
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Zhuang et al. BMC Medical Imaging          (2023) 23:205 
https://doi.org/10.1186/s12880-023-01167-3

BMC Medical Imaging

*Correspondence:
Dianning He
hedn@bmie.neu.edu.cn
1College of Medicine and Biological Information Engineering, 
Northeastern University, Shenyang, China
2Department of Radiology, University of Chicago, 5841 S Maryland Ave, 
Chicago, IL 60637, USA

Abstract
Background  Prostate cancer (PCa) is one of the most common cancers in men worldwide, and its timely diagnosis 
and treatment are becoming increasingly important. MRI is in increasing use to diagnose cancer and to distinguish 
between non-clinically significant and clinically significant PCa, leading to more precise diagnosis and treatment. The 
purpose of this study is to present a radiomics-based method for determining the Gleason score (GS) for PCa using 
tumour heterogeneity on multiparametric MRI (mp-MRI).

Methods  Twenty-six patients with biopsy-proven PCa were included in this study. The quantitative T2 values, 
apparent diffusion coefficient (ADC) and signal enhancement rates (α) were calculated using multi-echo T2 images, 
diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI), for the annotated region 
of interests (ROI). After texture feature analysis, ROI range expansion and feature filtering was performed. Then 
obtained data were put into support vector machine (SVM), K-Nearest Neighbor (KNN) and other classifiers for binary 
classification.

Results  The highest classification accuracy was 73.96% for distinguishing between clinically significant (Gleason 3 + 4 
and above) and non-significant cancers (Gleason 3 + 3) and 83.72% for distinguishing between Gleason 3 + 4 from 
Gleason 4 + 3 and above, which was achieved using initial ROIs drawn by the radiologists. The accuracy improved 
when using expanded ROIs to 80.67% using SVM and 88.42% using Bayesian classification for distinguishing between 
clinically significant and non-significant cancers and Gleason 3 + 4 from Gleason 4 + 3 and above, respectively.

Conclusions  Our results indicate the research significance and value of this study for determining the GS for prostate 
cancer using the expansion of the ROI region.
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Background
Prostate cancer is among the most common cancers in 
men worldwide. The challenge in diagnosing prostate 
cancer (PCa) is not only to detect cancers but also to 
distinguish between non-clinically significant and clini-
cally significant PCa. The current international standard 
for assessing the malignancy of prostate cancer is Glea-
son score (GS). GS is a staging method most commonly 
used in prostate cancer histology to assess aggressiveness 
with higher GS indicating more biologically aggressive 
cancer. In 2014, the International Society of Urological 
Pathology (ISUP) released supplementary guidance and 
an updated grading system for prostate cancer, termed 
the Grade Groups. This ISUP grading system is struc-
tured into five distinct grades: grade 1 (GS ≤ 3 + 3), grade 
2 (GS 3 + 4), grade 3 (GS 4 + 3), grade 4 (GS 4 + 4, 3 + 5, 
5 + 3) and grade 5 (GS 9–10). However, GS is determined 
using invasive procedures such as biopsy or after surgery 
and conventional MRI parameters haven’t been success-
ful in determine the Gleason score. Recent AI (Artificial 
Intelligence) approach was shown some promise but 
better methods are needed [1]. The current diagnostic 
method for PCa is to achieve a histopathological diagno-
sis by puncture biopsy, which results in under-detection 
of clinically significant PCa and undegrading of cancer 
aggressiveness/Gleason score compared to prostatec-
tomy [2]. Moreover, studies have shown that MRI is bet-
ter at PCa diagnosis than transrectal ultrasound (TRUS) 
biopsies [3]. MRI is increasingly being used to diagnose 
prostate cancer. Multi-parametric MRI (mp-MRI) plays a 
pivotal role in the diagnosis of PCa by visualizing tumors 
within the prostate, increasing treatment options, and 
reducing unnecessary biopsies [4]. The core compo-
nents of mp-MRI include T2-weighted imaging (T2W), 
diffusion-weighted imaging (DWI), and dynamic con-
trast-enhanced MRI (DCE-MRI), each of which provides 
distinct information [5]. Current diagnostic practice for 
mp-MRI follows the Prostate Imaging Reporting and 
Data System: Version 2.1 (PI-RADS v2.1) [6]. However, 
PI-RADS still has limited ability to detect and distinguish 
between non-clinically and clinically significant PCa, 
mainly due to the variability among readers [7].

