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Abstract 

Background  Graph databases enable efficient storage of heterogeneous, highly-interlinked data, such as clinical 
data. Subsequently, researchers can extract relevant features from these datasets and apply machine learning for diag-
nosis, biomarker discovery, or understanding pathogenesis.

Methods  To facilitate machine learning and save time for extracting data from the graph database, we developed 
and optimized Decision Tree Plug-in (DTP) containing 24 procedures to generate and evaluate decision trees directly 
in the graph database Neo4j on homogeneous and unconnected nodes.

Results  Creation of the decision tree for three clinical datasets directly in the graph database from the nodes 
required between 0.059 and 0.099 s, while calculating the decision tree with the same algorithm in Java from CSV 
files took 0.085–0.112 s. Furthermore, our approach was faster than the standard decision tree implementations in 
R (0.62 s) and equal to Python (0.08 s), also using CSV files as input for small datasets. In addition, we have explored 
the strengths of DTP by evaluating a large dataset (approx. 250,000 instances) to predict patients with diabetes and 
compared the performance against algorithms generated by state-of-the-art packages in R and Python. By doing so, 
we have been able to show competitive results on the performance of Neo4j, in terms of quality of predictions as well 
as time efficiency. Furthermore, we could show that high body-mass index and high blood pressure are the main risk 
factors for diabetes.

Conclusion  Overall, our work shows that integrating machine learning into graph databases saves time for addi-
tional processes as well as external memory, and could be applied to a variety of use cases, including clinical applica-
tions. This provides user with the advantages of high scalability, visualization and complex querying.
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Background
Graph databases enable efficient storage of heterogene-
ous and highly interlinked data, such as clinical data-
sets  [1]. Usually, clinical data sets comprise the patient 
information, diagnoses, metadata, and results of differ-
ent examinations (for instance, simple blood pressure 
measurements, the latest CT and MRT scans, or high-
resolution omics data) that are often graph shaped. Sub-
sequently, researchers can extract relevant features from 
these datasets and apply machine learning for diagnosis, 
biomarker discovery, or understanding pathogenesis.

However, data extraction and subsequent machine 
learning using a standard machine learning toolbox have 
the additional process of storing data in memory exter-
nal to the database. Hence, a better workflow would be to 
apply machine learning directly to the data stored in the 
graph database.

To show the feasibility of this approach, we apply deci-
sion tree learning directly in Neo4j and persist the final 
tree in Neo4j. Therefore, we have created an open-source 
Neo4j plugin (Decision Tree Plugin (DTP))1, which 
exposes procedures for decision tree creation and execu-
tion on data stored in Neo4j. Thus, the final created deci-
sion trees can also be visualized in the Neo4j Browser.

While building DTP, we used three clinical datasets 
to realize common trends of such data, such as missing 
values, feature handling and evaluation metrics while 
generating decision tree algorithms in Neo4j. To assess 
its efficiency, we have evaluated the accuracy, Matthews 
Correlation Coefficient2 and the computational time 
of our plugin compared to decision tree functions from 
Python and R on the datasets. Furthermore, we applied 
our procedures to a fourth two-log fold larger dataset 
about diabetes to assess big data performance and evalu-
ate its clinical applicability.

In our research on learning algorithms in Neo4j, we 
contribute the following:

•	 DTP comprises 24 procedures, which can read CSV 
files, map nodes, split data, generate decision tree 
using three different splitting criteria (Fig.  1), per-
form k-fold cross validation, validate the classifier 
and visualize the decision tree. Moreover, it contains 
procedures to analyze the features in a dataset, with 
their respective values of gini index, information gain 
and/or gain ratio. The novelty of integrating machine 

learning algorithms is specific to Neo4j and not 
graph databases in general.

•	 An extensive comparison of our plugin with state-
of-the-art machine learning libraries in Python and 
R shows that our plugin achieves similar quality of 
predictions due to the integration of machine learn-
ing in the Neo4j graph database. Further, there is only 
a negligible increase in generation time of algorithms 
when compared to Python.

