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Abstract

clinical settings and rehabilitation.

retrieved.

heterogeneous among the examined studies.

serves in shoulder evaluation and therapy.

Background: Wearable sensors are acquiring more and more influence in diagnostic and rehabilitation field to
assess motor abilities of people with neurological or musculoskeletal impairments. The aim of this systematic
literature review is to analyze the wearable systems for monitoring shoulder kinematics and their applicability in

Methods: A comprehensive search of PubMed, Medline, Google Scholar and IEEE Xplore was performed and results
were included up to July 2019. All studies concerning wearable sensors to assess shoulder kinematics were

Results: Seventy-three studies were included because they have fulfilled the inclusion criteria. The results showed
that magneto and/or inertial sensors are the most used. Wearable sensors measuring upper limb and/or shoulder
kinematics have been proposed to be applied in patients with different pathological conditions such as stroke,
multiple sclerosis, osteoarthritis, rotator cuff tear. Sensors placement and method of attachment were broadly

Conclusions: Wearable systems are a promising solution to provide quantitative and meaningful clinical
information about progress in a rehabilitation pathway and to extrapolate meaningful parameters in the diagnosis
of shoulder pathologies. There is a strong need for development of this novel technologies which undeniably
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Background

Shoulder kinematics analysis is a booming research
field due to the emergent need to improve diagnosis
and rehabilitation procedures [1]. The shoulder com-
plex is the human joint characterized by the greatest
range of motion (ROM) in the different planes of
space.

Commonly, several scales and tests are used to
evaluate shoulder function, e.g., the Constant-Murley
score (CMS), the Simple Shoulder test (SST), the
Visual Analogue Scale (VAS) and the Disability of the
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Arm, Shoulder, and Hand (DASH) score [2—4]. How-
ever, despite their easy-to-use and wide application in
clinical settings, these scores conceal an intrinsic sub-
jectivity [2—4], inaccuracy in approaching diagnosis,
follow-up and treatment of the pathologies. Quantita-
tive and objective analyses are rapidly developing as a
valid alternative to evaluate shoulder activity level, to
gauge its functioning and to provide information
about movement quality, e.g., velocity, amplitude and
frequency [5, 6]. This interest in the use of measuring
systems is growing in many medical fields to record
information of clinical relevance. For example, elec-
tromyography (EMG), force sensors, inertial measure-
ment units (IMU), accelerometers, fiber optic sensors
and strain sensors are employed for human motion
analysis, posture and physiological parameters moni-
toring [7-10]. From a technological viewpoint, the
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monitoring of shoulder motion is challenging due to
the complexity of joint kinematic which require the
development of protocols exploiting sensing technol-
ogy as much as possible reliable and unobtrusive. In
the last years, a great number of human motion ana-
lysis systems have been largely employed for objective
monitoring. These systems can be classified into two
main categories: wearable and non-wearable [11]. The
last one includes electromagnetic tracking systems
(e.g., Fastrak) [12], ultrasound-based motion analysis
systems (e.g., Zebris) [13], stereo-photogrammetric
and optoelectronic systems (e.g., VICON, Optotrak,
BTS SMART-D) often used as gold standard [14-17].
These systems based on magnetic field, ultrasound
and cameras are effectively suitable for 3D motion
tracking and analysis due to their accuracy, precision
and reliability [18]. On the other hand, such systems
require expensive equipment, frequent calibration and,
overall, they restrict measurements in structured en-
vironment [19]. Wearable systems overcome these
shortcomings and they are a promising solution for
continuous and long-term monitoring of human mo-
tion in daily living activities. Gathering data in un-
structured environment continuously (e.g., home
environment) provide additional information com-
pared to those obtainable inside a laboratory [20].

Wearable sensor-based systems, intended for kine-
matics data extraction and analyses, are acquiring
more and more influence in diagnostic applications,
rehabilitation follow-up, and treatments of neuro-
logical and musculoskeletal disorders [21, 22]. Such
systems comprise accelerometers, gyroscopes, IMU,
among others [23]. Patients’ acceptance of monitoring
systems that should be worn for long-time relies on
sensors’ features whose must be lightweight, unobtru-
sive and user-friendly [24]. The increasing trend to
adopt such wearable systems has been promoted by
the innovative technology of micro-electro-mechanical
systems (MEMS). MEMS technology has fostered sen-
sors’ miniaturization, paving the way for a revolution-
ary technology suited to a wide range of applications,
including extraction of clinical-relevant kinematics pa-
rameters. In recent years, there has been growth in
the use of smart textile-based systems which integrate
sensing units directly into garments [11, 25, 26].
Moreover, in the era of big data, machine learning
technical analysis can improve home rehabilitation
thanks to the recognition of the quality level of per-
formed physical exercises and the possibility to pre-
vent disorders in patients’ movement [27].

The aim of this systematic literature review is to de-
scribe the wearable systems for monitoring shoulder
kinematics. The authors want to summarize the main
features of the current wearable systems and their
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applicability in clinical settings and rehabilitation for
shoulder kinematics assessment.

Methods

Literature search strategy and study selection process

A systematic review was executed applying the
PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines [28]. Full-text
articles and conference proceedings were selected
from a comprehensive search of PubMed, Medline,
Google Scholar and IEEE Xplore databases. The
search strategy included free text terms and Mesh
(Medical Subject Headings) terms, where suited.
These terms were combined using logical Boolean op-
erators. Keywords and their synonyms were combined
in each database as follows: (“shoulder biomechanics”
OR “upper extremit*” OR “shoulder joint” OR “scapu-
lar-humeral” OR “shoulder kinematics” OR “upper
limb”) AND (“wearable system*” OR “wearable de-
vice*” OR “wearable technolog*” OR “wearable elec-
tronic device*” OR “wireless sensor*” OR “sensor
system” OR “textile” OR “electronic skin” OR “inertial
sensor”). No filter was applied on the publication date
of the articles, and all results of each database were
included up to July 2019. After removal of duplicates,
all articles were evaluated through a screening of title
and abstract by three independent reviewers. The
same three reviewers performed an accurate reading
of all full-text articles assessed for eligibility to this
study and they performed a collection of data to
minimize the risk of bias. In case of disagreement
among investigators regarding the inclusion and ex-
clusion criteria, the senior investigator made the final
decision.

Inclusion criteria were:

i) The studies concern wearable systems as a tool to
assess upper limb kinematics;

ii) The studies used sensors directly stuck on the
human skin by means of adhesive, embedded within
pockets, straps or integrated into fabrics;

ili) Systems intended for motion recognition and
rehabilitation;

iv) Articles are written in English language;

v) Papers are published in a peer-reviewed journal or
presented in a conference;

Exclusion criteria were:

i) Use of prosthetics, exoskeleton or robotic systems;

i) Wearable system not directly worn or tested on
human;

iii) The study concerns wearable systems for full-body
motion tracking;
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iv) Shoulder joint is not included;
v) Reviews, books.

Data extraction process

Data extraction was executed on 73 articles. Data was ex-
tracted on the base of the following checklist: authors, year
and type of publication (ie., conference or full-text); typ-
ology, number, brand and placement of the sensors used
to measure or track the kinematic of the interested joint,
wearability of the system, target parameters with regard to
the shoulder; system used as gold standard to assess the
wearable systems’ performance; tasks executed in the as-
sessment protocol; characteristics of the participants in-
volved in the study and aim of the study.

Results
The literature search returned 1811 results and additional
14 studies were identified through other sources. A total
of 73 studies fulfilled the inclusion criteria (Fig. 1), of
which 27% were published on conference proceedings and
the remaining 73% on peer-reviewed journal.

