
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

Fu et al. BMC Cancer         (2024) 24:1195 
https://doi.org/10.1186/s12885-024-12964-6

BMC Cancer

*Correspondence:
Xianghong Ye
13868992616@163.com
Shian Yu
ysa513@163.com

Full list of author information is available at the end of the article

Abstract
Background Although malnutrition is common in cancer patients, its molecular mechanisms has not been fully 
clarified. This study aims to identify significantly differential metabolites, match the corresponding metabolic 
pathways, and develop a predictive model of malnutrition in patients with gastric cancer.

Methods In this cross-sectional study, we applied non-targeted metabolomics using liquid chromatography-mass 
spectrometry to explore the serum fingerprinting of malnutrition in patients with gastric cancer. Malnutrition-specific 
differential metabolites were identified by orthogonal partial least-squares discriminant analysis and t-test and 
matched with the Human Metabolome Database and the LIPID Metabolites and Pathways Strategy. We matched 
the corresponding metabolic pathways of malnutrition using pathway analysis at the MetaboAnalyst 5.0. We used 
random forest analyses to establish the predictive model.

Results We recruited 220 malnourished and 198 non-malnourished patients with gastric cancer. The intensities of 
25 annotated significantly differential metabolites were lower in patients with malnutrition than those without, while 
two others were higher in patients with malnutrition than those without, including newly identified significantly 
differential metabolites such as indoleacrylic acid and lysophosphatidylcholine(18:3/0:0). We matched eight 
metabolic pathways associated with malnutrition, including aminoacyl-tRNA biosynthesis, tryptophan metabolism, 
and glycerophospholipid metabolism. We established a predictive model with an area under the curve of 0.702 
(95% CI: 0.651–0.768) based on four annotated significantly differential metabolites, namely indoleacrylic acid, 
lysophosphatidylcholine(18:3/0:0), L-tryptophan, and lysophosphatidylcholine(20:3/0:0).

Conclusions We identified 27 specific differential metabolites of malnutrition in malnourished compared to 
non-malnourished patients with gastric cancer. We also matched eight corresponding metabolic pathways and 
developed a predictive model. These findings provide supportive data to better understand molecular mechanisms 
of malnutrition in patients with gastric cancer and new strategies for the prediction, diagnosis, prevention, and 
treatment for those malnourished.
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Background
Gastric cancer is the 5th most common type of cancer 
globally and 2nd in China [1–3]. Gastric cancer-caused 
cancer deaths rank fourth globally and third in China 
[1–3]. The improvement in diagnosis and treatment has 
prolonged the survival of patients with gastric cancer. A 
systematic review of international studies found a 5-year 
survival rate of 72.1% in patients with gastric cancer [4]. 
Another systematic review showed that in China, the 
pooled one-, two-, three- and five-year survival rates 
of gastric cancer were 75.4%, 54.3%, 53.4%, and 44.5%, 
respectively [5]. However, patients often face various 
critical challenges during cancer survivorship, including 
malnutrition, in which more than 60.0% of patients living 
with gastric cancer receive a diagnosis [6, 7]. Malnutri-
tion is significantly associated with poor quality of life [8, 
9], early cessation of anti-neoplastic treatment [8], high 
incidence of incisional infection [10], extended hospital 
stay [11], shortened overall and disease-free survival [8, 
10, 11], and increased medical costs [10–12].

Malnutrition, also known as undernutrition, results 
from a lack of intake or nutrition uptake, leading to 
altered body composition (decreased fat-free mass) and 
body cell mass, diminished physical and mental func-
tions, and clinical outcomes [13]. According to the 
Global Leadership Initiative on Malnutrition (GLIM), 
a malnutrition diagnosis should meet at least one of the 
three phenotypic criteria (weight loss of more than 5% 
within the past six months, or more than 10% beyond six 
months; body mass index (BMI) less than 18.5  kg/m2 if 
under 70 years old, or less than 20 kg/m2 if 70 years or 
older (Asia); and reduced muscle mass) and one of the 
two etiologic criteria (reduced food intake or assimila-
tion, and inflammation) [14]. Although malnutrition is 
common in cancer patients [15], its molecular mecha-
nisms has not been fully clarified. The currently identi-
fied reasons for developing malnutrition include immune 
response, systemic inflammation, symptoms, worsened 
systemic inflammation due to spillover of tumor-derived 
cytokines, hypoxic stress in the tumor microenviron-
ment, and indirect effects of cancer or its treatments [16].

