
Mondal et al.
BMC Medical Informatics and Decision Making 2023, 22(Suppl 6):347
https://doi.org/10.1186/s12911-023-02112-8

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

BMC Medical Informatics and
Decision Making

Decision tree learning in Neo4j
on homogeneous and unconnected graph
nodes from biological and clinical datasets
Rahul Mondal1*†   , Minh Dung Do1†, Nasim Uddin Ahmed1†, Daniel Walke2, Daniel Micheel3, David Broneske3,4,
Gunter Saake4 and Robert Heyer4 

From The 17th International Conference on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB
2021)
Virtual. 15-17 November 2021. https://davidechicco.github.io/cibb2021/

Abstract 

Background  Graph databases enable efficient storage of heterogeneous, highly-interlinked data, such as clinical
data. Subsequently, researchers can extract relevant features from these datasets and apply machine learning for diag-
nosis, biomarker discovery, or understanding pathogenesis.

Methods  To facilitate machine learning and save time for extracting data from the graph database, we developed
and optimized Decision Tree Plug-in (DTP) containing 24 procedures to generate and evaluate decision trees directly
in the graph database Neo4j on homogeneous and unconnected nodes.

Results  Creation of the decision tree for three clinical datasets directly in the graph database from the nodes
required between 0.059 and 0.099 s, while calculating the decision tree with the same algorithm in Java from CSV
files took 0.085–0.112 s. Furthermore, our approach was faster than the standard decision tree implementations in
R (0.62 s) and equal to Python (0.08 s), also using CSV files as input for small datasets. In addition, we have explored
the strengths of DTP by evaluating a large dataset (approx. 250,000 instances) to predict patients with diabetes and
compared the performance against algorithms generated by state-of-the-art packages in R and Python. By doing so,
we have been able to show competitive results on the performance of Neo4j, in terms of quality of predictions as well
as time efficiency. Furthermore, we could show that high body-mass index and high blood pressure are the main risk
factors for diabetes.

Conclusion  Overall, our work shows that integrating machine learning into graph databases saves time for addi-
tional processes as well as external memory, and could be applied to a variety of use cases, including clinical applica-
tions. This provides user with the advantages of high scalability, visualization and complex querying.

Keywords  Graph database, Neo4j, Cypher, Decision tree, Java, Python, R

†Rahul Mondal, Minh Dung Do and Nasim Uddin Ahmed have contributed
equally to this work

*Correspondence:
Rahul Mondal
rahulmondal415@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-023-02112-8&domain=pdf
http://orcid.org/0000-0001-7673-9811

Page 2 of 12Mondal et al. BMC Medical Informatics and Decision Making 2023, 22(Suppl 6):347

Background
Graph databases enable efficient storage of heterogene-
ous and highly interlinked data, such as clinical data-
sets [1]. Usually, clinical data sets comprise the patient
information, diagnoses, metadata, and results of differ-
ent examinations (for instance, simple blood pressure
measurements, the latest CT and MRT scans, or high-
resolution omics data) that are often graph shaped. Sub-
sequently, researchers can extract relevant features from
these datasets and apply machine learning for diagnosis,
biomarker discovery, or understanding pathogenesis.

However, data extraction and subsequent machine
learning using a standard machine learning toolbox have
the additional process of storing data in memory exter-
nal to the database. Hence, a better workflow would be to
apply machine learning directly to the data stored in the
graph database.

To show the feasibility of this approach, we apply deci-
sion tree learning directly in Neo4j and persist the final
tree in Neo4j. Therefore, we have created an open-source
Neo4j plugin (Decision Tree Plugin (DTP))1, which
exposes procedures for decision tree creation and execu-
tion on data stored in Neo4j. Thus, the final created deci-
sion trees can also be visualized in the Neo4j Browser.

While building DTP, we used three clinical datasets
to realize common trends of such data, such as missing
values, feature handling and evaluation metrics while
generating decision tree algorithms in Neo4j. To assess
its efficiency, we have evaluated the accuracy, Matthews
Correlation Coefficient2 and the computational time
of our plugin compared to decision tree functions from
Python and R on the datasets. Furthermore, we applied
our procedures to a fourth two-log fold larger dataset
about diabetes to assess big data performance and evalu-
ate its clinical applicability.

In our research on learning algorithms in Neo4j, we
contribute the following:

•	 DTP comprises 24 procedures, which can read CSV
files, map nodes, split data, generate decision tree
using three different splitting criteria (Fig. 1), per-
form k-fold cross validation, validate the classifier
and visualize the decision tree. Moreover, it contains
procedures to analyze the features in a dataset, with
their respective values of gini index, information gain
and/or gain ratio. The novelty of integrating machine

learning algorithms is specific to Neo4j and not
graph databases in general.

•	 An extensive comparison of our plugin with state-
of-the-art machine learning libraries in Python and
R shows that our plugin achieves similar quality of
predictions due to the integration of machine learn-
ing in the Neo4j graph database. Further, there is only
a negligible increase in generation time of algorithms
when compared to Python.

•	 Finally, we have used our plug-in to generate decision
tree algorithms on a very large dataset, comprising
demographic and pathogenic information of diabetic,
borderline diabetic and non-diabetic patients. We
used the generated algorithms to gain basic clinical
insights on the disease, and prove that this tool could
be used for such use cases.

In the following, we will present our research questions,
background as well as related work of our study. Thereaf-
ter, in the section Methods, we describe the used meth-
odology, our implemented plugin and the used datasets.
In the section Results, we evaluate DTP against Java, R
and Python decision tree algorithms. Finally in the sec-
tion Discussion we discuss key aspects of our research
and conclude our research by proposing future work in
the section Conclusion.

