 INTRODUCTION

Today’s data management system (DMS) landscape offers a diverse
range of products. Since the dawn of the "one-size-does-not-fit-
all" era [27], a number of special-purpose systems emerged on the
highly-contested DMS market. While each DMS excels in partic-
ular scenarios [1], the system architectures share many similar
components. The general architecture of query processors has not
changed drastically since the 1980s [16, 19]. Despite this fact, due
to the monolithic approaches taken when designing new systems,
system architects and engineers reinvent the wheel again and again,
as they have to build all components from scratch.

We argue that DMS components should be easily reusable to
foster impactful innovation and to make system engineering more
efficient. Domain experts should have tools at their disposal that
allow them to make special-purpose components composable via
pre-defined APIs. Furthermore, composing a new system should not
be limited to the few experienced DMS architects in our community.

Unfortunately, the "state of the composability union" in the DMS
ecosystem is not strong as of now. We believe that the problem
of limited DMS composability is twofold: First, there are no stan-
dards that allow system engineers to make their components easily
composable. Second, composing existing components into a DMS
requires a huge amount of manual effort. Historically, DMSes grew
into general-purpose monoliths, with the individual components
not being intended for reuse. The widespread use of open source
software has dramatically eased the access to existing DMS compo-
nents but has not removed the hurdle of their limited integrability.
Even the few existing standalone components, such as Apache

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License and appears in CDMS 2022, 1st International Workshop on Composable Data
Management Systems, September 9, 2022, Sydney, Australia.

Lennart Behme*
Jorge-Arnulfo Quiané-Ruiz**

"Huawei German Research Center

Sokratis Papadopoulos™
Volker Markl**

*DFKI GmbH

Calcite [6] and Orca [26], are designed for a rather tight and use
case-specific integration. While some DMSes, like Apache Hive [8],
evolved by continuously integrating new components into the sys-
tem, their development history is a testament to the large manual
effort and custom solutions required for a good integration. On the
other side, recent approaches, such as Presto [25], try to subsume
functionality of legacy DMSes and query them seamlessly through
connectors. However, it is both impractical and costly to continu-
ously port data and pipeline logic from legacy DMSes to the latest
and most advanced systems. Therefore, it is clear that our com-
munity has yet to present conceptual approaches combined with
practical evidence for a straightforward construction of composable
DMSes, rather than relying on yet another new DMS.

In this paper, we present our vision to address the composable
DMS research gap and lay out our research agenda for a DMS
composition framework, which we call PoLYDMS. In our vision,
system architects are able to build a new DMS by reusing individual
components as building blocks. The idea of PoLYDMS comprises
three major contributions: (1) First, we define abstract types of DMS
components, such as query interfaces or optimizers, and design
generic interfaces for each type so that existing libraries can easily
turn into a DMS component; (2) To combine the standalone compo-
nents, we build a Component Orchestrator that interacts with all
components, enabling the composition of DMSes; (3) Finally, we
design a high-level System Definition Language (SDL) that acts as
an interface to the orchestrator and allows users to easily compose
a new DMS out of existing components. In a collaboration with
Huawei, we have started to materialize and evaluate the poten-
tial of our vision and built a proof-of-concept (PoC) OLAP system
based on the PoLyDMS framework. The promising initial results
motivated us to move forward with our research agenda.

In the following, Section 2 reviews previous approaches to build-
ing a composable DMS and highlights their limitations; Motivated
by current limitations, Section 3 presents our vision for the PoLy-
DMS framework; Section 4 discusses our PoC for a composable
DMS; Section 5 concludes with an outlook on future work.

2 EXISTING COMPOSITION APPROACHES

We categorize DMS composition into two main approaches: vertical
and horizontal composition. Vertical composition (Section 2.1) is
about pipelining multiple components along the query processing
flow. In horizontal composition (Section 2.2), on the other side, mul-
tiple components of the same type (e.g., execution engines) process
queries in parallel. While vertical composition combines separate
components into a single query processor, horizontal composition
creates a meta-system that spans over multiple query processors.
Figure 1 shows a conceptual comparison along the two DMSes
Apache Hive and Apache Wayang (incubating). We review promi-
nent examples for each composition approach and close this section
with a discussion of the state-of-the-art limitations (Section 2.3).