•	 Finally, we have used our plug-in to generate decision 
tree algorithms on a very large dataset, comprising 
demographic and pathogenic information of diabetic, 
borderline diabetic and non-diabetic patients. We 
used the generated algorithms to gain basic clinical 
insights on the disease, and prove that this tool could 
be used for such use cases.

In the following, we will present our research questions, 
background as well as related work of our study. Thereaf-
ter, in the section Methods, we describe the used meth-
odology, our implemented plugin and the used datasets. 
In the section Results, we evaluate DTP against Java, R 
and Python decision tree algorithms. Finally in the sec-
tion Discussion we discuss key aspects of our research 
and conclude our research by proposing future work in 
the section Conclusion.

Research questions
To evaluate the importance and performance of our plug-
in, we defined three research questions, which we will 
answer through the evaluation of our plugin:

RQ 1
What is the difference in the quality of predictions for 
algorithms generated in DTP, when compared against 
algorithms generated by standard libraries from Python 
and R?

RQ 2
What is the difference in generation time of decision tree 
algorithms, generated by DTP, compared to standard 
libraries from Python and R?

RQ 3
Could applying decision tree learning on homogeneous 
and unconnected nodes created from large clinical data-
sets provide basic clinical insights?

Now we will provide a brief overview on graph data-
bases, decision tree algorithms and a short introduc-
tion about diabetes to interpret the clinical background. 
Afterwards, we will discuss related work on the integra-
tion of machine learning in databases.

1  For data and source codes, visit https://github.com/clumsyspeedboat/Deci-
sion-Tree-Neo4j
2  Matthews correlation coefficient is a measure of the quality of binary and 
multi-class classifications which tends to be more reliable than accuracy or 
f1 score [2].
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Graph database management system: Neo4j
Graph databases like Neo4j (Table  1), equipped with 
its query language Cypher, are NoSQL databases that 
store data within a graph structure, enabling flexible 
queries through interlinked data. The main advan-
tages over relational and object-oriented databases 
are its flexible data models and schema. Further-
more, graph database are easily scalable, making it 
ideal to store large datasets and perform read or write 
operations [5].

In addition to the advantages intrinsic to a graph 
database, Neo4j offers procedures that handle complex 
operations  [6]. They are implemented in Java  [7] and 
are compiled into a Jar file, which can later be deployed 
to the database by adding the Jar files into the plugin 
directory on each individual or clustered server. A pro-
cedure can be invoked either as a stand-alone proce-
dure from the application, the command-line or as a 
part of Cypher statements.

Cypher is a declarative query language, optimized for 
graphs, and therefore, can be used for describing visual 
patterns in graphs using ASCII-Art syntax. This makes 
Cypher queries much simpler and easier to write com-
pared to SQL [8].

There could be three main arguments for using a 
graph database like Neo4j, to analyse clinical data of 
any scale:

•	 Scalability Graph databases are scalable [9].
•	 Node-edge Structure This helps in forming and ana-

lysing complex relationships. [10]
•	 Query Performance Querying can be versatile in 

graph databases which helps in analysing complex 
data structures [9].

Decision tree algorithms
Decision tree algorithms are machine learning algo-
rithms predicting attributes based on tree-like deci-
sion rules. In the literature, several implementations of 
decision tree algorithms are known (Patel et  al.  [11]), 
including CART (Breiman et  al.  [12]), ID3 ( Quin-
lan [13]), C4.5 (Quinlan [14]). These algorithms can be 
separated based on their splitting criteria (Table 2) into 
algorithms using either Gini Index (GI), Information 
Gain (IG), or Gain Ratio (GR).

In our plug-in, we provide procedures for all three 
splitting criteria—Gini Index, Information Gain, and 
Gain Ratio. The generated trees are binary, implying a 
binary split at a decision node, with one path agreeing to 
a certain threshold and the other one disagreeing.

We have also provided a parameter to perform pre-prun-
ing on the generated decision trees through our procedures 
and reduce the size of tree as per user choice. This is useful 
as it can help to overcome over-fitting of decision trees algo-
rithms and remove noise/outliers from training data [15].