Aggressiveness of PCa is associated with GS. It is 
important to distinguish the non-clinically significant 
cancers (Gleason 3 + 3, ISUP grade 1) from clinically sig-
nificant cancers (Gleason 3 + 4 and above, ISUP grade ≥ 2), 
and to determine whether a patient should receive con-
servative treatment, such as active surveillance or local 
therapy, or surgical resection to improve survival and 
minimize the risk of missing the optimal treatment time 
or overtreatment. In addition, it is extremely important 
to differentiate between Gleason 3 + 4 (ISUP grade 2) and 
Gleason 4 + 3 and above (ISUP grade ≥ 3). In clinical sig-
nificance, Gleason 3 + 4 (ISUP grade 2) represents a major 

differentiation score of 3, when the tumor is confined 
to the prostate gland, while Gleason 4 + 3 (ISUP grade 
3) represents a major differentiation score of 4, which 
means that the tumor has traversed the peritoneum of 
the prostate gland and local lymph node metastasis and 
distant metastasis have occurred. Distinguishing between 
them therefore has a significant impact on treatment 
decisions and patient prognosis. Reese et al. found that 
these two scores have different biological aggressiveness 
with different proportions of tumors grades in both, lead-
ing to different biological behaviors of the tumor and 
prognosis of the patient [8]. However, as the lesions are 
very similar in terms of appearance and parametric fea-
tures, it is difficult to distinguish between the two with 
the naked eye alone [9].

Radiomics using mp-MRI for PCa diagnosis is being 
actively investigated for lesion detection and classifica-
tion. The lesion detection and classification approach typ-
ically analysis of the textural parameters of the lesion to 
assess its benignity and malignancy. Lopes et al. screened 
image features from DCE-MRI and DWI of prostate can-
cer for training and validation of texture features in the 
images to diagnose prostate cancer region size and Glea-
son score of prostate cancer [10]. Khalvati et al. designed 
a radiomics-based automated method for PCa detection 
using a support vector machine (SVM) model [11]. How-
ever, the recent PROSTATEx-2 Challenge highlighted 
that a lot of the work using radiomics hasn’t been able 
to achieve good results in predicting Gleason score for 
mp-MRI images, with only 2 out of 43 methods showing 
superiority to random guessing [1].

Common approaches to utilize mp-MRI in radiomics 
are to extract texture features in region of interest (ROI) 
and calculate texture parameters, and to assess the benig-
nity or malignancy of the lesion based on the obtained 
parameters [12]. However, there may be textural features 
that are not useful or counterproductive to the assess-
ment of benignity or malignancy, and since mp-MRI 
underestimates tumor volume, it is likely that the radi-
ologist physician to outlines a small ROI compared to 
the actual tumor size [13]. These ROIs traced by radiolo-
gists based on MRI images are normally very conserva-
tive. The tumour volume delineated using MRI itself has 
shown to be highly underestimated when compared to 
the tumor volume on pathology slides [13]. Therefore, 
enlarged ROIs based on what the radiologists draw on 
MRI may be a better representation of the actual tumor 
on pathology to capture the tumor heterogeneity and to 
improve diagnosis using texture analysis. Therefore, we 
use machine learning and statistical methods for effec-
tive feature screening to obtain feature parameters that 
reflect tumor heterogeneity and lesion characteristics. 
The ROI was appropriately expanded to improve the 
accuracy of judging benign and malignant. In addition, 
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most of the work has been done using biopsy as the refer-
ence standard. However, numerous studies have reported 
that there is undegrading of cancer aggressiveness/Glea-
son score on biopsy compared to prostatectomy [14–16]. 
Therefore, we used radical prostatectomy as the reference 
standard for training and validation of our methods.

Here, we presented an artificial intelligence-based 
method for determining the Gleason score for prostate 
cancer using tumour heterogeneity to predict the GS 
of PCa by imaging histology. We first trained and pre-
dicted for non-clinically significant (Gleason 3 + 3, ISUP 
grade 1) and clinically significant cancers (Gleason 3 + 4 
and above, ISUP grade ≥ 2), followed by aggressiveness of 
clinically significant cancers (Gleason 3 + 4 versus Glea-
son 4 + 3 and above, ISUP grade 2 versus ISUP grade ≥ 3)). 
In addition, because the size of the ROI of mp-MRI 
is usually smaller than the actual lesion size on ground 
truth pathology, the expanded ROI area was used to get a 
better understanding of tumor heterogeneity and predict 
its GS more accurately.

Methods
Patients
This study involved a retrospective analysis of prospec-
tively collected data, from 30 patients with known pros-
tate cancer who underwent MRI before undergoing 
radical prostatectomy in hospital at the research cen-
ter between February 2014 and February 2017. None of 
these patients had recently undergone radiotherapy or 
hormone replacement therapy, so there was no impact on 
MR images. The imaging tools and methods used varied 
between patients as their conditions were different from 
each other. As quantitative parameters such as appar-
ent diffusion coefficient (ADC) and T2 values depended 
on imaging parameters such as b-values and TE used, 
the group with the highest number of patients using the 
same imaging modality was selected for this project [17].

