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Abstract 

Significant advancements in machine learning algorithms have the potential to aid in the early detection and pre-
vention of cancer, a devastating disease. However, traditional research methods face obstacles, and the amount 
of cancer-related information is rapidly expanding. The authors have developed a helpful support system using three 
distinct deep-learning models, ResNet-50, EfficientNet-B3, and ResNet-101, along with transfer learning, to predict 
lung cancer, thereby contributing to health and reducing the mortality rate associated with this condition. This offer 
aims to address the issue effectively. Using a dataset of 1,000 DICOM lung cancer images from the LIDC-IDRI reposi-
tory, each image is classified into four different categories. Although deep learning is still making progress in its ability 
to analyze and understand cancer data, this research marks a significant step forward in the fight against cancer, pro-
moting better health outcomes and potentially lowering the mortality rate. The Fusion Model, like all other models, 
achieved 100% precision in classifying Squamous Cells. The Fusion Model and ResNet-50 achieved a precision of 90%, 
closely followed by EfficientNet-B3 and ResNet-101 with slightly lower precision. To prevent overfitting and improve 
data collection and planning, the authors implemented a data extension strategy. The relationship between acquir-
ing knowledge and reaching specific scores was also connected to advancing and addressing the issue of impre-
cise accuracy, ultimately contributing to advancements in health and a reduction in the mortality rate associated 
with lung cancer.
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Introduction
Human bodies are composed of different cells. Beating 
cancer happens when one of these cells encounters wild 
and unordinary progression due to cellular changes [1]. 
The World Prosperity Organization reports that cancer is 
the diminutive driving cause of passing around the world. 
The recurrence of as of late analyzed cancer cases con-
tinues to rise each year [2] and [3]. The mortality rate for 
cancer is 6.28% for females and 7.34% for folks. Lung and 
verbal cancer in men reports 25% of cancer-connected 
passings, whereas breast and verbal cancer pitch in 25% 
of female cancer-linked passings. The cancer estima-
tions are routinely changed and wrap data from [4–7]. 
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Table 1  shows the rates meaning the fundamental com-
ponents behind cancer.

In 2020, lung cancer has risen as the first dangerous out-
line of cancer, point by point [8] and [9]. The ensuing three 
exceedingly deadly malignancies were breast, liver, and 
stomach cancer, bookkeeping for 6.9%, 8.3%, and 7.7% of 
cancer-related passings, individually. Figure 1 outlines the 
worldwide measurements of cancer mortality up to 2020.

The Cancer Actualities and Figure think gauges that 
the year 2022 will witness an amazing 1,918,030 mod-
ern cases of cancer. Over about nine decades, from 
1930 to 2019, lung cancer has reliably risen as the 
essential cause of passing among guys, as uncovered 
by the study’s discoveries. Among the differing clusters 
of cancer sorts, stomach, colon, and prostate cancers 
win as the foremost predominant among guys. Shock-
ingly, despite lower and larger cancer rates, lung cancer 

proceeds to claim the lives of more females than any 
other frame of cancer. On the other hand, breast, stom-
ach, and colon cancers rule the scene of cancer among 
ladies [10]. In the afterward times, the field of restora-
tive ponders has seen an earth-shattering development 
inside the abuse of fake insights and machine learning 
techniques [11, 12]. These cutting-edge methodologies 
have been instrumental in the improvement of presci-
ent models for different infections, including cancer. 
Eminently, the professional deep-learning models [13] 
to estimate lung cancer stands as a groundbreaking 
restorative apparatus at this dynamic time.

The proposed device utilizes profoundly proficient 
deep-learning models to classify major lung can-
cer. In organizing to progress the precision of display 
lung cancer anticipation structure, the proposition for 
ensemble and fusion strategies are provided.

Table 1  Cancer statistics: A global comparison (India 2018 vs. World 2020)

Fig. 1  Trends in Cancer Survivorship in India and Globally
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A novel part of the current study is the development 
of a support system using three different deep-learning 
models (ResNet-50, EfficientNet-B3, and ResNet-101) 
combined with transfer learning thereby reducing the 
related mortality rate and improving health.

The purpose of the study is to provide further knowl-
edge that the usage of deep learning techniques improves 
cancer research. Specifically, the authors discuss how 
deep learning models can be applied to medical research 
and diagnostics to improve health outcomes and reduce 
mortality rates and how ensemble learning enhances lung 
cancer prediction.

Contributions

•	 To detect lung cancer subtypes, a support system was 
developed by combining transfer learning with three 
different deep learning models (ResNet-50, Efficient-
Net-B3, and ResNet-101).

•	 A considerable level of accuracy was attained in 
the classification of Squamous cells with the use of 
Fusion Models and ResNet-50.

•	 Implement a data expansion strategy to prevent over-
fitting and enhance data collection and planning.

•	 Using ensemble and fusion techniques, lung cancer 
precision has improved, which might lead to better 
health outcomes and potentially a decrease in the 
mortality rate from the disease.

Motivation

•	 To prevent lung cancer, research is being conducted 
to create deep learning models.

•	 To significantly improve health by improving the 
accuracy of diagnosis and lowering the disease’s 
death rate.

Structure of paper
The overall organization starts with a thorough introduc-
tion and discusses the current state of cancer survivor-
ship in India and throughout the world. A summary of 
deep learning systems in therapeutic applications and the 
parallels between deep learning models and cancer diag-
nosis are also provided. The related research Sect.  2nd 
expands the scope of in-depth learning about cancer 
research, supported by perceptible trends in mortality 
from 2012 to 2023. The materials and methods Sect. 3rd 
outlines the techniques used, which include the use of 
convolutional neural networks (CNNs) and a transfer 
learning model that consists of ResNet50, ResNet101, 
and EfficientNet-B3. These are complemented by images 

that illustrate the power of transfer learning in deep net-
works. Section 4, data section provides a detailed evalua-
tion of the combined LIDC-IDRI, displaying several types 
of lung cancer images. To enhance lung cancer detection, 
the results and discussion section include data from the 
fusion of three deep learning models. In Sect.  5, an in-
depth review of the training and verification procedures 
is provided by the experimental analysis section. This 
understanding is provided via visual representations of 
the accuracy and loss of training and verification curves, 
confusion matrices, and comparisons of deep learning 
models for cancer detection performance. Hence, this 
well-planned organization of the manuscript ensures 
clarity, coherence, and thoroughness in the methodology, 
results, and research discussion presentations. Finally, 
Sect. 6 concludes the findings and scope for future work.