Query Result

Query Hive SQL

Wayang Mediator

Calcite

[Spark][Flink][PostG]

(b) Wayang (horizontal)

Result

(a) Hive (vertical)

Figure 1: DMS composition approaches (indicated by —).

2.1 Vertical Composition

Current open source and commercial DMS architectures mostly
follow a predefined design [19], offering user interface, query opti-
mizer, execution, storage, and metadata components. When com-
posing a DMS vertically, we "glue together" existing frameworks,
tools, systems, or platforms. A prominent example for vertical DMS
composition is the trend towards separating compute and storage
engines, first introduced for cloud environments by the MapReduce
paradigm [12]. Among other advantages, this paradigm allows to
scale storage and compute individually, and hence was adopted by
many commercial DMSes, such as Snowflake [11]. However, soon
it became apparent that MapReduce’s low-level interface is not
the right abstraction for novice data analysts. To offer more intu-
itive user APIs, research and industry proposed multiple front-ends
on top of the MapReduce AP], e.g., Pig [23], JAQL [7], or Apache
Hive [8]. What all these approaches have in common is that they of-
fer their own higher-level APIs, and compile tasks defined in those
APIs to MapReduce programs. Next to convenient user abstractions,
higher level APIs also enable advanced query optimization and ef-
ficient execution [5, 14], e.g., by leveraging the relational model.
When metadata, i.e., relation statistics, are available, systems can
employ additional optimizations like join ordering.

Hive is an example for a vertically composed DMS (Figure 1a):
It offers its own SQL interface, relies on Calcite for cost-based opti-
mizations, offers either Apache Spark, Apache Tez, or MapReduce
as execution engines, and provides its own Hive Metastore that
offers metadata to all mentioned components. Even though Hive
has evolved out of multiple components, we still consider it to be
monolithic, as it tightly couples the aforementioned components
into its architecture without a straightforward way to replace them.

2.2 Horizontal Composition

Oftentimes, there is a need to query multiple DMSes at the same
time, for example during data integration tasks or to use multiple
query processors for a single query [20]. We refer to this type of
composition, where multiple components of the same type are used
for one query, as horizontal composition. Systems designed for data
integration in federated environments (e.g., Tsimmis [10], Garlic [9],
Presto [25]) perform query splitting to process different parts of
one query on different systems. Building upon the seminal work
on federated databases, polystore systems, such as BigDawg [13],
Myria [28], Estocada [4], or CloudMdsQL [21], give users more flex-
ibility by offering different query languages and optimizing across
system boundaries. Cross-platform systems (which also support the
polystore case [20]), such as Wayang [29] (formerly Rheem [2]) and

Musketeer [15], offer sophisticated optimization techniques that
allow to place different operations of a query on different systems
(e.g., Figure 1b). What all these approaches have in common is a
central mediating component that accepts user queries, splits them
into different subqueries and orchestrates the execution over multi-
ple DMSes. We argue that those approaches are monolithic as well,
because their architectures are similar to traditional DMSes that
tightly couple individual components. Hence, they do not allow
switching individual components in a plug-and-play manner.

2.3 The Missing Piece

Overall, although one can mix the two composition approaches, we
observe that both in vertical and horizontal composition existing
systems are tightly coupled. This makes it overall cumbersome
to exchange DMS components to, for example, try out novel opti-
mization techniques with a different optimizer. Furthermore, when
building a system for a specific use case, system architects either
have to re-invent the wheel by implementing all DMS components
or put a lot of effort into manually integrating existing components.
We believe that by standardizing the interactions of individual
components, one can foster a stronger collaboration between com-
ponent developers and encourage the development of specialized
standalone components. This will allow us to integrate existing
components or research prototypes in a much simpler way, and
hence enable new DMS designs that do not re-invent the wheel.
Thus, a requirement for building composable DMSes is (1) to ab-
stract component functionality in well-defined interfaces, and (2) to
provide primitives for component interaction and orchestration for
seamlessly integrating all components through their interfaces.