MR data
MRI data were acquired on a Philips Healthcare Achieva 
3-T scanner with an endorectal coil. The endorectal coil 
was used, as it has better SNR and has been shown to 
improve cancer diagnosis, even though the current trend 
is to not use it due to cost and patient comfort [18]. Mp-
MRI protocols included axial and coronal T2W, multi-
echo T2-weighted images, DWI and DCE-MRI. MRI 

parameters were consistent in all patients. The MRI 
parameters used are described in detail in Table 1, which 
are compliant with PIRADS recommendations.

From the mp-MRI images, we calculated the DCE-MRI 
signal enhancement rates (α), ADC and T2 on a per-pixel 
basis. Current diagnostic practice using mp-MRI rec-
ommended the PI-RADS v2.1 [6], is conducted through 
T2W, DWI, and DCE-MRI. Prior studies have also dem-
onstrated the effectiveness of T2 values, ADC, and α in 
distinguishing lesions [19]. Therefore, we selected these 
three quantitative parameters for the analysis.

The value of the ADC was calculated from DWI using 
Eq. 1.

	 S = S0exp(−b · ADC)� (1)

where b is the diffusion weighting factor, S0 is the un-
diffused spin-echo signal, and S is the diffusion-weighted 
attenuated spin-echo signal. The b values of this experi-
ment are 0, 50, 100, 150, 990, 1500 s/mm2.

The value of α was calculated from DCE-MRI with 
temporal resolution of 8.3  s using the empirical mathe-
matical model according to Eq. 2 [19].

	 PSE (t) = A(1 − e−αt)e−βt � (2)

where PSE is the percentage of signal enhancement, A is 
the amplitude of PSE, α is the rate of signal enhancement, 
and β is the elution rate. Α is chosen as it was found to 
have the highest diagnostic performance among the 
DCE-MRI parameters in our previous work [19].

Finally, the value of T2 was calculated from multi-echo 
SE imaging according to Eq. 3.

	 S = S0exp(−TE/T2)� (3)

where TE is the echo time, S is the signal strength cor-
responding to different echo times, and S0 is the sig-
nal strength at the moment when TE = 0. The TE of this 
experiment is from 30 ms to 270 ms with 30 ms interval.

The data in this study was processed using the same 
workstation for computing (Intel Core 5800  H proces-
sor, Nvidia 1060Ti graphics card, 8GB RAM), and the 
running environment was Matlab2019b (MathWorks, 
Natick, MA, USA).

Table 1  MRI parameters
Imaging type Pulse sequence FOV

(mm2)
Matrix size In-Plane resolution (mm) TR/TE (ms) Slice thickness

(mm)
Flip angle (°)

T2 map TSE 160 × 160 210 × 210 0.75 × 0.75 7850/30–270 3 90
DWI SE EPI 120 × 120 120 × 120 1.5 × 1.5 6093/80 3 90
DCE-MRI T1-weighted FFE 250 × 385 200 × 308 1.25 × 1.25 4.8/3.3 3 10
SE spin echo, TSE turbo spin echo, DCE dynamic contrast-enhanced, EPI echo-planar imaging, FFE fast field echo
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Histopathology and regions of interest delineation
The entire prostate gland was submerged in formalin 
after radical prostatectomy, then serially sectioned in a 
plane similar to the MR images. After being embedded in 
paraffin and stained with H&E, the whole prostate tissue 
sections were subsequently fixed on whole mount glass 
slides. An experienced pathologist (15 years of expertise) 
examined these tissue sections for prostate adenocarci-
noma, and all malignant tumors were noted on the histol-
ogy slides. The size of the case was based on the maximal 
extent of each lesion on the section, which was assigned 
a Gleason score and pathological stage. We identified all 
lesions with a maximal size greater than 5 mm that were 
included in the analysis after analyzing the tissue sec-
tions from the prostatectomy. For the purpose of to cor-
relate the sections with the MR images, the sections were 
later imaged and digitalized using a bright field scanning 
microscope.

ROI marking
The axial T2-weighted images were used as a standard to 
co-aligned images from mp-MRI sequences using rigid 
registration in the open-source medical imaging plat-
form  3D Slicer and thus matched to the corresponding 
histological sections. The ROI of the cancer was drawn 
by the radiologist from registered whole mount histology 
and T2W imaging and applied to all calculated maps. The 

same shape and size were maintained using the 3D Slicer 
using the previously studied method [20]. Figure 1 shows 
three examples of (top to bottom row) images of the 
pathology, ADC, T2 and α of Gleason 3 + 3 (ISUP grade 
1), Gleason 3 + 4 (ISUP grade 2), and Gleason 4 + 3 (ISUP 
grade 3) lesions with pathological finding.