Related work
Over the past decade, the collection of multimodality 
information has driven a noteworthy increment within 
the utilization of information examination in well-being 
data frameworks. The therapeutic field has experienced 
fast development with the advancement of machine 
learning models to oversee and examine this endless sum 
of restorative information, as referenced in [14]. Deep 
Learning, which is based on fake neural systems, has 
developed as an advanced machine learning strategy with 
the potential to convert the counterfeit insights industry, 
as famous in [15].

DL has demonstrated its value in the medical sector 
by effectively managing previously challenging tasks. It 
offers an extent of organized sorts with different capabili-
ties, empowering the proficient to take care of expansive 
volumes of restorative information, including literary 
data, sound signals, restorative images, and recordings. 
These DL systems, moreover, known as models, have 
been demonstrated to be profoundly viable apparatuses 
in various restorative frameworks [16–19]. Both ML 
and DL models have achieved success in various medi-
cal domains, including cancer prevention, detection, and 
COVID-19 diagnosis [20–22] and medical data analysis. 
DL models play a prominent role in medicine, with the 
selection and configuration of networks depending on 
the specific field, data volume, and research objectives. 
For a comprehensive list of commonly utilized DL net-
works and their distinctive features in the medical indus-
try [23, 24], refer to Table 2.

Machine learning and deep learning are progressively 
being utilized in therapeutic investigation, and can-
cer avoidance and discovery could be key regions of the 
center [31]. This article surveys the latest things in this 
field, highlighting the foremost promising progress.
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A look at "Google Researcher" gives important insights 
into cancer investigations from 2014 to 2022. The infor-
mation uncovered in Fig.  2, highlights the expanding 
intrigue in utilizing deep learning in cancer investiga-
tions. Additionally, it illustrates that lung cancer receives 
more focus compared to breast cancer. The study indi-
cates that the breast and lung cancer ratios are the high-
est. These facts were gathered by Google Scholar on 
October 24 at noon.

Table 3 illustrates that previous research had deficien-
cies, with some studies exhibiting poor accuracy due to 
the use of incorrect methodologies or parameters. Cer-
tain investigations employed sophisticated models, but 
most of the research only utilized one or two indicators, 
which is inadequate for evaluating accuracy and effective-
ness. To attain tall execution with a low-computational 
show, the show ponder will consider the preferences of 
outfit learning, exchange learning, and particular pro-
found models with moo computational effectiveness.

Materials and methods
Convolutional Neural Network (CNN)
The CNN, or deep neural arrangement, takes a 2D 
image as input and produces classes or lesson prob-
abilities as the yield. It is utilized in areas like thera-
peutic conclusion, individual distinguishing proof, and 
image classification. The CNN’s structure incorporates 
convolution layers, pooling layers, and a completely 
associated layer [57].

The convolutional layer applies the convolution 
method, where a bit of estimate K*K is convolved with 

an image of measurements M*N. The bit moves over the 
image, duplicating each pixel by its encompassing pixels 
and including the items together to grant the convolu-
tion’s yield. This yield is called the actuation outline, and 
its measure changes based on the number of channels 
utilized.

The ultimate measure of the convolution is decided by 
components like walk (S) and cushioning (P). The walk 
shows the part measure, whereas cushioning includes 
columns and columns for border pixels. For example, a 
5*5 part features a cushioning of 2. The yield measure is 
decided by the equation (W—F + 2P) / S + 1, where W is 
the image measure, F is the part measure, S is the walk, 
and P is the cushioning. The yield is at that point passed 
to a pooling layer, which diminishes the image. CNNs can 
utilize max pooling (selecting max esteem) or normal 
pooling (calculating normal). The components of a Con-
volutional Neural Network (CNN) are depicted in Fig. 3, 
which clarifies the complex architecture that is essential 
to deep learning for tasks involving classification and rec-
ognition of images.

All going-before layer neurons are associated with the 
Completely Associated Layer (FC). The neuron’s esteem 
in this layer is decided by the whole of the weighted items 
of all past layer neurons. Non-linear actuation capacities 
like Sigmoid, Tanh, and ReLU are utilized in conventional 
CNN systems to evacuate boisterous pixels after convo-
lution and pooling layers. These actuation capacities are 
connected recently to the pooling layer and after each 
convolutional layer. To form the ultimate convolution 
that comes about congruous with the FC layer, a straight-
ening layer is commonly utilized.

Fig. 2  Trends in deep learning cancer research mortality, 2012–2023
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Proposed transfer learning models
Three built-up models, to be specific ResNet-50, 
ResNet-101, and EfficientNet-B3, are utilized within the 
current ponder to examine the viability and execution 
of distinctive CNN engineering sorts. The concept of 
exchange learning, as delineated in Fig.  4, includes the 
utilization of pre-trained models for an unused prob-
lem that contrasts with the initial issue. The ResNet-50 
and 101 [58] and EfficientNet-B3 [59] models have been 
already prepared to utilize the ImageNet dataset. In this 
examination, these models will be utilized to form expec-
tations concerning lung cancer. The input image has 
three color channels and a standard pixel size of 224 by 
224. The first convolutional layer of the ResNet architec-
ture successfully extracts information from the input pic-
ture with a stride value of 2 by using a kernel size of 7 × 7, 
including 64 different kernels.

