

Goal-Oriented Git

George Brocklehurst

January 15, 2016

Contents

About this book v

I Getting started 1

Goal: Get set up 2

What is Git? . 2

Using the command line . 2

Installing and configuring Git . 3

Goal: Track changes 5

The git init command . 5

The git add and git commit commands 6

Summary . 7

Goal: Understand what is being tracked 8

The git status command . 8

The git diff command . 10

Summary . 11

i

CONTENTS ii

Goal: Make beautiful commits 12

The git add --patch command . 12

Summary . 15

Goal: Write beautiful commit messages 16

What to cover . 16

How to lay it out . 17

Write commit messages in your text editor 18

Set your text editor . 18

The git commit --verbose command 19

Summary . 19

II Using history 20

Goal: Read the history 21

The git log command . 21

The git show command . 22

Summary . 23

Goal: Refer to commits 24

Abbreviating commit identifiers . 25

Relative commit references . 26

Using the commit message . 26

There are more! . 27

Summary . 27

CONTENTS iii

Goal: Understand a change 28

The git blame command . 28

Filtering git log by commit and file name 30

Summary . 31

Goal: Search the repository 32

Filtering git log by content . 32

The git grep command . 34

Summary . 35

Goal: Undo changes 36

The git revert command . 36

The git reset command . 38

III Branching 44

Introduction 45

Goal: Create a branch 46

Goal: Compare branches 47

Goal: Combine branches 48

Goal: Move branches 49

Goal: Delete branches 50

IV Collaboration 51

Introduction 52

CONTENTS iv

Goal: Add a remote 53

Goal: Publish changes 54

Goal: Retrieve changes 55

About this book

If you want to learn how to use Git without worrying too much about what’s going
on under the hood, then this book is for you.

Every chapter will take something that Git can do for you—from tracking changes,
to searching your files, to collaborating with others—and explain practically how
to achieve that goal. We won’t cover everything Git can do, but we won’t just stick
to the basics either: the goal of this book is to teach you a working set of Git com-
mands that can get you through most day-to-day situations.

If you’re learning Git for the first time, I’d recommend reading through in order:
When we look at a particular goal, I’ll assume knowledge of commands that were
covered in earlier chapters.

v

Part I

Getting started

1

Goal: Get set up

What is Git?

Git is a version control system. When youwork on a project—whether it’s a piece of
software, a Web site, a book, or anything else that goes through many revisions—
using version control lets you track the changes that you make, return to previous
versions, try alternative ideas, and seamlesslymerge your ownwork with the work
of others.

Git can track any kind of files, but it’s best suited to plain text files. If you’re not fa-
miliar with the term, these are files that just contain unformatted text as opposed
to images or things like PDF.

Using the command line

Everything covered in this book will be done from the command line. While there
are various applications that provide graphical interfaces for Git, the command
line interface is powerful, flexible, and works on every platform. Issuing com-
mands, one-by-one, forces us to take things step-by-step so we can really under-
stand what’s happening.

If you’re not familiar with using command line tools, then there are a few terms
you’ll need to know. Here’s a typical Git command:

git commit --message "My first commit"

2

CHAPTER 1. GOAL: GET SET UP 3

We’ll cover what it does later, but for now let’s name its component parts:

• git is the command: it’s the name of the program we want to run.
• commit is the sub-command: it tells Git what we want it to do. Not all com-
mand line interfaces use sub-commands, but sinceGit uses them for almost
everything, in the context of this book we can just think of git commit as the
command.

• --message and "My first commit" are both arguments: they are passed to
the command to further nuance its behaviour. Arguments often come in
pairs, wherewe tell Git what optionwewant to use—in this case --message—
and then a value for that option—"My first commit".

Installing and configuring Git

Before we begin, you’ll need to install Git and get it set up:

1. Go to theGit downloads page, and follow the instructions for your operating
system: http://git-scm.com/downloads

2. Make sure you can run Git commands from the command line. If you’re on
Mac OS X you can use the Terminal.app application; if you’re on Windows
there’s an application called Git Bash that comes with Git.

The following command should tell you what version of Git you have in-
stalled:

$ git --version

git version 2.2.1

As with all of the examples in this book, the $ at the beginning of the line
indicates that this is a command; you shouldn’t include it in the command
you type.

If you see a version number, as show above, then Git is installed success-
fully. If you see a message along the lines of command not found, then Git
isn’t correctly installed yet.

http://git-scm.com/downloads

CHAPTER 1. GOAL: GET SET UP 4

3. When Git is tracking changes to our files, it needs to know who made those
changes—we’ll see why this is important when we explore Git’s collabora-
tive features in Part 4.

To identify yourself, and therefore the changes you track with Git, you need
to set Git’s user.name and user.email settings with the following commands,
replacing my name and email address with your own:

$ git config --global user.name "George Brocklehurst"

$ git config --global user.email george@georgebrock.com

The --global argument tells Git that these settings should apply to all of
the Git projects you work on, so you’ll only need to set this once. Don’t
worry if you don’t completely follow this now; we’ll talk about the git config

command in more detail later in the book.

Goal: Track changes

If you can see how the incremental changes to your files led to their current state,
then you have a better chance of understanding the project you are working on,
fixing problems that arise, and collaborating successfully with others. In order to
unlock the riches promised by a comprehensive history, we have to first build that
history, one change at a time.

By now, you should have installed Git on your system, and so you are ready to
create your first Git repository.

A repository is the place where Git keeps track of all of the changes for a given
project. We need to create a repository for each project we want to track with Git.

The git init command

The git init command creates a new Git repository to keep track of changes to
the files in the directory where the command is run. For example:

$ cd projects/git-book

$ git init

Initialized empty Git repository in /home/george/projects/git-book/.git/

This creates a newGit repository in the projects/git-book directory, telling Git that
from now on we want to track the changesmade to one or more of the files in that
directory. Since we haven’t told Git exactly which files to track yet, the repository
is empty; this is true even if the projects/git-book directory isn’t empty.

5

CHAPTER 2. GOAL: TRACK CHANGES 6

Running the command creates a new directory, projects/git-book/.git, where Git
will store the files that represent the repository. This is the Git directory, whereas
projects/git-book is the working directory.