The metabolomics approach can identify and deter-
mine the metabolites in biological samples under nor-
mal conditions compared to altered states [17]. As a 
phenotypic analysis tool and rapidly emerging as a pri-
mary research method in tumor biomarkers [17, 18], 
several studies have applied metabolomics to identify 
cachexia biomarkers in patients with cancer - a synonym 
of chronic disease-related malnutrition [19–21]. Cancer 
cachexia, a specific form of chronic disease-related mal-
nutrition with inflammation, which is diagnosed by a 

weight loss of more than 5% over the past 6 months, or 
a BMI of less than 20  kg/m2 with any degree of weight 
loss over 2%, or an appendicular skeletal muscle index 
consistent with sarcopenia and any degree of weight loss 
over 2% [20, 22]. Research to date has explored differen-
tial metabolites, corresponding metabolic pathways, and 
predictive models of cachexia in patients with cancer. 
Studies have indicated that some metabolites, arginine, 
citrulline, histidine [23, 24], lysophosphatidylcholine 
(LysoPC)(15:0) [25, 26], alanine, and choline [27, 28], 
were significantly associated with cachexia in patients 
with cancer, and alanine, aspartate, glutamate metabo-
lism, and arginine, and proline metabolism were com-
monly involved in the metabolic pathways [23, 24, 28, 
29]. A model for cachexia diagnosis in patients with can-
cer was created based on carnosine, leucine, and phenyl 
acetate with an area under the curve of 0.991 in a previ-
ous study [28]. These findings provided a good reference 
for the mechanism understanding and management of 
cachexia in patients with cancer.

Although cachexia falls under the umbrella of mal-
nutrition, the methods used to diagnose cachexia and 
malnutrition are distinct [14, 22, 30], and thus, the 
metabolomics results of cachexia in cancer patients 
cannot fully reflect the differential metabolites, corre-
sponding metabolic pathways, and predictive models of 
malnutrition in patients with cancer. In addition, little 
research has examined metabolomics in patients with 
gastric cancer. Therefore, this study aimed to identify sig-
nificantly differential metabolites, match the correspond-
ing metabolic pathways, and develop a predictive model 
of malnutrition in patients with gastric cancer by non-
targeted metabolomics using liquid chromatography-
mass spectrometry (LC-MS).

Materials and methods
Study design and participants
This cross-sectional study occurred in a comprehensive 
hospital in southeast China. Patients with gastric cancer 
were eligible if they: (1) were aged 18 years or above; (2) 
had been diagnosed with gastric cancer; (3) reported an 
Eastern Cooperative Oncology Group Performance Sta-
tus (ECOG-PS) score < 4; (4) planned to undergo anti-
tumor surgery or completed antitumor surgery; and (5) 
had not received any treatment for gastric cancer at this 
admission. All eligible participants should be able to pro-
vide informed consent. We excluded patients with gas-
tric cancer if they (1) had uncontrolled diabetes mellitus, 
(2) received glucocorticoid therapy, (3) had liver and/or 
renal failure, and (4) had other conditions not suitable 
for inclusion in the study. From December 2020 to May 
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2022, we recruited patients with gastric cancer from the 
Department of Gastrointestinal Surgery, Department of 
Hepatobiliary and Pancreatic Surgery, and Department 
of Medical Oncology, Jinhua Municipal Central Hospital.