ResNet-50, a distinctive version of CNN, consolidates 
the remaining units created by [60]. ResNet-50 may be 
a 50-layer profound arrangement comprising one max 
pooling layer, one FC layer, and 48 convolutional layers. 
The essential advantage of ResNet-50 lies in its utilization 
of remaining units. These units successfully address the 
issue of vanishing angles experienced in prior profound 
systems. Within the ResNet-50 design, the remaining 
units are shown during each segment and serve as skip-
ping associations, as delineated in Fig. 4.

As you dive advance into the profundities, the angle 
either vanishes or gets to be exceedingly minute. In any 
case, as you proceed to slip, the slope lessens. To check 

this, the ResNet design consolidates associations and 
leftover units that bypass different convolutional layers 
(three in ResNet-50), successfully anticipating the angle 
from reducing.

The design of ResNet-50 comprises 50 convolutional 
layers. The primary layer has 64 channels with a meas-
ure of 7*7 and a walk of 2. The ensuing max pooling 
layer (walk = 2) reduces the convolution estimate. This 
is often taken after by three convolution layers with 64 
channels of estimate 1*1, 64 channels of measure 3*3, 
and 256 channels of measure 1*1. Three more convo-
lution layers are taken after. The following four con-
volutional layers are composed of 512 estimated 1*1 
channels, 128 estimated 3*3 channels, and 128 measure 
1*1 channels. The other layer comprises 1024 channels 
of estimate 1*1, which is rehashed six times, alongside 
256 channels of estimate 1*1, 256 channels of measure 
3*3, and 256 channels of estimate 1*1.

The ResNet-50 network’s last convolution layers 
include 2048 measured 1*1 channels, 512 estimated 
3*3 channels, and 512 estimated 1*1 channels. The best 
layer of this organization, known as the FC layer or nor-
mal pooling layer, comprises 1000 tests speaking to the 
ultimate highlight vector. It utilizes a "Softmax" enact-
ment work to classify images into different classes. In 
differentiation, RenNet101 utilizes the ImageNet data-
set to prepare its 101 layers, joining an add-up to 44.5 
million preparing parameters [61].

The authors presented EfficientNet [62], a CNN archi-
tecture that scales all measurements (profundity, breadth, 

Fig. 3  Building blocks of a convolutional neural network

Fig. 4  Visualizing the Power of Transfer Learning in Deep Networks
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and determination) through compound coefficients. They 
created a course of EfficientNet topologies that are both 
exact and compact, illustrating that it outperforms earlier 
models such as ResNet, Xception, NasNet, and Initiation 
in terms of computation. The network’s three measure-
ments are similarly scaled utilizing compound scaling, 
permitting the show to powerfully react to the input 
estimate.

Dataset
Three different folders were created from the dataset 
of Chest CT-Scan images: 70% were put aside for train-
ing, 20% for validation, and 10% were set aside for test-
ing. There are 613 images in the training dataset, 315 
in the validation dataset, and 72 in the testing dataset. 
Adenocarcinoma, Large Cell Carcinoma, Squamous Cell 
Carcinoma, and Normal CT Image were the four dis-
tinct categories into which the authors meticulously cat-
egorized a dataset of 1,000 DICOM lung cancer images 
from the LIDC-IDRI repository [63]. The data collection 
was divided into three categories: training (70%), valida-
tion (20%), and testing (10%). Specifically, it contains 613 
images in the training dataset and 315 and 72 images in 
the validation and test datasets. To accurately classify 

these images, the researchers used a robust deep learn-
ing model that included ResNet-50, ResNet-101, and 
EfficientNet-B3, with an emphasis on improving the 
prediction accuracy of lung cancer subtypes. The Fusion 
Model categorized Squamous Cells with 100% accuracy, 
whereas ResNet-50, EfficientNet-B3, and ResNet-101 all 
had 90% accuracy, with EfficientNet-B3 and ResNet-101 
having considerably lesser precision. It also used a data 
augmentation approach to improve the data’s resilience 
and reduce overfitting. after closely examining our mod-
els’ performance across 35 time periods. According to 
our research, ResNet-101 and EfficientNet-B3 outper-
form ResNet-50. The findings highlight the ability of deep 
learning algorithms to make more accurate lung cancer 
diagnoses, which might lead to improvements in medical 
care and perhaps lower death rates.

To distinguish between these kinds, the use of deep 
learning requires the use of a powerful classifier, as shown 
in Fig. 5 (a, b, c, d). This figure shows cases from differ-
ent categories in the prepared data sets, highlighting the 
similarities between them, such as adenocarcinoma and 
large cells. The main challenge encountered in this data 
set lies in the similarities observed in the classifications. 
In any case, the application of the information expansion 

Fig. 5  (a) Normal CT Image, b Large Cell Carcinoma, c Adenocarcinoma, d Squamous Cell Carcinoma
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method will be used to address this concern considering 
the limited measurement of the dataset. Figure 5 (a, b, c, 
d) shows illustrations of the three forms of lung cancer as 
well as a healthy case.

Results and discussion
Figure  6 presents a comprehensive diagram of the lung 
cancer determination strategy, highlighting the key 
methods included. At first, the lung CT imaging dataset 
is obtained. Hence, the preparation, approval, and test 
sets experience an arrangement of image-processing pro-
cedures to guarantee compatibility with the deep learn-
ing organized input layer. These strategies incorporate 
RGB change and scaling into a 224*224 arrangement.

To improve the preparation to prepare and empower 
the demonstration to memorize different levels of image 
corruption, in this manner anticipating overfitting and 
progressing the preparing to arrange, the preparing set 
is advance altered through information increase. This 
step includes turning, flipping, and zooming the lung CT 
image to create different forms of the same CT image.