To begin with, we’ll modify files in the working directory, just as we would if we
weren’t using Git, and then tell Git to track the changes we’ve made in the reposi-
tory. As we get more advanced, we’ll be able to conjure old or alternative versions
of our project from the repository, summoning them to the working directory to
do our bidding.

The git add and git commit commands

The individual changes that make up the history of our project are called com-
mits. We commit changes to the Git repository in the same way we might commit
something to memory; once it’s committed we won’t lose it.

Each commit consists of a set of changes—like adding a new file, changing the
contents of a file, deleting a file, or changing the properties of the file in some
way—and a commit message that describes the changes, and the name and email
address of the commit’s author.

Git provides a staging area called the index, where we build up a set of changes
before committing them to the repository. We’ll come back to why the index is
useful later, but for now it’s enough to know that creating a commit is a three
stage process:

1. Change files in the working directory.
2. Add some or all of those changes to the index.
3. Create a commit from the changes staged in the index.

Let’s say we’ve created a file in our git-bookworking directory called chapter1.txt,
and we’re happy with the contents of the file and want to commit it to the repos-
itory. That’s step one, step two is to add the file to the index using the git add

command:

$ git add chapter1.txt

CHAPTER 2. GOAL: TRACK CHANGES 7

And then we can create a commit using the git commit command:

$ git commit --message "Add first draft of chapter one"

[master (root-commit) 6f9ec1c] Add first draft of chapter one

1 file changed, 1 insertion(+)

create mode 100644 chapter1.txt

The commit message, passed using the --message argument, describes the
changes in the commit: in this case, it adds the first draft of chapter one.

By committing, we’ve drawn a line in the sand. Whatever changes we make to
chapter one in future, we’ll always be able to get back to this revision of the file.
Even though a commit only contains the changes made to a file since it was last
committed, we can think of a commit as representing a particular revision of our
project, since Git is able to use all of the commits up to that point to reconstruct
the revision of the project that existed when that commit was made.

Now that we’ve included it in a commit, the file chapter1.txtwill be tracked by Git:
if we make any changes to the file in future, Git will notice that it has changed and
needs to be committed again.

Summary

• Create a new Git repository with git init

• Stage related changes in the index with git add

• Commit the changes in the index with git commit

Goal: Understand what is
being tracked

So far, we’ve made simple commits with just one file, but in a complex project
there could be dozens or even hundreds of files. How do we know if they’ve been
changed since they were last committed, or if they’re even tracked by Git?

In the last chapter we defined three important locations:

1. The working directory, where we keep and work on the current version of
our project’s files.

2. The index, where we build up a set of changes ready to commit.
3. The repository, where Git stores the history of our project as a series of

commits.

Git provides a number of commands for comparing the state of the repository, the
index, and the working directory, so we can stay up to date with what’s changed.

The git status command

The git status commandwill tell us the status of our files. It lists all of the changed
or untracked files in the working directory, split into the following groups:

1. Changes to be committed: files which have already been added to the in-
dex with git add and will be included the next time we run git commit.

8

CHAPTER 3. GOAL: UNDERSTAND WHAT IS BEING TRACKED 9

2. Changes not staged for commit: files which have been changed in the
working directory, but not added to the index.

3. Untracked files: files which have never been committed and therefore
aren’t tracked by Git.

For example:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: chapter2.txt

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: chapter1.txt

Untracked files:

(use "git add <file>..." to include in what will be committed)

chapter3.txt

In this case, chapter2.txt has just been added to the index for the first time with
git add, chapter1.txt is tracked by Git but has beenmodified since it was last com-
mitted, and chapter3.txt isn’t tracked by Git yet.

git statuswon’t mention any files that haven’t been changed since they were last
committed. If none of your files have changed, git status will let you know that
you have clean working directory:

$ git status

On branch master

nothing to commit, working directory clean

git status isn’t concerned with the details of exactly what’s changed in each file,
just which files have been changed and therefore could be committed.

CHAPTER 3. GOAL: UNDERSTAND WHAT IS BEING TRACKED 10

The git diff command

Now we know which files in our working directory have changed, it would be good
to see the details of those changes. The git diff command provides this.

If you’ve used the Unix diff utility then the output of git diffmight look familiar,
but while diff shows the difference between files, git diff shows the difference
between versions of the same file.

Without any arguments, git diff shows all changes that haven’t been committed
or added to the index.

For example, here’s what chapter1.txt the last time it was committed:

CHAPTER ONE

This is the first chapter, where it all beings.

Since that commit, we’ve modified chapter1.txt in the working directory to look
like this:

CHAPTER 1

This is the first chapter, where it all beings.

Running git diff shows us exactly what the differences are:

$ git diff

diff --git a/chapter1.txt b/chapter1.txt

index 30c9d02..074d0db 100644

--- a/chapter1.txt

+++ b/chapter1.txt

@@ -1,3 +1,3 @@

-CHAPTER ONE

+CHAPTER 1

This is the first chapter, where it all beings.

CHAPTER 3. GOAL: UNDERSTAND WHAT IS BEING TRACKED 11

The first section gives some information about the change Git is showing: which
versions are being compared, and on which lines of which files there are changes.
Other than the file’s name, this is more useful to machines than humans, and I
usually don’t read it carefully. More important are the changes themselves:

-CHAPTER ONE

+CHAPTER 1

This is the first chapter, where it all beings.

Lines beginning with a - indicate a line that has been removed, and lines beginning
with a + indicate a line that has been added. In this case a line has been changed:
the old version of the line was removed, and the new version was added.

Lines beginning with a space—lines that lack both + and -—are unchanged, but
are shown to give the context of the change.

The git diff --staged command

Remember that without any arguments git diff shows us the changes that
haven’t been staged in the index yet. git diff --staged shows us the changes
that have been staged, but haven’t yet been committed. In other words,
git diff --staged shows you the changes that would be included in the commit,
if you were to run git commit right now.

It can be useful to run git diff --staged before git commit as a final check that
the right changes have been staged in the index.

Summary

• Look at the state of the working directory with git status

• Look at the changes since the latest commit with git diff

• Look at the contents of the index with git diff --staged

Goal: Make beautiful commits

A good commit should contain a set of related changes, with a description of why
those changes were made. Much of the power of tracking history is lost if we
bundle lots of unrelated changes together in the same commit, or don’t take the
time to describe them properly.

