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This paper reports the early results of an investigation
conducted at the Universily of Bristol into autonomous
road vehicle control. The emphasis of the work is on real-
time vision, with the objective of steering a vehicle on
well-defined roads at speeds up to 60 km/hr. This report
gives an overview of the computer hardware and the low-
level vision algorithms currently being explored. Our al-
gorithms fall into two categories: bootstrap and real-time
analysis. For the bootsirap mode we present a basic edge-
detection and surface segmentation approach and an al-
ternative method based on texture analysis. Our current
emphasis is on real-time analysis techniques. Here we
present only a single straightforward real-time algorithm,
more complex approaches being given in companion pa-
pers.

Over the past few years there has been growing interest
in the use of computer vision techniques for autonomous
road vehicle control. Work in the USA has concentrated
on a thorough analysis of the road scene allowing ve-
hicles to drive slowly but relatively safely along well-
defined roads %34, In Germany the emphasis has been
on real-time processing of images to allow vehicles to
travel at higher speeds on roads with clear edges and
lane markings 3678,

The University of Bristol has been funded to investi-
gate some of the problems associated with navigating
robot vehicles along well-defined roads at speeds up to
60 km/hr. We present work in progress on a new com-
puter architecture and associated vision processing algo-
rithms for autonomous road vehicle control. The vehicle
will utilise a passive vision system, relying purely on the
information derived from a monochrome video camera
mounted at the front. During the development phase
we will be using a small electric vehicle, as a demonstra-
tor, to track roads and paths in the University grounds.
This paper gives an overview of the low-level image-
processing techniques we are exploring for feature ex-
traction.

At this stage we are concentrating our efforts on the
ability to identify the primary carriageway. Recognis-
ing junctions and turning right or left are deferred until
we have an operational system. This ability, however,
together with identifying and avoiding obstructions is
very much part of our objectives and we are attempting
to avoid techniques that will need to be abandoned when
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dealing with these more general problems.

We will give a brief description of the hardware config-
uration used to support the real-time analysis together
with some of the algorithms we are using. The main
emphasis of our present work is on real-time algorithms.
These algorithms gain their speed by analysing only a
portion of the image and depend, therefore, on a knowl-
edge of the approximate road orientation and edge loca-
tions. This information is provided initially by a boot-
strap mode of operation.

Our work on the bootstrap mode is only preliminary
as we have not yet established the best real-time tech-
niques, and do not yet know precisely the information
that will be required. We are exploring two approaches.
The first uses differential filters to locate edges combined
with segmentation techniques to find the road surface.
The second method utilises a texture approach to edge
finding based on the formation of a covariance matrix.
This is intended to provide information for both edge
identification and surface segmentation in a single algo-
rithm. It also overcomes problems associated with nar-
row linear feature such as white lines, which can confuse
differentiating filters.

The video-rate methods we are exploring are generally
very fast but are capable of loosing the edges they are
tracking. For this reason we intend to employ more than
one real-time technique so that failure in any one ap-
proach can be detected and corrected. Here we will
present only a single real-time algorithm which scans
a portion of the image in horizontal strips, identifying
and confirming road-edge locations. Other real-time al-
gorithms are presented in companion papers.

COMPUTER SYSTEM ARCHITECTURE

Figure 1 shows a schematic of the proposed system archi-
tecture. The main computational power of the system is
provided by an array of Inmos transputers. Video data
from a camera mounted on the front of the vehicle is
digitised and then passes through a preprocessing unit.
The purpose of the preprocessor will be to perform many
of the convolving operations in real time prior to pass-
ing the data into one of several frame stores. It seems
likely that we will use the Inmos A100 to perform the
convolutions but at present we have not implemented
any preprocessing stages and are performing all filtering
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Figure 1: The System Architecture

operations in software. To overcome the problems asso-
ciated with the low transputer link bandwidth we have
placed the frame stores directly in the address space of
the top level transputers, thus avoiding the need to pass
image data over the links. Our current architecture al-
lows several transputers to access a single frame store
over a 32 bit bus, with an arbiter associated with each
frame store. The contention created by this arrange-
ment is small as long as data required by each of the
top-level transputers is moved initially into local mem-
ory. In our early implementation the frame stores will
contain identical images but in the final design each will
have access to any of the secondary video buses. The
frame stores can also be used for video generation and
can, therefore, be used to generate test and diagnostic
images. For the remaining transputers in the array we
are using commercially available boards interfaced to an

IBM PC.