Diabetes
Diabetes is a group of diseases characterized by hyper-
glycemia. It results either from defects in insulin secre-
tion, insulin action, or both [16]. In general, diabetes has 
two etiopathogenetic categories. The first, diabetes type 
I, is also called insulin-dependent diabetes. This diabetes 
type is caused by the autoimmune destruction of beta 
cells and is associated with multiple genetic predisposi-
tions and environmental factors that are poorly defined. 
Diabetes type II, called non-insulin-dependent diabetes, 
is the more frequent type (90–95 % of all diabetes cases).

The risk of developing type II diabetes increases with age, 
obesity, hypertension, smoking, and lack of physical activ-
ity. It is also more frequent in individuals with hypertension 
or dyslipidemia (i.e., low HDL cholesterol concentration 
and high LDL-cholesterol concentration) and is associ-
ated with a strong genetic predisposition. This form is often 
undiagnosed for years because of the gradually developing 
hyperglycemia. At early stages, hyperglycemia is not severe 
enough to cause diabetes symptoms [16], however, chronic 
hyperglycemia can cause dysfunction and failure of differ-
ent organs, e.g., eyes, kidneys, nerves, and heart. Therefore, 
diabetes is a potential risk factor for stroke and cardiovas-
cular diseases [17]. Hence, our investigations of the diabe-
tes dataset represent an important real-world use case.

Related work
While the integration of machine learning algo-
rithms into a graph database (i.e., Neo4j) is novel, both 

Table 1  Comparison of Database Management Systems  [3, 4]. 
RDBMS, OODBMS and Graph refers to Relational, Object-Oriented 
and Graph Database Management Systems

RDBMS OODBMS Graph (Neo4j)

Flexibility (lack of 
schema)

Low Medium High

Query language SQL Rarely implemented Cypher

Query performance High High High

Integrity constraints Yes Yes Yes

Level of support High Low High

Ease of programming High High High

Security High Low High

Scalability Low High High
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supervised and unsupervised learning algorithms were 
already applied on the following relational database man-
agement systems [18] allowing users to implement learn-
ing algorithms directly on the database:

•	 Amazon Redshift
•	 Blazing SQL
•	 Google Cloud Big Query
•	 IBM DB2 Warehouse
•	 Kinetica
•	 Microsoft SQL Server Machine Learning Services
•	 Oracle Cloud Infrastructure (OCI) Data Science
•	 Vertica Analytics Platform

Focusing on Neo4j, Max De Marzi et al. [19] created cus-
tom procedures in Java to predict for a particular data set 
whether a student passes an exam. However, these pro-
cedures are strictly confined to that dataset and cannot 
be used for other data sets. Analogously, Michael Hun-
ger et al. [20] as well as Anjana and K. Lavanya et al. [21] 
showed some steps towards machine learning in Neo4j 
but provided no universal method.

Methods
This section presents our applied methods to build and 
optimize the DTP. Furthermore, we describe the data-
sets used to evaluate our algorithms. For our study, we 
selected the graph database Neo4j due to its flexibility 
and the possibility to extend its functionalities using Java 
procedures, which are the backbone of the whole DTP 
infrastructure (Figs. 1,2). Java is one of the most versatile 
languages and can be currently executed on most operat-
ing systems. Therefore, Java is a great language choice to 
equip a graph database like Neo4j, with several tools for 
machine learning.

Figure  1 highlights the flow of data between Java and 
Neo4j when the procedures in DTP are executed, either 
from CSV files or from homogeneous and unconnected 
nodes. The DTP data flow (Fig. 1) starts with uploading 
the input data (CSV files or nodes in Neo4j) and splitting 
them into train and test data.

The next step is to select among the different splitting 
criteria (see Section Decision tree algorithms) and run the 
decision tree implementation to generate a classifier. The 
learned classifier could be evaluated based on a confusion 
matrix, accuracy, generation time, and Matthews correla-
tion coefficient and could be applied to new data sets. The 
resulting nodes and edges of the tree are stored in Neo4j, 
allowing visualization of the resulting decision tree.

