
3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

EBOOK GITOPS

3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Table of Contents
Introduction . . 03

Getting Started with GitOps . . 04

The Philosophy of GitOps. 05

Push vs. Pull-Based Architecture . . 07

Designing Your GitOps Strategy. . 10

Using GitOps with Akamai Cloud Computing . . 12

 | 03

3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Introduction
GitOps has gained popularity in the cloud-native ecosystem, particularly in Kubernetes-based environments,
where managing infrastructure as code is crucial. Knowing the philosophy of GitOps, what your current
deployment strategy looks like, and essential tools are key to implementing a successful GitOps strategy.

In this ebook you will learn:
	 •	 a refresher on the the core principles of GitOps,
	 •	 how your deployment strategy affects your GitOps plan, and
	 •	 why observability is a critical part of GitOps and how it differs from monitoring

Introduction

 | 04

3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Getting Started with GitOps
GitOps is an operational framework that aims to streamline and automate the deployment and management
of applications and infrastructure using Git as the single source of truth. It simplifies and standardizes the
deployment and management of complex systems, improves collaboration between development and
operations teams, and increases the reliability and reproducibility of deployments. GitOps is popular in the
cloud-native ecosystem, particularly in Kubernetes-based environments, where managing infrastructure as code
is crucial. Essential elements of GitOps include continuous integration / continuous delivery (CI/CD), choosing
between pull- or push-based architecture, and observability.

Getting Started with GitOps

Looking for an In-Depth
Introduction to GitOps?

Learn the differences between GitOps and
DevOps, and how to ensure Git is the single
source of truth for your application in our
free Understanding GitOps guide.

DOWNLOAD NOW

https://www.linode.com/content/understanding-gitops-ebook/

 | 05

3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

The Philosophy of GitOps
Before getting started, it’s important to understand the philosophy of GitOps. GitOps borrows best practices
from DevOps and applies them to infrastructure automation. Whereas DevOps is the practice of automating the
software development lifecycle, GitOps contributes to the automation of infrastructure. This includes version
control, collaboration, compliance, and CI/CD.

GitOps is a specific implementation of DevOps that uses Git as the single source of truth for declarative
infrastructure and application code. In GitOps, the desired state of the system is versioned and stored in a Git
repository, and a reconciliation loop continuously monitors and enforces that desired state. GitOps takes DevOps
practices and puts them into action for managing cloud-native workloads.

The Philosophy of GitOps

GitOps automates application code deployments and infrastructure management.
Adhere to best practices by creating separate repos for your application code, and configs.

Updates to the application repo trigger processes with your CI/CD tooling to update the config repo.
The config changes are then pushed/pulled to the deployment environment.

Git Repo 1

Git Repo 2

CI/CD

Infrastructure as Code

Application

Config Management

Application Code

 | 06

3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

As a base for exploring and planning your GitOps strategy, review the OpenGitOps
Principles, published by the GitOps Working Group:

	 The desired state of a GitOps managed system must be:

		 1.	Declarative
			 A system managed by GitOps must have its desired state expressed
			 declaratively.

		 2.	Versioned and immutable
			 Desired state is stored in a way that enforces immutability and versioning
			 and retains a complete version history.

		 3.	Pulled automatically
	 	 	 Software agents automatically pull the desired state declarations from
			 the source.

		 4.	Continuously reconciled
	 	 	 Software agents continuously observe the actual system state and attempt
			 to apply the desired state.

The Philosophy of GitOps

https://github.com/open-gitops/documents/blob/main/PRINCIPLES.md
https://github.com/open-gitops/documents/blob/main/PRINCIPLES.md
https://github.com/open-gitops/documents/blob/main/GLOSSARY.md#desired-state
https://github.com/open-gitops/documents/blob/main/GLOSSARY.md#software-system
https://github.com/open-gitops/documents/blob/main/GLOSSARY.md#declarative-description
https://github.com/open-gitops/documents/blob/main/GLOSSARY.md#state-store
https://github.com/open-gitops/documents/blob/main/GLOSSARY.md#continuous
https://github.com/open-gitops/documents/blob/main/GLOSSARY.md#reconciliation
https://github.com/open-gitops/documents/blob/main/GLOSSARY.md#reconciliation

 | 07

3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Push vs. Pull-Based Architecture

Push vs. Pull-Based Architecture
Adopting a cloud-native architecture is not without its challenges. While the benefits are substantial,
familiarizing yourself with the initial challenges is crucial for a successful transition.