So far we’ve been assuming that all of the changes to a file belong in the same
commit. Real world work is rarely this neat and tidy, though. Perhaps we were
half way through changing a document, and found ourselves fixing an un-related
typing error; perhaps we forgot to commit a set of changes before moving on to
the next idea; perhaps we just got distracted: whatever the cause, a real project’s
working directory can be a messy place.

This is where the index really comes into its own: By updating the index before we
commit, we can carefully select the changes that go into each commit; even going
so far as to split unrelated changes to the same file over several commits.

The git add --patch command

In addition to the name of a file, the git add command can take some options to
control exactly what is added to the index. Particularly useful is the --patch option,
which shows you each change in turn and lets you decide if it should be added to
the index or not.

Let’s look at an example: I’vemade two changes to the same file but they are unre-
lated, so I want to add them to the repository as two separate commits. git diff

tells me I have the following changes:

12

CHAPTER 4. GOAL: MAKE BEAUTIFUL COMMITS 13

$ git diff

diff --git a/chapter1.txt b/chapter1.txt

index 8f6f18e..d119536 100644

--- a/chapter1.txt

+++ b/chapter1.txt

@@ -1,3 +1,3 @@

-The quick brown fxo jumped over the lazy dog.

+The quick brown fox jumped over the lazy dog.

-The dog was not best pleased.

+The dog was not best pleased, and barked angrily.

On the first line, I’ve corrected a typing error by changing fxo to fox, and then on
the third line I’ve added some additional material about the dog’s reaction to the
fox. git add --patch will allow us to go through each change in turn, and decide if
we want to add it to the index.

$ git add --patch

diff --git a/chapter1.txt b/chapter1.txt

index 8f6f18e..d119536 100644

--- a/chapter1.txt

+++ b/chapter1.txt

@@ -1,3 +1,3 @@

-The quick brown fxo jumped over the lazy dog.

+The quick brown fox jumped over the lazy dog.

-The dog was not best pleased.

+The dog was not best pleased, and barked angrily.

Stage this hunk [y,n,q,a,d,/,s,e,?]?

Git will show the changes—using the familiar style of git diff—one at a
time, and asks me what I want to do with each hunk with the question
Stage this hunk [y,n,q,a,d,/,s,e,?]?. Most of the time we can answer with y to
add the change to the index, or n to ignore it for now and move on to the next
change. In this case, it’s a little more complicated: since my changes are very
close together, Git’s assumed that they’re probably related and shows them as
a single hunk. I want to split up this hunk, and since I need something beyond a
basic “yes” or “no” I can use ? to explain the other options:

CHAPTER 4. GOAL: MAKE BEAUTIFUL COMMITS 14

Stage this hunk [y,n,q,a,d,/,s,e,?]? ?

y - stage this hunk

n - do not stage this hunk

q - quit; do not stage this hunk or any of the remaining ones

a - stage this hunk and all later hunks in the file

d - do not stage this hunk or any of the later hunks in the file

g - select a hunk to go to

/ - search for a hunk matching the given regex

j - leave this hunk undecided, see next undecided hunk

J - leave this hunk undecided, see next hunk

k - leave this hunk undecided, see previous undecided hunk

K - leave this hunk undecided, see previous hunk

s - split the current hunk into smaller hunks

e - manually edit the current hunk

? - print help

After looking throughmy options, I see I can use s to tell Git that even though these
changes are close to each other they should be split up so that I can treat them
differently:

Stage this hunk [y,n,q,a,d,/,s,e,?]? s

Split into 2 hunks.

@@ -1,2 +1,2 @@

-The quick brown fxo jumped over the lazy dog.

+The quick brown fox jumped over the lazy dog.

Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]?

Git splits the change into two hunks, and shows me the first of them. This change
is just the correction on the first line, so I can stage it in the index using y. Once
it’s staged, Git will show me the next change. Since this change isn’t related to the
one I’ve already added to the index, I don’t want to include it in the same commit,
so I can skip it with n:

Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]? y

@@ -2,2 +2,2 @@

CHAPTER 4. GOAL: MAKE BEAUTIFUL COMMITS 15

-The dog was not best pleased.

+The dog was not best pleased, and barked angrily.

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? n

I’ve now made a decision about each of the changes to the tracked files in my
working directory, so git add --patch exits, and I can commit the correction that’s
staged, and then stage and commit the additional content:

$ git commit --message "Fix typing error"

[master ee02d29] Fix typing error

1 file changed, 1 insertion(+), 1 deletion(-)

$ git diff

diff --git a/chapter1.txt b/chapter1.txt

index 9d07dc3..d119536 100644

--- a/chapter1.txt

+++ b/chapter1.txt

@@ -1,3 +1,3 @@

The quick brown fox jumped over the lazy dog.

-The dog was not best pleased.

+The dog was not best pleased, and barked angrily.

$ git add chapter1.txt

$ git commit --message "Add information about the dog's reaction"

[master 1caf774] Add information about the dog's reaction

1 file changed, 1 insertion(+), 1 deletion(-)

I almost always use the --patch option when I’m adding files to the index, even
when I’m confident that all of the changes are related and will end up as a single
commit: It gives me the opportunity to review my changes, and has saved me
many times from committing something that wasn’t quite right.

Summary

• Good commits are focused on a set of related changes
• Use git commit --patch to add specific changes to the index

Goal: Write beautiful commit
messages

In the last chapter we talked about the importance of carefully choosing the
changes that go into each commit: we wanted each change to be easy to
understand in isolation so our history would be easier to work with.

Carefully selecting the contents of the commit is only half the story: writing de-
scriptive commit messages is also important for building an understandable—and
therefore useful—history.

What to cover

When we look back at commits, Git can show us what has changed by showing us
the contents of the commit, but it cannot show us why unless we use our commit
messages to explain the reasoning behind each change.

You should write commit messages that address the following questions:

• What need do the changes in this commit address?
• If it’s not clear from looking at the changes in the commit, how do the
changes address that need?

• What other consequences might this change have?

That list of questions might seem like a lot, but don’t be afraid to write a long
commit message if you need to. The next time you’re trying to remember why you

16

CHAPTER 5. GOAL: WRITE BEAUTIFUL COMMIT MESSAGES 17

changed your project in a certain way you’ll be very glad you took the time to write
it down.

Thinking through your change as you commit it to Git can also be a useful oppor-
tunity to review your work, and catch mistakes or consequences you didn’t think
of earlier.