The frame stores, video controller and top-level trans-
puter boards are designed at the University of Bristol
and are still experimental in nature. In future designs
we have decided to increase the number of frame stores
and have only one transputer associated with each. This
will avoid the need to transfer data initially into local
memory.

To date we have constructed one channel of this sys-
tem involving a single double buffered frame store with
4 DMA transputer boards at the top level. Addi-
tional transputers are provided by Inmos B004 and B003
boards. The algorithms are first developed on Sun work-
stations and then coded in OCCAM for testing on the
transputer array. Further details of the hardware con-
figuration are left to a separate report (Milford et al., in
preparation).

174

1342 1111
4-1-4+1 12 1 1 1
d E-1 3 F LA
=1 2141 ¥ % 13
op = syt % 1 4
of «f af=f 404 1 9
1 =1 <1< 1 3 1 1
=l 211 1L 1 1 1
a1 -1 A1 -1 1 - -
(U, T g
= T D
my g 2y ef =, ko], ug
1 1 1 1 1 1 1 1
T 1 X ¥} 3 2 1 3
1 11 1 1 1 1 1
f 1 1 1.1 1 1 13

Figure 2: Differentialing Filters

BOOTSTRAP MODE

Several of the techniques that we have been investigat-
ing depend on an initial knowledge of the road position.
The bootstrap mode of operation is intended to provide
this initial information by performing a thorough analy-
sis of the image to determine the road surface and edges.
Work on this aspect of the problem is still preliminary
since we have not made a decision regarding the best
real-time analysis techniques. We are currently investi-
gating two possible approaches. The first utilises differ-
entiating filters in order to establish the edge locations
of the road together with segmentation techniques to
identify the road surface. This information is then com-
bined to provide an estimate for the driving corridor.
The second approach employs a texture based method
to identify regions of strong variance anisotropy.

Edge-Detection and Surface Segmentation

We make a preassumption that the vehicle is initially
stationary on the road pointing approximately in the re-
quired steering direction. A single video frame is then
captured and analysed. The technique has two aspects;
the first involves searching for well-defined edges that
have approximately the correct position and orienta-
tion to be road-edge candidates, and the second uses
grey-level and variance information for segmenting the
road surface. The results from both techniques are then
checked for self-consistency and are used to define the
driving corridor.

For the edge-detection algorithm we use 8x8 convolv-
ing filters to differentiate the image in both the hori-
zontal and vertical directions (Figure 2 ). Large filters
have been chosen as they are particularly sensitive to the
extended edges associated with road boundaries, while
suppressing trivial responses. Box filters of this kind,
although very simple, are particularly sensitive to faint
edges at the cost of precision in edge location. In this
case we are more concerned with edge sensitivity than
with determining positions to sub-pixel accuracy.
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Figure 3: Orientation Dependent Edge Weighting

For computational efficiency we do not range the filter
over the entire image but along every 8th row of the
image. Thus, we obtain a continuous horizontal measure
of the z and y derivatives at discontinuous points in the
vertical direction. This technique is not good at locating
exactly horizontal edges, since the filter may scan above
or below the edge center, but is perfectly adequate for
the inclined edges we are concerned with here.

To further increase the sensitivity to the primary road
edges we weight the magnitude of the gradient by a fac-
tor depending on its orientation. This is achieved by
selecting a vanishing point in the image which is on the
nominal horizon directly above the image centre. We
then calculate the cross product between the observed
vector gradient and a unit vector pointing directly to-
wards the vanishing point (Figure 3 ). The result be-
comes the new gradient magnitude. In this way an edge
that is directly aligned with the vanishing point has its
gradient unmodified while one that is perpendicular to
the expected direction is totally suppressed. Any edges
that lie above the horizon are also eliminated. This tech-
nique can suppress road edges near the horizon when the
road is curved but in practice this is no great problem.

The resulting edges are then thinned using maximum
local gradient techniques and thresholded. Automatic
thresholding is problematic since there is no clear sep-
aration that emerges in the output histogram. For the
present a threshold of 25% of maximum gradient is giv-
ing reasonable results.