The first hurdle is modifying your application to fit the cloud-native model. This process involves re-architecting
applications fit into a standardized and vendor-agnostic workflow. It often requires breaking down monolithic
applications into microservices, which can be a complex and resource-intensive task - but one that will pay off by
providing flexibility in the future.

Another significant challenge is dealing with the complexities of multicloud environments. Each cloud service
has different APIs, syntax, and other features, and each comes with its own unique set of “gotchas.” This com-
plexity is compounded by the need to ensure consistency in deployment, security, and operations across various
platforms.

 | 08

3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Pull-based architecture requires a GitOps operator, or agent, to evaluate both the
infrastructure and application configuration in the repository to detect when the

Kubernetes cluster resources should automatically update based on config changes.

GitOps
Operator

Infrastructure
Code

Application
Code

Transitioning to a cloud-native architecture also brings about an increase in maintenance tasks.
The dynamic and distributed nature of cloud-native applications requires continuous monitoring, updates,
and security checks to ensure optimal performance and security.

Push vs. Pull-Based Architecture

Kubernetes Cluster

Git Repository

Bi-Directional gRPC

Developer

gRPC

REST API

 | 09

3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

A push-based, or agentless, approach can be seen as a deviation from the original GitOps principles,
but sometimes is preferable for managing varying infrastructure components outside the Kubernetes environment.

Push vs. Pull-Based Architecture

Push-based architecture also relies on CI/CD tools like Jenkins to deploy code changes
from the Git repository but lacks the automation benefits of pull-based deployments.

Complex architectures with a mixture of Kubernetes and non-Kubernetes workloads can leverage a combination
of both. Robust observability and reconciliation strategies must be thoroughly planned in this scenario,
and built-in by design. A more preferable approach would be to implement a pull-based approach that combines
a cloud-native continuous delivery (CD) with a cloud-native control plane. Combining ArgoCD and Crossplane
is a popular approach for Kubernetes applications.

Developer

Code Repository

CI / CD

Trigger

Deploy

Manual Approval to Merge

External Automation Tool

https://argo-cd.readthedocs.io/en/stable/
https://www.crossplane.io/

 | 10

3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Designing Your GitOps Strategy
Observability & Monitoring
Observability and monitoring are related concepts but have distinct differences in their approach and scope.
Monitoring provides a predefined set of metrics and indicators for tracking system health, while observability
offers a more flexible and exploratory approach to gain insights into system behavior and diagnose issues
effectively.

Observability refers to the ability to understand and infer the internal state and behavior of a system based
on its external outputs, events, and data. It involves gathering and analyzing various types of data including logs,
metrics, and traces in order to gain insights into a system’s performance, health, and other issues. Paired with
open source monitoring tools like OpenTelemetry, developers can gain real-time visibility of the system’s state
and changes.

Observability complements monitoring by providing a broader and more detailed view of the system, allowing
for better understanding and troubleshooting of complex and dynamic environments. This allows teams
to monitor and troubleshoot issues more effectively. Additionally, since all changes are recorded in Git,
auditing and compliance requirements can be easily met.

Infrastructure as Code (IaC)
One very common practice teams adopt for their GitOps strategy is implementing IaC tooling and best practices.
The process involves managing and provisioning infrastructure resources using code rather than manual
processes or interactive configuration tools. Ultimately this means codifying your workload by defining every
application and infrastructure resource as declarative configuration files, allowing for rapid, repeatable,
and error-free provisioning of infrastructure.

Popular tooling to support IaC includes Terraform, Pulumi, Ansible, Salt, and Puppet. These tools provide the
necessary capabilities to define, provision, and manage infrastructure resources using code.

Designing Your GitOps Strategy

https://opentelemetry.io/
https://www.terraform.io/
https://www.pulumi.com/
https://www.ansible.com/
https://saltproject.io/index.html
https://www.puppet.com/

 | 11

3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Maintain Separate Repositories for Application Code and Infrastructure
Code
Having separate repositories for application code and infrastructure code is a best practice. This promotes
modularity, independence, collaboration, versioning, and security. It allows for efficient development, testing,
and deployment of both application and infrastructure components while ensuring clear separation and control
over changes in each layer of the system.