How to lay it out

The first line of a commit message should be a short summary of the commit’s
intention, no more than 50 characters long; think of it like the subject line of an
email. When we start looking back at the commits we’ve made—we’ll see how in
the next section, “Using history”—Git will often only show the first line of the com-
mit message, so making it short and meaningful will keep those lists of commits
tidy and useful.

After the one-line summary and a blank line, we can write a longer description of
the commit, often running to several paragraphs or lists of bullet points; think of
this like the body of an email. It may be relevant to include Web links to additional
information here. In a software project a problem has often been discussed on a
bug trackingWeb site before it is fixed, and including a link to this discussion when
committing the changes that fix the problem can be very valuable.

It’s customary to keep each line of the description to 72 characters or fewer: aswith
the one line summary, this length limit will keep the body of the commit message
legible in all the various contexts where it might appear.

As a concrete example, when I commit this chapter to Git, the message could look
something like this:

First draft of "Write beautiful commit messages"

Vague commit messages aren't very useful. This chapter attempts to

impress upon readers the importance of detailed and specific commit

messages.

* Add chapter 1.5 (beautiful commit messages).

* Update chapter 2.1 (read the history) to refer back to chapter 1.5.

CHAPTER 5. GOAL: WRITE BEAUTIFUL COMMIT MESSAGES 18

Write commit messages in your text editor

So far, we’ve used the --message argument to specify a simple, one-line commit
message when we make a commit.

If you omit this argument, Git will open your text editor and prompt you to write a
commit message there. Writing the commit message in an editor is almost always
preferable to using --message: it gives you the time and space to think through the
changes you’ve made, and describe them in more than a single short line.

Many text editors also have settings that help enforce the line-length conventions
discussed above, so you can focus onwhat you’re writing, and let your editor worry
about whether or not it’s time to insert a new line.

When you’ve finishedwriting the commitmessage, just save the file and close your
editor. Behind the scenes, Git has given your editor a temporary file where you can
write your message, and when you save and close that file, Git will extract your
message from it.

Set your text editor

If you’re on a Linux or Unix system, and you frequently use the command line,
chances are you’ve already set an $EDITOR or $VISUAL environment variable. Git
will pick up on that setting and use it.

If you’re on a different operating system, unfamiliar with setting environment vari-
ables, or you want to use a different editor for Git commit messages, you can ex-
plicitly tell Git which editor to use. This is done by setting core.editor with the
git config command:

$ git config --global core.editor vim

The --global argument tells Git that this setting should apply to all of your repos-
itories, without it Git would change this setting only for the current repository.

core.editor is the name of the setting, and in this case I’m telling Git that the com-
mand to open my editor is vim. You should replace vim with whatever command
you use to launch your favourite text editor from the command line. For example
if you use the Sublime Text editor you might use:

CHAPTER 5. GOAL: WRITE BEAUTIFUL COMMIT MESSAGES 19

$ git config --global core.editor "subl -n -w"

The git commit --verbose command

In order to write such a detailed commit message, it can be useful to refer to the
changes you are committing while you write the commit message. If we pass the
--verbose argument to git commit, then it will include a list of the changes we are
committing—again, in that familiar git diff style—at the bottom of the file Git
opens in our editor.

When using the --verbose option, Git won’t include the list of changes, or anything
you add after it, in the commit message. Make sure you write your commit mes-
sage at the top of the file.

Git will helpfully mark the place where the message ends and the summary of the
changes starts with an ASCII art pair of scissors cutting along a dotted line:

------------------------ >8 ------------------------

Do not touch the line above.

Everything below will be removed.

Summary

• Write commit messages that describe why changes were made.
• The first line of the commit message should be a short summary, 50 char-
acters or fewer.

• Use git config --global core.editor <editor> to set your text editor.
• Use git commit --verbose to see the changes you are committing in your
editor.

Part II

Using history

20

Goal: Read the history

Now that we’ve made some commits, we can begin to use them to explore the
history of our project.

You’ll often want to view your whole commit history. It can be a great way of re-
freshing your memory about what you were working on, or seeing what others
have done on a collaborative project.

The git log command

The git log command will show all of the commits, with their authors, dates, and
messages:

$ git log

commit 2a40e706eaf92805907a1f3be707a199982ef0f9

Author: George Brocklehurst <george@georgebrock.com>

Date: Mon Oct 27 15:18:26 2014 -0400

Draft content for chapter 2

commit c7d5d6876da96f8aff9b08416119ff0178d776cf

Author: George Brocklehurst <george@georgebrock.com>

Date: Mon Oct 27 15:16:48 2014 -0400

Draft content for chapter 1

21

CHAPTER 6. GOAL: READ THE HISTORY 22

In this example, the project has two commits. The most recent commit is shown
first.

Each commit starts with an long string of numbers and letters that uniquely iden-
tifies the commit:

commit 2a40e706eaf92805907a1f3be707a199982ef0f9

These identifiers are very important. Many of the ways we can use our projects’
Git history involve referring to specific commits, and we often do that using these
unique identifiers.

The --oneline option

In the last chapter we discussed detailed commit messages, which can often get
very long. If every commit message runs to dozens of lines, the full output of
git log can be a little overwhelming, and difficult to quickly scan for a particular
commit.

The git log command accepts many options to customise the format of the out-
put; one of the most useful is --oneline, which only outputs the first line of the
commit message, and the first few characters of the unique identifier:

$ git log --oneline

2a40e70 Draft content for chapter 2

c7d5d68 Draft content for chapter 1

Remember that the first line of the commit message should be a short summary
of the commit, so this is a great way to get an overview of recent changes.

Running git help log will give you comprehensive documentation on the other
ways you can customise the output of git log.

The git show command

While git log gives us an overview of many commits, the git show command will
show the contents of a specific commit. We need to tell it which commit to show;

CHAPTER 6. GOAL: READ THE HISTORY 23

this is the first of many examples of a place where we can use a commit’s unique
identifier.

$ git show c7d5d6876da96f8aff9b08416119ff0178d776cf

commit c7d5d6876da96f8aff9b08416119ff0178d776cf

Author: George Brocklehurst <george@georgebrock.com>

Date: Mon Oct 27 15:16:48 2014 -0400

Draft content for chapter 1

diff --git a/chapter1.txt b/chapter1.txt

new file mode 100644

index 0000000..b5689b5

--- /dev/null

+++ b/chapter1.txt

@@ -0,0 +1 @@

+Chapter 1: This is the first chapter.