Research questions
To evaluate the importance and performance of our plug-
in, we defined three research questions, which we will
answer through the evaluation of our plugin:

RQ 1
What is the difference in the quality of predictions for
algorithms generated in DTP, when compared against
algorithms generated by standard libraries from Python
and R?

RQ 2
What is the difference in generation time of decision tree
algorithms, generated by DTP, compared to standard
libraries from Python and R?

RQ 3
Could applying decision tree learning on homogeneous
and unconnected nodes created from large clinical data-
sets provide basic clinical insights?

Now we will provide a brief overview on graph data-
bases, decision tree algorithms and a short introduc-
tion about diabetes to interpret the clinical background.
Afterwards, we will discuss related work on the integra-
tion of machine learning in databases.

1  For data and source codes, visit https://github.com/clumsyspeedboat/Deci-
sion-Tree-Neo4j
2  Matthews correlation coefficient is a measure of the quality of binary and
multi-class classifications which tends to be more reliable than accuracy or
f1 score [2].

Page 3 of 12Mondal et al. BMC Medical Informatics and Decision Making 2023, 22(Suppl 6):347	

Graph database management system: Neo4j
Graph databases like Neo4j (Table 1), equipped with
its query language Cypher, are NoSQL databases that
store data within a graph structure, enabling flexible
queries through interlinked data. The main advan-
tages over relational and object-oriented databases
are its flexible data models and schema. Further-
more, graph database are easily scalable, making it
ideal to store large datasets and perform read or write
operations [5].

In addition to the advantages intrinsic to a graph
database, Neo4j offers procedures that handle complex
operations [6]. They are implemented in Java [7] and
are compiled into a Jar file, which can later be deployed
to the database by adding the Jar files into the plugin
directory on each individual or clustered server. A pro-
cedure can be invoked either as a stand-alone proce-
dure from the application, the command-line or as a
part of Cypher statements.

Cypher is a declarative query language, optimized for
graphs, and therefore, can be used for describing visual
patterns in graphs using ASCII-Art syntax. This makes
Cypher queries much simpler and easier to write com-
pared to SQL [8].

There could be three main arguments for using a
graph database like Neo4j, to analyse clinical data of
any scale:

•	 Scalability Graph databases are scalable [9].
•	 Node-edge Structure This helps in forming and ana-

lysing complex relationships. [10]
•	 Query Performance Querying can be versatile in

graph databases which helps in analysing complex
data structures [9].

Decision tree algorithms
Decision tree algorithms are machine learning algo-
rithms predicting attributes based on tree-like deci-
sion rules. In the literature, several implementations of
decision tree algorithms are known (Patel et al. [11]),
including CART (Breiman et al. [12]), ID3 (Quin-
lan [13]), C4.5 (Quinlan [14]). These algorithms can be
separated based on their splitting criteria (Table 2) into
algorithms using either Gini Index (GI), Information
Gain (IG), or Gain Ratio (GR).

In our plug-in, we provide procedures for all three
splitting criteria—Gini Index, Information Gain, and
Gain Ratio. The generated trees are binary, implying a
binary split at a decision node, with one path agreeing to
a certain threshold and the other one disagreeing.

We have also provided a parameter to perform pre-prun-
ing on the generated decision trees through our procedures
and reduce the size of tree as per user choice. This is useful
as it can help to overcome over-fitting of decision trees algo-
rithms and remove noise/outliers from training data [15].

Diabetes
Diabetes is a group of diseases characterized by hyper-
glycemia. It results either from defects in insulin secre-
tion, insulin action, or both [16]. In general, diabetes has
two etiopathogenetic categories. The first, diabetes type
I, is also called insulin-dependent diabetes. This diabetes
type is caused by the autoimmune destruction of beta
cells and is associated with multiple genetic predisposi-
tions and environmental factors that are poorly defined.
Diabetes type II, called non-insulin-dependent diabetes,
is the more frequent type (90–95 % of all diabetes cases).

The risk of developing type II diabetes increases with age,
obesity, hypertension, smoking, and lack of physical activ-
ity. It is also more frequent in individuals with hypertension
or dyslipidemia (i.e., low HDL cholesterol concentration
and high LDL-cholesterol concentration) and is associ-
ated with a strong genetic predisposition. This form is often
undiagnosed for years because of the gradually developing
hyperglycemia. At early stages, hyperglycemia is not severe
enough to cause diabetes symptoms [16], however, chronic
hyperglycemia can cause dysfunction and failure of differ-
ent organs, e.g., eyes, kidneys, nerves, and heart. Therefore,
diabetes is a potential risk factor for stroke and cardiovas-
cular diseases [17]. Hence, our investigations of the diabe-
tes dataset represent an important real-world use case.

Related work
While the integration of machine learning algo-
rithms into a graph database (i.e., Neo4j) is novel, both

Table 1  Comparison of Database Management Systems [3, 4].
RDBMS, OODBMS and Graph refers to Relational, Object-Oriented
and Graph Database Management Systems

RDBMS OODBMS Graph (Neo4j)

Flexibility (lack of
schema)

Low Medium High

Query language SQL Rarely implemented Cypher

Query performance High High High

Integrity constraints Yes Yes Yes

Level of support High Low High

Ease of programming High High High

Security High Low High

Scalability Low High High

Page 4 of 12Mondal et al. BMC Medical Informatics and Decision Making 2023, 22(Suppl 6):347

supervised and unsupervised learning algorithms were
already applied on the following relational database man-
agement systems [18] allowing users to implement learn-
ing algorithms directly on the database:

•	 Amazon Redshift
•	 Blazing SQL
•	 Google Cloud Big Query
•	 IBM DB2 Warehouse
•	 Kinetica
•	 Microsoft SQL Server Machine Learning Services
•	 Oracle Cloud Infrastructure (OCI) Data Science
•	 Vertica Analytics Platform

Focusing on Neo4j, Max De Marzi et al. [19] created cus-
tom procedures in Java to predict for a particular data set
whether a student passes an exam. However, these pro-
cedures are strictly confined to that dataset and cannot
be used for other data sets. Analogously, Michael Hun-
ger et al. [20] as well as Anjana and K. Lavanya et al. [21]
showed some steps towards machine learning in Neo4j
but provided no universal method.