3 THE POLYDMS FRAMEWORK

We now present PoLYDMS, our vision towards addressing the miss-
ing piece in composable DMSes. Our overall goal is to enable users
to easily create a loose coupling of existing DMS components, such
that they do not re-invent the wheel every time when building a
new DMS. The key idea of PoLYDMS is that existing (and future)
DMS components should be independently reusable, i.e., they do
not depend on specific other components to work. Therefore, we
propose to couple DMS components through a micro-service archi-
tecture where each service is accessible through a well-defined API.
On a high level, PoLYDMS allows users to compose new DMS in-
stances by assembling inter-component pipelines. In the following,
we give a brief overview of the PoLYDMS framework (Section 3.1),
describe how we envision "Components-as-a-Service" (Section 3.2),
discuss the orchestration of components (Section 3.3), and outline
scenarios that can benefit from PoLYDMS (Section 3.4).

3.1 Overview

We show our initial architecture in Figure 2. PoLYDMS’s design is
based on the observation that DMS architectures share components
with similar functionality. The colored boxes represent the pre-
defined set of interfaces that system developers can implement to
wrap existing or newly-developed components as services. Initially,
we define Query Interface, Optimizer, Execution Engine, Storage
Engine, and Metadata Store as abstract DMS component types, as
these are the main components involved in OLAP query processing.

Y v
Register b Component |y Query Interfaces 4
component |: Catalog :
Send SOL g fnicrpretor .
p g vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Optimizers I ‘o_
Pose user__|: DMS Context : @
r : o}
query ... Manager ©
el
©
" Translator :[*—*| Execution Engines m- o
. N : =
. ... Repository
I
- Component st Enai
> orage Engines [ff -
Orchestrator ge Eng

Figure 2: An overview of the PoLyDMS framework. Users
instantiate a new system by writing a System Definition Lan-
guage statement. To interact with their system, they send
queries to the Component Orchestrator.

Notice that, in practice, one service could handle multiple functions
in the query processing flow; there is no dogmatic requirement to
separate every abstract component type in every DMS.

From a system perspective, the Component Orchestrator is the
core of PoLYDMS, as it interacts both with users and components.
The Component Catalog is responsible for maintaining a list of
available services. System developers can compose a new DMS by
writing a program in our domain-specific language called System
Definition Language (SDL). The SDL Interpreter parses and validates
SDL programs, e.g., by checking the validity of the component flow
and the availability of the referenced components. After validating
the SDL program, the DMS Context Manager instantiates the system
and returns the resulting PoLyDMS context to the user.

From an end-user’s perspective, they can interact with the new
DMS as with any other DMS using the previously created context.
Upon receiving a query, the Component Orchestrator calls each
component and passes the input and output through their interfaces
to trigger the query execution. To transform the output of one
component into the input of the next, the Component Orchestrator
utilizes translators maintained in the Translator Repository. These
are used to move between representations, e.g., translating a logical
query plan from Calcite to a Wayang plan.

3.2 Component Types

Our architecture abstracts DMS components into clearly defined
services which would otherwise be intertwined inside a monolithic
system. Below, we discuss each component type in more detail.

The Metadata Store is a special component that interacts with
all other PoLYDMS components. We expect Metadata Stores to act
as global catalogs, e.g. providing schema information to the query
interface for validation purposes, which can also be leveraged for
data discovery and governance purposes. More importantly, the
Metadata Store contains data profiling information, such as row
counts and attribute value histograms, to assist the optimizer.

The Query Interface accepts user queries and outputs Abstract
Syntax Trees (ASTs). The responsibility of this component is to
validate user queries with regard to syntax and semantics, and to
transform them into an AST, e.g., translating a SQL query into

a logical query plan. Other examples for potential user APIs are
Pig [23], SPARQL, and Weld [24], which allows to intermix Python
libraries, such as Pandas or Numpy. Although parsing and validation
could be done in individual components, we unify these tasks into
one component for the sake of simplicity. Note that the query
interface also interacts with the Metadata Store to access metadata,
e.g., the dataset tables and attributes.