The output should all be familiar: it starts with information about the commit,
which is very similar to the output produced by git log, and then shows the
changes made by the commit, which is very similar to the output produced by
git diff.

Summary

• Use git log to see a list of commits.
• Use git log --oneline to see just the first line of the commit messages.
• Use git show <identifier> to see the contents of a specific commit.

Goal: Refer to commits

In the last chapter we learnt how to use the git log command to find a commit’s
identifier, which we could use with the git show command to view the contents of
that commit.

Commit identifiers can be quite cumbersome to use: they’re long, complex, and
not very memorable. Fortunately, Git provides a range of alternatives.

Let’s imagine the following Git history, and see how we can refer to the commits
without using the long-winded commit identifiers:

$ git log

commit e420911b9d16d0fd75a12a71202673ae32fc933a

Author: George Brocklehurst <george@georgebrock.com>

Date: Mon Oct 27 15:25:32 2014 -0400

Third commit

commit 25cece8870c50144c68b5fe27a03aeb647b28c4a

Author: George Brocklehurst <george@georgebrock.com>

Date: Mon Oct 27 15:25:29 2014 -0400

Second commit

commit d8084d3fb7f9924dcefad1a20da885b1aba28d54

Author: George Brocklehurst <george@georgebrock.com>

Date: Mon Oct 27 15:25:23 2014 -0400

24

CHAPTER 7. GOAL: REFER TO COMMITS 25

First commit

Abbreviating commit identifiers

Let’s say we want to look at the latest commit. What we’ve seen so far is git show

with the full identifier:

$ git show e420911b9d16d0fd75a12a71202673ae32fc933a

commit e420911b9d16d0fd75a12a71202673ae32fc933a

Author: George Brocklehurst <george@georgebrock.com>

Date: Mon Oct 27 15:25:32 2014 -0400

Third commit

In the previous chapter we saw that the git log --oneline command only prints
the start of the commit identifier. It does this because it’s possible to use the be-
ginning of the identifier to identify a commit, as long as you use enough of it to
be unique among all of the commit identifiers in the repository. In practice, this
usually means that we can use the first 6 or 7 characters of the identifier without
any problems, even in a long running project with thousands of commits.

$ git show e420911

commit e420911b9d16d0fd75a12a71202673ae32fc933a

Author: George Brocklehurst <george@georgebrock.com>

Date: Mon Oct 27 15:25:32 2014 -0400

Third commit

If you don’t give enough characters to uniquely identify a single commit, Git will let
you know that you’ve provided an ambiguous argument:

$ git show e42

fatal: ambiguous argument 'e42': unknown revision or path not in the working tree.

Use '--' to separate paths from revisions, like this:

'git <command> [<revision>...] -- [<file>...]'

CHAPTER 7. GOAL: REFER TO COMMITS 26

Relative commit references

Each commit in our Git repository has a parent commit: the commit that immedi-
ately preceded it. If we know the identifier of a commit, we can tell Git to give us
its parent commit using a ~1 suffix. For example:

$ git show e420911~1

commit 25cece8870c50144c68b5fe27a03aeb647b28c4a

Author: George Brocklehurst <george@georgebrock.com>

Date: Mon Oct 27 15:25:29 2014 -0400

Second commit

By increasing the number after the ~ we can follow the parent relationships back
through the project’s history. For example, ~2 will give us the parent of the parent
commit:

$ git show e420911~2

commit d8084d3fb7f9924dcefad1a20da885b1aba28d54

Author: George Brocklehurst <george@georgebrock.com>

Date: Mon Oct 27 15:25:23 2014 -0400

First commit

Using the commit message

These techniques are all great if you know the commit’s identifier, or at least the
identifier of one of its descendants, but identifiers aren’t as memorable as com-
mit messages. Fortunately it’s possible to refer to commits using a part of their
message, too:

$ git show :/Second

commit 25cece8870c50144c68b5fe27a03aeb647b28c4a

Author: George Brocklehurst <george@georgebrock.com>

Date: Mon Oct 27 15:25:29 2014 -0400

CHAPTER 7. GOAL: REFER TO COMMITS 27

Second commit

If there are multiple commits that match the given word, then Git will pick the
newest matching commit.

There are more!

We’ve only scratched the surface of the many ways of referring to Git commits. If
you want all the options, then Git’s comprehensive help system is the place to go:

$ git help revisions

If you’re reading this book in order to learn Git for the first time, then many of
the concepts in that document won’t be familiar to you yet, but don’t be afraid to
explore the documentation.

Summary

• Use abbreviated commit identifiers.
• Use relative commit references, e.g. e420911~2.
• Refer to commits using their message, e.g. :/Second.
• Check git help revisions for more.

Goal: Understand a change

Now that we’ve learnt how to look at the whole history, and a variety of ways to
refer to a specific commit, we’re ready to start asking more demanding questions
of our Git repository.

It can often be the case in a long running project that we come across something
in one of our files that doesn’t quite make sense. Using the project’s Git history
to see where something came from can help to make it more clear. Git can help
us answer questions like “why was this changed?” and “what was here before it
changed?”

Here’s a confusing file called chapter1.txt. Let’s dig into the history and see if we
can work out what’s going on:

There are several things you should know:

Lastly, Git will help you get your work done.

It looks like there should be a list here, but there’s only one item, and confusingly
it seems like it should be the last item. Maybe this just needs to be rephrased, but
maybe something was deleted that shouldn’t have been.

The git blame command

The first command we can use to understand this file is git blame, which will tell
us which person, and more importantly which commit, is to blame for the current
state of each line in the file:

28

CHAPTER 8. GOAL: UNDERSTAND A CHANGE 29

$ git blame chapter1.txt

^61966bf (George Brocklehurst 2014-10-23 11:21:55 -0400 1) There are several things you should know:

^61966bf (George Brocklehurst 2014-10-23 11:21:55 -0400 2) Lastly, Git will help you get your work done.

Each line of the file is printed with some annotations: the abbreviated identifier of
the commit in which it was last changed, the author and date of that commit, and
the line number.

