
GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

EBOOK GITOPS

GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Table of Contents
Introduction . . 03

Cloud-Native vs. Platform-Native . 04

GitOps and Cloud-Native Development . . 05

5 Characteristics of a Cloud Portability Strategy. . 06

Understanding the Challenges of Cloud-Native Architecture 08

Handling the Challenges with Cloud-Native Strategies 09

How Leveraging GitOps Increases Cloud Portability . 10

Akamai and Cloud Portability . 11

 | 03

GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Introduction
Cloud portability refers to the capability to migrate applications, data, and other key resources seamlessly
between different environments or cloud providers. It enables organizations to avoid vendor lock-in and retain
flexibility in their cloud strategies. This type of flexibility is crucial for organizations looking to maintain agility
in their architecture. The recommended strategy for enabling portable application development by
implementing GitOps, or DevOps best practices with Git as the source of truth for managing infrastructure and
application deployment.

In this ebook you will learn:
	 •	 the differences between cloud-native and platform-native,
	 •	 how cloud-native development and cloud portability are linked,
	 •	 how cloud portability helps get around vendor lock-in,
	 •	 the five characteristics of cloud portability, and
	 •	 how leveraging GitOps increases cloud portability.

Introduction

 | 04

GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Cloud-Native vs. Platform-Native
Cloud-native is a widely known, modern approach to software development and deployment that leverages the
capabilities and benefits of cloud computing with an emphasis on staying provider-agnostic. Cloud-native takes
full advantage of the elasticity and agility of cloud computing resources.

Platform-native is a lesser-used term that describes application architecture that is heavily tied to a single
infrastructure provider or deployment platform. This type of architecture is common for organizations that
depend on multiple services from AWS or Azure, which typically manifests in an application architecture built
on a unique design feature or functionality within that service.

When you build within a specific platform ecosystem and cannot move to another without significantly
changing the services you rely on, you experience vendor lock-in. Your workload lacks portability and if,
for whatever reason, you needed to move to another cloud provider in order to scale or replace your provider
altogether, you would need time and resources to re-architect components of your application.

However, when you begin with a cloud-agnostic and cloud-native approach to leverage tools that can be used
with any cloud provider, you have the flexibility to make adjustments as your needs change.

A cloud portability strategy also gives you more insight into how, where, and why your application consumes
cloud resources. So, instead of working around the limitations of a single cloud provider, you have the power
to make decisions based solely on your business and user needs.

Cloud-Native vs. Platform-Native

 | 05

GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

GitOps and Cloud-Native Development
GitOps, an operational framework that simplifies the deployment and management of applications and
infrastructure using Git, closely aligns with the principles of cloud-native development and enhances
cloud portability.

GitOps and Cloud-Native Development

Looking for an
Introduction to GitOps?

Learn the differences between GitOps and
DevOps, and how to ensure Git is the single
source of truth for your application in our
free Understanding GitOps guide.

DOWNLOAD NOW

https://www.linode.com/content/understanding-gitops-ebook/

 | 06

GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

5 Characteristics of a Cloud Portability Strategy

5 Characteristics of a
Cloud Portability Strategy
Cloud portability is a strategy for building scalable, resilient cloud-native applications. A portable workload
is one that can be easily migrated, deployed, and managed across different computing environments and
infrastructure platforms. So how do you know that you’re building for portability?

Here are five key characteristics of a cloud portability strategy to consider:

	 1.	Commoditized architecture
	 A portable workload is designed to operate on core cloud infrastructure primitives. These are the basic,
	 interchangeable services found across all Infrastructure-as-a-Service (IaaS) providers.

	 Examples of core primitives include things like compute, storage, networking, and declarative APIs.
	 Managed services like Database-as-a-Service (DBaaS) and Kubernetes engines such as AWS EKS and
	 Akamai’s LKE can also be considered core cloud infrastructure primitives because they are common
	 across IaaS providers.

	 It’s important to choose an open source version that is compatible with similar managed services on other
	 platforms as well as with self-hosted solutions.