The Optimizer Interface accepts ASTs and outputs ASTs. The re-
sponsibility of this component is to optimize a given plan. For exam-
ple, one could use a rule-based optimizer for simple query rewrites.
If metadata about the queried tables are available, the Optimizer
can leverage the Metadata Store to perform cost-based rewrites
like join ordering. Alternatively, system engineers could also wrap
existing optimizers, such as Apache Calcite [6] or Orca [26]. Note
that query optimization is not limited to optimizations found in re-
lational optimizers, but can also be of different nature. For instance,
one can use a cross-platform optimizer, such as Wayang, to decide
on an efficient operator placement strategy. Also note that one can
utilize multiple Optimizers in a row, e.g., to first apply rule-based
and then cost-based optimizations or to first perform logical and
then cross-platform optimizations. In this case, the Component
Orchestrator requires a Translator for transforming between two
different optimizer representations.

The Execution Engine Interface accepts query plans and returns
the query results. Execution engines offer low-level APIs, to which
we can map ASTs using an appropriate Translator. For example,
after optimizing a query plan logically through an Optimizer, we
use a Translator to create an Apache Spark job. This way, it is
possible to use different optimizers for one execution engine, e.g.,
by using Calcite- and Orca-to-Spark Translators, one can use an
alternative to Spark’s own Catalyst optimizer [5].

The Storage Engine Interface is not the main focus of our initial
work so far as there already has been seminal work on separating
compute from storage [12]. Essentially, one must provide means to
access the data that a particular storage engine holds. Examples for
storage engines include file systems (e.g., HDFS) or cloud storage
buckets, but also existing DMSes.

3.3 Component Orchestration

The Component Orchestrator is an integral part of PoLyDMS, as it
maintains active components, controls the information flow, and
steers the interaction between components.

The Component Catalog maintains a list of all active components
an orchestrator manages. After implementing the respective com-
ponent type interface and starting a service instance, users register
components at the orchestrator. This includes important meta data,
such as the access point and the input/output representation that
the component expects. In general, the Component Orchestrator
can manage more components than required for a single DMS so
that users can flexibly compose different DMSes out of the set of
available components.

The SDL Interpreter parses SDL programs submitted by system
developers. SDL is a small domain-specific language inspired by
workflow definition languages, such as Apache AirFlow [18], and

provides primitives for defining component interactions. Most im-
portantly, SDL offers a PolyDMSContext object and a translate()
function. The PolyDMSContext contains references to the individ-
ual system components, what input they receive, and how their
output is processed. translate() is a generic method, which the
orchestrator replaces with a specific Translator from the Translator
Repository after analyzing the metadata of the involved compo-
nents. The SDL Interpreter automatically checks if an SDL program
is valid by inspecting the output-input connections of all compo-
nents and validating the query processing workflow. For example,
if the output of an Execution Engine is used as the input of an Opti-
mizer or there is no fitting Translator in the Translator Repository,
the interpreter throws an error. Program 1 gives a concrete SDL ex-
ample showcasing how users can use a PolyDMSContext and how
translate() connects components with different input/output.

The DMS Context Manager instantiates new systems and man-
ages all existing system contexts. Upon submitting a valid SDL
program, users receive a PolyDMSContext, which offers methods
for executing queries and running administrative tasks, such as
checking the system status or shutting down the system. How users
interact with the newly created system depends on the chosen
Query Interface component. A SQL interface, for example, simply
accepts strings that adhere to the respective SQL dialect while a
Pandas interface accepts input that is understood by the underlying
Python interpreter. Going forward, we envision that the Context
Manager and PolyDMSContexts could be wrapped by a web-based
GUI to ease the system interaction for non-expert users.

The Translator Repository maintains all user-defined transla-
tions between different input/output representations. Translators
act as "glue code" between distinct representations, e.g., a query
plan in Apache Calcite and Wayang. A Translator implementation
consists of a mapping between the internal representations of the
two involved components. The concept of mappings between differ-
ent representations has already been explored in various previous
works. For example, Hagedorn et al. [17] map Pandas operators to
SQL statements, while Emma [3] and Wayang [2] map their own
operators to underlying system operators (e.g., Spark, Flink). Be-
yond mappings, we are investigating the use of static code analysis
for the translation of imperative languages. This could be useful to
translate queries written in popular data science libraries, such as
Pandas, to a representation understood by relational algebra-based
optimizers and execution engines.