Methods
This section presents our applied methods to build and
optimize the DTP. Furthermore, we describe the data-
sets used to evaluate our algorithms. For our study, we
selected the graph database Neo4j due to its flexibility
and the possibility to extend its functionalities using Java
procedures, which are the backbone of the whole DTP
infrastructure (Figs. 1,2). Java is one of the most versatile
languages and can be currently executed on most operat-
ing systems. Therefore, Java is a great language choice to
equip a graph database like Neo4j, with several tools for
machine learning.

Figure 1 highlights the flow of data between Java and
Neo4j when the procedures in DTP are executed, either
from CSV files or from homogeneous and unconnected
nodes. The DTP data flow (Fig. 1) starts with uploading
the input data (CSV files or nodes in Neo4j) and splitting
them into train and test data.

The next step is to select among the different splitting
criteria (see Section Decision tree algorithms) and run the
decision tree implementation to generate a classifier. The
learned classifier could be evaluated based on a confusion
matrix, accuracy, generation time, and Matthews correla-
tion coefficient and could be applied to new data sets. The
resulting nodes and edges of the tree are stored in Neo4j,
allowing visualization of the resulting decision tree.

We will now elaborate about the used splitting criteria,
the implemented stored procedures and the possibility to
visualize the resulting decision tree.

Procedures of the decision tree plugin
To assess the performance of the different algorithms,
splitting criteria and Neo4j, we implemented DTP as a
set of Java-based procedures in Neo4j (see Fig. 2). The
whole package of DTP is saved as a Jar file which should
be copied inside the Neo4j plugins directory of a data-
base. Afterwards, the database should be restarted to
make these procedures available, through Cypher queries
to generate a decision tree.

These procedures build the tree in Java, returns node
and edge buckets to Neo4j for tree visualization and
afterwards tests the decision tree with the test data
instances. The test data is recursively passed through the
tree until it reaches a leaf node, in which case it returns
the found class label – the final prediction. To create the
confusion matrix (with or without cross validation), the
actual labels are compared against the predicted labels to

Fig. 1  Data flow in the decision tree plug-in (DTP)

Page 5 of 12Mondal et al. BMC Medical Informatics and Decision Making 2023, 22(Suppl 6):347	

calculate the accuracy, Matthews correlation coefficient,
or output the confusion matrix and the time needed to
generate the algorithms.

In Table 3 we provide a summary of the computational
complexity of the Java procedures contained in DTP,
using big O notation. For any decision tree procedure,
there are two processes involved—training and testing
the algorithm. Training complexity is naturally higher as
during testing the task is to just traverse the tree, gener-
ated during training, where several calculations of split-
ting criteria are required.

The procedures that can visualize the tree also contain
a parameter—“max_depth”, which will limit the depth of
the tree to the specified value. It is a pre-pruning mecha-
nism which will stop decision tree generation when the
mentioned depth is reached and majority class label is
assigned to impure nodes.

Note that with each tree generated from procedures,
our plug-in DTP will generate and display the confusion

Fig. 2  Available procedures in DTP

Table 2  Overview about decision tree algorithms grouped by
the splitting criteria

Data types Missing values Data splitting

Gini index Categorical and
numerical

Can handle No restrictions

Information gain Numerical Can not handle No restrictions

Gain ratio Categorical and
numerical

Can handle Binary

Table 3  Computational complexity analysis

n = number of instances/nodes dim = number of dimensions/variables depth =
depth of generated decision tree

Computational complexity Time Space

Train complexity O(dim*nlogn) O(n)

Test complexity O(depth) O(n)

Page 6 of 12Mondal et al. BMC Medical Informatics and Decision Making 2023, 22(Suppl 6):347

matrix, accuracy, Matthews Correlation Coefficient and
generation time of algorithms. The decision tree proce-
dures in DTP can be categorized as follows:

Cross validation (without tree visualization)
Six procedures are provided to perform k-fold cross-val-
idation on a single CSV file or a set of nodes. Users can
specify the class label and number of folds for every itera-
tion along with CSV file path, exclusively for tree genera-
tion from CSV files. It is important to note that there are
no tree visualization for cross validation.

Decision tree from CSV files (with tree visualization)
These three procedures are used to create a decision tree
from plain CSV files, and the resulting tree is stored in
Neo4j. To this end, DTP reads 2 CSV files (of train and
test data) and detects whether a variable is categorical or
numerical. Furthermore, a user-defined class label can be
chosen. DTP then recursively calculates the best splits
based on the splitting criteria, depending on the chosen
algorithm.

The result of the previous step is a bucket of nodes and
relationships which represent the tree, stored as a graph
in Neo4j for subsequent inference or visualization. The
user can specify file paths for training and testing, and
the class label . For pre-pruning, user must also set prune
= “True” to set the max_depth value of decision tree.

Decision tree from graph‑shaped data in Neo4j (with tree
visualization)
To create a decision tree from homogeneous and uncon-
nected nodes in Neo4j, a user can map two distinct sets
of nodes into training and testing, through the proce-
dures. Alternatively, we have created a procedure that
allows the user to automatically split the data into train
and test sets.

In order to allow generating the decision tree, we
implemented three different functions according to the
favored splitting criterion. These functions then use the
labeled training data and persists the tree nodes and rela-
tionships in Neo4j just as the procedures on the CSV files
do. The user can specify the class and for pre-pruning,
user must also set prune = “True” to set the max_depth
value of decision tree.