Three levels of analysis have been emphasized in this
survey: A. application field and main aspects covered, B.
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the typology of sensors exploited to measure kinematic
parameters, C. the placement of the single measurement
units on the body segment of interest and how sensing
modules are integrated into the wearable system from a
wearability viewpoint.

Application field

Fifteen out of the 73 studies focused on evaluating upper
limbs motion in case of musculoskeletal diseases (e.g.,
osteoarthritis, rotator cuff tear, frozen shoulder), 26 on
neurological diseases and ap-plication in neurorehabilita-
tion (e.g., stroke, multiple sclerosis), 15 on general rehabili-
tation aspects (e.g, home rehabilitation, physiotherapy
monitoring) and 17 focusing on validation and develop-
ment of systems and algorithm for monitoring shoulder
kinematics. Tables 1, 2, 3 and 4 include, for each of the
identified application fields, data listed in the previous data
extraction process section.

Sensing technology

Some studies combined different sensors in their mea-
surements system. The most used sensors are acceler-
ometers, gyroscopes and magnetometers, a combination
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of them (# = 55) or with other sensors (# = 8), or built-in
into other devices (e.g., smartphones, smartwatch) (n =
6); additional studies (7 =4) utilized strain sensors for
motion analysis.

B.1 wearable systems based on inertial sensors and
magnetometers
An IMU allows estimating both translational and rota-
tional movements. Such sensors comprise gyroscopes
that measure angular velocity and accelerometers that
measure proper acceleration, i.e. gravitational force
(static) and force due to movements (dynamic) [92]. The
main limitation of the gyroscopes is the issue bias due to
drift. Gyroscopes do not have an external reference, as
opposed to accelerometers that use gravity vector as ref-
erence; in the orientation estimation, gyroscopes suffer
of drift during the integration procedures. To compen-
sate such issue, these sensors are combined with magne-
tometers that measure magnetic field and use the Earth’s
magnetic field as reference. The main limitation of mag-
netometers is the interference due to the presence of
ferromagnetic materials in the surrounding environment
[92]. We refer to these hybrid sensors as M-IMU (mag-
netic and inertial measurement unit). By integrating the
information derived from each sensor (i.e., acceleration,
angular velocity and magnetic field) through sensor-
fusion algorithms, M-IMUs provide an accurate estima-
tion of the 3D-position and 3D-orientation of a rigid
body. The upper limb can be modelled as a kinematic
chain constituted by a series of rigid segments, ie.,
thorax, upper arm, forearm and hand, linked to each
other by joints that allow relative motion among con-
secutive links [17]. In the kinematic chain, the shoulder
joint consists of three degrees of freedom (DOFs)
correspondent  to  abduction-adduction = (AB-AD),
internal-external rotation (IER), and flexion-extension
(FLX-EXT) [15, 54, 57, 71, 79]. Shoulder rotations can
be described using Euler angles that identify the anatom-
ical DOFs with the roll-pitch-yaw angles [17, 33, 37, 88].
Sensor-fusion algorithms can exploit two main ap-
proaches, deterministic or stochastic. The deterministic
approach includes the complementary filter that merges
a high pass filter for gyroscope data (to avoid drift) and
a low pass filter for accelerometer and magnetometer
data [64, 82, 90, 92]. The stochastic approach includes
the Kalman Filter and its more sophisticated versions [7,
55, 66, 67, 78—80, 91, 92]. The Kalman filter (KF) is the
most used algorithm to process M-IMU and IMU data
due to its accuracy and reliability [15, 38, 54, 75, 83, 93].
Wearable systems based on IMU or M-IMU include a
variable number of sensor nodes that, properly distrib-
uted on each body segment of interest, provide kine-
matic parameters such as joint ROM, position,
orientation, and velocity. Fifty-one out of the included
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studies used exclusively IMUs (n = 15) or M-IMUs (n =
36). Systems performances were analyzed in terms of the
agreement between results obtained from the M-IMU or
IMU-based systems and those collected by a gold stand-
ard system. Several types of systems were used as gold
standard, such as ultrasound-based system (e.g., Zebris
CMS-HS [29]), diagnostic imaging (e.g., Magnetic Res-
onance [86]), optical-based systems (e.g., VICON [37,
53, 54, 80, 85, 90, 91], BTS Bioengineering [15, 17, 56,
67, 79], Eagle Analogue System [78], Optotrack [16],
Optitrack [61], CODA [45, 55]), goniometer [53, 54]. Re-
sults from an inertial system were benchmarked against
an ultrasound-based reference system, showing a root
mean square error (RMSE) of 5.81° and a mean error of
1.80° in the estimation of shoulder angles of FLX-EXT,
AB-AD and IER evaluated in the sagittal, frontal and
transversal planes, respectively [29]. Accuracy of a proto-
col based on commercial inertial sensors (MT9B, Xsens)
was tested and compared to a VICON system to meas-
ure humerothoracic, scapulothoracic joint angles and
elbow kinematics [37]. Results demonstrated high accur-
acy in the estimation of upper limb kinematics with an
RMSE lower than 3.2° for 97% of data pairs. A BTS ref-
erence system was used to validate accuracy of a wear-
able system comprised of commercial sensors (Xsens)
and results showed a mean error difference of 13.82° for
FLX-EXT, 7.44° for AB-AD, 28.88° for IR [15]. In a
protocol-validation study, commercial Opal sensors were
compared to a BTS system to assess upper limb joint
kinematics during simulated swimming movements.
Data showed a median RMSE always better than 10°
considering movements of AB-AD, IER and FLX-EXT in
front-crawl and breaststroke [17]. Opal wearable sensors
were compared to optical motion capture systems to es-
timate shoulder and elbow angles [78, 80]. Planar shoul-
der FLX-EXT and AB-AD were performed showing an
RMSE of 5.5° and 4.4°, respectively [80]; a good correl-
ation between the measurements performed on shoulder
motion with the two systems was also found in [78] (no
data regarding measurements error were proposed).
Some studies (n=11) compared data obtained from
wearable sensors, custom or commercial, with a gold
standard to validate their own sensors data fusion algo-
rithm (for more details see Table 4). Two different algo-
rithms were compared to a customized KF [79].
Comparing the results derived from the BTS system and
the inertial-based system (Xsens), the proposed algo-
rithm showed a smaller error than the other two
methods for computing shoulder FLX-EXT (RMSE =
2.4°), AB-AD (RMSE = 0.9°), IER (RMSE =2.9°) [79]. The
addition of the magnetometer-based heading correction
in the sensor data fusion algorithm was investigated to
test the accuracy of an inertial-based motion tracking
system using the Optotrak Certus (Northern Digital Inc.,
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Waterloo, ON, Canada) as reference. Results showed a
RMSE of 4.9°, 1.2° and 2.9° for shoulder azimuth, eleva-
tion and internal rotation, respectively [16].

Four studies used only accelerometers [42, 47, 49, 81].
Systems performance analysis in measurement of arm
motion, showed a RMSE lower than 3.5° and 3.68° for
shoulder ROM when results from the accelerometers-
based systems were benchmarked against a goniometer
and commercial M-IMUs, respectively [47, 81]. Evalu-
ation of upper limbs’ physical activity was performed re-
cording data of accelerometers built-in wearable device
as ActiGraph (Pensacola, Florida, Model GT3XP-BTLE)
to obtain objective outcomes in patients after reverse
shoulder arthroplasty [41].

Shoulder ROM has been also estimated by means of a
single sensor node which integrated an accelerometer
and a magnetometer [69]. Sensor fusion algorithms of
accelerometers and magnetometers data provide accur-
ate orientation estimation in static or semi static condi-
tion, e.g, in a rehabilitation session in which patients
perform slow movements [81]. M-IMUs comprised of a
3D accelerometer, 3D gyroscope and 3D magnetometer
are the most appropriate choice for motion tracking ei-
ther in static that in dynamic condition.