Vertical flipping, zooming, and turning are utilized 
as modifiers for image control. The three models, spe-
cifically ResNet-50, ResNet-101, and EffecientNetB3, 
are at that point prepared and approved utilizing these 
procedures. These models were chosen based on their 
adequacy in image classification errands, with Effecient-
Net-B3, ResNet-50, and ResNet-101 being preva-
lent profound demonstrate sorts as shown in Table  2. 
EffecientNet-B3 is considered a low-computation pro-
found demonstration. To address the lung cancer con-
clusion issue, the exchange learning method is utilized 
to retrain the same pre-trained deep learning models. 
This includes consolidating extra layers into the insight-
ful plan.

The proposed deep learning models incorporates a 
crucial show, to be specific ResNet-50, ResNet-101, 
or EfficientNet-B3, taken after by a bunch normaliza-
tion layer, a thick layer with 256 neurons, and ’ReLU’ 
enactment work, a dropout layer with a 35% dropout 
rate, and a classification layer with a ’Softmax’ enact-
ment work and four neurons speaking to the targets. 
All models will be built utilizing the Adam optimizer 
with a learning rate of 0.01, as per the chosen prepa-
ration criteria. The connected misfortune work for this 
issue is the categorical cross-entropy because it could 
be a multi-class classification issue. The chosen execu-
tion metric is precision. The bunch estimate being uti-
lized is 50. To decide when to end the preparing handle, 
a resistance level of 5 is set, meaning that if the watched 
degree does not move forward after 5 preparing empha-
sis, the method will halt. The degree being followed for 
this reason is the approval precision. Furthermore, the 

learning rate decrease figure is 0.5.  The input images 
size 224 × 224-pixel were used by the authors to train 
the first convolutional layers of the ResNet model with 
a stride of two. Using ReLU activation functions, non-
linearity is integrated into the network design. With 
these designs, the images provided need to be appro-
priately downscaled to enable the feature extraction.

Using categorical cross-entropy as the loss function 
and accuracy as the selected performance indicator, 
the study takes use of multi-class classification. 50-per-
son batches are trained, and the training is terminated 
when the validation precision does not increase above a 
tolerance level of five rounds. Convergence is improved 
during training by reducing the learning rate by a factor 
of 0.5.

Each of the three transfer learning models 
(ResNet-50, ResNet-101, and EfficientNet-B3) uses a 
learning rate of 0.001 using the Adam-Optimizer while 
training the model to classify lung cancer by analys-
ing CT scan images. It was found through the study 
of learning behaviour that ResNet-50 has a saturation 
at epoch 32, whereas ResNet-101 and EfficientNet-B3 
may also have a saturation near epoch 32, depending 
on their convergence speed and complexity. Observing 
the learning rate saturation is vital for interpreting the 
training dynamics of the model and refining the train-
ing strategy.

The demonstrated ResNet-50-Dense-Dropout expe-
rienced preparing with the preparing set and was 
assessed utilizing the assessment set. After this, the 
prepared show was surveyed utilizing the test set and 
assessment measurements. Additionally, the dem-
onstrated ResNet-101-Dense-Dropout was prepared 
to utilize the preparation set and tried utilizing the 
assessment set. The prepared show was at that point 
assessed utilizing the test set and assessment measure-
ments. The Efficient-B3-Dense-Dropout demonstra-
tion was moreover prepared to utilize the preparing 
set and tried utilizing the assessment set. The prepared 
show was at that point put to the test utilizing the test 
set and appraisal criteria. The three preparing models 
were combined at the score level, and the combined 
demonstration was evaluated. Also, a gathering was 
made utilizing the stacking outfit strategy, comprising 
the ResNet-50-Dense-Dropout, ResNet-101-Dense-
Dropout, and Efficient-B3-Dense-Dropout models. The 
learned outfit demonstration was tried utilizing the test 
set and assessment measurements.

Experimental analysis
All models experience preparing to utilize the past 
cases. The preparing ages are utilized to calculate the 
exactness and misfortune for both the preparation and 
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Fig. 6  Fusion of three deep learning models for improved lung cancer diagnosis
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approval sets. Besides, the perfect approval esteem 
is decided for each circumstance. The exactness and 
misfortune bends are outwardly spoken to in Fig.  7. 
EfficientNet-B3 is a CNN architecture that belongs 
to the EfficientNet family, designed to achieve a bal-
ance between computational efficiency and model per-
formance. It is characterized by a compound scaling 

method that uniformly scales the network width, depth, 
and resolution. Specifically, the "B3" variant represents 
a particular set of scaling coefficients applied to the 
baseline architecture, resulting in a model that is com-
putationally efficient while maintaining competitive 
accuracy across various computer vision tasks. Efficient-
Net-B3 has been widely used in image classification, 

Fig. 7  a EfficientNetB3-Dense Dropout: Training Vs Validation Loss and Accuracy Curves. b ResNet-50-Dense Dropout: Training and Validation Loss 
and Accuracy Curves (c) ResNet-101-Dense Dropout: Training and Validation Loss and Accuracy Curves
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object detection, and other visual recognition tasks due 
to its effectiveness in achieving a favorable trade-off 
between model size and performance. The Efficient-
Net-B3 show accomplishes its best execution in terms 
of misfortune and exactness at ages 40 and 32, sepa-
rately. On the other hand, the ResNet-50 demonstrates 
its ideal execution at age 15, considering both exactness 
and misfortune. As for the ResNet-101 demonstration, 
ages 14 and 15 are recognized as the ideal focuses for 
precision and misfortune, individually.

The EfficientNetB3-Dense model is improved by drop-
out layers and exhibits notable differences in training, 
validation loss, and accuracy curves (Fig.  7 (a)). During 
training, the model gradually reduces loss and increases 
accuracy, indicating effective learning. However, in the 
validation set, performance plateaus or slight fluctua-
tions occur, indicating potential over-adjustment con-
cerns. Fine-tuning of hyperparameters or adjustment of 
dropout rates could be explored to improve generaliza-
tion performance. The hyperparameters taken into con-
sideration are shown in Table 4. The layered architecture 
for the transfer learning model incorporating ResNet-50, 
ResNet-101, and EfficientNet-B3 with the specified con-
figurations is shown in Table 5.