Texture feature extraction
Texture features were extracted from the gray level co-
occurrence matrix (GLCM) of the ROI. The GLCM is 
defined by the joint probability density of pixels at two 
locations, which reflects not only the distribution char-
acteristics of the greyscale levels, but also the location 
distribution characteristics between pixels of the same 
greyscale level. GLCM is the basis for calculating image 
texture features. Certain parameters are constructed 
based on its texture classification features, reflect the 
imaging characteristics of different prostate tissues. The 
four directions of 0°, 45°, 90° and 135° were chosen to gen-
erate the grey level co-occurrence matrix and six texture 
features were calculated, including Energy, Entropy, Con-
trast, Correlation, Homogeneity and Inverse Differential 
Moment (IDM). Due to the need for feature extraction of 
the entire prostate region in this study, the conclusions 
from this study can only be applied during the applica-
tion process to imaging cases that are also consistent 
with MRI sequences covering the entire prostate region.

Fig. 1  Three examples of images of the pathology, ADC(μm2 /ms), T2(ms) and α(%/s): a ROI of pathological image, b ROI of ADC image, c ROI of T2 image, 
d ROI of α image. The top, middle and bottom rows of the figure show the pathological results of Gleason 3 + 3 (ISUP grade 1), Gleason 3 + 4 (ISUP grade 
2), and Gleason 4 + 3 (ISUP grade 3) respectively, and the predicted result after the method of this study are consistent with pathological results
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Their average in the four directions was then taken as 
the texture parameter for ROI. After calculating the ROI 
characteristic parameters of ADC, T2 and α respectively, 
the three maps of Energy, Entropy, Contrast, Correlation, 
Homogeneity and IDM are stored in a mat file along with 
the corresponding Gleason score for subsequent use.

Energy is a measure of the homogeneity of the distribu-
tion of grey levels in an image. When the heterogeneity of 
the tumour is low, the image will have a relatively homo-
geneous distribution of grey levels in local areas. Entropy 
is a measure of the randomness of the amount of infor-
mation and the distribution of greyscales in an image. A 
higher entropy value in an image indicates a higher het-
erogeneity of the tumour. Contrast reflects a measure of 
the variation of greyscale in an image, with larger dif-
ferences in local pixel greyscale values indicating higher 
heterogeneity of the tumour. Correlation is a parameter 
used to measure how similar the grey values in an image 
are in rows or columns. The smaller the correlation, the 
higher the heterogeneity of the image. Homogeneity 
reflects the distribution pattern of the image’s greyscale. 
The smaller the homogeneity, the higher the heterogene-
ity of the tumour. IDM reflects the variability of the tex-
tures on the image. The smaller the contrast, the higher 
the heterogeneity of the tumour [21].

Expansion of ROI size
As radiologists usually mark the ROI on mp-MRI to a 
smaller extent than the actual lesion, an inflation opera-
tion is performed to expand the ROI size and thus obtain 
more accurately estimate of tumor heterogeneity and 
more feature parameters to test whether the accuracy 
could improve in subsequent classification results. The 
expansion was performed using square structural ele-
ments of 2 × 2 size. Although the radiologist marked ROI 
size is smaller than the actual lesion, the shape of the ROI 
is representation of the lesion outline. Therefore, when 
expanding the ROI in this experiment, only square struc-
tural elements are used, which is equivalent to propor-
tionally expanding the ROI region without changing its 
original shape. The 2 × 2 size can be inflated by one pixel 

so that the best classification results are not lost due to 
the oversized structural elements. Each ROI is initially 
expanded by 1, 2 and 3 times respectively, before see-
ing if it needs to be expanded by 4 turns depending on 
the trend of the results. Figure 2 illustrates the ROI size 
changes: (a) the original ROI size, (b) the ROI size after 1 
turn of expansion, (c) the ROI size after 2 turns of expan-
sion, and (d) the ROI size after 3 turns of expansion.

Radiomics analysis
First of all, feature selection was performed using the 21 
texture features. In this study the ReliefF function is used 
for feature selection by the K-Nearest Neighbor (KNN) 
algorithm. Texture features are given different weights 
based on their ability to discriminate between close sam-
ples and their relevance. A weight > 0 indicates a strong 
influence on tumour heterogeneity, while a weight ≤ 0 
indicates no influence or a negative influence on tumour 
heterogeneity. Parameters that had a small effect on 
tumour heterogeneity or a negative influence factor (i.e., 
no effect) were discarded, leaving only the feature param-
eters with a large influence factor.