Two accelerometer-based sensors were combined with
those built-in a smartphone to realize a smart rehabilita-
tion platform for shoulder home-rehabilitation [68]. Mo-
bile phone or a smartwatch, with their built-in inertial
sensor units, were used as mobile monitoring devices [27,
76, 84]. These results give proof of the growing trend in
the application of commercial devices in clinical setting
for rehabilitation purposes. Data has been processed using
machine learning algorithms to extract salient features
and for gesture recognition related to shoulder motion. In
these techniques, the main steps are the data collection,
followed by segmentation process, feature extraction and
classification [27, 49]. For instance, the identification of
different types of RC physiotherapy exercises has been
performed processing data from inertial sensors built-in a
wrist-worn smartwatch [27]. Data from inertial sensors
built-in a smartphone were benchmarked against a man-
ual goniometer. Angular differences between a machine
learning-based application and goniometer measurements
resulted less than 5° for all shoulder ROM (i.e., AD, for-
ward FLX, IR, ER) [76].

Two studies combined accelerometer(s) with Optical
Linear Encoder (OLE) [68, 84]. An OLE-based system
acts as a goniometer providing measures of joint angles.
Despite of the simplicity and low cost of the proposed
systems, differences in shoulder ROM estimation re-
sulted not negligible when data collected by the wearable
systems were compared against an inertial-based motion
capture (i.e, IGS-190 [54]) and a fiber optics-based sys-
tem (i.e., ShapeWrap [71]).
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Three studies included EMG sensors in their assess-
ment tool in combination with accelerometers [58],
IMUs [59] and M-IMU [39]. EMG sensors placed on the
biceps, triceps [59] and deltoid muscles [39] provide
additional information about upper limb motor function
and shoulder assessment, evaluating muscles activity.
Quantification of upper limb motion was executed
through a wearable device, MYO armband by Thalamic
labs, that combines EMG sensors to record electrical im-
pulses of the muscles [7, 87].

B.2 wearable systems based on strain sensors

Four studies used smart-textiles instrumented by strain
sensors with piezoresistive properties to estimate kine-
matic parameters and to perform motion analysis [8, 11,
46, 56]. Such sensing elements are stretched or com-
pressed during movements of the examined body seg-
ments, with consequent variation of their electrical
resistance [94, 95]. Using a M-IMU system as reference,
accuracy evaluation of a smart-textile with printed strain
sensors showed a mean error of 9.6° in planar motions
measurements of shoulder joint [11]. Shoulder kinemat-
ics was assessed combining a strain sensor for scapular
sliding detection with two M-IMUs for HT orientation
measure [56].

Piezoresistive strain sensors directly adhered to the skin
were used to estimate shoulder ROM; the comparison be-
tween reference data from an optical-based system (i.e.,
Optitrack) and strain sensors showed a RMSE less than
10° in shoulder FLX-EXT and AB-AD estimation [72].

Sensors placement and wearability

Placement of the sensing technology on the body land-
marks has shown a heterogeneous distribution linked to
the different nature of the employed technology and to
the purpose for which monitoring system was designed.
With respect to the monitored upper limb, 53 out of the
73 studies included in this review showed a unilateral
distribution of the sensing elements while the remaining
studies utilized a bilateral placement. Several configura-
tions using different number of sensors and placements
have been investigated as reported in detail in each table
and Fig. 2.

Regarding the wearability, we classified the systems in
terms of how the sensors were fixed to the human body:
i) by adhesive patch, ii) by means of straps or embedded
within pocket, iii) the sensing element is physically inte-
grated into the fabric. Four studies did not specify the
method of attachment, 12 studies have stuck sensors dir-
ectly on human skin by means of adhesive patch, 52
studies have attached sensors through straps or embed-
ding them in modular clothing, and 5 studies have inte-
grated sensors directly into garments. For more details
refers to Tables 1, 2, 3 and 4.
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M-IMU N=12, (U=11, B=1)
Accelerometers N=1, (U=1, B=0)
Strain sensors N=5, (U=4, B=1)
OLE N=1, (U=1, B=0)
EMG N=1, (U=1, B=0)
MU N=9, (U=0, B=9)
IMU N=15, (U=4, B=11) M-IMU N=23, (U=17, B=6)
M-IMU N=36, (U=28, B=38) Accelerometers N=3, (U=3, B=0)
Accelerometers N=6, (U=6, B=0)
Strain sensors N=2 (U=2, B=0) IMU N=2, (U=0, B=2)
EMG N=1, (U=1, B=0) M-IMU N:l, (U:l, B:O)
MYO Armband N=1, (U=1, B=0) Strain sensors  N=1, (U=0, B=1)
Smartphone N=2, (U=2, B=0)
ActiGraph N=1, (U=1, B=0 MU N=2, (U=2;B~0)
M-IMU N=3, (U=1, B=2)
IMU N=1, (U=1, B=0) Accelerometers N=I1, (U=1, B=0)
Accelerometers N=1, (U=1, B=0) Strain sensors N=2, (U=2, B=0)
Strain sensors N=2, (U=2,B=0) Acc+magn N=1, (U=1, B=0)
OLE N=2, (U=2, B=0) OLE N=1, (U=1, B=0)
Smartphone N =1, (U=1, B=0)
MU N=7, (U=3, B=4) Smartwatch N =1, (U=1, B=0)
M-IMU N=28, (U=22, B=6) ActiGraph N=1, (U=1, B=0)
Accelerometers N=4, (U=4, B=0)
Strain sensors N=2, (U=2, B=0) M-IMU N=8, (U=4, B=4)
EMG N=1, (U=1, B=0) Accelerometers N=2, (U=2, B=0)
MYO Armband N=1, (U=0,B=1)
Smartphone N=1, (U=1, B=0)
Fig. 2 Placement of sensing units (NOTE One study [90] is not included because the specific position of each sensor nodes is not so clear.
Legend: N =number of studies, U = Unilateral, B = Bilateral)

Discussion

This paper summarizes the main features of wearable
systems that have been employed in clinical setting and
research field to evaluate upper limb functional perform-
ance and particularly for shoulder ROM assessment.
Shoulder complex is characterized by the greatest mobil-
ity among all human joints and, due to its complexity,
reviewed articles evidenced heterogeneity on the more
suitable protocol for capturing joint ROM [96].

Wearable technology

Although 73% of the reviewed papers use commercial
products for tracking joint angles, many of these
personalize the positioning of the sensors, the calibration
methodology and the algorithms used to process the re-
corded data. This customization makes strenuous a dir-
ect comparison among protocols, especially if sensing
units of different nature (e.g., M-IMU vs. strain sensors)
are used to measure the same kinematic parameters,
leaving still open the issue of the protocols’ definition
with general validity.

About studies using inertial-based motion tracking
systems, most in this summary (88%), calibration proce-
dures before data acquisition and data processing repre-
sent a relevant issue about accuracy and reliability of the
system. Typically, the M-IMUs are attached on the seg-
ment of interest to estimate its orientation, so the cali-
bration is necessary to relate sensors’ measurements to

movements of the tracked body segment. Sometimes the
manufacturer suggests how to perform calibration, e.g.,
positioning sensors on a flat surface [15, 35] to align co-
ordinate system or assuming static anatomical position
[65], as N-pose [79], to compute orientation differences
between segments and sensors coordinates in order to
obtain sensor-to-segment alignment [56]. Dynamic or
functional anatomical calibration has also been per-
formed in some studies, but the sequence of movements
executed varied among these [17, 33, 55, 83]. One inter-
esting improvement that may be done to have a positive
impact on the accuracy of inertial-based motion tracking
systems, is to define a standard set of movements for the
initial calibration and a standard method of data pro-
cessing by which extrapolate kinematic parameters of
high clinical relevance.