Measurements
We reviewed the electronic medical record to collect 
general information, including gender, age (years), can-
cer stage, duration since diagnosis (days), nutritional 
therapy within the past month, and cancer therapy phase. 
Patients or caregivers reported the patient’s weight (kilo-
gram), educational level, occupation status, marital 
status, residence status, and financial stress. Research 
nurses measured patients’ body mass index, left calf cir-
cumference, and ECOG-PS score.

We diagnosed malnutrition using GLIM criteria with 
Nutritional Risk Screening 2002 (NRS 2002) and at 
least one phenotypic criterion and one etiologic crite-
rion should be present [14, 31]. Three phenotypic crite-
ria were (1) weight loss >5% within the past six months, 
or >10% beyond six months (2) BMI <18.5 kg/m2 if <70 
years, or <20 kg/m2 if ≥70 years (Asia), and (3) reduced 
muscle mass (i.e., the left calf circumference (CC) <30 cm 
for males or <29.5  cm for females). Two etiologic crite-
ria were (1) reduced food intake or assimilation and (2) 
inflammation. We identified gastric cancer as reduced 
food intake or assimilation.

Sample collection
Study participants fasted and provided 2 mL of venous 
blood, which we collected with a non-anticoagulant 
vacuum collection vessel (Beikete, Wenzhou, Zhejiang, 
China) under aseptic conditions. Blood samples were 
allowed to stand at room temperature for 30  min and 
then centrifuged at 2390 (×g) at 4℃ for 10 min to obtain 
serum samples. We stored the serum samples in the 
− 80℃ refrigerator until LC-MS analysis.

Materials for LC-MS analysis
We purchased LC-MS grade methanol and acetoni-
trile from Merck Company Inc. (Darmstadt, Germany). 
The chemical formic acid was MS grade and purchased 
from Fisher Scientific Company Inc. (Fairlawn, New Jer-
sey, United States). All other reagents were of analytical 
grade. Ultra-pure water (18.2 MΩ) was prepared daily 
with a Milli-Q water purification system (Millipore, Mil-
ford, Massachusetts, United States).

Serum preparation for metabolome analysis
We vortexed 200 µL serum for 3 min with 600 µL of ace-
tonitrile to remove the protein. The mixture underwent 
centrifugation for 10 min (15620 (×g), 4 °C). We dried 400 
µL supernatant under nitrogen gas. Before the LC-MS 

analysis, residues were reconstituted and re-dissolved in 
100 µL acetonitrile/water (1:1, v/v) solvent.

Instruments and condition
We performed chromatographic separation on an 
ExionLC system (AB Sciex, Foster City, California, 
USA). We applied a Waters Acquity BEH C18 column 
(2.1 × 100  mm, 1.7  μm) at the temperature of 35℃. The 
mobile phase A was water with 0.1% formic acid (v/v), 
and B was acetonitrile. We optimized the gradient as fol-
lows: 0–8 min from 5 to 60% B, 8–18 min from 60 to 97% 
B, 18–21 min at 97% B, then back to the initial ratio of 5% 
B and maintained with additional 4 min for re-equilibra-
tion. The injection volume of all samples was 2 µL.

We used an X500B Q-TOF mass spectrometer (AB 
Sciex, Foster City, California, USA) with an electrospray 
ionization source (Turbo Ionspray) for high-resolution 
detection. We implemented MS detection in both nega-
tive and positive ion modes. The mass spectrometer 
parameters were summarized: gas1 and gas2, 55 psi; cur-
tain gas, 35 psi; heat block temperature, 550 ℃; ion spray 
voltage, -4.5 kV in negative mode and 5.5 kV in positive; 
delustering potential, 60  V; collision energy, ±35  V; and 
the collision energy spread was ±15  V. To monitor the 
reproducibility and stability of the acquisition system, 
quality control (QC) samples were prepared by pooling 
small aliquots of each sample. The QC specimens were 
analyzed every five samples throughout the whole analy-
sis procedure.