Secondly, the LIBSVM toolbox (an effective, fast and 
easy to use package for SVM pattern recognition and 
regression), KNN function and Bayesian function were 
used for machine learning. The reason for choosing these 
three classifiers is: (i) they are very classical in the field of 
machine learning; (ii) previous studies on the classifica-
tion of PCa GS by using machine learning used these clas-
sifiers and got good results [22]. These studies did not use 
mp-MRI but single type of MRI, so we want to use these 
three classifiers to classify GS by mp-MRI [23]. the opti-
mal parameters were found in the LIBSVM parameter 
selection after experimenting with changing the values of 
C, G and T. C is the loss function, the main function is to 
set the parameters of C-SVC, E-SVR and V-SVR. It is C 
that determines the three different types of SVM appli-
cable to a classification or regression problem. G is the 
setting of gamma function in the kernel function, mainly 
for polynomial G is the setting of the gamma function in 
the kernel function, mainly for the polynomial, rbf and 

Fig. 2  Original ROI and ROI after 1, 2 and 3 times inflated. a-d, ADC map with a GS of Gleason 3 + 4 (ISUP grade 2). The original ROI was predicted to be 
Gleason 3 + 3 (ISUP grade 1), the inflated once ROI was predicted to be Gleason 3 + 4 (ISUP grade 2), the inflated twice ROI was predicted to be Gleason 
3 + 4 (ISUP grade 2) and the inflated 3 times ROI was predicted to be Gleason 3 + 3 (ISUP grade 1)

 



Page 6 of 11Zhuang et al. BMC Medical Imaging          (2023) 23:205 

sigmoid kernel functions, T is the type of kernel function, 
the types of kernel functions available are linear kernel 
function, polynomial kernel function, RBF kernel func-
tion and sigmoid kernel function, the best result in this 
experiment is the RBF kernel function. The KNN classi-
fier was set to the number of nearest neighbors to 5 using 
“Euclidean” as the metric distance, and set the “nearest” 
rule to classify the samples. The Bayesian classifier is set 
up to model the data using a normal distribution and 
uses a priori probability and Cost of misclassification to 
help with classification.

In this study, the data was grouped and trained based 
on Gleason scores of 3 + 3, 3 + 4, and 4 + 3 (ISUP grade 
1,2,3) and above. The triple classification was performed 
using SVM, KNN, and Bayesian. SVM uses a one-versus-
one approach for classification, KNN triple classifies the 
data by counting the percentage of nearest neighboring 
categories, and Bayesian using normal distribution can 
also directly triple classify the data. These three classifiers 
are utilized for binary classification between clinical sig-
nificance (Gleason 3 + 4 and above, ISUP grade ≥ 2) and 
non-clinical significance (Gleason 3 + 3, ISUP grade 1), 
and for binary classification between Gleason 3 + 4 (ISUP 
grade 2) and Gleason 4 + 3 and above (ISUP grade ≥ 3).

Sample augmentation
Due to unbalanced the number of samples from differ-
ent GSs in training and testing with machine learning, 
the synthetic minority oversampling technique (SMOTE) 
was used for sample improvement. SMOTE uses k-near-
est neighbor algorithm to oversample the class that has a 
smaller number of samples in performing the classifica-
tion processing so that both classes have the same num-
ber of samples. In the experiment, SMOTE was applied 
to the training set after a 5-fold cross-validation and sep-
arated from the test set to avoid data leakage.

Statistics analysis
Statistical analysis was performed using Matlab2019b 
(MathWorks, Natick, MA, USA). First, we used an analy-
sis of variance (ANOVA) to determine whether texture 
features in the GS triple classification had a significant 
effect on GS grouping (p < 0.05). After feature selection 
of texture features, we used a two-tailed t-test to calcu-
late whether there was a significant feature between the 
screened texture features and the GS group (p < 0.05). 
Then, means and standard deviations were calculated 
for clinical significance (Gleason 3 + 4 and above, ISUP 
grade ≥ 2) and non-clinical significance (Gleason 3 + 3, 
ISUP grade 1), Gleason 3 + 4 (ISUP grade 2), and Gleason 
4 + 3 and above (ISUP grade ≥ 3).

Considering the number of experimental samples, this 
experiment uses the number of training set: number of 
test set = 8:2, so the experiment is conducted using the 

5-fold cross-validation method, in which the data are 
randomly divided into five subsets of equal size. Four 
subsets are taken as the training set and one subset as the 
test set each time, and the accuracy of predicting GS is 
reported as the average obtained across 5-folds, which 
can ensure the stability of the results and eliminate the 
influence of randomness.

Results
Patient characteristics
Twenty-seven of the 30 patients received imaging modal-
ities including T2-weighted imaging, DWI with the same 
b-value, T2 mapping with the same TE and DCE-MRI, 
meeting the criteria for inclusion. However, one pat-
ent’s data was further excluded because his DCE-MRI 
sequence did not cover the entire prostate region. A total 
of 26 patients’ data were ultimately used for the trial. In 
these cases, according to the pathologist labeled, 13 Glea-
son 3 + 3 (ISUP grade 1); 29 Gleason 3 + 4 (ISUP grade 
2); 7 Gleason 4 + 3 (ISUP grade 3); 1 Gleason 4 + 5 (ISUP 
grade 5) cancer lesion.