Decision tree without tree visualization (confusion matrix)
A user is also allowed to generate and assess deci-
sion tree algorithms without tree visualization, we have
implemented 6 procedures – 3 to generate the confusion
matrix from CSV files and 3 to generate it from nodes.
This is useful in cases where the dataset is large, and the
node visualization creates a significant delay in the tree
visualization. The user can specify file paths for training

and testing and the class label. For pre-pruning, user
must also set prune = “True” to set the max_depth value
of decision tree.

Feature analysis
For further in depth analysis of each feature in datasets,
DTP contains procedures to obtain values for gini index,
information gain or gain ratio as calculated at every level
while the tree is being generated. This will allow user to
have an elaborate overview on how each variable affects
the generation of tree at each level. The user can specify
pruning of tree to a max_depth for these procedures and
can be generated from both nodes and/or csv files.

Data
To evaluate our decision tree algorithms, we searched
for clinical datasets in Kaggle, GitHub, and in research
papers. After surveying and investigating several data-
sets, we selected four datasets about the prediction of
heart failures (Dataset 1), inflammatory bowel disease
(Dataset 2), classification between flu and COVID-19
(Dataset 3) and prediction of diabetes among patients
(Dataset 4):

Dataset 1: heart failure prediction
The heart failure dataset by Davide Chicco and Giuseppe
Jurman [22] from Kaggle contains 299 patients’ data with
13 demographics variables and has been used to predict
survival of patients using machine learning algorithm. Of
the 13 variables, 7 are continuous numeric and the rest
are categorical, including the class variable. The class var-
iable is the property DEATH_EVENT, where 1 represents
death of a patient (96 instances) and 0 (203 instances)
their survival.

Dataset 2: prediction of inflammatory bowel disease
from microbiome
The inflammatory bowel disease dataset by T. Lehmann
[23] consists of 2,969 meta-proteins whose presence has
been measured among a group of 48 patients of 3 sepa-
rate groups. All the variables in this dataset are numeric
variables. We have considered only the 50 most abun-
dant meta-proteins while training and evaluating the
decision tree algorithms. The class variable is Patient
Type – C, CD or UC, where C identifies control patients
(20 instances), CD for patients with Crohn’s Disease (13
instances) and UC for patients with Ulcerative Colitis (15
instances).

Dataset 3: H1N1/COVID‑19 classification
The H1N1/COVID-19 dataset was taken from a research
article by Li et al. [24] that applied machine learning on a
dataset of 1,485 patients with 50 demographic variables.

Page 7 of 12Mondal et al. BMC Medical Informatics and Decision Making 2023, 22(Suppl 6):347	

The class variable is Diagnosis – H1N1 (1072 instances)
or COVID-19 (413 instances). Since a lot of variables
were plainly null, we have reduced the data to 12 vari-
ables out of the 50 available to sharpen the results. There
are two numeric variables which are continuous and the
rest are categorical variables, including the class variable.

Dataset 4: diabetes (type II) health indicators
This dataset was taken from Kaggle and was uploaded by
Alex Teboul [25] who has cleaned and consolidated the
data from the original BRFSS 2015 [26] dataset consist-
ing of data from a survey of patients concerning diabetes.
The original dataset was compiled by the Center for Dis-
ease Control and Prevention which is the national public
health agency of the United States. The cleaned data con-
sists of 253,680 patients with 22 demographic and clinical
variables. The class variable is Diabetes_012 consisting of
3 labels – 0 (213,703 instances) indicating patient being
non-diabetic, 1 (4631 instances) indicating prediabetes or
3 (35,346 instances) indicating patient being diagnosed
with type 2 diabetes. There are two numeric variables
which are continuous, and the rest are categorical vari-
ables, including the class label.

Experimental setup
For our evaluation, we have compared the performance
of the custom java procedures in our plug-in to algo-
rithms generated by the following standard packages in
R and python:

•	 R package “rpart” for gini index and information gain
and “JWeka” for gain ratio

•	 python package “sklearn” for gini index and informa-
tion gain. No standard package implementation was
found for gain ratio during evaluation.

All the experiments were carried out on a desktop PC
with the following specifications:

Processor AMD Ryzen5 3600, 6 cores (3.6 Ghz)
Memory 16 GB of RAM
Graphic NVIDIA GeForce RTX2070 (8 GB)

Experiments 1, 2 and 3: building and optimizing DTP
For our experiments, we applied k-fold cross-validation
for all the three datasets and all four approaches (Python,
R, Java, Neo4j) and evaluated the algorithms. Each

decision tree algorithm was regenerated thirty times with
the accuracy, Matthews correlation coefficient and gen-
eration time averaged out for all the iterations. The num-
ber of folds for cross-validation was varied across the
datasets, due to the difference in their instance size (see
Table 3).

In total, we generated 42 (see Table 5) cross-validated
decision tree algorithms for this evaluation in R, Python,
Java3, DTP (CSV)4 and DTP (nodes)5 and 2 (Gini Index
and Info Gain) in Python. This was due to the unavail-
ability of a generic package for Gain Ratio in Python.

Experiment 4: evaluating DTP on a large dataset
To generate and evaluate decision tree algorithms on
Dataset 4, we have performed 5-fold cross validation (80
percent data for training and 20 percent for testing) on
the whole dataset in R, Python, Java and DTP (csv) and
DTP (nodes), totaling to 14 decision tree algorithms,
across the mentioned tools.