Some works have reported remarkable results in hu-
man motion tracking using e-textile sensors [8, 46].
Technological improvements in the development of con-
ductive elastomers allowed to integrate such strain sen-
sors directly into garments making them comfortable
and unobtrusive [11, 56]. Although conductive elasto-
mers ensure flexibility and performances comparable
with those of the M-IMU sensors, the main limitations
are the hysteresis, uniaxial measurements and non-
negligible transient time [56]. Wearable systems based
on strain sensors are a promising technology for kine-
matics analysis that may overcome the main M-IMUs
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drawbacks, as interferences due to surrounding ferro-
magnetic materials, gyroscopes’ error drift and long-
term use. On the other hand, errors may occur with
strain sensors-based systems in the estimation of shoul-
der kinematics for their inherent hysteresis behaviour.

Among wearable systems reviewed in this summary,
differences resulted in terms of sensors typology, num-
ber and size, placement, and wearability features. Sen-
sors placement and method of attachment must be
carefully investigated as they could influence the out-
comes reliability (e.g., effects of soft tissues’ artefacts).
Human skeleton is covered by skin tissue and muscles.
The combination of skin’s elasticity and muscle activity
may cause negative effects in the measurement of the
bones’” movement. In studies where M-IMU sensors
were used to track shoulder kinematics, soft tissue prop-
erties were opportunely included in mathematical
models to reduce soft tissue artifacts [79, 85]. The body
fat percentage was found the main influencing factor
that negatively affects the inertial sensors’ orientation
[85]. To reduce such source of error, either when sen-
sors are directly adherent to the skin that embedded in a
textile, sensing units should be placed as near as possible
to the bone segment to reduce soft tissue artifacts [97,
98]. Wearability is a key factor to consider because it
can influence the level of patients’ acceptance [26].There
are several relevant requirements that wearable systems
must meet to encourage their applications in continuous
monitoring of patient status. Indeed, execution of move-
ments, either in home environments or in clinical set-
tings, should not be hindered by measurements systems
so they must be non-invasive, modular, lightweight, un-
obtrusive and include a minimal number of sensors [33,
40, 51, 56, 66, 67, 91]. Most studies have employed mag-
neto and inertial-based tracking systems in which sen-
sors were attached to the upper limb through Velcro
straps or including them in modular brace and garments
[26, 45, 67, 82, 88].

Upper limb includes the shoulder, elbow and wrist
joints (Fig. 3a). Humerus, scapula, clavicle, and thorax
constitute the shoulder complex: humeral head articu-
lates in the glenoid fossa of the scapula to form GH
joint, the AC joint is the articulation between the lateral
end of the clavicle and the acromion process, the SC
joint articulates the medial end of the clavicle and the
sternum and the functional ST joint allows rotational
and translational movements of the scapula with respect
to the thorax [96] (Fig. 3b). The ST joint and GH joint
act togheter in arm elevation according to scapular-
humeral rhythm described in [99]. From a biomechan-
ical point of view, shoulder complexity is justified by the
high degree of coupling and coordination between
shoulder joints (i.e, shoulder rhythm) and the action of
more than one muscles over more than one joints in the
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execution of a movement. Data extraction of shoulder
kinematics is frequently based on movements pattern in
the sagittal, frontal and transversal planes, so monitoring
of complex movements (e.g., daily activities) in multiple
planes, performed through wearable sensors, requires a
more stringent evaluation and accurate interpretation.
As resulted in the review, the shoulder is generally ap-
proximated as a ball-and-socket joint [56]. This assump-
tion provides an approximate representation of the
whole shoulder girdle (e.g., it neglects the contribution
of scapular movements). A standardized protocol has
been proposed (i.e., The ISEQO°®, INAIL Shoulder and
Elbow Outpatient protocol) to improve the performance
of M-IMUs in the estimation of scapular kinematics, by
locating inertial sensors on the back in correspondence
of scapula [33, 35-38, 40, 65]. An adequate investigation
of scapular motions may be beneficial to assess shoulder
disorders [100].

For long-term monitoring of shoulder kinematics con-
sidering also scapular motions, the combination of M-
IMUs and smart-textile with embedded strain sensors is
a perfect balancing of accuracy, flexibility and wearability
(i.e., strain sensors positioned on the scapula could in-
crease the portability and acceptance of the wearable
system for long-term monitoring of ADLs) [86].

Applicability in clinical setting and rehabilitation
Alterations in the complex shoulder kinematics can de-
rive by both neurological or musculoskeletal disorders
and result in pain and limited movements [68]. Com-
pensatory movements in patients with shoulder disor-
ders are the most common consequential responses to
pain or to difficulty in performing free-pain movements.
In such situations, information retrieved by posture
monitoring may be beneficial in clinical application and
rehabilitation [26]. In the last years, the application of
wearable devices for gathering motion data outside the
laboratory settings is growing. Avoiding complex labora-
tory set-up, wearable systems employed to assess upper
limb kinematics have proven to be a well-founded alter-
native to obtain quantitative motions parameters. Quan-
titative outcomes about shoulder motions recorded by
wearable sensors are beneficial in clinical practice in
terms of time-saving and they are becoming a promising
alternative to improve assessment accuracy overcoming
the subjectivity of clinical scales. The automatic assess-
ment of motor abilities can also provide therapists a tan-
gible and, therefore, measurable awareness of the
effectiveness of the treatment and the recovery path
chosen.

In clinical practice, the severity level of patients’ condi-
tion with musculoskeletal disease is usually assessed
through questionnaire-based scores [36, 42]. Algorithms
for kinematic scores computing were developed to
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Fig. 3 a Anatomy of the Upper limb; b Anatomy of the Shoulder complex

Sternoclavicular Joint

Acromioclavicular Joint

Glenohumeral Joint

Scapulothoracic Joint

(b)

evaluate shoulder functional performance after surgery
in subjects with GH osteoarthritis and RC diseases, elab-
orating data obtained from IMU sensors [29, 31]. High
correlation (0.61-0.8) between shoulder kinematic
scores (i.e., power score, range of angular velocity score
and moment score) and clinical scales (e.g., DASH, SST,
VAS) was found [31]. Unlike clinical scores, kinematic
scores showed greater sensitivity in detecting significant
functional changes in shoulder activity at each post-
operative follow-up with respect to the baseline status
[29, 31]. In a five-year follow-up study, asymmetry in
shoulder movements was evaluated in patients with sub-
acromial impingements syndrome. Asymmetry scores,
derived from an IMU-based system, showed post-
treatment improvements with greater sensitivity than
clinical scores and only a weak correlation was found
with DASH (r=0.39) and SST (r=0.32) [32]. Quantita-
tive evaluation of arm usage and quality of movements
in every kind of shoulder impairment contributes to out-
line a clinical picture about the functional recovery and
the effectiveness of the treatment [30, 49]. Using the
same number of IMU (n=3) and the same placement
on both humeri and sternum, the shoulder function was
evaluated before and after treatment, in patients under-
went surgery for RC tear [5, 34]. Results showed signifi-
cative differences in movements frequency between
patients and control group during activities of daily life
[5], with limited use of arm at 3 months after surgery
[34]. With a bilateral configuration based on 5 IMU,
shoulder motion was assessed to extrapolate relevant
clinical outcomes about Total Shoulder Arthroplasty
(TSA) and Reverse Total Shoulder Arthroplasty (RTSA)
[6]. Patients underwent either TSA or RTSA showed
shoulder ROM below 80° of elevation, indiscriminately;

but, on average, patients treated with RTSA performed
movements above 100° less frequently [6]. Objective
measurements (i.e, mean activity value and activity fre-
quency) of limb function after RTSA did not show sig-
nificant improvements 1year after surgery, despite
DASH scores and pain perception have improved com-
pared to preoperative outcomes [41].