3.4 Application Scenarios

Having laid out the details of our vision for composable DMSes, we
now present two scenarios based on our real-world observations
in which PoLyDMS can assist DMS architects.

Diverse User Requirements. DMSes, especially in OLAP use
cases, are often used by different user groups (e.g., departments).
Given the varying user backgrounds, it is reasonable to assume that
there are different system language (i.e., query interface) prefer-
ences among the user base. While SQL is the most common standard
to interact with DMSes, object-oriented Python libraries like Pan-
das or functional languages have also been shown to work as DMS
query interfaces [17]. Another example is when OLTP-specialized

systems are also required to efficiently serve OLAP-queries, as
shown by replacing MySQL’s optimizer with Orca [22]. PoLYDMS
makes it easy to change system components like query interfaces
based on user requirements. For example, by plugging a Pandas-to-
SQL Translator [17] into the system, one can support multiple user
front-ends in an existing relational optimization pipeline.

Optimization Synergies. As query optimizers take a query plan
as input and produce another plan as output, we can chain them
to potentially improve the optimization results. Some existing sys-
tems, such as Calcite, already offer multi-stage optimization as an
internal feature [6]. While in the case of Calcite, this is limited to the
repeated application of Calcite’s rule- and cost-based optimization,
PoLYDMS enables users to combine any optimizer with each other.
As available optimizers often excel in different situations, we argue
that combining different optimizers can yield better query runtime
performance, e.g., by combining a logical optimizer with a cross-
platform optimizer (Section 4). Moreover, PoLyDMS also simplifies
the efforts of researchers when benchmarking new optimizers and
analyzing the impact of new optimization techniques.

4 PROOF-OF-CONCEPT

We evaluated our vision for PoLYDMS in a collaboration with
Huawei by composing a PoC OLAP DMS based on PoLyDMS.
Huawei is a large telecommunication and cloud services provider
working with a broad range of customers. PoLYDMS enables sys-
tem architects to flexibly adapt to varying use case requirements
and compose a dedicated DMS for each scenario with little over-
head. Combined with the straight-forward integration and reuse of
custom components, we argue that PoLYDMS is a compelling frame-
work for the use of composable DMSes in industry. We describe the
details of our PoC system, including the initial requirements and
how the different components interact, in Section 4.1. Section 4.2
then presents a preliminary performance evaluation of our PoC,
which shows that composing multiple components into a new DMS
can yield additional functionality and better performance.

4.1 Composition

We challenged PoLyDMS with a real-world industry use case that
existing DMSes cannot handle efficiently. Consequently, we com-
posed a new DMS to solve this use case. As part of its service
offering, Huawei is running a wide range of data analytics work-
loads on premise and in the cloud. In practice, solution architects
often face fixed legacy DMS infrastructures that require a cross-
platform system for utilizing multiple heterogeneous DMSes in one
workload. Existing cross-platform systems [2, 15], however, do not
support SQL interfaces or important logical optimizations like join
ordering. Nevertheless, end users still request convenient interface
via a language they know (i.e., SQL) and good query performance.
Thus, the goal of our PoC was to compose a new cross-platform
DMS with SQL support and an advanced query optimizer.

Figure 3 summarizes the architecture of the PoC system, while
Program 1 shows how we envision an equivalent SDL statement.
We use Apache Wayang (incubating) [29, 2] as a state-of-the-art
cross-platform system together with Apache Calcite [6] for query
parsing and optimization and our custom-developed metadata store

;”Cld’.’”'b&’l”'éhlt”é <«—> Calcite SQL Interface [-
... Catalog :
~ :SDL Interpreter: l«— Calcite Optimizer -1 ©
................. 5
pereeesisininaanas %)
PolyDMS _ |: DMS Context : =
Context ~|: Manager :[«— Wayang Optimizer -1 X
e T
: Transl
/T.(.;./Y.V..R‘?PQ-...E <+—>| Wayang Executor =~/
Calcite-to- --= SSs=z-_
Wayang | Component = SRS
translator | Orchestrator | Spark | Hive | HDFS || HBase

Figure 3: Overview of the PoC system architecture.

def cross_platform_dms():
ctx = PolyDMSContext()
ctx.md = XMStore()
ctx.qi = CalciteSqlInterface(, ctx.md)
ctx.log_opt = CalciteOpt(ctx.qi, ctx.md)
ctx.cp_opt = WayangOpt(translate(ctx.log_opt), ctx.md)
ctx.exec = WayangExec(ctx.cp_opt, ctx.md)

return ctx.initialize()

Program 1: Prototypical SDL statement for the PoC system.
Bold blue indicates dedicated SDL primitives.