Classification by texture feature parameters
Figure 3 shows the results of classify the ROIs with three 
different Gleason classifications: Gleason 3 + 3 (ISUP 
grade 1), Gleason 3 + 4 (ISUP grade 2), and Gleason 4 + 3 
and above (ISUP grade ≥ 3), using three classifiers, KNN, 
SVM and Bayesian. There are moderate accuracy using 
the above texture parameters to bifurcate clinically sig-
nificant (Gleason 3 + 4 and above, ISUP grade ≥ 3)) and 
non-clinically significant (Gleason 3 + 3, ISUP grade 
1), Gleason 3 + 4 (ISUP grade 2) and Gleason 4 + 3 and 
above (ISUP grade ≥ 3) respectively by SVM, KNN and 
Bayesian.

We performed an analysis of variance (ANOVA) on the 
21 texture features for performing the three classifica-
tions, and a total of eight features such as ADC, ALPHE, 
and ADC-homogeneity had a significant effect on the 
classification (p < 0.05). Consequently, we performed fea-
ture selection for 21 feature parameters, and the weight 
values of each texture feature can be found in Table 2.

Among the weight values of each texture feature, a 
negative weight value means that it is not related to the 
classification result of dichotomy, and a larger weight 
value means that it is more closely related to the classi-
fication result. We selected the factors that had a greater 
impact on the classification. Therefore, when classifying 
non-clinically significant and clinically significant, the 
selected characteristic parameters are ADC, ALPHE, 
T2, ADC-contrast, ADC-homogeneity, DCE-correlation, 
DCE-energy, DCE-entropy, DCE-homogeneity, T2-IDM, 
T2-energy, T2-entropy, T2-homogeneity, as texture fea-
tures for binary classification. Their means, standard 
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deviations and significant difference can be found in 
Table 3.

When classifying Gleason 3 + 4 (ISUP grade 2) and 
Gleason 4 + 3 and above (ISUP grade ≥ 3), the selected 
feature parameters are T2, ADC-contrast, ADC-correla-
tion, ADC-entropy, ADC-homogeneity, DCE-correlation, 
DCE-energy, DCE-homogeneity, as texture features for 

binary classification. Their means, standard deviations 
and significant difference can be found in Table  4. Fig-
ure 4 shows the new classification results. The accuracy 
results improved for all classifications, except for SVM 
to distinguish Gleason 3 + 4 (ISUP grade 2) from Gleason 
4 + 3 and above (ISUP grade ≥ 3).

The effect of ROI size on accuracy to distinguish 
between clinically significant and non-significant can-
cers was investigated by inflating all the ROIs 1, 2, and 
3 times. The classification accuracy and the trend of its 
classification accuracy is shown in Fig.  5. The accuracy 
increased with increased ROI size (1 and 2 times, with 2 
times having the highest accuracy) compared to original. 
ROI inflated 3 times did not show any improvements. 

Table 2  Texture feature weight values
Texture features Clinically significant 

vs. non-significant 
cancer

Gleason 3 + 4 (ISUP 
grade 2) vs. Glea-
son 4 + 3 and above 
(ISUP grade ≥ 3)

ADC 0.0237 -0.0449
ALPHE 0.0669 -0.0090
T2 0.0620 0.0231
ADC-IDM -0.0014 -0.0128
ADC-contrast 0.0441 0.0632
ADC-correlation -0.0053 0.1528
ADC-energy -0.0162 -0.0169
ADC-entropy -0.0254 0.0610
ADC-homogeneity 0.0195 0.0128
DCE-IDM -0.0157 -0.0770
DCE-contrast -0.0069 -0.0474
DCE-correlation 0.0377 0.0519
DCE-energy 0.0116 0.0150
DCE-entropy 0.0282 -0.0450
DCE-homogeneity 0.0037 0.0623
T2-IDM 0.0080 -0.0388
T2-contrast -0.0053 -0.0319
T2-correlation -0.0156 -0.0622
T2-energy 0.0067 -0.0471
T2-entropy 0.0413 -0.0014
T2-homogeneity 0.0307 -0.0387
The value in bold means positive weight

Table 3  Comparison of means, standard deviations and 
significant difference between clinically significant and non-
significant cancer. The unit for ADC, T2, and α is μm2 /ms, ms, %/s, 
respectively.
Texture features Mean Standard 

deviation
P 
value

ADC 1.45/1.27 0.37/0.16 0.0103
ALPHE 7.43/7.91 0.71/0.51 0.0025
T2 104.21/114.41 25.81/24.11 0.0067
ADC-contrast 44.13/32.29 26.01/16.55 0.0262
ADC-homogeneity 41.12/32.99 15.31/13.77 0.0227
DCE-correlation 0.33/0.44 0.24/0.19 0.0120
DCE-energy 0.08/0.02 0.10/0.03 0.0035
DCE-entropy 0.29/0.41 0.15/0.09 0.0002
DCE-homogeneity 0.49/0.42 0.13/0.08 0.0122
T2-IDM 316.57/190.29 211.65/143.17 0.0047
T2-energy 0.03/0.01 0.03/0.01 0.0142
T2-entropy 0.51/0.55 0.11/0.07 0.0449
T2-homogeneity 0.55/0.47 0.08/0.04 0.0005