In patient with neurological impairments (e.g., stroke), as-
sessments of motor abilities performed through wearable
sensors showed a time saving compared to clinical scores
(e.g., Fugl-Meyer Assessment Test) measured by the clin-
ician [50, 53]. Data from accelerometers-based systems
demonstrated accurate capability in the estimation of clin-
ical scores for quality of movement (e.g., FAS score) and in
prediction of shoulder features about shoulder portion of
Fugl-Meyer scale with errors near 10% [42, 49]. Generally,
the main evaluated features comprise coordination,
smoothness, presence of compensatory movements, speed,
amplitude of ROM. Quantitative measurements, such as
movement time and smoothness, showed a strong correl-
ation with Action research arm test scores in patients after
stroke [7]. Spatiotemporal parameters (e.g, ROM, move-
ment time) extracted from inertial sensors’ data provided
an accurate evaluation of patients with multiple sclerosis
and they distinguished affected and unaffected upper limbs
in children with hemiparesis significantly [60, 62].

Digital simulations and virtual reality implementation
in upper limb rehabilitation context aim to reproduce
accurately limb movements processing data from wear-
able sensors and give a direct feedback about the ad-
equacy or not of the executed movements [40]. The
long-term monitoring, associated with suitable feedback
strategy (e.g., visive, auditory, vibrational), can foster the
correction of wrong postures [40, 52]. In addition,
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wearable systems allows a more supervised home-
rehabilitation giving substantial improvements to patient
healing: total patient involvement in rehabilitation pro-
grams can advantage the motor learning process and, at
the same time, providing a direct feedback (e.g., visual,
auditory) about performance level can increase patient
interest and motivation [44, 48]. A new trend is the use
of smartphone as monitoring systems or user-interface
[53, 76, 84]. Implementation of suitable application (i.e.,
App) can provide a direct feedback to the patients and
therapists about the progress in motor performance [26].
Gathered data could be remotely evaluated by the thera-
pists [64]. Remote monitoring can provide useful infor-
mation about patients’ status at every stage of
rehabilitation pathway and, at the same time, it implies a
greater centralization of patients role in the management
of their own health associated to a more direct clinician
control [101]. A typical architecture of remote monitor-
ing systems includes: i) wearable sensing unit to gather
movements data; ij) data storage and management in
cloud computing; iii) software to analyse data and ex-
tract relevant clinical parameters [58, 66]. This approach
implies collection of big amounts of data regarding per-
sonal information that requires ethical considerations
and the definition of legal responsibility [102].

Most of the reviewed articles limited the application of
wearable systems in short-time session for shoulder mo-
tion evaluation; only few studies performed longer moni-
toring periods of ADLs until 7 or 11 monitoring hours
of 1 day [5, 6, 34].

Conclusion

This review reveals that wearable systems are becoming
an efficient and promising tool to evaluate shoulder
health after neurological trauma or musculoskeletal in-
juries. Wearable systems have the potential to provide
quantitative and meaningful clinical information about
movement quality and progress in a rehabilitation path-
way. The magneto-inertial measurements systems re-
sulted the most used in clinical and research settings,
followed by the growing application of smart-textiles for
joint angles assessment. Despite of the accuracy of the
current wearable systems in shoulder kinematics assess-
ment, additional investigation needs to be executed to
ensure long-term applicability in clinical settings and
rehabilitation.

Abbreviations

AB-AD: abduction-adduction; AC: acromioclavicular; CMS: Constant-Murley
score; DASH: Disability of the Arm, Shoulder, and Hand; DOFs: degrees of
freedom; EMG: electromyography; ER: external rotation; FLX-EXT: flexion-
extension; GH: glenohumeral; HT: humerothoracic; IE: internal rotation;

|ER: internal-external rotation; IMU: inertial measurement unit; KF: Kalman
filter; MEMS: micro-electro-mechanical systems; M-IMU: magnetic and inertial
measurement unit; OLE: Optical Linear Encoder; PRISMA: Preferred Reporting
ltems for Systematic Reviews and Meta-Analyses; RC: rotator cuff; RMSE: root

Page 21 of 24

mean square error; ROM: range of motion; RTSA: Reverse Total Shoulder
Arthroplasty; SC: sternoclavicular; SST: Simple Shoulder test;

ST: scapulothoracic; TSA: Total Shoulder Arthroplasty; VAS: Visual Analogue
Scale

Acknowledgements
Not applicable.

Authors’ contributions

UGL and ES conceived and supervised the study. AC carried out the search
process and data collection, UGL, ES and VD assessed the quality of the
study. AC and ES drafted the manuscript. All the authors have read and
approved the final manuscript.

Funding
This work has been funded by the Italian Ministry of Health in the framework
of RICERCA FINALIZZATA 2016 (PE-2016-02364894).

Availability of data and materials
The datasets used and/or analysed during the current study available from
the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests

UGL and AB are members of the Editorial Board of BMC Musculoskeletal
Disorders. The remaining authors declare that they have no conflict of
interest.

Author details

'Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico
University, Via Alvaro del Portillo, 200, 00128 Rome, ltaly. “Unit of
Measurements and Biomedical Instrumentation, Campus Bio-Medico
University, Via Alvaro del Portillo, 21, 00128 Rome, Italy.

Received: 5 July 2019 Accepted: 31 October 2019
Published online: 15 November 2019

References

1. Cutti AG, Veeger HE. Shoulder biomechanics: today's consensus and
tomorrow's perspectives. Med Biol Eng Comput. 2009;47(5):463-6.

2. Longo UG, Vasta S, Maffulli N, Denaro V. Scoring systems for the functional
assessment of patients with rotator cuff pathology. Sports Med Arthrosc
Rev. 2011;19(3):310-20.

3. Longo UG, Berton A, Ahrens PM, Maffulli N, Denaro V. Clinical tests for the
diagnosis of rotator cuff disease. Sports Med Arthrosc Rev. 2011;19(3):266—
78.

4. Longo UG, Saris D, Poolman RW, Berton A, Denaro V. Instruments to assess
patients with rotator cuff pathology: a systematic review of measurement
properties. Knee Surg Sports Traumatol Arthrosc. 2012,20(10):1961-70.

5. Duc C Farron A, Pichonnaz C, Jolles BM, Bassin JP, Aminian K. Distribution
of arm velocity and frequency of arm usage during daily activity: objective
outcome evaluation after shoulder surgery. Gait Posture. 2013;38(2):247-52.

6. Langohr GDG, Haverstock JP, Johnson JA, Athwal GS. Comparing daily
shoulder motion and frequency after anatomic and reverse shoulder
arthroplasty. J Shoulder Elb Surg. 2018,27(2):325-32.

7. Repnik E, Puh U, Goljar N, Munih M, Mihelj M. Using Inertial Measurement
Units and Electromyography to Quantify Movement during Action Research
Arm Test Execution. Sensors (Basel). 2018;18:9.

8. Bartalesi R, Lorussi F, Tesconi M, Tognetti A, Zupone G, Rossi DD: Wearable
kinesthetic system for capturing and classifying upper limb gesture. In: First
Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems World Haptics Conference: 18-20
March 2005 2005; 2005: 535-536.