Table 4  Comparison of datasets used in the experiments

Instances Variables Target
categories

Class imbalance

Dataset 1 299 13 2 Medium

Dataset 2 48 50 3 Low

Dataset 3 1485 12 2 High

Dataset 4 253,680 22 3 High

Table 5  Decision tree configurations for experiments 1, 2 and
3: three datasets for each combination of language and splitting
criteria

42 algorithms generated Gini index Information
gain

Gain ratio

R (rpart, RWeka) 3 3 3

Python (sklearn) NA 3 3

Java 3 3 3

DTP (csv) 3 3 3

DTP (nodes) 3 3 3

3  Java refers to the custom built Java procedures working in the backend of
DTP, for which, Java, DTP(csv) and DTP(nodes) tend to display similar per-
formance in our experiments.
4  DTP (csv) refers to decision tree algorithms generated from CSV file
paths in Neo4j
5  DTP (nodes) refers to algorithms generated from nodes in Neo4j.

Page 8 of 12Mondal et al. BMC Medical Informatics and Decision Making 2023, 22(Suppl 6):347

Results
In the following, we examine the performance of DTP
in Neo4j compared to standard machine learning algo-
rithms in R and Python at first for the small datasets
1-3 and afterwards for the big dataset 4.

Experiment 1: prediction performance comparison
In our first experiment, we assessed whether the different
implementations and thus data accesses impact the accu-
racy and Matthews correlation coefficient (MCC). To
compare the accuracy distribution visually, we visualized

Fig. 3  Box Plots—Accuracy and Matthews Correlation Coefficient of the algorithms: A, D for different tools including DTP, B, E for different splitting
criteria in DTP, and C, F for the datasets 1-3 in DTP

Fig. 4  Box Plots—Generation Time of the Decision Tree Algorithms: A for different tools including DTP, B for different splitting criteria in DTP, and C
for the datasets 1-3 in DTP

Page 9 of 12Mondal et al. BMC Medical Informatics and Decision Making 2023, 22(Suppl 6):347	

box plots in Fig. 3. The results show that all algorithms
act in the same accuracy and MCC range.

While our DTP trained on data in Neo4j and from CSV
files is on par with the Java implementation, it is clearly
more stable than the Python decision tree. Considering
the different splitting algorithms, gain ratio is the best
metric providing the best median value. Low MCC for
Python (Fig. 3A) was caused by overfitted decision trees
along with class imbalance in Dataset 3 (Table 4).

Experiment 2: computational time comparison
Next, we evaluate the generation time of DTP-Neo4j-
Plugin for the three test datasets against the implementa-
tions from R and Python in Fig. 4. The Neo4j integration
had a positive impact on the generation time. The deci-
sion tree learning from data inside Neo4j is the fastest
and most stable approach. In contrast, R had a big devia-
tion in generation time when loading data from CSV
files. A more in-depth investigation has shown that this
is due to a lot of data shuffling inside R, which creates a
considerable overhead. The investi- gation of the splitting
algorithms shows that gain ratio provides the fastest gen-
eration times.

The high performance of python, in terms of low gen-
eration time, could be attributed to the package sklearn,
part of which was written in C and C++, which are
extremely fast at compiling. [27]

Experiment 3: impact of dataset characteristics
Figure 4C (with reference to Table 4) shows that the
generation time is directly proportional to the number
of instances used while training the algorithm. It might
seem that the generation time is directly proportional to
accuracy as well which can be explained through a causal
link – a higher number of training instances takes up a
higher generation time and provides higher accuracy as
well, which is quite understandable, since a well-trained
algorithm would provide better accuracy.

A regression plot for all algorithms generated on the
4 datasets in DTP is shown in Fig. 6. This is discussed
briefly in the next section.

Experiment 4: evaluation of algorithms generated
on dataset 4 to predict diabetes in patients
In this experiment (Fig. 5), we evaluated the differ-
ent tools while running on the large Dataset 4. Note
that the differences in values are quite insignificant
with respect to quality of predictions, while there are

Fig. 5  Box Plots—Evaluation of the diabetes dataset(Dataset 4), across different tools: A accuracy, B precision, C Matthews Correlation Coefficient,
and D generation time

Fig. 6  Scatter Plots with Line of Regression—To interpolate the effect
of instance size (rows/nodes) on generation time and accuracy of
algorithms generated by DTP for all the 4 datasets (Dataset 1, 2, 3 and 4)

Page 10 of 12Mondal et al. BMC Medical Informatics and Decision Making 2023, 22(Suppl 6):347

noticeable differences in the generation time of the algo-
rithms. Python’s package sklearn provides consistently
fast performance for Gini Index and Information Gain,
regardless of the size of dataset.

To calculate the precision of predictions from Dataset
4, we assumed binary classification while assigning “True
Positive” and “True Negative” labels to values in the 3*3
confusion matrix. Hence, the precision values high-
light the relevance of the predictions in distinguishing
between people with no diabetes (class label = 0) vs. peo-
ple with borderline and confirmed diabetes (class label =
1 and 2). There was insignificant difference between pre-
cision among the different tools.

Discussion
Performance of DTP procedures
With slight differences in the experimental results, it is
safe to say that DTP performs quite similarly with pack-
ages in Python and R, in terms of prediction quality as
well as generation time of algorithms. The primary bar-
rier in predictive modelling on large data, such as deci-
sion tree classification, is a significant drop in the quality
of predictions. Without pruning mechanisms and hyper-
parameter tuning, large trees have led to over-fitting and
randomness in classification.

Having algorithms generated on 4 datasets of vary-
ing size has shown that DTP reflects the scalability of a
graph database. We can see in Fig. 6 a slight increase in

generation time in seconds while maintaining accuracy
over a high range of instance size.