X-MStore. Below, we discuss our choice of components as well as
their interaction.

Query Interface. We use Calcite’s SQL parser to implement the
Query Interface service. The interface accepts SQL queries from
the PolyDMSContext after the users calls its execute() method
and responds with corresponding logical query plans. For query
validation, we direct Calcite’s metadata calls to our Metadata Store.

Metadata. We implement our PoC’s metadata service by encapsu-
lating X-MStore, our own cross-platform metadata store that col-
lects information from any storage and execution engine. X-MStore
assists other services requiring metadata from underlying systems.
It provides methods for requesting different types of metadata, such
as schema information and statistics, as well as for system-specific
metadata, such as system load. X-MStore collects metadata in an of-
fline fashion by leveraging existing information and by computing
missing statistics. X-MStore enables us to perform additional opti-
mizations across multiple execution platforms as it collects more
information, such as histograms for join ordering, than existing
solutions for data discovery. Using our own meta store in combina-
tion with existing components shows that PoLYDMS makes it easy
to integrate general- and special-purpose solutions.

Optimization. A key ability of our PoC is to perform logical opti-
mizations (i.e., query rewrites) on top of a cross-platform execution
system. We particularly aimed at performing selection/projection
push-down and join reordering. After receiving a query plan from
the Query Interface, the Component Orchestrator calls the Logical
Optimizer service. We implement the Optimizer interface with Cal-
cite, using its heuristic planner for logical optimization and directing
Calcite’s calls for statistics to X-MStore through the orchestrator.
Our Logical Optimizer service receives requests with a logical plan,

1400 -{|I®@ PoLyDMS 1296 350 4 B w/ X-MStore 342
Wayang B w/o X-MStore
1200 o
2 1000 -
N
< 800 1
£
T 600
3
=t 400 4 392
220
200
33 55 109
O -
1 10 100 1 10 100
Dataset Size (GB) Dataset Size (GB)
(a) Optimization synergies (b) Metadata impact

Figure 4: Performance evaluation

feeds the query to Calcite’s planner, and forwards the resulting
optimized plan as a response to the Component Orchestrator.

In addition to Calcite, we employ a second optimization stage
that aims at deriving an optimal combination of execution backends
for a user query. To support optimization over multiple DMSes, we
relied on Wayang [29] (formerly Rheem [2]). Given a platform-
agnostic operator plan, Wayang’s optimizer returns an annotated
query plan where each operator is annotated with one of the avail-
able execution backends. To interact with Wayang, the Component
Orchestrator first translates the Calcite plan into a Wayang plan us-
ing its Translator Repository. Like the logical optimizer, this service
also interacts with the Metadata service to acquire platform and
hardware information necessary for cross-platform optimization.

Execution. As Wayang’s executor uses the same query represen-
tation format as its optimizer, we do not need another Translator
between components. Instead, the Component Orchestrator directly
forwards the optimization results to the execution service. As a
cross-platform system, Wayang coordinates the execution across
the selected data processing platforms by triggering the necessary
sub-tasks on each execution backend. Choosing Wayang as an exe-
cution service allows us to take advantage of its conversion channel
mechanism. In contrast to existing schedulers [18], this mechanism
always chooses an optimal communication channel between two
platforms and pipelines intermediate results if possible.

Orchestration. We bring all of the aforementioned components
together by implementing the first Component Orchestrator pro-
totype. The Component Orchestrator is a key part of PoLYDMS
and fulfills two functions in our prototype. First, it coordinates all
components and controls the flow of information. Second, it man-
ages the Translator Repository in which DMS composers define the
conversions between different result representations. Maintaining
all component translators in a central location allows for efficient
reuse of the manually defined conversions.