The ResNet-50-Dense Dropout model shows impres-
sive performance in terms of training and validation 
losses as well as accuracy curves (Fig.  7(b)). During the 
training phase, the model effectively minimizes losses 
and shows a constant decline over the years. At the same 
time, the accuracy of training has been consistently 
improved, indicating the ability of the model to learn and 
generalize training data.

In the validation phase, the model shows its robust-
ness by achieving low validation losses, indicating a good 
generalization to invisible data. The validation accuracy 
curve reflects training accuracy and confirms the model’s 
ability to perform well in new and varied samples.

The integration of dense dropouts into ResNet-50 
architecture seems to contribute positively to model 
training dynamics, improving generalization and overall 
performance.

The ResNet-101 training and validation loss curves 
show that the model minimizes error during training and 
can generalize to invisible data (Fig. 7 (c)). The decrease 
in the trend of the two curves indicates effective learn-
ing, but the gap between them may be expanding, indi-
cating overfitting. Table 6 provides a detailed description 
of the hyperparameters for each model, including train-
ing accuracy, testing accuracy, training loss, and testing 
accuracy.

The accuracy curve shows the correctness of the model 
in the prediction. As the accuracy of training increases, 
the model learns from the training data. At the same 
time, validation accuracy indicates the extent to which 
the model can be generalized to new invisible data. The 
combination of balanced growth in both is ideal, showing 
robust learning without over- or under-adaptation. It is 
essential to monitor convergence, divergence, or plateau 
signs in these curves, assess model training progress, and 
identify potential problems such as over-adaptation. Fig-
ure  7 delineates the preparation and approval precision 
and misfortune bends. Thick dropouts, such as Efficient-
NetB3-Dense-Dropout, ResNet-50-Dense-Dropout, and 
ResNet-101-Dense-Dropout, are a few of the models 
showcased.

Class 0 refers to normal CT-image, Class 1 to Large 
Cell Carcinoma, Class 2 to Adenocarcinoma, and Class 
3 to Squamous Cell Carcinoma in this study. Efficient-
Net-B3, delineated in Fig.  7, illustrates the foremost 
ideal merging among the models. It accomplished a 
test exactness of about 93.05%, an approval precision of 
94.99%, and a preparing exactness of 97.5%. In differen-
tiation, the ResNet-50 demonstration displayed prepar-
ing, approval, and test exactness scores of 97.5%, 75%, 

Table 4  Hypermeters consideration

Hyperparameter ResNet-50 ResNet-101 EfficientNet-B3

Input Image Size 224 × 224 pixels 224 × 224 pixels 224 × 224 pixels

Kernel Sizes 7 × 7, 1 × 1, 3 × 3, 5 × 5 7 × 7, 1 × 1, 3 × 3, 5 × 5 NA

Stride (Initial Convolution) 2 2 NA

Stride (Subsequent Convolution) 1 1 NA

Activation Function ReLU ReLU ReLU

Number of Layers 50 101 NA

Residual Blocks Yes Yes NA

Global Avg Pooling Yes Yes Yes

Compound Scaling No No Yes

Squeeze-and-Excitation Blocks No No Yes
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and 80.55% individually. Also, the ResNet-101 show 
showcased preparing, approval, and test precision scores 
of 100%, 94.99%, and 93.50% separately. Strikingly, the 
ResNet-101 demonstrates shown the most reduced pre-
paring, approval, and test misfortune, with values of 
0.0003, 0.11, and 0.47 individually. The perplexing disar-
ray network computations for the three prepared models 
and the score-level combination are displayed in Figs. 8 
(a) to 8 (c).

Deep learning models are used to categorize lung can-
cer into four classes: class 0 for normal CT scans, class 1 
for large cell carcinoma, class 2 for adenocarcinoma, and 
class 3 for squamous cell carcinoma. False Positives (FP) 
are when the model incorrectly predicts absence, False 

Negatives (FN) are when it incorrectly predicts presence, 
and True Positives (TP) are when the model correctly 
predicts the presence of lung cancer. These cases are all 
considered in the confusion matrix. Hence, A True Posi-
tive (TP) is when the model accurately predicts a positive 
outcome indicating the presence of lung cancer and the 
prediction aligns with objective truth. If the model accu-
rately predicted a negative outcome, indicating that there 
was no lung cancer, and the prediction was in line with 
the fundamental truth, this is known as a true negative 
(TN). False Positive (FP) depicts the conditions in which 
the model erroneously predicted a positive outcome indi-
cating the existence of lung cancer, yet the prediction 
contradicted the essential reality. Situations when the 

Table 5  Transfer learning model incorporating ResNet-50, ResNet-101, and EfficientNet-B3 with the specified configurations

Layer (type) Output Shape Param # Connected to

input_image (InputLayer) (224, 224, 3) 0 –

resnet50_base (Functional) (7, 7, 2048) 23,587,712 input_image[0][0]

resnet101_base (Functional) (7, 7, 2048) 42,658,176 input_image[0][0]

efficientnetb3_base (Functional) (7, 7, 1536) 10,783,535 input_image[0][0]

global_average_pooling2d Global (2048) 0 resnet50_base[0][0]

global_average_pooling 2d_1 Global (2048) 0 resnet101_base[0][0]

global_average_pooling2d_2 Global (1536) 0 efficientnetb3_base[0][0]

dense_layer_1 (Dense) (128) 262,272 global_average_pooling2d[0][0]

dense_layer_3 (Dense) (128) 262,272 global_average_pooling2d_1[0][0]

dense_layer_5 (Dense) (128) 196,736 global_average_pooling2d_2[0][0]

dropout_1 (Dropout) (128) 0 dense_layer_1[0][0]

dropout_3 (Dropout) (128) 0 dense_layer_3[0][0]

dropout_5 (Dropout) (128) 0 dense_layer_5[0][0]

dense_layer_2 (Dense) (64) 8256 dropout_1[0][0]

dense_layer_4 (Dense) (64) 8256 dropout_3[0][0]

dense_layer_6 (Dense) (64) 8256 dropout_5[0][0]

dropout_2 (Dropout) (64) 0 dense_layer_2[0][0]

dropout_4 (Dropout) (64) 0 dense_layer_4[0][0]

dropout_6 (Dropout) (64) 0 dense_layer_6[0][0]

output_layer (Dense) (4) 260 dropout_2[0][0]
dropout_4[0][0]
dropout_6[0][0]

output_activation (Activation) (4) 0 output_layer[0][0]
output_layer[1][0]
output_layer[2][0]