9. Massaroni C, Di Tocco J, Presti DL, Schena E, Bressi F, Bravi M, Miccinilli S,
Sterzi S, Longo UG, Berton A: Influence of motion artifacts on a smart
garment for monitoring respiratory rate. In: 2019 IEEE International



Carnevale et al. BMC Musculoskeletal Disorders

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

(2019) 20:546

Symposium on Medical Measurements and Applications (MeMeA): 2019: |EEE;
2019: 1-6.

Presti DL, Massaroni C, Di Tocco J, Schena E, Formica D, Caponero MA,
Longo UG, Carnevale A, D'Abbraccio J, Massari L: Cardiac monitoring with a
smart textile based on polymer-encapsulated FBG: influence of sensor
positioning. In: 2019 IEEE International Symposium on Medical Measurements
and Applications (MeMeA): 2019: IEEE; 2019: 1-6.

Esfahani MIM, Nussbaum MA. A “smart” undershirt for tracking upper body
motions: task classification and angle estimation. IEEE Sensors J. 2018;18(18):
7650-8.

Jordan K, Haywood KL, Dziedzic K, Garratt AM, Jones PW, Ong BN, Dawes
PT. Assessment of the 3-dimensional Fastrak measurement system in
measuring range of motion in ankylosing spondylitis. J Rheumatol. 2004;
31(11):2207-15.

Illyés A, Kiss RM. Method for determining the spatial position of the
shoulder with ultrasound-based motion analyzer. J Electromyogr Kinesiol.
2006;16(1):79-88.

Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify
kinematics of the upper body. Gait Posture. 2016;47:80-5.

Pérez R, Costa U, Torrent M, Solana J, Opisso E, Caceres C, Tormos JM,
Medina J, Gomez EJ. Upper limb portable motion analysis system based on
inertial technology for neurorehabilitation purposes. Sensors (Basel). 2010;
10(12):10733-51.

Lambrecht JM, Kirsch RF. Miniature low-power inertial sensors: promising
technology for implantable motion capture systems. IEEE Trans Neural Syst
Rehabil Eng. 2014;22(6):1138-47.

Fantozzi S, Giovanardi A, Magalhdes FA, Di Michele R, Cortesi M, Gatta G.
Assessment of three-dimensional joint kinematics of the upper limb during
simulated swimming using wearable inertial-magnetic measurement units. J
Sports Sci. 2016;34(11):1073-80.

Presti DL, Massaroni C, Formica D, Saccomandi P, Giurazza F, Caponero MA,
Schena E. Smart textile based on 12 fiber Bragg gratings array for vital signs
monitoring. IEEE Sensors J. 2017;17(18):6037-43.

Massaroni C, Carraro E, Vianello A, Miccinilli S, Morrone M, Levai IK, Schena
E, Saccomandi P, Sterzi S, Dickinson JW, et al. Optoelectronic
Plethysmography in clinical practice and research: a review. Respiration.
2017,93(5):339-54.

Massaroni C, Venanzi C, Silvatti AP, Lo Presti D, Saccomandi P, Formica D,
Giurazza F, Caponero MA, Schena E. Smart textile for respiratory monitoring
and thoraco-abdominal motion pattern evaluation. J Biophotonics. 2018;
11(5):€201700263.

de Lucena DS, Stoller O, Rowe JB, Chan V, Reinkensmeyer DJ. Wearable
sensing for rehabilitation after stroke: bimanual jerk asymmetry encodes
unique information about the variability of upper extremity recovery. IEEE
Int Conf Rehabil Robot. 2017,2017:1603-8.

Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors
and systems with application in rehabilitation. Journal of neuroengineering
and rehabilitation. 2012;9:21.

Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis
methods: an overview of wearable and non-wearable systems, highlighting
clinical applications. Sensors (Basel). 2014;14(2):3362-94.

Bergmann JH, Chandaria V, McGregor A. Wearable and implantable sensors:
the patient's perspective. Sensors (Basel). 2012;12(12):16695-709.

Caldani L, Pacelli M, Farina D, Paradiso R. E-textile platforms for
rehabilitation. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5181-4.

Wang Q, De Baets L, Timmermans A, Chen W, Giacolini L, Matheve T,
Markopoulos P. Motor Control Training for the Shoulder with Smart
Garments. Sensors (Basel). 2017;17:7.

Burns DM, Leung N, Hardisty M, Whyne CM, Henry P, McLachlin S. Shoulder
physiotherapy exercise recognition: machine learning the inertial signals
from a smartwatch. Physiol Meas. 2018;39(7):075007.

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Ggtzsche PC, loannidis JP, Clarke M,
Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting
systematic reviews and meta-analyses of studies that evaluate health care
interventions: explanation and elaboration. J Clin Epidemiol. 2009,62(10):e1-34.
Coley B, Jolles BM, Farron A, Bourgeois A, Nussbaumer F, Pichonnaz C,
Aminian K. Outcome evaluation in shoulder surgery using 3D kinematics
sensors. Gait Posture. 2007;25(4):523-32.

Coley B, Jolles BM, Farron A, Pichonnaz C, Bassin JP, Aminian K. Estimating
dominant upper-limb segments during daily activity. Gait Posture. 2008;
27(3):368-75.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

45.

46.

47.

48.

49.

50.

52.

Page 22 of 24

Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, Farron A.
Objective evaluation of shoulder function using body-fixed sensors: a new way
to detect early treatment failures? J Shoulder Elb Surg. 2011;20(7):1074-81.
Korver RJ, Senden R, Heyligers IC, Grimm B. Objective outcome evaluation
using inertial sensors in subacromial impingement syndrome: a five-year
follow-up study. Physiol Meas. 2014;35(4):677-86.

van den Noort JC, Wiertsema SH, Hekman KMC, Schonhuth CP, Dekker J,
Harlaar J. Reliability and precision of 3D wireless measurement of scapular
kinematics. Med Biol Eng Comput. 2014;52(11):921-31.

Pichonnaz C, Duc C, Jolles BM, Aminian K, Bassin JP, Farron A. Alteration
and recovery of arm usage in daily activities after rotator cuff surgery. J
Shoulder Elb Surg. 2015;24(9):1346-52.

Roldan-Jiménez C, Cuesta-Vargas Al. Studying upper-limb kinematics using
inertial sensors: a cross-sectional study. BMC Res Notes. 2015,8:532.

van den Noort JC, Wiertsema SH, Hekman KM, Schénhuth CP, Dekker J,
Harlaar J. Measurement of scapular dyskinesis using wireless inertial and
magnetic sensors: importance of scapula calibration. J Biomech. 2015;48(12):
3460-8.

Cutti AG, Giovanardi A, Rocchi L, Davalli A, Sacchetti R. Ambulatory
measurement of shoulder and elbow kinematics through inertial and
magnetic sensors. Med Biol Eng Comput. 2008,46(2):169-78.
Roldén-Jiménez C, Cuesta-Vargas Al. Age-related changes analyzing
shoulder kinematics by means of inertial sensors. Clin Biomech (Bristol,
Avon). 2016;37:70-6.

Aslani N, Noroozi S, Davenport P, Hartley R, Dupac M, Sewell P.
Development of a 3D workspace shoulder assessment tool incorporating
electromyography and an inertial measurement unit-a preliminary study.
Med Biol Eng Comput. 2018;56(6):1003-11.

Carbonaro N, Lucchesi |, Lorusssi F, Tognetti A: Tele-monitoring and tele-
rehabilitation of the shoulder muscular-skeletal diseases through wearable
systems. In: 2018 40th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC): 18-21 July 2018 2018; 2018: 4410~
4413,

Hurd WJ, Morrow MM, Miller EJ, Adams RA, Sperling JW, Kaufman KR.
Patient-reported and objectively measured function before and after reverse
shoulder Arthroplasty. J Geriatr Phys Ther. 2018;41(3):126-33.