4.2 Preliminary Evaluation

We evaluated our PoLYDMS PoC with two goals in mind: First, to
show the potential of PoLYDMS and address one of the application
scenarios, in particular the optimization synergies scenario; Second,
to investigate if it is easy to integrate custom components. In the
following, we first describe our setup and then discuss our results.

Experiment Setup. We implemented the Component Orchestrator
in Java 8, and used HDFS 2.7, Spark 2.3, HBase 2.2, Hive 2.3, Wayang
0.6, as well as X-MStore. All of our components are accessible
through a REST-API implemented with a Java Tomcat server. For
our experiments, we used a proprietary dataset from our industry
partner with three tables comparable to the TPC-H dataset and
evaluate our prototype with the two following workloads.

Workload 1: Optimization Synergies. In our first experiment,
we use a query that joins a table from HDFS with a table on HBase,
applies a filter, a custom UDF, and an aggregation. We implemented
a Wayang job as our baseline and an equivalent SQL query which
we execute on our PoC with both logical and cross-platform opti-
mizations. Our results in Figure 4a show that the logical optimiza-
tions always improve runtime performance compared to Wayang:
it achieves an improvement factor of up to 3x.

Workload 2: Metadata Impact. In our second experiment, we
use a query that joins three tables from HDFS. In this case, we
execute the query once with and once without metadata support
from X-MStore. Our results in Figure 4b show that while the right
join ordering does not offer large improvement benefits for smaller
dataset sizes, for larger dataset sizes we achieve an improvement
factor of 2.5x. More interestingly, we observe that PoLYDMS always
achieves better runtime performance with X-MStore than without.

Discussion. It is worth noting that our PoC DMS does not ex-
ist today as a such: It provides a declarative query interface (SQL),
combines traditional database optimizations with cross-platform op-
timizations, and executes incoming queries over multiple data pro-
cessing platforms seamlessly. Overall, the preliminary evaluation of
our PoC shows the potential of breaking monolithic architectures
into multiple autonomous decoupled services that utilize existing
components. More generally, the PoLYDMS framework allows for
several query planning and execution combinations (not available
today), leading to significantly better runtime performance.

5 OUTLOOK

We presented PoLYDMS, our vision to break today’s monolith DMS
architectures. The idea of PoLyDMS aims at enabling users to com-
pose new DMSes. It has three key characteristics: First, it employs
standardized component type interfaces, which wrap existing or
custom-developed components; Second, it comes with an orchestra-
tor that manages the interaction between individual components,
and; Third, it provides a SDL that allows users to compose a DMS
out of standalone components. Based on our lessons learned from
building the PoC and ongoing work, we plan to formalize our ideas
for SDL and extend our Component Orchestrator prototype to con-
struct DMS instances based on SDL statements. Furthermore, we
want to investigate the potential of advanced control flow con-
structs in SDL and explore more real-world PoLyDMS applications.

ACKNOWLEDGMENTS

This work was funded by the German Federal Ministry of Education
and Research as BIFOLD - Berlin Institute for the Foundations of
Learning and Data (ref. 011S18025A and ref. 01IS18037A) and by
Huawei as part of the project "Cross-Engine Query Execution". We
thank Joscha von Hein for assisting with the PoC implementation.

REFERENCES

(1]
(2]
(3]
(4]
(5]
(6]

(7]
(8]

(9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

D. Abadi, R. Agrawal, A. Ailamaki, et al. 2016. The Beckman Report
on Database Research. Commun. ACM.

D. Agrawal, M. Ouzzani, P. Papotti, et al. 2018. RHEEM: Enabling
Cross-Platform Data Processing. PVLDB.

A. Alexandrov, A. Kunft, A. Katsifodimos, et al. 2015. Implicit
Parallelism through Deep Language Embedding. SIGMOD ’15.

R. Alotaibi, D. Bursztyn, A. Deutsch, et al. 2019. Towards Scalable
Hybrid Stores: Constraint-Based Rewriting to the Rescue. SIGMOD.
M. Armbrust, R. S. Xin, C. Lian, et al. 2015. Spark SQL: Relational
Data Processing in Spark. SIGMOD ’15.