Table 6  Training and testing loss vs accuracy for efficient-B3, ResNet50, and ResNet101

Model Loss Accuracy Validation Loss Validation 
Accuracy

F1-Score Best Epoch Last Epoch

ResNet50 0.01 1 0.09 0.95 0.85 23 32

ResNet101 0.02 0.99 0.12 0.95 0.84 32 35

EfficientNet-B3 0.02 0.99 0.27 0.89 0.77 31 38
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model incorrectly predicts a negative outcome, indicating 
the absence of cancer, are known as false negatives (FN).

The EfficientNet-B3 outperforms all other person mod-
els in terms of results, as illustrated by Fig. 8, where the 
disarray matrix’s primary pivot contains most of the 
hits. Besides, the number of wrong positives and wrong 
negatives is lower compared to other models. The score-
level combination yields profoundly comparable results. 
Figure  8 outlines that both the combined and Efficient-
Net-B3 models show indistinguishable predominant 
execution, outflanking the isolated ResNet models. For 
a comprehensive execution comparison over all models 
and the four categories, refer to Table  7. In this study, 
class 0 normal CT-image, class 1 large cell carcinoma, 
class 2 adenocarcinoma, and class 3 squamous cell carci-
noma are identified.

Figure 8 portrayed the disarray lattice of the prepared 
models in the combination of ResNet and EfficientNet-B3 
at the score level, alongside the EfficientNet-B3-Dense-
Dropout demonstration, ResNet-50-Dense-Dropout 
demonstration, and ResNet-101-Dense-Dropout demon-
strate, were utilized in this examination.

An average accuracy of 94% is achieved with the Effi-
cientNet-B3-Dense-Dropout model, as Table  7 shows, 
indicating better performance. And even with con-
stant accuracy and F1-score, integrating all models at 
the score level improves precision by 1%. Further high-
lights the "Normal" category’s importance in obtaining 
the best accuracy across all classes, the "Squamous" cat-
egory’s highest recall, and the "Normal" category’s high-
est F1 score. ResNet-101 further performs better than 
ResNet-50 in a variety of real-world circumstances.

Table 7 provides a detailed comparison of the accuracy 
of the main models and illustrates how effective each 
model is in terms of time. ResNet-50 showed that it could 
analyse data in 12.49  s each iteration, but ResNet-101 
took a little longer 15.41 s to do the same. However, Effi-
cientNet-B3 showed a similar processing time, with an 
average of 15.32 s per iteration. Thorough time computa-
tions served as the foundation for these time measures. 
The chart also shows that the ensemble model outper-
formed all other individual models, achieving an excep-
tional accuracy rate of 99.44%.

The results of benchmarking for cancer diagnosis using 
different deep learning models are displayed in Table 8. 
[46] discovered increased AUC values, particularly for 
ISIC-2016, using a hybrid CNN on ISIC datasets. To 
improve breast cancer classification models, [52] use 
CNN on both public and private data. To precisely locate 
and classify breast cancer, [38] use Pa-DBN-BC to histo-
pathological images. On the LIDC-IDRI file, [27] dem-
onstrates the precise identification of lung nodules using 
CNNs. Using Inception V3 on genomic datasets, [56] 

Fig. 8  a Confusion Matrix EfficientNet-B3 with Dense Dropout (b) 
Confusion Matrix ResNet-50 with Dense Dropout (c) Confusion Matrix 
ResNet-101 with Dense Dropou
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classify hepatocellular carcinoma with high accuracy and 
AUC. Utilizing a fractional backpropagation MLP, [64] 
was able to surpass BP-MLP in the categorization of leu-
kaemia malignancy. An extraordinary rate of breast can-
cer detection was achieved by [65] by using the Modified 
Entropy Whale Optimization Algorithm to several data-
sets. Finally, better accuracy in the prediction of various 
forms of lung cancer is achieved in the current work by 
utilizing EfficientNet.

By contrast  with earlier state-of-the-art methods in 
the Comparative Analysis of Lung Cancer Prediction 
using the Deep Learning technique, Table  9 demon-
strates the performance and efficiency of the present 
advancement. The present advancement’s supremacy 
is highlighted by this comparison.  The superiority 
of the ensemble model over the EfficientNet-B3 and 
ResNet-101 models is evident, with an improvement 
of 6.44% and 18.44%, respectively. While the validation 
accuracy of the ensemble model is comparable to that 
of the EfficientNet-B3 and ResNet-101 models, its sig-
nificant enhancement lies in achieving a precision of 
99.44%.

Although there have been advancements in predict-
ing lung cancer, it is important to acknowledge the 
existing limitations in the current thinking [66]. These 
restrictions involve using small data sets and specific 
scientific models [67, 68].

To isolate the region of interest (ROI) or lung tissues 
from lung images, it is essential to use preprocessing 
techniques such as image segmentation [12].