In this case, both of those lines were last changed in the commit 61966bf. The next
step in our investigation should probably be to look at that commit and see the
full change:

$ git show 61966bf

commit 61966bf14e754946d0ab3a6d8e66c419918c15a8

Author: George Brocklehurst <george@georgebrock.com>

Date: Thu Oct 23 11:21:55 2014 -0400

List things readers should know about Git.

diff --git a/chapter1.txt b/chapter1.txt

new file mode 100644

index 0000000..ecefc9c

--- /dev/null

+++ b/chapter1.txt

@@ -0,0 +1,4 @@

+There are several things you should know:

+Firstly, Git is not very good.

+Secondly, Git is quite useful.

+Lastly, Git will help you get your work done.

This is a clue on the road to solving thismystery: we now know that the ambiguous
section started as a list, but a couple of items were subsequently removed. It’s a
good start, but we still don’t know why the list was altered. Maybe the correct
fix is to rephrase the content, but maybe those list items should never have been
removed in the first place.

To find out where the list itemswent, we can turn to another commandwe’ve used
before: git log.

CHAPTER 8. GOAL: UNDERSTAND A CHANGE 30

Filtering git log by commit and file name

We’ve used git log to look at all of the commits in our project. In this case, we
want something more specific. The git log command accepts a range of commits
and a file path as arguments, which we can use to only see commits that:

1. happened after the list was first introduced in commit 61966bf, and
2. contain changes to the file chapter1.txt.

The most common way to refer to a range of commits is first..last, where first

and last both refer to commits, using their identifiers, or one of the othermethods
we’ve seen of identifying a commit. Git also allows us to omit the end of the range,
assuming when we do so that we mean it to end with the most recent commit. In
our case, we want to see everything after commit 61966bf, which introduced the
list, so we can use the range 61966bf...

Putting this together with the file path chapter1.txt, we get this command:

$ git log 61966bf.. chapter1.txt

commit aaad9ad5001689eeaeca0ef88626debd27801aea

Author: George Brocklehurst <george@georgebrock.com>

Date: Thu Oct 23 11:22:31 2014 -0400

Remove contradictory information.

Our carefully filtered log tells us that only one commit touched the file we’re inter-
ested in during the time we’re interested in. Let’s take a closer look:

$ git show aaad9ad

commit aaad9ad5001689eeaeca0ef88626debd27801aea

Author: George Brocklehurst <george@georgebrock.com>

Date: Thu Oct 23 11:22:31 2014 -0400

Remove contradictory information.

diff --git a/chapter1.txt b/chapter1.txt

CHAPTER 8. GOAL: UNDERSTAND A CHANGE 31

index ecefc9c..60ab488 100644

--- a/chapter1.txt

+++ b/chapter1.txt

@@ -1,4 +1,2 @@

There are several things you should know:

-Firstly, Git is not very good.

-Secondly, Git is quite useful.

Lastly, Git will help you get your work done.

Finally we have the full context of this confusing file. It started out as a list, but
a couple of items were removed because they were contradictory, which left the
surrounding content in a confusing state. Now that we have the full story, we can
confidently fix the problem.

Not every investigation will follow these steps, but if you understand the com-
mands we’ve used here you should be able to track down the source of all kinds
of problems.

Summary

• Use git blame <file> to find out which commit last changed the lines in a
file.

• Use git log <range> <file> to see relevant commits.

Goal: Search the repository

In the last chapter, we saw how to filter the output of git log to only show us
commits in a certain range, or commits that contain changes to certain files, so we
could see what changes had been made. In this chapter we’ll start from the other
side: we know the change we’re interested in, but we don’t know when or where
it happened.

Git provides some powerful search tools which let us search through the files it is
tracking and the commits we’ve made in the past.

Filtering git log by content

Let’s pretend I’m writing a novel, which has the following Git history:

$ git log --oneline

2ba40c1 Remove cafe scene and references

e8393d4 Refer back to the cafe in chapter 2.

1dba13c Add cafe scene

3ba3f98 Remove zoo scene

0e6d7f7 Begin work on chapter 2

597b543 Begin work on chapter 1

I deleted a section of the novel, but I’m having second thoughts: I think the story
will flow better if I put it back. Unfortunately, I deleted it some time ago, and I don’t
remember all of the details, just that it centred around a character called Alice.

32

CHAPTER 9. GOAL: SEARCH THE REPOSITORY 33

There are a few commit messages that mention removing content, but by filtering
the commit log to only show commits which contain changes that add or remove
the word “Alice”, I can narrow down my search. We do this using git log’s -S op-
tion:

$ git log --oneline -S Alice

3ba3f98 Remove zoo scene

0e6d7f7 Begin work on chapter 2

597b543 Begin work on chapter 1

Now I’ve narrowed down the search to three commits, and only one of the mes-
sages mentions removing content, so it looks like I’ve found my deleted scene.

$ git show 3ba3f98

commit 3ba3f9832331a486d8aeabe6215b3abaa1dfc052

Author: George Brocklehurst <george@georgebrock.com>

Date: Fri Oct 31 16:44:34 2014 -0400

Remove zoo scene

diff --git a/chapter2.txt b/chapter2.txt

index 2ba6e57..4961d74 100644

--- a/chapter2.txt

+++ b/chapter2.txt

@@ -1,4 +1,3 @@

CHAPTER TWO

-Alice and Bob went to the zoo. Alice enjoyed learning about the different

-animals, while Bob mostly just enjoyed eating icecream.

+We all know that Bob likes icecream.

The -S option can be combined with the other filtering techniques we’ve seen, so
if I had remembered the file that contained the change, or the range of commits
it was part of, I could have narrowed down the search even further.

You can think of filtering the git log as searching in time: Given its knowledge of
the history of your project, you’re asking Git to tell you about times when certain

CHAPTER 9. GOAL: SEARCH THE REPOSITORY 34

kinds of changes were made. It’s also useful to be able to search in space: given a
fixed point in time—in Git’s terminology, a specific revision of the project—where
does a certain word or phrase appear in the project’s tracked files?

The git grep command

The git grep command searches through all of the tracked files for a particular
word or phrase. If you’re familiar with the Unix grep utility, you’ll find that git grep

works in much the same way.

Let’s say we want to find all references to Alice in all of the tracked files in the
working directory. We can use git grep:

$ git grep Alice

chapter1.txt:There were once two people called Alice and Bob.