The second aspect of this technique involves segmenta-
tion of the road surface. We accomplish this by dividing
the entire image into non-overlapping squares, each 8x8
pixels. The average grey level ¥ and standard devia-
tion o are computed for each square and thresholding is
performed in the basis of:

areavalue = T+ ao

where « is a weighting factor of order unity. The thresh-
old range is determined automatically by inspection of
the areavalue of windows directly in front of the vehi-
cle, which are assumed to be typical of the road surface.
The resulting segmented image is then area-grown to
eliminate isolated classifications.
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Figure 4 illustrates the result of these two algorithms.
The top-left panel shows an image of a road near the
University buildings. This is meant to represent a near-
worst-case situation with parked cars completely obscur-
ing one side. The top-middle panel shows the result of
the edge-detection operation with the top-right panel
showing the thinned edges after thresholding. The ex-
tended nature of the detected edges represents the 8-
pixel band over which the edge detector passed and does
not indicate the edge orientation. As we see, the algo-
rithm has identified candidate edges on the right hand
side of the road and at the edge of the pavement. There
are also a large number of possible edge candidates iden-
tified among the parked cars.

The bottom-left panel shows the result of the area seg-
mentation algorithm. The intensity values represent
the absolute difference between the areavalue of each
box and that of a sample value from the middle of the
road. Dark areas represent the greatest similarity. The
bottom-middle panel shows the same image after thresh-
olding and area-growing. The area growing algorithm re-
quires each road candidate (dark area) to have at least
two dark neighbours. With the exception of a small
anomaly the resulting segmentation matches the road
surface very well.

The final panel (bottom right) shows the result of com-
bining the two techniques. It shows edge candidates that
lie within 16 pixels (two box diameters) of the identified
road surface. As we see, most of the edges identified are
consistent with the road boundaries. There are a variety
of approaches available for linking edge tokens into lines
or smooth arcs. We discuss some of these in companion
papers.

These algorithms take several seconds to execute for a
256x256 image on a single T414 transputer and would,
therefore, require substantial parallelism to perform at
video frame rates. The complete analysis of the image in
this way is intended, at present, to give an initial mea-
sure of the primary driving surface and edges. Similar
techniques could also be used as a background process
analysing sample frames for the purpose of error recov-
ery. In a later section we will look at a faster technique
designed to analyse every frame at video rates.

A Covariance Texture Filter

One of the problems associated with differential filters is
that they do not work very well with diffuse or broken
edges or when two parallel edges lie close together (i.e.
lane markings). The existence of two opposing paral-
lel edges which are close together can suppress much of
the response of differential filters if the two edges both lie
within the filter window. Essentially the response is a su-
perposition of the positive and negative pulses produced
by the two edges, partially cancelling. In this section we
explore an alternative approach to edge detection that
may avoid this problem.

In an attempt to develop a filter that can cope with
these situations we have turned to a texture method



Figure 4: Analysis of a Road Scene

for searching for general linear features. The technique
attempts to find regions in which the local variance is
strongly anisotropic. It involves calculating the local
grey-level variance in both the x-direction and the y-
direction together with the covariance.

At any point [i, j] in the image we can calculate the
variance in the vertical and horizontal directions over
a fixed range of surrounding pixels together with the
covariance
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where v; ; is the grey-level intensity and n determines
the size of the filter. To reduce noise these quantities are
then smoothed over a small local region prior to further
analysis. The variance anisotropy is determined by first
forming a covariance matrix, at every point in the image.

- [ (02)ij

(02y)ij

(02y)ij

(03)ij
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This matrix is then diagonalised to find the eigenvalues
and eigenvectors, Ay, Vi A Vo, By solving the equation:

SV = AV

The eigenvalues represent the maximum and minimum
variances respectively and the eigenvectors give the cor-
responding directions of maximum and minimum vari-
ance. The ratio of the two eigenvalues is a measure of
the local anisotropy.

Figure 5 illustrates a simple application of this filter,
with n = 8, using the road images from figures 4 and 6.
Here it has been used to find linear features purely by
identifying regions of large variance anisotropy. In this
analysis no account has been taken of the edge directions
but they could be used, as previously, to suppress edges
with the wrong orientation. As we see, particularly for
the lower panel, it gives a strong response throughout
regions containing multiple linear features.