Neo4j Visualization
All the data used in this research were uploaded as
homogeneous and unconnected nodes in Neo4j database
for decision tree generation, as shown in Fig. 7, which is a

Fig. 7  Dataset 4 uploaded as homogeneous and unconnected nodes in Neo4j

Fig. 8  Decision Tree for Dataset 4 (split = gain ratio) The red
nodes represent the leaf nodes indicating diagnosis of diabetes (2),
borderline (1) or no diabetes (0) in a patient, while the blue nodes are
the decision nodes. Note that, this tree was generated on a subset of
dataset 4 after the class imbalance was handled. There were 13893
instances (4631 for each class label) and 22 variables. The tree has
been pruned to max_depth = 2

Page 11 of 12Mondal et al. BMC Medical Informatics and Decision Making 2023, 22(Suppl 6):347	

visualization of the patients’ data in the dataset 4. All the
variables were mapped as node features, with each node
representing a patient.

Apart from the associated convenient methods for data
splitting and validation of the classifier, Neo4j allows for
an intuitive visualization of the decision tree as shown in
Fig. 8. It stores the final decision tree as a set of nodes
and its relationship, which can be stored in Neo4J, que-
ried and reused for classification of further data. The
visual interface of Neo4j is quite interactive as a user
can move the nodes around, focus on any specific node
and also pass a single instance for classification through
cypher queries.

Risk factors for developing diabetes
After generating several decision tree algorithm in DTP
and using feature analysis procedures to compare values
of gini index, information gain and gain ratio, we could
confidently say that the main risk factors for developing
pre-Diabetes and Diabetes were high body mass index
and high blood pressure (Fig. 8). This fits to the general
statements of the center of disease and control and pre-
vention6 and confirms the potential of using DTP for
mining clinical datasets.

Discussion of research questions
To conclude the evaluation, we will answer the research
questions proposed in section Research Questions.

RQ 1—What is the difference in the quality of predic-
tions for algorithms generated in DTP, when compared
against algorithms generated by standard libraries from
Python and R?

Answer—DTP revealed slightly less accuracy as R and
Python, but better MCC coefficients. The differences
were due to overfitting and could be further diminished
by pruning and hyper-parameter tuning.

RQ 2—What is the difference in generation time of
decision tree algorithms, generated by DTP, compared to
standard libraries from Python and R?

Answer—DTP required less computational time than
R or python for small datasets, but more time than
python for large data sets.

RQ 3—Could applying decision tree learning on homo-
geneous and unconnected nodes created from large clini-
cal datasets provide basic clinical insights?

Answer—This is clearly possible as we have been able
to analyze Dataset 4 by generating a decision tree in DTP
and state the following—“High body-mass index and
blood pressure are primary risk factors for developing
diabetes.”

Conclusion
In this paper, we investigated the feasibility of integrating
decision tree learning, applied directly on graph-shaped
clinical data in Neo4j. To this end, we implemented a
plugin for Neo4j as a set of stored Java procedures that
allow to train and persist a decision tree in Neo4j. When
it comes to incorporating cross-platform tools, Java pack-
ages, though time-consuming to create and refine, can
outperform other platforms in accuracy and computa-
tional efficiency. As such, also our Neo4j plugin DTP has
reached similar performance compared to Python and R.

Being written in Java, DTP could be easily extended and
further optimized. However, at the time of compiling this
manuscript, python drivers for Neo4j has been released,
and we believe integrating a high performance program-
ming language like python might possibly increase the
performance of learning algorithms in Neo4j.

The node-edge view of data and the classifier will facili-
tate the data analysis. To further improve the data min-
ing, researchers can enrich the graph by further biological
and clinical metadata. In numerous ways, researchers are
trying to incorporate the strengths of graph database into
predictive modelling. With the additional advantage of
interactive visualization, researchers are turning to graph
data for their research to create novel implementations of
traditional statistical and machine learning algorithms.

Neo4j is also helpful in the visualization and analyses
of clinical data. The node-edge structure is quite effective
to visualize patients with several variables which shows
promise for further research. This work motivated us to
continue research to incorporate all forms of learning
algorithms in graph databases—unsupervised, super-
vised, semi-supervised and representation learning. One
such approach to perform link prediction on scholarly
data, in Neo4j, has been performed by Sobhgol et al. [28]
which has provided promising results in accuracy, even
more so in the computational efficiency, similar to our
results in DTP.

Proposed scope of future research could be integration
of learning algorithms using python drivers, post-prun-
ing mechanisms on DTP, implementation of decision tree
classification on homogeneous and connected nodes,
and/or heterogeneous nodes (for both connected and
unconnected) in Neo4j.

Acknowledgements
The authors highly appreciate the anonymous reviewers for their constructive
feedback.

About this supplement
This article has been published as part of BMC Medical Informatics and Deci-
sion Making Volume 22 Supplement 6, 2022 Selected articles from the 17th
International Conference on Computational Intelligence Methods for Bioinfor-
matics and Biostatistics (CIBB 2021). The full contents of the supplement are
available online at https://​bmcme​dinfo​rmdec​ismak.​biome​dcent​ral.​com/​artic​
les/​suppl​ements/​volume-​22-​suppl​ement-6.6  https://​www.​cdc.​gov/​diabe​tes/​basics/​risk-​facto​rs.​html, retrieved 16.02.2022

https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-22-supplement-6
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-22-supplement-6
https://www.cdc.gov/diabetes/basics/risk-factors.html

Page 12 of 12Mondal et al. BMC Medical Informatics and Decision Making 2023, 22(Suppl 6):347

Author contributions
Conceptualization: MDD, RM, NUA, RH; Methods: MDD, NUA, RM, RH, DB, DM,
DW, GS; Formal analysis and investigation: RM, NUA, MDD, RH, DB, DW, DM,
GS; Writing (original draft): RM; Writing (review and editing): RM, DB, RH, MDD,
NUA, DW, DM, GS; Funding: DM, DW. All authors read and approved the final
manuscript.