We will now elaborate about the used splitting criteria, 
the implemented stored procedures and the possibility to 
visualize the resulting decision tree.

Procedures of the decision tree plugin
To assess the performance of the different algorithms, 
splitting criteria and Neo4j, we implemented DTP as a 
set of Java-based procedures in Neo4j (see Fig.  2). The 
whole package of DTP is saved as a Jar file which should 
be copied inside the Neo4j plugins directory of a data-
base. Afterwards, the database should be restarted to 
make these procedures available, through Cypher queries 
to generate a decision tree.

These procedures build the tree in Java, returns node 
and edge buckets to Neo4j for tree visualization and 
afterwards tests the decision tree with the test data 
instances. The test data is recursively passed through the 
tree until it reaches a leaf node, in which case it returns 
the found class label – the final prediction. To create the 
confusion matrix (with or without cross validation), the 
actual labels are compared against the predicted labels to 

Fig. 1  Data flow in the decision tree plug-in (DTP)
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calculate the accuracy, Matthews correlation coefficient, 
or output the confusion matrix and the time needed to 
generate the algorithms.

In Table 3 we provide a summary of the computational 
complexity of the Java procedures contained in DTP, 
using big O notation. For any decision tree procedure, 
there are two processes involved—training and testing 
the algorithm. Training complexity is naturally higher as 
during testing the task is to just traverse the tree, gener-
ated during training, where several calculations of split-
ting criteria are required.

The procedures that can visualize the tree also contain 
a parameter—“max_depth”, which will limit the depth of 
the tree to the specified value. It is a pre-pruning mecha-
nism which will stop decision tree generation when the 
mentioned depth is reached and majority class label is 
assigned to impure nodes.

Note that with each tree generated from procedures, 
our plug-in DTP will generate and display the confusion 

Fig. 2  Available procedures in DTP

Table 2  Overview about decision tree algorithms grouped by 
the splitting criteria

Data types Missing values Data splitting

Gini index Categorical and 
numerical

Can handle No restrictions

Information gain Numerical Can not handle No restrictions

Gain ratio Categorical and 
numerical

Can handle Binary

Table 3  Computational complexity analysis

n = number of instances/nodes dim = number of dimensions/variables depth = 
depth of generated decision tree

Computational complexity Time Space

Train complexity O(dim*nlogn) O(n)

Test complexity O(depth) O(n)
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matrix, accuracy, Matthews Correlation Coefficient and 
generation time of algorithms. The decision tree proce-
dures in DTP can be categorized as follows:

Cross validation (without tree visualization)
Six procedures are provided to perform k-fold cross-val-
idation on a single CSV file or a set of nodes. Users can 
specify the class label and number of folds for every itera-
tion along with CSV file path, exclusively for tree genera-
tion from CSV files. It is important to note that there are 
no tree visualization for cross validation.

Decision tree from CSV files (with tree visualization)
These three procedures are used to create a decision tree 
from plain CSV files, and the resulting tree is stored in 
Neo4j. To this end, DTP reads 2 CSV files (of train and 
test data) and detects whether a variable is categorical or 
numerical. Furthermore, a user-defined class label can be 
chosen. DTP then recursively calculates the best splits 
based on the splitting criteria, depending on the chosen 
algorithm.

The result of the previous step is a bucket of nodes and 
relationships which represent the tree, stored as a graph 
in Neo4j for subsequent inference or visualization. The 
user can specify file paths for training and testing, and 
the class label . For pre-pruning, user must also set prune 
= “True” to set the max_depth value of decision tree.

Decision tree from graph‑shaped data in Neo4j (with tree 
visualization)
To create a decision tree from homogeneous and uncon-
nected nodes in Neo4j, a user can map two distinct sets 
of nodes into training and testing, through the proce-
dures. Alternatively, we have created a procedure that 
allows the user to automatically split the data into train 
and test sets.