The research paper emphasizes how important it is to 
compare analyses with contemporary models. It focuses 
on the modelling architecture, learning rate, model train-
ing, implementation platform, data set details, model 
architecture, preprocessing techniques, classification 
performance, and results. Utilizing deep learning mod-
els such as ResNet-50, ResNet-101, and EfficientNet-B3, 
the study makes use of the LIDC-IDRI-Speicher, which 
has 1.000 DICOM images of lung cancers. Seventy per-
cent of the data will be used for training, twenty percent 
for validation, and ten percent will be used for tests. 
ResNet-50, ResNet-101, EfficientNet-B3, and preprocess-
ing data augmentation techniques are used in the model 
architecture. In the classification of squamous cells, the 
fusion model achieves 100% absolute accuracy, whereas 
ResNet-50, EfficientNet-B3, and ResNet-101 show 90% 
accuracy. The training procedure takes place across 35 
epochs with a batch size of 32, using the Adam opti-
mizer with a learning rate of 0.001. The study makes use 
of 10,988,787 parameters and highlights the potential for 
advancements in medical care as well as a reduction in 
mortality rates related to lung cancer through improved 
lung cancer subtype prediction accuracy.

The authors advocate the utilization of EfficientNet-B3 
and ResNet-50–101, deep neural network algorithms, for 
the early detection of lung cancer. The study leverages 
pre-trained Convolutional Neural Networks (CNNs) and 
employs strategies on the LIDC DICOM datasets. All 
shape and texture images within the dataset are utilized 
for feature extraction. Notably, the automatic extraction 

Table 7  Comparison of dense dropout deep learning models for cancer detection performance

Model Precision

Adenocarcinoma Large-Cell Normal Squamous cell Average

EffiecientNetB3-Dense-Dropout 0.87 0.76 0.85 1.00 0.87

ResNet-50-Dense-Dropout 0.91 0.9 0.92 1.00 0.93

ResNet-101-Dense-Dropout 0.96 0.8 1.00 1.00 0.94

Score-level fusion model 0.92 0.9 0.92 1.00 0.94

Model Recall
Adenocarcinoma Large-Cell Normal Squamous cell Average

EffiecientNet-B3-Dense-Dropout 0.91 1.00 1.00 0.65 0.89

ResNet-50-Dense-Dropout 1.00 0.90 1.00 0.83 0.89

ResNet-101-Dense-Dropout 0.95 1.00 1.00 0.79 0.93

Score-level fusion model 1.00 1.00 1.00 0.75 0.94

Model F1-Score
Adenocarcinoma Large-Cell Normal Squamous cell Average

EffiecientNet-B3-Dense-Dropout 0.89 0.86 0.92 0.79 0.87

ResNet-50-Dense-Dropout 0.95 0.9 0.96 0.91 0.87

ResNet-101-Dense-Dropout 0.96 0.89 1 0.88 0.93

Score-level fusion model 0.96 0.95 0.96 0.86 0.93



Page 18 of 21Kumar et al. BMC Medical Imaging           (2024) 24:63 

Ta
bl

e 
8 

Be
nc

hm
ar

ki
ng

 o
f d

ee
p 

le
ar

ni
ng

 m
od

el
s 

fo
r c

an
ce

r d
et

ec
tio

n

St
ud

y
Fi

el
d 

de
sc

ri
pt

io
n

D
L 

m
od

el
D

at
as

et
Re

su
lts

[2
7]

Ex
ac

t a
sp

ira
to

ry
 k

no
b 

di
sc

ov
er

y
Co

nv
ol

ut
io

na
l N

eu
ra

l N
et

w
or

ks
 (C

N
N

s)
LI

D
C

-ID
RI

 d
at

as
et

92
.7

%
 d

is
tr

ib
ut

io
n 

pr
ob

ab
ili

ty
 w

ith
 1

 b
ad

 p
os

i-
tiv

e 
pe

r fi
lte

r a
nd

 9
4.

2%
 d

is
tr

ib
ut

io
n 

pr
ob

ab
ili

ty
 

w
ith

 2
 b

ad
 p

os
iti

ve
s 

pe
r fi

lte
r f

or
 lu

ng
 n

od
ul

es
 

ov
er

 8
88

 e
xa

m
in

at
io

ns
 in

 th
e 

LI
D

C
-ID

RI
 d

at
as

et
. 

Th
e 

us
e 

of
 M

IP
 im

ag
in

g 
in

cr
ea

se
s 

th
e 

lik
el

ih
oo

d 
of

 in
di

ca
tio

n 
an

d 
re

du
ce

s 
th

e 
nu

m
be

r o
f f

al
se

 
po

si
tiv

e 
re

su
lts

 w
he

n 
lo

ca
tin

g 
pu

lm
on

ar
y 

ly
m

ph
 n

od
es

 p
ro

gr
am

m
ed

 in
to

 th
e 

C
T 

in
te

r-
fa

ce

[3
9]

Pa
-D

BN
-B

C
D

ee
p 

Be
lie

f N
et

w
or

k 
(D

BN
)

Th
e 

sl
id

e 
hi

st
op

at
ho

lo
gy

 im
ag

e 
da

ta
se

t 
fro

m
 fo

ur
 d

is
tin

ct
 c

oh
or

ts
 a

ch
ie

ve
d

86
%

 a
cc

ur
ac

ie
s 

in
 b

re
as

t c
an

ce
r l

oc
at

io
n 

an
d 

cl
as

si
fic

at
io

n,
 s

ur
pa

ss
in

g 
pr

ev
io

us
 d

ee
p 

le
ar

ni
ng

 s
tr

at
eg

ie
s

[5
6]

H
ep

at
oc

el
lu

la
r c

ar
ci

no
m

a 
(H

CC
)

In
ce

pt
io

n 
V3

G
en

om
ic

 D
at

a 
Co

m
m

on
s 

D
at

ab
as

es
96

.0
 a

cc
ur

ac
y 

fo
r k

in
d 

an
d 

da
ng

er
ou

s 
cl

as
si

fic
a-

tio
n—

89
.6

 a
cc

ur
ac

y 
fo

r t
um

or
 s

ep
ar

at
io

n 
(w

el
l, 

di
re

ct
, a

nd
 d

es
tit

ut
e)