Funding
This paper has been partially funded by the DFG (SA 465/53-1, HE 8077/2-1).

Availability of data and materials
The dataset 1 (Heart Failure Prediction), analysed during this study, is available
in the Kaggle repository, https://​www.​kaggle.​com/​andre​wmvd/​heart-​failu​
re-​clini​cal-​data. The dataset 2 (Prediction of Inflammatory Bowel Disease from
Microbiome), analysed during this study, is available in the GitHub repository,
https://​github.​com/​clums​yspee​dboat/​Decis​ion-​Tree-​Neo4j/​blob/​main/​Datas​
et%​202%​20-%​20Met​aprot​ein/​Datas​et_​Metap​rotein.​csv. The dataset 3 (H1N1
COVID19 Classification), analysed during this study, is available in the GitHub
repository, https://​github.​com/​yoshi​hiko1​218/​COVID​19ML. The dataset 4
(Diabetes Health Indicators), analysed during this study, is available in the
Kaggle repository, https://​www.​kaggle.​com/​alext​eboul/​diabe​tes-​health-​indic​
ators-​datas​et. The source codes of Decision Tree Plug-in (DTP) are available at,
https://​github.​com/​clums​yspee​dboat/​Decis​ion-​Tree-​Neo4j

Declarations

Ethical Approval
Not applicable since this is a study involving the analysis of secondary data
made publicly available online. Any approval from ethics and research com-
mittee involving human beings was not necessary, as there is no possibility of
identifying any patient from the datasets.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Faculty of Computer Science, Otto-von-Guericke-University Magdeburg, Uni-
versitätsplatz 2, 39106 Magdeburg, Germany. 2 Faculty of Process and Systems
Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2,
39106 Magdeburg, Germany. 3 German Centre for Higher Education Research
and Science Studies, Lange Laube 12, 30159 Hannover, Germany. 4 Research
Group Databases and Software Engineering, Faculty of Computer Science,
Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magde-
burg, Germany.

Received: 4 December 2022 Accepted: 13 January 2023
Published: 6 March 2023

References
	1.	 Santos A, Colaço AR, Nielsen AB, Niu L, Geyer PE, Coscia F, Albrechtsen

NJW, Mundt F, Jensen LJ, Mann M. Clinical knowledge graph integrates
proteomics data into clinical decision-making. bioRxiv 2020; https://​doi.​
org/​10.​1101/​2020.​05.​09.​084897.

	2.	 Chicco D, Jurman G. The advantages of the matthews correlation coeffi-
cient (mcc) over f1 score and accuracy in binary classification evaluation.
BMC Genomics. 2020. https://​doi.​org/​10.​1186/​s12864-​019-​6413-7.

	3.	 Aziz T, Haq E-U, Muhammad D. Performance based comparison between
RDBMS and OODBMS. Int J Comput Appl. 2018;180(17):42–6. https://​doi.​
org/​10.​5120/​ijca2​01891​6410.

	4.	 Vicknair C, Macias M, Zhao Z, Nan X, Chen Y, Wilkins D. A comparison of
a graph database and a relational database. ACM Press, 2010; https://​doi.​
org/​10.​1145/​19000​08.​19000​67.

	5.	 Pokorn J. Graph databases: their power and limitations 2015.
	6.	 Marzi M.D. Dynamic rule based decision trees in Neo4j 2018.

	7.	 Neo4j: User-defined Procedures. https://​neo4j.​com/​docs/​java-​refer​ence/​
curre​nt/​exten​ding-​neo4j/​proce​dures-​and-​funct​ions/​proce​dures/.

	8.	 Michael Hunger R.B, Lyon W. RDBMS and Graphs: SQL vs. Cypher Query
Languages 2016.

	9.	 Fernandes D, Bernardino J. Graph databases comparison: Allegrograph,
arangodb, infinitegraph, neo4j, and orientdb. In: Proceedings of the 7th
international conference on data science, technology and applications.
DATA 2018, pp. 373–380. SCITEPRESS—Science and Technology Publica-
tions, Lda, 2018; https://​doi.​org/​10.​5220/​00069​10203​730380.

	10.	 Kalamaras I, Glykos K, Megalooikonomou V, Votis K, Tzovaras D. Graph-
based visualization of sensitive medical data. Multimedia Tools Appl.
2022;81(1):209–36. https://​doi.​org/​10.​1007/​s11042-​021-​10990-1.

	11.	 Patel H, Prajapati P. Study and analysis of decision tree based classification
algorithms. Int J Comput Sci Eng. 2018;6:74–8.

	12.	 Breiman L, Friedman J, Olshen R, Stone C. Cart: classification and regres-
sion trees (1984). Belmont, CA: Wadsworth; 1993.

	13.	 Quinlan JR. Induction of decision trees. Machine Learning. 1986;1.
	14.	 Quinlan J.R. Programs for machine learning, 1993.
	15.	 Bramer M. Pre-pruning classification trees to reduce overfitting in noisy

domains. In: Yin H, Allinson N, Freeman R, Keane J, Hubbard S editors
Intelligent data engineering and automated learning—IDEAL 2002, pp.
7–12. Springer, 2002.

	16.	 Association AD. Diagnosis and classification of diabetes mellitus. Diabetes
Care. 2013;37(1):81–90. https://​doi.​org/​10.​2337/​dc14-​S081.

	17.	 Chen R, Ovbiagele B, Feng W. Diabetes and stroke: epidemiology,
pathophysiology, pharmaceuticals and outcomes. Am J Med Sci.
2016;351(4):380–6. https://​doi.​org/​10.​1016/j.​amjms.​2016.​01.​011.

	18.	 8 Databases supporting in-database machine learning. https://​www.​
infow​orld.​com/​artic​le/​36077​62/8-​datab​ases-​suppo​rting-​in-​datab​ase-​
machi​ne-​learn​ing.​html.