E. Begoli, J. Camacho-Rodriguez,]. Hyde, et al. 2018. Apache Calcite:
A Foundational Framework for Optimized Query Processing Over
Heterogeneous Data Sources. SIGMOD ’18.

K. S. Beyer, V. Ercegovac, R. Gemulla, et al. 2011. Jagl: A Scripting
Language for Large Scale Semistructured Data Analysis. PVLDB.

J. Camacho-Rodriguez, A. Chauhan, A. Gates, et al. 2019. Apache
Hive: From MapReduce to Enterprise-grade Big Data Warehousing.
SIGMOD °19.

M. J. Carey, L. M. Haas, P. M. Schwarz, et al. 1995. Towards Het-
erogeneous Multimedia Information Systems: The Garlic Approach.
RIDE-DOM ’95.

S. Chawathe, H. Garcia-Molina, J. Hammer, et al. 1994. The TSIMMIS
Project: Integration of Heterogenous Information Sources. IPS] *94.
B. Dageville, T. Cruanes, M. Zukowski, et al. 2016. The Snowflake
Elastic Data Warehouse. SIGMOD ’16.

J. Dean and S. Ghemawat. 2008. MapReduce: Simplified Data Pro-
cessing on Large Clusters. Commun. ACM.

J. Duggan, A. J. Elmore, M. Stonebraker, et al. 2015. The BigDAWG
Polystore System. SIGMOD Rec.

H. Gavriilidis. 2019. Computation Offloading in JVM-based Dataflow
Engines. BTW "19.

1. Gog, M. Schwarzkopf, N. Crooks, et al. 2015. Musketeer: All for
One, One for All in Data Processing Systems. EuroSys '15.

L. M. Haas,]. C. Freytag, G. M. Lohman, and H. Pirahesh. 1989.
Extensible Query Processing in Starburst. SIGMOD ’98.

S. Hagedorn, S. Klabe, and K.-U. Sattler. 2021. Putting Pandas in a
Box. CIDR ’21.

S. Haines. 2022. Workflow Orchestration with Apache Airflow. In
Modern Data Engineering with Apache Spark: A Hands-On Guide for
Building Mission-Critical Streaming Applications. Apress, 255-295.
J. M. Hellerstein, M. Stonebraker, and J. Hamilton. 2007. Architecture
of a Database System. FNT in Databases.

Z. Kaoudi and J.-A. Quiane-Ruiz. 2018. Cross-Platform Data Pro-
cessing: Use Cases and Challenges. ICDE ’18.

B. Kolev, C. Bondiombouy, P. Valduriez, et al. 2016. The CloudMdsQL
Multistore System. SIGMOD ’16.

A. P. Marathe, S. Lin, W. Yu, et al. 2022. Integrating the Orca
Optimizer into MySQL. EDBT °22.

C. Olston, B. Reed, U. Srivastava, et al. 2008. Pig Latin: A Not-so-
Foreign Language for Data Processing. SIGMOD ’08.

S. Palkar, J. J. Thomas, A. Shanbhag, et al. 2017. Weld: A Common
Runtime for High Performance Data Analytics. CIDR *17.

R. Sethi, M. Traverso, D. Sundstrom, et al. 2019. Presto: SQL on
Everything. ICDE ’19.

M. A. Soliman, L. Antova, V. Raghavan, et al. 2014. Orca: A Modular
Query Optimizer Architecture for Big Data. SIGMOD ’14.

M. Stonebraker and U. Cetintemel. 2005. "One Size Fits All": An Idea
Whose Time Has Come and Gone. ICDE ’05.

J. Wang, T. Baker, M. Balazinska, et al. 2017. The Myria Big Data
Management and Analytics System and Cloud Service. CIDR ’17.
Wayang authors. 2022. https://wayang.incubator.apache.org/.

https://wayang.incubator.apache.org/

	Abstract
	1 Introduction
	2 Existing Composition Approaches
	2.1 Vertical Composition
	2.2 Horizontal Composition
	2.3 The Missing Piece

	3 The PolyDMS Framework
	3.1 Overview
	3.2 Component Types
	3.3 Component Orchestration
	3.4 Application Scenarios

	4 Proof-of-Concept
	4.1 Composition
	4.2 Preliminary Evaluation

	5 Outlook
	Acknowledgments