Fig. 3  Accuracy of three methods for predicting different Gleason scores
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Therefore, the highest accuracy was obtained with an 
accuracy of 80.67% by the SVM classifier when the ROI 
was inflated by 2 times.

In the following, we tested the classification accuracy 
of ROI region size for Gleason 3 + 4 (ISUP grade 2) and 
Gleason 4 + 3 and above (ISUP grade ≥ 3). The results and 
the trend of its classification accuracy is shown in Fig. 6. 
The accuracy increased with increased ROI size (1, 2 
and 3 times, with 3 times having the highest accuracy) 
compared to original. ROI inflated 4 times did not show 
any improvements. As a result, the highest accuracy of 
88.42% was obtained by the Bayesian classifier at the 3rd 
time of inflation.

Discussion
In this study, we proposed a radiomics-based method 
for prediction of prostate cancer GS using enlarged 
ROI. Binary classification of ROI using SVM, KNN and 
Bayesian classifier by virtue of texture feature analy-
sis and feature selection. When applying the texture 
feature parameters for classification, both the feature 

Table 4  Comparison of means, standard deviations and 
significant difference between Gleason 3 + 4 (ISUP grade 2) and 
Gleason 4 + 3 and above (ISUP grade ≥ 3)
Texture features Mean Standard 

deviation
P 
value

T2 89.96/109.36 14.54/26.19 0.0012
ADC-contrast 26.77/46.19 13.27/23.67 0.0020
ADC-correlation 0.55/0.41 0.02/0.14 0.0001
ADC-entropy 0.32/0.36 0.04/0.06 0.0041
ADC-homogeneity 0.49/0.46 0.05/0.06 0.0399
DCE-correlation 0.14/0.29 0.19/0.26 0.0127
DCE-energy 0.15/0.08 0.06/0.09 0.0037
DCE-homogeneity 0.59/0.52 0.08/0.13 0.0167

Fig. 5  The classification accuracy of different times of inflation ROI for clinically significant and non-significant cancers.

 

Fig. 4  Comparison of classification accuracy after feature selection
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selection and the method of expanding ROI can effec-
tively improve the classification accuracy and obtain 
good results. The final classification accuracy for clini-
cally significant (Gleason 3 + 4 and above, ISUP grade ≥ 2) 
and non-significant cancers (Gleason 3 + 3, ISUP grade 
1) was 80.67%. The classification accuracy of Gleason 
3 + 4 (ISUP grade 2) and Gleason 4 + 3 and above (ISUP 
grade ≥ 3) was 88.42%.

In the process of classifying non-clinically significant 
and clinically significant of prostate cancer, as well as 
Gleason 3 + 4 (ISUP grade 2) and Gleason 4 + 3 and above 
(ISUP grade ≥ 3), we used the relief function for feature 
selection, and the function used the KNN algorithm. In 
high-dimensional feature samples, some representative 
features are selected to reduce the sample feature dimen-
sion. It can be seen from Table 2 that among the weight 
values of various texture features, the negative weight 
value means that it has nothing to do with the classifica-
tion result, and the numerical value of the weight value 
is positively correlated with the correlation of the clas-
sification result. After feature selection, by comparing 
the results in Fig.  4, it can be seen that the accuracy of 
the classification has improved more obviously, indicat-
ing that it is available to improve the accuracy by using 
feature parameters with greater influence and excluding 
some feature parameters with less or no influence in the 
classification process.

When radiologists outline cancer outline using mp-
MRI, lesion ROI area is usually smaller than the lesion, 
which leads us to calculate the texture parameters 
according to the original ROI, thus the whole prostate 
cancer lesion area cannot be included and some texture 
features and information about the tumor heterogeneity 
are lost.