	 2.	Open source software
	 Portable applications bypass vendor lock-in by avoiding design patterns that depend on proprietary services
	 of a cloud provider. Your entire software stack–everything from front-end frameworks, to back-end APIs,
	 to the database layer, and message brokers–should be built with open source tooling that is capable
	 of running in environments built from core cloud infrastructure primitives.

	 3.	Scalability
	 Fully portable workloads are capable of horizontal scaling. This can be by metric-based autoscaling
	 functionality, or by predictive (manual) scaling based on resource availability and user demand.

	 A scalable design with a cloud-agnostic architecture helps to ensure adaptability and flexibility across
	 different environments, allowing your architecture to span multiple cloud platforms.

 | 07

GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

5 Characteristics of a Cloud Portability Strategy

	 4.	Standardization
	 A portable workload adheres to a standardized design to simplify testing and deployment. This is achieved
	 by ensuring consistency and repeatability in every aspect.

	 The design pattern of infrastructure resources, software configurations, and security policies are all
	 templated and thoroughly documented. When deploying multiple times from the same blueprint,
	 processes and tools are in place to ensure idempotency, safeguarding against configuration drift,
	 and ensuring uniformity across deployments.

	 5.	High availability and disaster recovery
	 A portable architecture is built for resilience by incorporating a design that supports replication and failover
	 strategies to eliminate single points of failure. This design pattern, along with thorough documentation and
	 standardization, results in a lower recovery point objective (RPO) and recovery time objective (RTO) for
	 disaster recovery.

	 The lower the RPO and RTO, the quicker an organization can recover from a disaster with minimal data loss
	 and downtime, so prioritizing high availability and disaster recovery is necessary for continuous operation
	 and minimal impact in case of failure.

 | 08

GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Understanding the Challenges of Cloud-Native Architecture

Understanding the Challenges
of Cloud-Native Architecture
Adopting a cloud-native architecture is not without its challenges. While the benefits are substantial,
familiarizing yourself with the initial challenges is crucial for a successful transition.

The first hurdle is modifying your application to fit the cloud-native model. This process involves re-architecting
applications fit into a standardized and vendor-agnostic workflow. It often requires breaking down monolithic
applications into microservices, which can be a complex and resource-intensive task - but one that will pay off
by providing flexibility in the future.

Another significant challenge is dealing with the complexities of multicloud environments. Each cloud service
has different APIs, syntax, and other features, and each comes with its own unique set of “gotchas.”
This complexity is compounded by the need to ensure consistency in deployment, security, and operations
across various platforms.

Transitioning to a cloud-native architecture also brings about an increase in maintenance tasks.
The dynamic and distributed nature of cloud-native applications requires continuous monitoring, updates,
and security checks to ensure optimal performance and security.

 | 09

GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Handling the Challenges with
Cloud-Native Strategies
Transitioning to a cloud-native architecture brings its challenges, but there are effective tools and strategies that
facilitate migration, automation, and iterative development. These strategies lie in the innate strengths
of cloud-native systems.

A pivotal advantage of cloud-native architecture is its inherent support for automation. Tools designed for
continuous integration and continuous deployment (CI/CD) enable organizations to automate crucial aspects
of application deployment, scaling, and management. This not only reduces the need for manual intervention
but also significantly lowers the likelihood of errors, streamlining the operational workflow.

The adoption of a microservices approach is another critical aspect of cloud-native applications. By fracturing
applications into smaller, independent units, organizations can facilitate more manageable updates and
maintenance. This approach allows teams to modify or repair specific parts of the application with minimal
impact on the overall system. Such modular architecture enhances scaling efficiency and optimizes resource
utilization.

Implementing GitOps practices brings a new level of efficiency to the development and operational processes.
This approach emphasizes streamlined collaboration, advanced automation, and a commitment to continuous
improvement, making the overall development lifecycle more responsive and agile.

In embracing these cloud-native strategies, organizations can effectively navigate the complexities
of transitioning to a cloud-native architecture, setting the stage for enhanced scalability, resilience,
and operational efficiency in the long run.