Statistical analysis
We uploaded the raw data to the MarkerView 1.3.1 soft-
ware for data extraction. After data pretreatment, we 
obtained a three-dimensional matrix of sample names 
(observations), annotated peak indices (RT-m/z pairs), 
and peak intensities. We calibrated the peak intensity by 
the internal standard. We excluded variates with relative 
standard deviation (RSD) ≥ 40% in QCs. We exported the 
final matrix to a Microsoft Excel file, performed normal-
ization by sum, and uploaded the pretreated data into 
SIMCA 14.1 for multivariate data analysis. We first estab-
lished the principal component analysis (PCA) models 
containing all samples to observe the gathering of QCs 
and the distance among the three groups. QCs closely 
gathered means the satisfactory reproducibility and sta-
bility of the acquisition system. Orthogonal partial least-
squares discriminant analysis (OPLS-DA) is a statistical 
method of supervised discriminant analysis. We included 
the grouping variables in the modeling for pairwise 
analysis to screen different metabolites and to examine 
group differences. To prevent overfitting, we used 7-fold 
cross-validation and 200 response permutation testing to 
evaluate the quality of the model. The permutation test 
results implied the OPLS-DA models’ satisfied validity if 
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the blue regression line of the Q2 points was below zero. 
We calculated the variable importance in the projection 
(VIP) value of each variable in the OPLS-DA model to 
indicate its contribution to the classification. Metabolites 
with the VIP value > 1 as well as |p(correlation)| >0.2 were 
further applied to a t-test to measure the significance of 
each metabolite; p < 0.05 was considered statistically sig-
nificant. We imported the accurate masses of the differ-
ential metabolites into the Human Metabolome Database 
and the LIPID Metabolites and Pathways Strategy, setting 
the molecular weight tolerance to ± 10 ppm. Several eligi-
ble metabolites were identified through these databases. 
First, we confirmed whether each metabolite was endog-
enous. Then, we compared the actual MS/MS spectra 
with the predicted LC-MS/MS spectra in the databases. 
To annotate a molecule as the corresponding metabolite, 
at least two or more ion fragments needed to match. We 
drew volcano plot, heatmaps, and box-and-whisker plots 
in R software (4.1.2) with the ggplot2, ggrepel, and pheat-
map package. We matched the related metabolic path-
ways of malnutrition in patients with gastric cancer at 
the MetaboAnalyst 5.0 (http://www.MetaboAnalyst.ca/). 
The differential metabolite names companied with corre-
sponding intensities of each sample were exported to the 
website.

To establish a predictive model, we used the random-
Forest package in R (4.1.2) to establish the random for-
est classification model. We randomly divided the data 
containing group information, sample names, and signifi-
cantly differential metabolite intensities into two pieces, 
with 70% in the training set and 30% in the test set. We 
optimized the random forest classification prediction 
model by various parameters, including mtry, maxnodes, 
nodesize and ntree, and then output the important 
parameters of each variable. The receiver operating char-
acteristic (ROC) curve (pROC package) represented the 
predictive ability of the random forest model.

Results
Participant demographic and clinical characteristics
We recruited a total of 418 patients with gastric cancer. 
220 (52.6%) of the 418 patients with gastric cancer had 
malnutrition. 143 (65.0%) of those who were malnour-
ished and 151 (76.3%) of those who were not malnour-
ished were male. Their respective median ages (in years) 
were 69.0 and 65.0. Of the malnourished and non-mal-
nourished patients with gastric cancer, 114 (51.8%) and 
80 (40.4%) were stage III tumors, respectively, and the 
median duration since diagnosis was 40.5 and 82.0 days, 
respectively. Table 1 here.

Data pretreatment reproducibility and stability of the 
LC-MS analysis method
Figure S1 shows the base peak chromatograms (BPC) 
of quality controls in positive and negative ion modes. 
The chromatographic peaks were evenly distributed and 
clearly separated. The PCA plots of all samples in nega-
tive and positive ion modes showed the QC samples 
gathered near the center, indicating good stability and 
reproducibility of this experiment. The R2X (cum) values 
of the positive ion mode were 0.879 and 0.835, respec-
tively. Figure S2(A). According to the dot plots, QC dis-
tribution was also the most clustered. See Figure S2(B). 
The above results indicate that the instruments and 
methods were relatively stable during the experiment.