The sizes of ROIs had great impact on distinguish-
ing between cancer non-clinically significant and clini-
cally significant cancer. The accuracy of the classification 
showed a trend of increasing and then decreasing as 

inflating 1, 2, and 3 times original ROIs (Fig.  5). There-
fore, the highest accuracy was obtained by the SVM clas-
sifier when the ROI was inflated by 2 times. There is a 
large improvement after doing feature selection only. In 
the process of Gleason 3 + 4 (ISUP grade 2) and Gleason 
4 + 3 and above (ISUP grade ≥ 3) classification, the accu-
racy rate showed a rising trend as the ROI was inflated 
for 1, 2, and 3 times (Fig.  6). Therefore, we inflated the 
ROI of Gleason 3 + 4 (ISUP grade 2) and Gleason 4 + 3 
and above (ISUP grade ≥ 3) for the 4th time. From the 
results, we can see that the accuracy of its classification 
decreases, so the highest accuracy was obtained by the 
Bayesian classifier at the 3rd time of inflation. Compared 
to previous studies, the current study demonstrated 
higher accuracy in classification [1, 24, 25]. Dikaios et al. 
calculated the accuracy of the Gleason score assessment 
of PCa by two radiologists with 5 years of experience in 
prostate mp-MRI, and the final assessment accuracy 
was 0.67 [24]. Chaddad et al. predicted GS by radiomics 
and the model achieved an average of the area under the 
curves of the receiver operating characteristic (ROC) of 
83.40, 72.71, and 77.35% to predict GS groups (G1) = 6; 
6 < (G2) < (3 + 4) and (G3) ≥ 4 + 3, respectively [25]. In a 
worldwide challenge - PROSTATEx-2 Challenge, only 2 
teams showed any success as predicting Gleason score 
using AI on MRI data [1]. Thus, our approach to Glea-
son score determination of prostate cancer using tumor 
heterogeneity through radiomics can assist physicians 
in diagnosis and improve the accuracy of Gleason score. 
However, due to the small cohort it is difficult to deter-
mine whether this study is particularly beneficial for a 
specific clinical situation or patient subgroup. More stud-
ies are needed to determine this.

Our study has several limitations. First, the classifica-
tion accuracy of non-clinically significant and clinically 
significant cancer is low compared with that of Gleason 
3 + 4 (ISUP grade 2) and Gleason 4 + 3 and above (ISUP 
grade ≥ 3). The reason could be that the Gleason pattern 

Fig. 6  The classification accuracy of different times of inflation ROI for Gleason 3 + 4 (ISUP grade 2) and Gleason 4 + 3 and above (ISUP grade ≥ 3).
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of the major part of both tissues is 3, while only the sec-
ondary Gleason pattern is different. Therefore, it could 
not be able to discriminate well in terms of specificity 
such as texture features, and there are too few param-
eters of texture features with classification value, which 
leads to its classification accuracy being lower than that 
of Gleason 3 + 4 (ISUP grade 2) and Gleason 4 + 3 and 
higher (ISUP grade ≥ 3). Second, the accuracy is low 
when performing triple classification, which could be 
due to the fact that the small sample size of ROIs with 
Gleason 4 + 3 and higher (ISUP grade ≥ 3), and it cannot 
discriminate this triple classification well by machine 
learning. Moreover, due to the subjective interpretation 
of mp-MRI, large variability is seen among radiologists, 
and thus the classification results using this method may 
differ from radiologists’ judgments. Finally, this study is 
a feasibility study focused on radiomics analysis, so only 
patients with identical imaging protocols are included to 
minimize the impact of image acquisition parameters on 
the results. This led to a small sample size for this study, 
so a larger number of patient data is needed in subse-
quent research to validate the results and analyze the 
impact of different imaging protocols.

Future work should increase the number of patients 
and thus providing more data for the extraction of tex-
ture parameters. Furthermore, deep learning methods 
can be used to classify their GS using the expanded ROI 
[26].

Conclusions
In this study, we proposed a method based on ROI expan-
sion to determine the GS of prostate cancer using tumor 
heterogeneity. The segmented ROI was used for feature 
selection, texture feature analysis, and binary classifica-
tion using SVM, KNN, and Bayesian classifiers. When 
applying the texture feature parameters for classification, 
both the feature selection and the method of expanding 
ROI can effectively improve the classification accuracy 
and obtain good results. Thus, the radiologist can choose 
to enlarge the ROI area accordingly to enhance the accu-
racy of the diagnosis. The final classification accuracy 
for clinically significant (Gleason 3 + 4 and above, ISUP 
grade ≥ 2) and non-significant cancers (Gleason 3 + 3, 
ISUP grade 1) was 80.67%. The classification accuracy 
of Gleason 3 + 4 (ISUP grade 2) and Gleason 4 + 3 and 
above (ISUP grade ≥ 3) was 88.42%. Therefore, urolo-
gists can choose the optimal treatment option based 
on the accurate classification of lesion aggressiveness, 
along with more precise lesion volume. It will help them 
decide between localized therapies such as prostate abla-
tion for localized and less aggressive cancers, while radi-
cal treatment like prostatectomy and radiation for more 
aggressive cancers. The classification results indicate 
the research significance and value of this study on the 

determination of Gleason score for prostate cancer based 
on ROI expansion using tumor heterogeneity.
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