—
Ex

pe
ct

at
io

n 
of

 1
0 

m
os

t 
co

m
m

on
 c

ha
ng

ed
 q

ua
lit

ie
s 

in
 H

CC
—

O
ut

si
de

 
AU

C
s 

fo
r 4

 q
ua

lit
ie

s 
(C

TN
N

B1
, F

M
N

2,
 T

P5
3,

 
ZF

X4
) e

xt
en

di
ng

 fr
om

 0
.7

1 
to

 0
.8

9—
U

til
iz

e 
of

 c
on

vo
lu

tio
na

l n
eu

ra
l s

ys
te

m
s 

to
 h

el
p 

pa
th

ol
-

og
is

ts
 in

 c
la

ss
ifi

ca
tio

n 
an

d 
qu

al
ity

 tr
an

sf
or

m
a-

tio
n 

di
sc

ov
er

y 
in

 li
ve

r c
an

ce
r

[4
6]

D
er

m
o 

Ex
pe

rt
H

yb
rid

-C
N

N
IS

IC
-2

01
6,

 IS
IC

-2
01

7,
 IS

IC
-2

01
8

AU
C

: 0
.9

6,
 0

.9
5,

 0
.9

7;
 Im

pr
ov

ed
 A

U
C

 b
y 

10
.0

%
 

(IS
IC

-2
01

6)
 a

nd
 2

.0
%

 (I
SI

C
-2

01
7)

; O
ut

pe
rf

or
m

ed
 

by
 3

.0
%

 in
 b

al
an

ce
d 

ac
cu

ra
cy

 (I
SI

C
-2

01
8)

[6
4]

Le
ar

ni
ng

 A
lg

or
ith

m
 fo

r A
da

pt
iv

e 
Si

gn
al

 
Pr

oc
es

si
ng

Fr
ac

tio
na

l B
ac

kp
ro

pa
ga

tio
n 

M
LP

Le
uk

em
ia

 c
an

ce
r c

la
ss

ifi
ca

tio
n

O
ut

pe
rf

or
m

ed
 B

P-
M

LP
 in

 c
on

ve
rg

en
ce

 ra
te

 
an

d 
te

st
 a

cc
ur

ac
y

[6
5]

Br
ea

st
 C

an
ce

r D
is

co
ve

ry
 a

nd
 C

la
ss

ifi
ca

tio
n

M
od

ifi
ed

 E
nt

ro
py

 W
ha

le
 O

pt
im

iz
at

io
n 

A
lg

or
ith

m
 (M

EW
O

A
)

In
 th

e 
br

ea
st

, M
IA

S,
 C

BI
S-

D
D

SM
IN

 b
re

as
t: 

99
.7

%
, M

IA
S:

 9
9.

8%
, C

BI
S-

D
D

SM
: 

93
.8

%

Cu
rr

en
t S

tu
dy

A
de

no
ca

rc
in

om
a,

 E
xp

an
si

ve
 C

el
l C

ar
ci

no
m

a,
 

Sq
ua

m
ou

s 
Ce

ll 
Ca

rc
in

om
a,

 T
yp

ic
al

A
de

no
ca

rc
in

om
a,

 e
xp

an
di

ng
 c

el
l c

ar
ci

-
no

m
a,

 s
qu

am
ou

s 
ce

ll 
ca

rc
in

om
a

10
00

 im
ag

es
 fr

om
 th

e 
Ka

gg
le

 lu
ng

 c
an

ce
r 

da
ta

se
t

Be
st

 a
cc

ur
ac

y 
fo

r h
um

an
s 

(E
ffi

ci
en

tN
et

 9
3%

) 
A

cc
ur

ac
y 

99
.4

4%
 s

yn
th

et
ic

 a
cc

ur
ac

y



Page 19 of 21Kumar et al. BMC Medical Imaging           (2024) 24:63 	

of shape features is facilitated by the capabilities of Effi-
cientNet-B3 and ResNet, while AlexNet is employed to 
prepare the highest resolution.

The research emphasizes the significance of evaluating 
the network input layer and the number of initial layers 
to enhance the efficiency and accuracy of the proposed 
system. Furthermore, the article highlights the success-
ful completion of all training procedures, including lung 
separation and elimination processes. The system’s perfor-
mance is rigorously assessed, achieving 100% in sensitiv-
ity, precision, and accuracy, with low false rates. The study 
underscores the importance of further analysis, particu-
larly in methods like segmentation, which may necessitate 
a comprehensive evaluation of the entire image dataset.

The proposed diagnostic approach holds promise in 
providing elite medical professionals with precise and 
timely diagnostic impressions. The robust performance 
metrics and successful completion of various procedures 
underscore the potential for the proposed system to con-
tribute significantly to early lung cancer detection, paving 
the way for enhanced medical diagnoses in the future.

Conclusion and future scope
In conclusion, this study examined the use of deep 
learning models for precise lung cancer diagnosis and 
classification, including ResNet-50, ResNet-101, and 
EfficientNet-B3. Extensive analysis of experimental data 
and cross-validation with prior research demonstrated 
the efficacy of the proposed Fusion Model, particularly 
in accurately diagnosing Squamous Cell Carcinoma. 
The remarkable 92% increase in prediction accuracy of 
the combined model demonstrates how revolutionary 

it may be for the identification and management of lung 
cancer. These findings highlight the potential of deep 
learning algorithms to offer tailored treatment regimens 
and ultimately reduce the mortality rate from lung can-
cer. To enhance patient outcomes and advance medical 
imaging capabilities, forthcoming endeavours ought to 
concentrate on refining model architectures, broaden-
ing datasets, and encouraging multidisciplinary partner-
ships. In the future, deep learning models can be used in 
a wide range of research projects and using larger data-
sets. Additionally, it was noted that obtaining knowledge 
and achieving certain scores was connected to improving 
health and lowering lung cancer death rates by dealing 
with the problem of inaccurate precision.
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