This tells me that Alice is currently only mentioned once, in the file chapter1.txt.
I know that the commit 3ba3f98 removed some mentions of Alice—we just used
the git log -S command to find it—and I want to find out how often she was
mentioned before that commit.

If you’ve read the chapter on how to “Refer to commits”, you’ll know that if we
have the ID of a commit, we can use a ~1 suffix to reference the commit before
that commit. In this case, we’re interested in the revision before 3ba3f98, so we
can use 3ba3f98~1.

The git grep command can take a commit as a second argument, which tells it to
search the particular revision of our project represented by that commit:

$ git grep Alice 3ba3f98~1

3ba3f98~1:chapter1.txt:There were once two people called Alice and Bob.

3ba3f98~1:chapter2.txt:Alice and Bob went to the zoo. Alice enjoyed learning about the different

I’ve found my answer: Alice used to be mentioned in chapter1.txt and
chapter2.txt.

git grep can match more than just simple words and phrases: it supports a pow-
erful patternmatching language called Regular Expressions, whichmeans you can

CHAPTER 9. GOAL: SEARCH THE REPOSITORY 35

search for things like “any two digit number”, or “either the word ‘Alice’ or the word
‘Bob’ ”. How to write regular expressions is beyond the scope of this book, but
there is plenty of information on the Web, and even whole books on the topic.

Summary

• Find commits that mention a word or phrase with git log -S <word>.
• Find tracked files that mention a word or phrase with git grep <word>.
• Search previous revisions with git grep <word> <revision>.

Goal: Undo changes

In the previous chapter, we saw how to use Git’s search tools to find a change
we were having second thoughts about. Having found the commit, how can we
reverse that change? We could use git show to view the changes it introduced and
manually unpick them by typing them out again or using copy-and-paste. That
would be a lot of manual, error-prone work, and fortunately Git provides tools to
undo changes we’d rather hadn’t been committed.

The git revert command

The simplest way of undoing the changes in a commit is to use the git revert

command. This command creates a new commit which contains the opposite set
of changes to the commit we want to undo: if a line was added in the original
commit, it will be removed in the new commit, and vice versa.

Here is the commit we identified in the previous chapter:

$ git show 3ba3f98

commit 3ba3f9832331a486d8aeabe6215b3abaa1dfc052

Author: George Brocklehurst <george@georgebrock.com>

Date: Fri Oct 31 16:44:34 2014 -0400

Remove zoo scene

diff --git a/chapter2.txt b/chapter2.txt

36

CHAPTER 10. GOAL: UNDO CHANGES 37

index 2ba6e57..4961d74 100644

--- a/chapter2.txt

+++ b/chapter2.txt

@@ -1,4 +1,3 @@

CHAPTER TWO

-Alice and Bob went to the zoo. Alice enjoyed learning about the different

-animals, while Bob mostly just enjoyed eating icecream.

+We all know that Bob likes icecream.

Whenwe pass the commit’s identifier as an argument to the git revert command,
Git will construct the opposite set of changes, and commit them.

$ git revert 3ba3f98

[master 786b2c3] Revert "Remove zoo scene"

1 file changed, 2 insertions(+), 1 deletion(-)

Notice that the output of the git revert command contains the identifier of the
new commit.

$ git show 786b2c3

commit 786b2c3fa72af8372729a2e789a0071bba92de6b

Author: George Brocklehurst <george@georgebrock.com>

Date: Fri Jan 15 13:50:38 2016 -0500

Revert "Remove zoo scene"

This reverts commit 3ba3f9832331a486d8aeabe6215b3abaa1dfc052.

diff --git a/chapter2.txt b/chapter2.txt

index 4961d74..2ba6e57 100644

--- a/chapter2.txt

+++ b/chapter2.txt

@@ -1,3 +1,4 @@

CHAPTER TWO

-We all know that Bob likes icecream.

CHAPTER 10. GOAL: UNDO CHANGES 38

+Alice and Bob went to the zoo. Alice enjoyed learning about the different

+animals, while Bob mostly just enjoyed eating icecream.

Like the git commit command, git revert will open a text editor so that we can
write a description of the commit, but unlike git commit it helpfully provides a de-
fault commit message with some information about the commit that is being re-
verted. It’s usually a good idea to leave the default message intact—so that you’ll
be able to recognise a revert commit when you’re reading the history—and to add
a note to the end to explain why it was useful to revert this commit.

The git reset command

While git revert is useful for undoing a commit from somewhere back in the dis-
tant history of the project, we have other options if we want to undo our most
recent commit or commits.

The git reset command will reset the repository back to an earlier state. It’s a
flexible command that can be used in various ways; we’ll see it again later in the
book, but for now let’s focus on two uses:

1. To remove changes from the index: they will still exist in the working direc-
tory, but they won’t be included in the next commit.

2. To remove the last commit or commits from the repository: the commit’s
changes will still exist in the working directory, but it will be as if they were
never committed.

Remove changes from the index

Without any arguments, git reset will clear the index without changing the work-
ing directory or repository: it undoes the git add command. This kind of reset is
useful when you’re staging some changes, but you realise that you’re not really
ready to commit them yet, or that you’ve staged the wrong changes.

Continuing with my novel, I’ve made some changes to chapter1.txt that I think are
ready to commit, so I add them to the index, and git status shows that they are
staged to commit:

CHAPTER 10. GOAL: UNDO CHANGES 39

$ git add chapter1.txt

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: chapter1.txt

I was about to commit, but I’ve changedmymind: these changes aren’t all related,
and it would probably be better to split them up over multiple commits. I can
remove them from the index using git reset:

$ git reset

Unstaged changes after reset:

M chapter1.txt

git status confirms that chapter1.txt has still been changed, but is no longer
staged to commit:

$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: chapter1.txt

no changes added to commit (use "git add" and/or "git commit -a")

Remove commits from the repository

When it’s given a commit as an argument, git reset will clear the index, and roll
the repository back to that revision, as if the subsequent commits had never hap-
pened. It won’t change the working directory, so the current state of our files won’t
be lost, but the history of how we got to that state will be.

CHAPTER 10. GOAL: UNDO CHANGES 40

This kind of reset is useful when you realise that your last commit was too big,
and you’d like to break it down as several smaller commits. Or maybe you realise
that the changes in your last two commits would make more sense spread across
three commits.