In order to allow generating the decision tree, we 
implemented three different functions according to the 
favored splitting criterion. These functions then use the 
labeled training data and persists the tree nodes and rela-
tionships in Neo4j just as the procedures on the CSV files 
do. The user can specify the class and for pre-pruning, 
user must also set prune = “True” to set the max_depth 
value of decision tree.

Decision tree without tree visualization (confusion matrix)
A user is also allowed to generate and assess deci-
sion tree algorithms without tree visualization, we have 
implemented 6 procedures – 3 to generate the confusion 
matrix from CSV files and 3 to generate it from nodes. 
This is useful in cases where the dataset is large, and the 
node visualization creates a significant delay in the tree 
visualization. The user can specify file paths for training 

and testing and the class label. For pre-pruning, user 
must also set prune = “True” to set the max_depth value 
of decision tree.

Feature analysis
For further in depth analysis of each feature in datasets, 
DTP contains procedures to obtain values for gini index, 
information gain or gain ratio as calculated at every level 
while the tree is being generated. This will allow user to 
have an elaborate overview on how each variable affects 
the generation of tree at each level. The user can specify 
pruning of tree to a max_depth for these procedures and 
can be generated from both nodes and/or csv files.

Data
To evaluate our decision tree algorithms, we searched 
for clinical datasets in Kaggle, GitHub, and in research 
papers. After surveying and investigating several data-
sets, we selected four datasets about the prediction of 
heart failures (Dataset 1), inflammatory bowel disease 
(Dataset 2), classification between flu and COVID-19 
(Dataset 3) and prediction of diabetes among patients 
(Dataset 4):

Dataset 1: heart failure prediction
The heart failure dataset by Davide Chicco and Giuseppe 
Jurman [22] from Kaggle contains 299 patients’ data with 
13 demographics variables and has been used to predict 
survival of patients using machine learning algorithm. Of 
the 13 variables, 7 are continuous numeric and the rest 
are categorical, including the class variable. The class var-
iable is the property DEATH_EVENT, where 1 represents 
death of a patient (96 instances) and 0 (203 instances) 
their survival.

Dataset 2: prediction of inflammatory bowel disease 
from microbiome
The inflammatory bowel disease dataset by T. Lehmann 
[23] consists of 2,969 meta-proteins whose presence has 
been measured among a group of 48 patients of 3 sepa-
rate groups. All the variables in this dataset are numeric 
variables. We have considered only the 50 most abun-
dant meta-proteins while training and evaluating the 
decision tree algorithms. The class variable is Patient 
Type – C, CD or UC, where C identifies control patients 
(20 instances), CD for patients with Crohn’s Disease (13 
instances) and UC for patients with Ulcerative Colitis (15 
instances).

Dataset 3: H1N1/COVID‑19 classification
The H1N1/COVID-19 dataset was taken from a research 
article by Li et al. [24] that applied machine learning on a 
dataset of 1,485 patients with 50 demographic variables. 
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The class variable is Diagnosis – H1N1 (1072 instances) 
or COVID-19 (413 instances). Since a lot of variables 
were plainly null, we have reduced the data to 12 vari-
ables out of the 50 available to sharpen the results. There 
are two numeric variables which are continuous and the 
rest are categorical variables, including the class variable.

Dataset 4: diabetes (type II) health indicators
This dataset was taken from Kaggle and was uploaded by 
Alex Teboul  [25] who has cleaned and consolidated the 
data from the original BRFSS 2015  [26] dataset consist-
ing of data from a survey of patients concerning diabetes. 
The original dataset was compiled by the Center for Dis-
ease Control and Prevention which is the national public 
health agency of the United States. The cleaned data con-
sists of 253,680 patients with 22 demographic and clinical 
variables. The class variable is Diabetes_012 consisting of 
3 labels – 0 (213,703 instances) indicating patient being 
non-diabetic, 1 (4631 instances) indicating prediabetes or 
3 (35,346 instances) indicating patient being diagnosed 
with type 2 diabetes. There are two numeric variables 
which are continuous, and the rest are categorical vari-
ables, including the class label.