Handling the Challenges with Cloud-Native Strategies

 | 10

GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

How Leveraging GitOps
Increases Cloud Portability

How Leveraging GitOps Increases Cloud Portability

Cloud-native development, cloud portability, and GitOps are strongly linked– in both end goals and principles
and methodologies to reach those goals. Cloud portability enables developers to rapidly move applications and
data between cloud environments (and providers). Cloud-native is an architectural approach to designing
applications that are built in the cloud, and intend to remain as such to reap cloud computing benefits. In all
of this, GitOps is the “how”.

The benefits of GitOps impact key portability goals ranging from our failover example to freeing resources from
extensive testing and auditing in order to ship new features and improvements.

WHAT

WHY HOW

Cloud-Native Application

Cloud Portability GitOps

End Goal / Product

Purpose: Your application and its
components do not rely on a single
cloud provider or proprietary services.

Methodology: Developers efficiently
collaborate and merge changes using

a single source of truth (Git) for both
application and infrastructure configuration

with detailed version control.

 | 11

GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

How Leveraging GitOps Increases Cloud Portability

BENEFIT HOW IMPACT ON PORTABILITY

Consistency
GitOps leverages CI/CD pipelines to
apply changes whenever a change
occurs in the Git repository.

The live state matches the desired
state so an environment can be
replicated on another cloud provider.

Efficiency GitOps enables iterative development
to support rapid releases and fixes.

Reduce time-to-market for new
features and improvements.

Collaboration
Maintaining version control with
multiple teams and contributors is
the foundation of Git and GitOps.

Developers experience fewer hurdles
to contribute their code while
maintaining a single source of truth.

Reliability

Version control makes it easy to roll
back changes and find changes that
resulted in a bug or performance issue.

Decision makers can rapidly assess
whether unexpected application
behavior is due to a recent change or
other potential cause.

Security

Git repositories are equipped with
role-based access control, secrets
management, and custom security
policy codification.

Security features are at the foundation
of the application infrastructure– not
defined by cloud platform features or
external tools.

Compliance
All changes are recorded in Git, making
audits and compliance checks more
efficient.

Traceability streamlines moving to
new environments, improving
development flexibility.

Multi-environment
Automation

Different environments
(i.e. production, staging, dev) are
clearly defined. The transition of
changes to the production
environment is meticulously
controlled through branch merges or
updates to configuration files.

Any modifications or updates
undergo testing in staging or
development environments before
they are applied to the production
environment, maintaining the integrity
and stability of the live application.

 | 12

GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Akamai and Cloud Portability
Akamai is at the forefront of empowering developers in their cloud-native development and ensuring that
workloads are portable and easy to manage. This includes making it easy to get started with IaC tools and our
extensive documentation library to set up portable infrastructure.

Here are some resources to help you get started.

	 •	 Understanding GitOps (Ebook)
	 •	 GitOps: An Overview of Its Principles and Workflow (Guide)
	 •	 Resolve Merge Conflicts in Git (Guide)
	 •	 Cloud Portability: Building a Cloud-Native Architecture (Ebook)
	 •	 View all Git guides in Akamai’s documentation library

Akamai and Cloud Portability

https://www.linode.com/content/understanding-gitops-ebook/
https://www.linode.com/docs/guides/gitops-principles-and-workflow/
https://www.linode.com/docs/guides/resolving-git-merge-conflicts/
https://www.linode.com/content/cloud-portability-building-a-cloud-native-architecture-pdf/
https://www.linode.com/docs/guides/development/version-control/

 | 13

GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

About Akamai
Akamai accelerates innovation with scalable, simple, affordable, and accessible Linux cloud solutions and
services. Our products, services, and people give developers and enterprises the flexibility, support, and trust
they need to build, deploy, secure, and scale applications more easily and cost-effectively from cloud to edge
on the world’s most distributed network.

www.akamai.com
www.linode.com

About

https://www.akamai.com/
https://www.linode.com/

GITOPS FOR CLOUD PORTABILITY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Cloud Computing Services
Developers Trust

linode.com | Support: 855-4-LINODE | Sales: 844-869-6072

249 Arch St., Philadelphia, PA 19106 Philadelphia, PA 19106

https://www.linode.com/