Hester T, Hughes R, Sherrill DM, Knorr B, Akay M, Stein J, Bonato P: Using
wearable sensors to measure motor abilities following stroke. In:
International Workshop on Wearable and Implantable Body Sensor Networks
(BSN'06): 3-5 April 2006 2006; 2006: 4 pp.-8.

Zhou H, Hu H, Harris ND, Hammerton J. Applications of wearable inertial
sensors in estimation of upper limb movements. Biomedical Signal
Processing and Control. 2006;1(1):22-32.

Willmann RD, Lanfermann G, Saini P, Timmermans A, te Vrugt J, Winter S.
Home stroke rehabilitation for the upper limbs. Conf Proc IEEE Eng Med
Biol Soc. 2007;2007:4015-8.

Zhou H, Stone T, Hu H, Harris N. Use of multiple wearable inertial sensors in
upper limb motion tracking. Med Eng Phys. 2008;30(1):123-33.

Giorgino T, Tormene P, Lorussi F, Rossi DD, Quaglini S. Sensor evaluation for
wearable strain gauges in neurological rehabilitation. IEEE Transactions on
Neural Systems and Rehabilitation Engineering. 2009;17(4):409-15.

Lee GX, Low KS, Taher T. Unrestrained measurement of arm motion based
on a wearable wireless sensor network. [EEE Trans Instrum Meas. 2010,59(5):
1309-17.

Chee Kian L, Chen |, Zhigiang L, Yeo SH: A low cost wearable wireless
sensing system for upper limb home rehabilitation. In: 2010 IEEE Conference
on Robotics, Automation and Mechatronics: 28-30 June 2010 2010; 2010: 1-8.
Patel S, Hughes R, Hester T, Stein J, Akay M, Dy JG, Bonato P. A novel
approach to monitor rehabilitation outcomes in stroke survivors using
wearable technology. Proc IEEE. 2010;98(3):450-61.

Bento VF, Cruz VT, Ribeiro DD, Cunha JPS: Towards a movement
quantification system capable of automatic evaluation of upper limb motor
function after neurological injury. In: 2011 Annual International Conference of
the IEEE Engineering in Medicine and Biology Society: 30 Aug.-3 Sept. 2011
20171; 2011: 5456-5460.

Nguyen KD, Chen |, Luo Z, Yeo SH, Duh HB. A wearable sensing system for
tracking and monitoring of functional arm movement. IEEE/ASME
Transactions on Mechatronics. 2011;16(2):213-20.

Ding ZQ, Luo ZQ, Causo A, Chen IM, Yue KX, Yeo SH, Ling KV. Inertia
sensor-based guidance system for upperlimb posture correction. Med Eng
Phys. 2013;35(2):269-76.



Carnevale et al. BMC Musculoskeletal Disorders

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

(2019) 20:546

Lee WW, Yen SC, Tay A, Zhao Z, Xu TM, Ling KK, Ng YS, Chew E, Cheong
AL, Huat GK. A smartphone-centric system for the range of motion
assessment in stroke patients. IEEE J Biomed Health Inform. 2014;18(6):1839-
47.

Bai L, Pepper MG, Yan Y, Spurgeon SK, Sakel M, Phillips M. Quantitative
assessment of upper limb motion in neurorehabilitation utilizing inertial
sensors. IEEE Trans Neural Syst Rehabil Eng. 2015;23(2):232-43.

Ertzgaard P, Ohberg F, Gerdle B, Grip H. A new way of assessing arm
function in activity using kinematic exposure variation analysis and portable
inertial sensors—-a validity study. Man Ther. 2016;21:241-9.

Lorussi F, Carbonaro N, De Rossi D, Tognetti A. A bi-articular model for
scapular-humeral rhythm reconstruction through data from wearable
sensors. J Neuroeng Rehabil. 2016;13:40.

Mazomenos EB, Biswas D, Cranny A, Rajan A, Maharatna K, Achner J, Klemke
J, Jébges M, Ortmann S, Langendorfer P. Detecting elementary arm
movements by tracking upper limb joint angles with MARG sensors. IEEE
Journal of Biomedical and Health Informatics. 2016;20(4):1088-99.

Jiang Y, Qin Y, Kim I, Wang Y: Towards an loT-based upper limb
rehabilitation assessment system. In: 2077 39th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC):
11-15 July 2017 2017; 2017: 2414-2417.

Li'Y, Zhang X, Gong Y, Cheng Y, Gao X, Chen X. Motor Function Evaluation
of Hemiplegic Upper-Extremities Using Data Fusion from Wearable Inertial
and Surface EMG Sensors. Sensors (Basel). 2017;17:3.

Newman CJ, Bruchez R, Roches S, Jequier Gygax M, Duc C, Dadashi F,
Massé F, Aminian K. Measuring upper limb function in children with
hemiparesis with 3D inertial sensors. Childs Nerv Syst. 2017;33(12):2159-68.
Yang X, Tan J: Tracking of Human Joints Using Twist and Exponential Map.
In: 2017 IEEE 7th Annual International Conference on CYBER Technology in
Automation, Control, and Intelligent Systems (CYBER): 31 July-4 Aug. 2017
2017; 2017: 592-597.

Daunoraviciene K, Ziziene J, Griskevicius J, Pauk J, Ovcinikova A, Kizlaitiene R,
Kaubrys G. Quantitative assessment of upper extremities motor function in
multiple sclerosis. Technol Health Care. 2018;26(S2):647-53.

Jung H, Park J, Jeong J, Ryu T, Kim Y, Lee SI: A wearable monitoring system
for at-home stroke rehabilitation exercises: A preliminary study. In: 2078 IEEE
EMBS International Conference on Biomedical & Health Informatics (BHI): 4-7
March 2018 2018; 2018: 13-16.

Lin LF, Lin YJ, Lin ZH, Chuang LY, Hsu WC, Lin YH. Feasibility and efficacy of
wearable devices for upper limb rehabilitation in patients with chronic
stroke: a randomized controlled pilot study. Eur J Phys Rehabil Med. 2018;
54(3):388-96.

Parel |, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory
measurement of the scapulohumeral rhythm: intra- and inter-operator
agreement of a protocol based on inertial and magnetic sensors. Gait
Posture. 2012;35(4):636-40.

Daponte P, Vito LD, Sementa C: A wireless-based home rehabilitation
system for monitoring 3D movements. In: 2013 IEEE International Symposium
on Medical Measurements and Applications (MeMeA): 4-5 May 2013 2013;
2013: 282-287.

Daponte P, Vito LD, Sementa C: Validation of a home rehabilitation system
for range of motion measurements of limb functions. In: 2013 IEEE
International Symposium on Medical Measurements and Applications
(MeMeA): 4-5 May 2013 2013; 2013: 288-293.

Pan J-, Chung H-W, Huang J-J. Intelligent shoulder joint home-based self-
rehabilitation monitoring system. Int J Smart Home. 2013;7(5):395-404.
Thiemjarus S, Marukatat S, Poomchoompol P. A method for shoulder range-
of-motion estimation using a single wireless sensor node. Conf Proc IEEE
Eng Med Biol Soc. 2013;2013:5907-10.

Rawashdeh SA, Rafeldt DA, Uhl TL, Lumpp JE: Wearable motion capture unit
for shoulder injury prevention. In: 2015 IEEE 12th International Conference on
Wearable and Implantable Body Sensor Networks (BSN): 9-12 June 2015 2015;
2015: 1-6.