Experimental setup
For our evaluation, we have compared the performance 
of the custom java procedures in our plug-in to algo-
rithms generated by the following standard packages in 
R and python:

•	 R package “rpart” for gini index and information gain 
and “JWeka” for gain ratio

•	 python package “sklearn” for gini index and informa-
tion gain. No standard package implementation was 
found for gain ratio during evaluation.

All the experiments were carried out on a desktop PC 
with the following specifications:

Processor AMD Ryzen5 3600, 6 cores (3.6 Ghz)
Memory 16 GB of RAM
Graphic NVIDIA GeForce RTX2070 (8 GB)

Experiments 1, 2 and 3: building and optimizing DTP
For our experiments, we applied k-fold cross-validation 
for all the three datasets and all four approaches (Python, 
R, Java, Neo4j) and evaluated the algorithms. Each 

decision tree algorithm was regenerated thirty times with 
the accuracy, Matthews correlation coefficient and gen-
eration time averaged out for all the iterations. The num-
ber of folds for cross-validation was varied across the 
datasets, due to the difference in their instance size (see 
Table 3).

In total, we generated 42 (see Table 5) cross-validated 
decision tree algorithms for this evaluation in R, Python, 
Java3, DTP  (CSV)4 and DTP  (nodes)5 and 2 (Gini Index 
and Info Gain) in Python. This was due to the unavail-
ability of a generic package for Gain Ratio in Python.

Experiment 4: evaluating DTP on a large dataset
To generate and evaluate decision tree algorithms on 
Dataset 4, we have performed 5-fold cross validation (80 
percent data for training and 20 percent for testing) on 
the whole dataset in R, Python, Java and DTP (csv)  and 
DTP (nodes), totaling to 14 decision tree algorithms, 
across the mentioned tools.

Table 4  Comparison of datasets used in the experiments

Instances Variables Target 
categories

Class imbalance

Dataset 1 299 13 2 Medium

Dataset 2 48 50 3 Low

Dataset 3 1485 12 2 High

Dataset 4 253,680 22 3 High

Table 5  Decision tree configurations for experiments 1, 2 and 
3: three datasets for each combination of language and splitting 
criteria

42 algorithms generated Gini index Information 
gain

Gain ratio

R (rpart, RWeka) 3 3 3

Python (sklearn) NA 3 3

Java 3 3 3

DTP (csv) 3 3 3

DTP (nodes) 3 3 3

3  Java refers to the custom built Java procedures working in the backend of 
DTP, for which, Java, DTP(csv) and DTP(nodes) tend to display similar per-
formance in our experiments.
4  DTP  (csv) refers to decision tree algorithms generated from CSV file 
paths in Neo4j
5  DTP (nodes) refers to algorithms generated from nodes in Neo4j.
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Results
In the following, we examine the performance of DTP 
in Neo4j compared to standard machine learning algo-
rithms in R and Python at first for the small datasets 
1-3 and afterwards for the big dataset 4.

Experiment 1: prediction performance comparison
In our first experiment, we assessed whether the different 
implementations and thus data accesses impact the accu-
racy and Matthews correlation coefficient (MCC). To 
compare the accuracy distribution visually, we visualized 

Fig. 3  Box Plots—Accuracy and Matthews Correlation Coefficient of the algorithms: A, D for different tools including DTP, B, E for different splitting 
criteria in DTP, and C, F for the datasets 1-3 in DTP

Fig. 4  Box Plots—Generation Time of the Decision Tree Algorithms: A for different tools including DTP, B for different splitting criteria in DTP, and C 
for the datasets 1-3 in DTP
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box plots in Fig.  3. The results show that all algorithms 
act in the same accuracy and MCC range.

While our DTP trained on data in Neo4j and from CSV 
files is on par with the Java implementation, it is clearly 
more stable than the Python decision tree. Considering 
the different splitting algorithms, gain ratio is the best 
metric providing the best median value. Low MCC for 
Python (Fig. 3A) was caused by overfitted decision trees 
along with class imbalance in Dataset 3 (Table 4).