User Permissions and Access Controls
To operate and maintain a GitOps system effectively, you will need a certain level of visibility. Your team will need
to detect, diagnose, and resolve issues promptly, ensuring the system’s stability, reliability, and scalability.

It’s important to implement appropriate permissions models and access controls to ensure the security and
integrity of your code and infrastructure. Common practices include role-based access control (RBAC),
Git repository permissions, branch protection, secure practices for managing and storing sensitive information
like API keys and strong passwords, infrastructure access control, multi-factor authentication (MFA),
and continuous monitoring and observability.

It is crucial to regularly review and update permissions and access controls based on changes in team
compositions, responsibilities, or security requirements. Also, you can further enhance your security posture
by educating team members about security practices and enforcing strong password policies.

Selecting Tools and Common Practices
With these three foundational elements in mind, you are ready to select your tools and preferred practices.
GitOps is fundamentally about managing your workload the same way you manage your codebase.

Selecting the right tools will depend on your choice of deployment strategy. In a push-based approach,
only the automation tooling needs write access to the environment. In a pull-based approach, the environment
just needs read access to the git repository. This greatly reduces the attack surface as it eliminates the need for
most individuals or teams to have direct access to the environment. A pool of contributors needs nothing more
than existing repository-level git permissions.

Designing Your GitOps Strategy

 | 12

3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Using GitOps with Akamai
Cloud Computing
Akamai cloud computing makes it easy to get started with the IaC tools that are integral to GitOps. Get a jump
start with our Try IaC ebook and on-demand course taught by Justin Mitchel from Coding for Entrepreneurs.

As you explore what tools and practices you want to see in your GitOps strategy, be sure to remember those
foundational elements: stay true to the core GitOps principles, understand your deployment strategy,
and be sure to empower your team with observability to keep your systems resilient and reliable.

A GitOps approach complements the rapidity and flexibility of cloud-native development, and you don’t need
to completely re-architect your application to start implementing a GitOps strategy. Repeatable processes and
unified deployment methodologies allow teams to work asynchronously without sacrificing collaboration–
this has become the key to bringing stable and scalable products to market faster.

Here are other resources to help you get started with Git to create your own GitOps pipeline.

Resources
	 •	 Set up Git (GitHub documentation)
	 •	 Install GitLab with Docker
	 •	 Resolve Merge Conflicts in Git
	 •	 View all Git guides in Akamai’s documentation library
	 •	 Learn how to manage Kubernetes resources with Terraform

Using GitOps with Akamai Cloud Computing

https://www.linode.com/content/try-infrastructure-as-code-ebook-series/
https://event.on24.com/eventRegistration/EventLobbyServlet?target=unavailable.jsp&eventid=3531652&sessionid=1&partnerref=IAC-LP&format=fhvideo1&contenttype=&username=&key=372BB86C884E8D39FE4916757DF20A42&errorcd=eventnotactive&msg=event+not+active
https://docs.github.com/en/get-started/quickstart/set-up-git
https://www.linode.com/docs/guides/install-gitlab-with-docker/
https://www.linode.com/docs/guides/resolving-git-merge-conflicts/
https://www.linode.com/docs/guides/development/version-control/
https://www.linode.com/series/terraforming-kubernetes/

 | 13

3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

About Akamai
Akamai accelerates innovation with scalable, simple, affordable, and accessible Linux cloud solutions and
services. Our products, services, and people give developers and enterprises the flexibility, support, and trust
they need to build, deploy, secure, and scale applications more easily and cost-effectively from cloud to edge
on the world’s most distributed network.

www.akamai.com
www.linode.com

About

https://www.akamai.com/
https://www.linode.com/

3 KEY ELEMENTS FOR YOUR GITOPS STRATEGY

Copyright 2024 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Cloud Computing Services
Developers Trust

linode.com | Support: 855-4-LINODE | Sales: 844-869-6072

249 Arch St., Philadelphia, PA 19106 Philadelphia, PA 19106

http://linode.com