This algorithm is still at the development stage and more
work is required to assess its overall value. It would ap-
pear, however, to provide adequate sensitivity to road
edges and overcomes the problems associated with paral-
lel edge pairs. As with conventional first order derivative
operators it provides orientation information. In addi-
tion it produces the average grey-level and local isotropic
variance as a by-product and can, therefore, be used in
area segmentation. Here we have passed the filter over
every point in the image but it could be used to anal-
yse bands, as in the previous section. It is several times
more expensive in CPU usage than simple differential
filters (since it involves products) . However, it is hoped



Figure 5: Edge Detection using the Covariance Filler

that its more general capabilities will provide adequate
compensation.

REAL-TIME ANALYSIS

Video-rate analysis, within the current architecture, re-
quires a substantial reduction in the computational com-
plexity of the proposed algorithms. We have been exper-
imenting with a number of approaches, some of which
will be presented in companion papers. The approach we
present here is a variant of the earlier differential edge-
finder used in the bootstrap mode. Instead of analysing
all adjacent bands in the image, the analysis is performed
in a reduced number of horizontal strips. The bootstrap
analysis will have already provided an approximate mea-
sure of the driving corridor and this mode of operation is
intended to continuously confirm and update our knowl-
edge of the road position.

One cannot entirely concentrate the analysis on the
vicinity of known edges as the scene is continuously
changing and the road may fork or contain obstructions.
The method described here starts the analysis in the
center of the known road and works outwards in both
directions searching for the road edge.
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Figure 6: A Real-Time Analysis Algorithm

In this case only a vertical edge detector is used. It is a
5x5 mask of the form:

-1 -1 0 1 1
-1 -1 0 1 1
-1 -1 0 1 1
-1 -1 0 1 1
-1 -1 0 1 1

Figure 6 illustrates the method. Each of the white hor-
izontal bars represents a single scan. The method is
conceptually similar to the earlier technique except we
have smaller filters, perform fewer scans and terminate
the analysis when the edge is found. Each bar repre-
sents a single sweep with the differentiating filter, ter-
minating when an edge response is found that exceeds
the threshold value. In this case we have implemented
a form of automatic thresholding. The central region
of the road is assumed to contain no significant edges
and is used to establish a statistical measure of fluctu-
ations in response to the filter. Initially the central 20
pixels of the image are used to determine a variance in
the filter response. Any further response along the scan
line exceeding two standard deviations is then assumed
to represent an edge. As the filter works outwards the
variance is continuously updated so that a better statis-
tical estimate is obtained.

This technique is still under development and we are not,
as yet, comparing the results with any previous estimate
of the road edge location. The scan stops as soon as a
clear edge is located. This leads to problems, as we see,
when the road contains lane markings. With extended
white lines most of the scans end at a lane boundary,
whereas for small markings most will extend the full
width of the road.

In addition to differentiating the image we also calcu-
late the average grey-level within each 5x5 window and
it would be a simple extension to allow the scan to con-
tinue beyond a lane marker if the appropriate signatures



are found in the grey-level averages and derivatives. One
must be careful about blindly ploughing through obsta-
cles, however, and a reasonable degree of higher level
logic will be required before we can be satisfied that a
potential obstacle is a standard road feature.

The major value of this algorithm, in the early stages
of the development, is that one can safely drive within
the region restricted by the scan lines. In an extended
version of this technique a 5-frame running average is
computed for the ends of each scan line. This smooths
out the response to lane markings, yet still allows a suf-
ficiently rapid response to parked or moving vehicles to
allow safe navigation.

This algorithm performs at approximately 10 msec per
scan (on average) on a single 20 MHz T414 Transputer.
Thus, three transputers working in parallel can perform
more than ten scans at video frame rates.

CONCLUSION

Here we have presented an overview of the computer ar-
chitecture and low-level image processing algorithms we
are developing to extract features from video images for
the control of a vision-guided vehicle. The architecture
is based on an array of Inmos transputers, a number of
which have dual ported video frame stores in their ad-
dress space. We have reported work in progress on the
bootstrap mode of operation, designed to estimate the
initial location of the driving surface. Two approaches
have been used; the first using differential filters and seg-
mentation techniques, the second using a texture based
edge finder. We have further presented a simple but fast
real-time algorithm intended to continuously update our
knowledge of the driving corridor at video frame rates.
Work is continuing on these and also other analysis tech-
niques, some of which will be reported in companion
papers.
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