Experiment 2: computational time comparison
Next, we evaluate the generation time of DTP-Neo4j-
Plugin for the three test datasets against the implementa-
tions from R and Python in Fig. 4. The Neo4j integration 
had a positive impact on the generation time. The deci-
sion tree learning from data inside Neo4j is the fastest 
and most stable approach. In contrast, R had a big devia-
tion in generation time when loading data from CSV 
files. A more in-depth investigation has shown that this 
is due to a lot of data shuffling inside R, which creates a 
considerable overhead. The investi- gation of the splitting 
algorithms shows that gain ratio provides the fastest gen-
eration times.

The high performance of python, in terms of low gen-
eration time, could be attributed to the package sklearn, 
part of which was written in C and C++, which are 
extremely fast at compiling. [27]

Experiment 3: impact of dataset characteristics
Figure  4C (with reference to Table  4) shows that the 
generation time is directly proportional to the number 
of instances used while training the algorithm. It might 
seem that the generation time is directly proportional to 
accuracy as well which can be explained through a causal 
link – a higher number of training instances takes up a 
higher generation time and provides higher accuracy as 
well, which is quite understandable, since a well-trained 
algorithm would provide better accuracy.

A regression plot for all algorithms generated on the 
4 datasets in DTP is shown in Fig.  6. This is discussed 
briefly in the next section.

Experiment 4: evaluation of algorithms generated 
on dataset 4 to predict diabetes in patients
In this experiment (Fig.  5), we evaluated the differ-
ent tools while running on the large Dataset 4. Note 
that the differences in values are quite insignificant 
with respect to quality of predictions, while there are 

Fig. 5  Box Plots—Evaluation of the diabetes dataset(Dataset 4), across different tools: A accuracy, B precision, C Matthews Correlation Coefficient, 
and D generation time

Fig. 6  Scatter Plots with Line of Regression—To interpolate the effect 
of instance size (rows/nodes) on generation time and accuracy of 
algorithms generated by DTP for all the 4 datasets (Dataset 1, 2, 3 and 4)
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noticeable differences in the generation time of the algo-
rithms. Python’s package sklearn provides consistently 
fast performance for Gini Index and Information Gain, 
regardless of the size of dataset.

To calculate the precision of predictions from Dataset 
4, we assumed binary classification while assigning “True 
Positive” and “True Negative” labels to values in the 3*3 
confusion matrix. Hence, the precision values high-
light the relevance of the predictions in distinguishing 
between people with no diabetes (class label = 0) vs. peo-
ple with borderline and confirmed diabetes (class label = 
1 and 2). There was insignificant difference between pre-
cision among the different tools.

Discussion
Performance of DTP procedures
With slight differences in the experimental results, it is 
safe to say that DTP performs quite similarly with pack-
ages in Python and R, in terms of prediction quality as 
well as generation time of algorithms. The primary bar-
rier in predictive modelling on large data, such as deci-
sion tree classification, is a significant drop in the quality 
of predictions. Without pruning mechanisms and hyper-
parameter tuning, large trees have led to over-fitting and 
randomness in classification.

Having algorithms generated on 4 datasets of vary-
ing size has shown that DTP reflects the scalability of a 
graph database. We can see in Fig. 6 a slight increase in 

generation time in seconds while maintaining accuracy 
over a high range of instance size.

Neo4j Visualization
All the data used in this research were uploaded as 
homogeneous and unconnected nodes in Neo4j database 
for decision tree generation, as shown in Fig. 7, which is a 

Fig. 7  Dataset 4 uploaded as homogeneous and unconnected nodes in Neo4j

Fig. 8  Decision Tree for Dataset 4 (split = gain ratio) The red 
nodes represent the leaf nodes indicating diagnosis of diabetes (2), 
borderline (1) or no diabetes (0) in a patient, while the blue nodes are 
the decision nodes. Note that, this tree was generated on a subset of 
dataset 4 after the class imbalance was handled. There were 13893 
instances (4631 for each class label) and 22 variables. The tree has 
been pruned to max_depth = 2
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visualization of the patients’ data in the dataset 4. All the 
variables were mapped as node features, with each node 
representing a patient.