Although undoing commits is useful, it should make us a little uncomfortable.
Commits are the record of how our project has changed, and if we undo them
there’s a very real chance that we’ll lose some valuable history along the way. Over
the last few chapters we’ve seen a few of the ways that having access to a project’s
history can help us; hopefully we’ve seen enough that the idea of throwing part of
the history away gives us pause.

Let’s see how this works with a real example: I want to undo the last two commits
tomynovel. First, to refresh ourmemory, let’s look atwhat those commits contain:

$ git log --oneline

2ba40c1 Remove cafe scene and references

e8393d4 Refer back to the cafe in chapter 2.

1dba13c Add cafe scene

3ba3f98 Remove zoo scene

0e6d7f7 Begin work on chapter 2

597b543 Begin work on chapter 1

Remember that git log shows the most recent commit first, so I’m trying to undo
e8393d4 and 2ba40c1. The first of these commits adds some information about
what Bob does at the cafe:

$ git show e8393d4

commit e8393d449377539aeda017d8fbf2fcefe76b9b4c

Author: George Brocklehurst <george@georgebrock.com>

Date: Fri Oct 31 16:52:30 2014 -0400

Refer back to the cafe in chapter 2.

diff --git a/chapter2.txt b/chapter2.txt

index 4961d74..07d4e18 100644

--- a/chapter2.txt

+++ b/chapter2.txt

CHAPTER 10. GOAL: UNDO CHANGES 41

@@ -1,3 +1,4 @@

CHAPTER TWO

-We all know that Bob likes icecream.

+We all know that Bob likes icecream. Sometimes, Bob likes to eat icecream at the

+cafe.

The second commit removes all references to the cafe:

$ git show 2ba40c1

commit 2ba40c104744d3f748ea67ad5c75f16dc7840d78

Author: George Brocklehurst <george@georgebrock.com>

Date: Fri Oct 31 16:53:19 2014 -0400

Remove cafe scene and references

diff --git a/chapter1.txt b/chapter1.txt

index aa87c61..0ff7cf0 100644

--- a/chapter1.txt

+++ b/chapter1.txt

@@ -1,6 +1,3 @@

CHAPTER ONE

There were once two people called Alice and Bob.

-

-There is a cafe in the town where they live, and Bob likes to go there on

-weekends.

diff --git a/chapter2.txt b/chapter2.txt

index 07d4e18..4961d74 100644

--- a/chapter2.txt

+++ b/chapter2.txt

@@ -1,4 +1,3 @@

CHAPTER TWO

-We all know that Bob likes icecream. Sometimes, Bob likes to eat icecream at the

-cafe.

+We all know that Bob likes icecream.

CHAPTER 10. GOAL: UNDO CHANGES 42

In order to undo these commits, I need to reset the repository to the last revision
before they were made: 1dba13c.

$ git reset 1dba13c

Unstaged changes after reset:

M chapter1.txt

This doesn’t change the working directory, but I have lost some information in the
process. Let’s look at the state of the repository after I reset:

$ git log --oneline

1dba13c Add cafe scene

3ba3f98 Remove zoo scene

0e6d7f7 Begin work on chapter 2

597b543 Begin work on chapter 1

The log looks good: the two commits we wanted to undo are gone. How about the
working directory?

$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: chapter1.txt

no changes added to commit (use "git add" and/or "git commit -a")

The status looks OK, too: there are some uncommitted changes in the working
directory, but the commits we just removed made changes to both chapter1.txt

and chapter2.txt, and yet our working directory only has changes to chapter1.txt:

$ git diff

diff --git a/chapter1.txt b/chapter1.txt

index aa87c61..0ff7cf0 100644

CHAPTER 10. GOAL: UNDO CHANGES 43

--- a/chapter1.txt

+++ b/chapter1.txt

@@ -1,6 +1,3 @@

CHAPTER ONE

There were once two people called Alice and Bob.

-

-There is a cafe in the town where they live, and Bob likes to go there on

-weekends.

The changes to chapter2.txt in our two deleted commits cancelled each other out:
the first commit added a sentence about what Bob did at the cafe, and the second
took it away again. By using git reset to remove these two commits, we’ve lost a
potentially useful bit of history; there’s no longer any record that this sentence ever
existed, which means we no longer have the option of recovering it if we change
our minds. Equally importantly, the information associated with the two commits
is gone too: we no longer know who made those commits, when, or why.

git reset is a useful tool, but it should be usedwith caution, and is least riskywhen
used to undo a single commit immediately after it wasmade. Git is a powerful tool,
and will often give us more than enough rope to hang ourselves.

Part III

Branching

44

Introduction

STUB

45

Goal: Create a branch

STUB

46

Goal: Compare branches

STUB

47

Goal: Combine branches

STUB

48

Goal: Move branches

STUB

49

Goal: Delete branches

STUB

50

Part IV

Collaboration

51

Introduction

STUB

52

Goal: Add a remote

STUB

53

Goal: Publish changes

STUB

54

Goal: Retrieve changes

STUB

55

	About this book
	I Getting started
	Goal: Get set up
	What is Git?
	Using the command line
	Installing and configuring Git

	Goal: Track changes
	The git init command
	The git add and git commit commands
	Summary

	Goal: Understand what is being tracked
	The git status command
	The git diff command
	Summary

	Goal: Make beautiful commits
	The git add --patch command
	Summary

	Goal: Write beautiful commit messages
	What to cover
	How to lay it out
	Write commit messages in your text editor
	Set your text editor
	The git commit --verbose command
	Summary

	II Using history
	Goal: Read the history
	The git log command
	The git show command
	Summary

	Goal: Refer to commits
	Abbreviating commit identifiers
	Relative commit references
	Using the commit message
	There are more!
	Summary

	Goal: Understand a change
	The git blame command
	Filtering git log by commit and file name
	Summary

	Goal: Search the repository
	Filtering git log by content
	The git grep command
	Summary

	Goal: Undo changes
	The git revert command
	The git reset command

	III Branching
	Introduction
	Goal: Create a branch
	Goal: Compare branches
	Goal: Combine branches
	Goal: Move branches
	Goal: Delete branches

	IV Collaboration
	Introduction
	Goal: Add a remote
	Goal: Publish changes
	Goal: Retrieve changes