Alvarez D, Alvarez JC, Gonzalez RC, Lépez AM. Upper limb joint angle
measurement in occupational health. Comput Methods Biomech Biomed
Engin. 2016;19(2):159-70.

Lee H, Cho J, Kim J: Printable skin adhesive stretch sensor for measuring
multi-axis human joint angles. In: 2016 IEEE International Conference on
Robotics and Automation (ICRA): 16-21 May 2016 2016; 2016: 4975-4980.
Tran TM, Vejarano G: Prediction of received signal strength from human
joint angles in body area networks. In: 2016 International Conference on

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

9.

92.

93.

94.

95.

96.

Page 23 of 24

Computing, Networking and Communications (ICNC): 15-18 Feb. 2016 2016;
2016: 1-6.

Rawashdeh SA, Rafeldt DA, Uhl TL. Wearable IMU for Shoulder Injury
Prevention in Overhead Sports. Sensors (Basel). 2016;16:11.

Wu Y, Chen K Fu C. Natural gesture modeling and recognition approach
based on joint movements and arm orientations. IEEE Sensors J. 2016;
16(21):7753-61.

Ramkumar PN, Haeberle HS, Navarro SM, Sultan AA, Mont MA, Ricchetti ET,
Schickendantz MS, lannotti JP. Mobile technology and telemedicine for
shoulder range of motion: validation of a motion-based machine-learning
software development kit. J Shoulder Elb Surg. 2018,27(7):1198-204.

Jung Y, Kang D, Kim J: Upper body motion tracking with inertial sensors. In:
2010 IEEE International Conference on Robotics and Biomimetics: 14-18 Dec.
2010 2010; 2010: 1746-1751.

El-Gohary M, Holmstrom L, Huisinga J, King E, McNames J, Horak F. Upper
limb joint angle tracking with inertial sensors. Conf Proc IEEE Eng Med Biol
Soc. 2011;2011:5629-32.

Zhang Z, Wong W, Wu J. Ubiquitous human upper-limb motion estimation
using wearable sensors. IEEE Trans Inf Technol Biomed. 2011;15(4):513-21.
El-Gohary M, McNames J. Shoulder and elbow joint angle tracking with
inertial sensors. IEEE Trans Biomed Eng. 2012,59(9):2635-41.

Lee GX, Low K. A factorized quaternion approach to determine the arm
motions using Triaxial accelerometers with anatomical and sensor
constraints. IEEE Trans Instrum Meas. 2012,61(6):1793-802.

Hsu Y, Wang J, Lin Y, Chen S, Tsai Y, Chu C, Chang C: A wearable inertial-
sensing-based body sensor network for shoulder range of motion
assessment. In: 2013 1st International Conference on Orange Technologies
(ICOT): 12-16 March 2013 2013; 2013: 328-331.

Ricci L, Formica D, Sparaci L, Lasorsa FR, Taffoni F, Tamilia E, Guglielmelli E. A
new calibration methodology for thorax and upper limbs motion capture in
children using magneto and inertial sensors. Sensors (Basel). 2014;14(1):
1057-72.

Roldan-Jimenez C, Cuesta-Vargas A, Bennett P. Studying upper-limb
kinematics using inertial sensors embedded in Mobile phones. JMIR Rehabil
Assist Technol. 2015;2(1):e4.

Meng D, Shoepe T, Vejarano G. Accuracy improvement on the
measurement of human-joint angles. [EEE J Biomed Health Inform. 2016;
20(2):498-507.

Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of
the shoulder joint center of rotation using magneto-inertial sensors: MRI-based
accuracy and repeatability assessment. Biomed Eng Online. 2017;16(1):34.

Kim HJ, Lee YS, Kim D: Arm Motion Estimation Algorithm Using MYO
Armband. In: 2017 First IEEE International Conference on Robotic Computing
(IRC): 10-12 April 2017 2017, 2017: 376-381.

Morrow MMB, Lowndes B, Fortune E, Kaufman KR, Hallbeck MS. Validation
of inertial measurement units for upper body kinematics. J Appl Biomech.
2017;33(3):227-32.

Rose M, Curtze C, O'Sullivan J, El-Gohary M, Crawford D, Friess D, Brady JM.
Wearable inertial sensors allow for quantitative assessment of shoulder and
elbow kinematics in a cadaveric knee arthroscopy model. Arthroscopy.
2017;33(12):2110-6.

Tian Y, Li Y, Zhu L, Tan J: Inertial-based real-time human upper limb tracking
using twists and exponential maps in free-living environments. In: 2017 2nd
International Conference on Advanced Robotics and Mechatronics (ICARM):
27-31 Aug. 2017 2017; 2017: 552-557.

Pathirana PN, Karunarathne MS, Williams GL, Nam PT, Durrant-Whyte H. Robust
and accurate capture of human joint pose using an inertial sensor. IEEE Journal
of Translational Engineering in Health and Medicine. 2018,6:1-11.

Filippeschi A, Schmitz N, Miezal M, Bleser G, Ruffaldi E, Stricker D. Survey of
Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper
Limb Human Motion. Sensors (Basel). 2017;17:6.

Madgwick SO, Harrison AJ, Vaidyanathan A. Estimation of IMU and MARG
orientation using a gradient descent algorithm. IEEE Int Conf Rehabil Robot.
2011;2011:5975346.

Atalay O, Kennon W. Knitted strain sensors: impact of design parameters on
sensing properties. Sensors. 2014;14(3):4712-30.

Holm R: Electric contacts: theory and application: Springer Science &
Business Media; 2013.

Yang J, Feng X, Kim JH, Rajulu S. Review of biomechanical models for
human shoulder complex. International Journal of Human Factors
Modelling and Simulation. 2010;1(3):271-93.



Carnevale et al. BMC Musculoskeletal Disorders

97.

98.

99.

100.

=

102.

(2019) 20:546

Liu'Y, Zhang Y, Zeng M: Joint parameter estimation using Magneto and
Inertial measurement units. In: 2017 36th Chinese Control Conference (CCC):
26-28 July 2017 2017; 2017: 2225-2230.

Chen X, Zhang J, Hamel WR, Tan J: An inertial-based human motion
tracking system with twists and exponential maps. In: 2074 IEEE International
Conference on Robotics and Automation (ICRA): 31 May-7 June 2014 2014;
2014: 5665-5670.

Sugamoto K, Harada T, Machida A, Inui H, Miyamoto T, Takeuchi E,
Yoshikawa H, Ochi T. Scapulohumeral rhythm: relationship between motion
velocity and rhythm. Clin Orthop Relat Res. 2002;401:119-24.

Struyf F, Nijs J, Baeyens JP, Mottram S, Meeusen R. Scapular positioning and
movement in unimpaired shoulders, shoulder impingement syndrome, and
glenohumeral instability. Scand J Med Sci Sports. 2011,21(3):352-8.

. Beckmann JS, Lew D. Reconciling evidence-based medicine and precision

medicine in the era of big data: challenges and opportunities. Genome
Med. 2016;8(1):134.

Sikka RS, Baer M, Raja A, Stuart M, Tompkins M. Analytics in sports medicine:
implications and responsibilities that accompany the era of big data. J Bone
Joint Surg Am. 2019;101(3):276-83.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 24 of 24

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Literature search strategy and study selection process
	Data extraction process

	Results
	Application field
	Sensing technology
	B.1 wearable systems based on inertial sensors and magnetometers
	B.2 wearable systems based on strain sensors
	Sensors placement and wearability

	Discussion
	Wearable technology
	Applicability in clinical setting and rehabilitation

	Conclusion
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