Apart from the associated convenient methods for data 
splitting and validation of the classifier, Neo4j allows for 
an intuitive visualization of the decision tree as shown in 
Fig.  8. It stores the final decision tree as a set of nodes 
and its relationship, which can be stored in Neo4J, que-
ried and reused for classification of further data. The 
visual interface of Neo4j is quite interactive as a user 
can move the nodes around, focus on any specific node 
and also pass a single instance for classification through 
cypher queries.

Risk factors for developing diabetes
After generating several decision tree algorithm in DTP 
and using feature analysis procedures to compare values 
of gini index, information gain and gain ratio, we could 
confidently say that the main risk factors for developing 
pre-Diabetes and Diabetes were high body mass index 
and high blood pressure (Fig. 8). This fits to the general 
statements of the center of disease and control and pre-
vention6 and confirms the potential of using DTP for 
mining clinical datasets.

Discussion of research questions
To conclude the evaluation, we will answer the research 
questions proposed in section Research Questions.

RQ 1—What is the difference in the quality of predic-
tions for algorithms generated in DTP, when compared 
against algorithms generated by standard libraries from 
Python and R?

Answer—DTP revealed slightly less accuracy as R and 
Python, but better MCC coefficients. The differences 
were due to overfitting and could be further diminished 
by pruning and hyper-parameter tuning.

RQ 2—What is the difference in generation time of 
decision tree algorithms, generated by DTP, compared to 
standard libraries from Python and R?

Answer—DTP required less computational time than 
R or python for small datasets, but more time than 
python for large data sets.

RQ 3—Could applying decision tree learning on homo-
geneous and unconnected nodes created from large clini-
cal datasets provide basic clinical insights?

Answer—This is clearly possible as we have been able 
to analyze Dataset 4 by generating a decision tree in DTP 
and state the following—“High body-mass index and 
blood pressure are primary risk factors for developing 
diabetes.”

Conclusion
In this paper, we investigated the feasibility of integrating 
decision tree learning, applied directly on graph-shaped 
clinical data in Neo4j. To this end, we implemented a 
plugin for Neo4j as a set of stored Java procedures that 
allow to train and persist a decision tree in Neo4j. When 
it comes to incorporating cross-platform tools, Java pack-
ages, though time-consuming to create and refine, can 
outperform other platforms in accuracy and computa-
tional efficiency. As such, also our Neo4j plugin DTP has 
reached similar performance compared to Python and R.

Being written in Java, DTP could be easily extended and 
further optimized. However, at the time of compiling this 
manuscript, python drivers for Neo4j has been released, 
and we believe integrating a high performance program-
ming language like python might possibly increase the 
performance of learning algorithms in Neo4j.

The node-edge view of data and the classifier will facili-
tate the data analysis. To further improve the data min-
ing, researchers can enrich the graph by further biological 
and clinical metadata. In numerous ways, researchers are 
trying to incorporate the strengths of graph database into 
predictive modelling. With the additional advantage of 
interactive visualization, researchers are turning to graph 
data for their research to create novel implementations of 
traditional statistical and machine learning algorithms.

Neo4j is also helpful in the visualization and analyses 
of clinical data. The node-edge structure is quite effective 
to visualize patients with several variables which shows 
promise for further research. This work motivated us to 
continue research to incorporate all forms of learning 
algorithms in graph databases—unsupervised, super-
vised, semi-supervised and representation learning. One 
such approach to perform link prediction on scholarly 
data, in Neo4j, has been performed by Sobhgol et al. [28] 
which has provided promising results in accuracy, even 
more so in the computational efficiency, similar to our 
results in DTP.

Proposed scope of future research could be integration 
of learning algorithms using python drivers, post-prun-
ing mechanisms on DTP, implementation of decision tree 
classification on homogeneous and connected nodes, 
and/or heterogeneous nodes (for both connected and 
unconnected) in Neo4j.
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