	19.	 Dynamic Rule Based Decision Trees in Neo4j. https://​maxde​marzi.​com/​
2018/​01/​14/​dynam​ic-​rule-​based-​decis​ion-​trees-​in-​neo4j.

	20.	 Neo4j Machine Learning Procedures. https://​github.​com/​neo4j-​contr​ib/​
neo4j-​ml-​proce​dures.

	21.	 Anjana S, Lavanya K. An application of cypher query-based dynamic
rule-based decision tree over suicide statistics dataset with neo4j. In:
Intelligent IoT systems in personalized health care, pp. 293–313 2021.

	22.	 Chicco D, Jurman G. Machine learning can predict survival of patients
with heart failure from serum creatinine and ejection fraction alone. BMC
Med Inf Decis Mak. 2020;20(1):1–16.

	23.	 Lehmann T, Schallert K, Vilchez-Vargas R, Benndorf D, et al. Metaproteom-
ics of fecal samples of crohn’s disease and ulcerative colitis. J Proteomics.
2019;201:93–103.

	24.	 Li W, Ma J, Shende N, et al. Using machine learning of clinical data to
diagnose covid-19: a systematic review and meta-analysis. BMC Med Inf
Decis Mak. 2020. https://​doi.​org/​10.​1186/​s12911-​020-​01266-z.

	25.	 Diabetes Health Indicators Dataset. https://​www.​kaggle.​com/​alext​eboul/​
diabe​tes-​health-​indic​ators-​datas​et.

	26.	 Behavioral Risk Factor Surveillance System. https://​www.​kaggle.​com/​cdc/​
behav​ioral-​risk-​factor-​surve​illan​ce-​system.

	27.	 Prechelt L. An empirical comparison of seven programming languages.
Computer. 2000;33(10):23–9. https://​doi.​org/​10.​1109/2.​876288.

	28.	 Sobhgol S, Durand G, L, R, Saake G. Machine learning within a graph data-
base: A case study on link prediction for scholarly data. In: International
conference on enterprise information systems, pp. 159–166 2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.kaggle.com/andrewmvd/heart-failure-clinical-data
https://www.kaggle.com/andrewmvd/heart-failure-clinical-data
https://github.com/clumsyspeedboat/Decision-Tree-Neo4j/blob/main/Dataset%202%20-%20Metaprotein/Dataset_Metaprotein.csv
https://github.com/clumsyspeedboat/Decision-Tree-Neo4j/blob/main/Dataset%202%20-%20Metaprotein/Dataset_Metaprotein.csv
https://github.com/yoshihiko1218/COVID19ML
https://www.kaggle.com/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/alexteboul/diabetes-health-indicators-dataset
https://github.com/clumsyspeedboat/Decision-Tree-Neo4j
https://doi.org/10.1101/2020.05.09.084897
https://doi.org/10.1101/2020.05.09.084897
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.5120/ijca2018916410
https://doi.org/10.5120/ijca2018916410
https://doi.org/10.1145/1900008.1900067
https://doi.org/10.1145/1900008.1900067
https://neo4j.com/docs/java-reference/current/extending-neo4j/procedures-and-functions/procedures/
https://neo4j.com/docs/java-reference/current/extending-neo4j/procedures-and-functions/procedures/
https://doi.org/10.5220/0006910203730380
https://doi.org/10.1007/s11042-021-10990-1
https://doi.org/10.2337/dc14-S081
https://doi.org/10.1016/j.amjms.2016.01.011
https://www.infoworld.com/article/3607762/8-databases-supporting-in-database-machine-learning.html
https://www.infoworld.com/article/3607762/8-databases-supporting-in-database-machine-learning.html
https://www.infoworld.com/article/3607762/8-databases-supporting-in-database-machine-learning.html
https://maxdemarzi.com/2018/01/14/dynamic-rule-based-decision-trees-in-neo4j
https://maxdemarzi.com/2018/01/14/dynamic-rule-based-decision-trees-in-neo4j
https://github.com/neo4j-contrib/neo4j-ml-procedures
https://github.com/neo4j-contrib/neo4j-ml-procedures
https://doi.org/10.1186/s12911-020-01266-z
https://www.kaggle.com/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/cdc/behavioral-risk-factor-surveillance-system
https://www.kaggle.com/cdc/behavioral-risk-factor-surveillance-system
https://doi.org/10.1109/2.876288

	Decision tree learning in Neo4j on homogeneous and unconnected graph nodes from biological and clinical datasets
	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Research questions
	RQ 1
	RQ 2
	RQ 3

	Graph database management system: Neo4j
	Decision tree algorithms
	Diabetes
	Related work

	Methods
	Procedures of the decision tree plugin
	Cross validation (without tree visualization)
	Decision tree from CSV files (with tree visualization)
	Decision tree from graph-shaped data in Neo4j (with tree visualization)
	Decision tree without tree visualization (confusion matrix)
	Feature analysis

	Data
	Dataset 1: heart failure prediction
	Dataset 2: prediction of inflammatory bowel disease from microbiome
	Dataset 3: H1N1COVID-19 classification
	Dataset 4: diabetes (type II) health indicators

	Experimental setup
	Experiments 1, 2 and 3: building and optimizing DTP
	Experiment 4: evaluating DTP on a large dataset

	Results
	Experiment 1: prediction performance comparison
	Experiment 2: computational time comparison
	Experiment 3: impact of dataset characteristics
	Experiment 4: evaluation of algorithms generated on dataset 4 to predict diabetes in patients

	Discussion
	Performance of DTP procedures
	Neo4j Visualization
	Risk factors for developing diabetes
	Discussion of research questions

	Conclusion
	Acknowledgements
	References