Significantly differential metabolites between 
malnourished and non-malnourished patients with gastric 
cancer
Figure  1(A) show the OPLS-DA score plots of com-
parisons between gastric cancer patients with and 
without malnutrition. The compared groups could be 
distinguished. The R2Y (cum) and Q2 (cum) of the posi-
tive ion mode were 0.698 and 0.430, respectively, while in 
the negative ion mode, they were 0.441 and 0.328, indi-
cating apparent separation. Meanwhile, the permutation 
test results implied satisfactory validity of the OPLS-DA 
models as the blue regression line of the Q2 points was 
below zero. See Fig. 1(B). We identified 172 significantly 
differential metabolites (VIP > 1, |p(correlation)| >0.2, 
and p < 0.05) between malnourished and non-malnour-
ished patients with gastric cancer, 27 of which were 
annotated in the Human Metabolome Database and 
the LIPID Metabolites and Pathways Strategy (Fig.  2). 
Compared to those without malnutrition, malnour-
ished patients with gastric cancer had lower intensities 
of 25 annotated significantly differential metabolites, 
indoleacrylic acid, 2-methylbutyroylcarnitine, phenyl-
alanylphenylalanine, L-tryptophan, 1-O-hexadecyl-sn-
glycero-3-phosphocholine, indole-3-carboxaldehyde, 
L-tyrosine, leucylalanine, glutamylleucine, N-sulfoty-
rosine, gamma-CEHC, testosterone sulfate, androste-
rone sulfate, pregnenolone sulfate, pregnanolone sulfate, 
N-palmitoyl arginine, LysoPE(18:3/0:0), LysoPE(18:2/0:0), 
LysoPE(18:1/0:0), LysoPE(20:3/0:0), LysoPC(16:1/0:0), 
LysoPC(18:3/0:0), LysoPC(18:0/0:0), LysoPC(20:5/0:0), 
and LysoPC(20:3/0:0), and higher intensities of two anno-
tated significantly differential metabolites, hydroxybu-
tyric acid and palmitoleic acid. See Figs. 3 and 4; Table 2.

Metabolic pathways associated with malnutrition in 
patients with gastric cancer
We matched eight metabolic pathways associated with 
malnutrition in patients with gastric cancer, including 
aminoacyl-tRNA biosynthesis; tryptophan metabolism; 

http://www.MetaboAnalyst.ca/
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Table 1 Demographic and clinical characteristics of the sample
Characteristics Malnutrition Non-malnutrition

(N = 220) (N = 198)

n % n %
Gender
 Male 143 65.0 151 76.3
 Female 77 35.0 47 23.7
Age, year, median (25th-75th percentile) 69.0 59.0–73.0 65.0 55.0–70.0
 <70 115 52.3 140 70.7
 ≥70 105 47.7 58 29.3
Weight, kilogram, median (25th-75th percentile) 50.0 45.6–56.8 60.0 55.0-67.3
Body mass index
 <18.5 108 49.1 0 0.0
 ≥18.5 112 50.9 198 100.0
Left calf circumference, centimeter, median (25th-75th percentile)a 31.0 29.7–32.9 34.3 32.6–36.2
Education levela

 Primary school or below 131 59.5 105 53.0
 High school 70 31.8 80 40.4
 University or above 9 4.1 10 5.1
Occupation statusa

 Unemployed 145 65.9 124 62.6
 Employed 65 29.5 71 35.9
Marital statusa

 Single 19 8.6 13 6.6
 Married 191 86.8 182 91.9
Solitudea

 No 195 88.6 182 91.9
 Yes 15 6.8 13 6.6
Financial pressurea

 Not at all 108 49.1 100 50.5
 A little bit 60 27.3 63 31.8
 Somewhat 27 12.3 19 9.6
 Very much 15 6.8 13 6.6
ECOG-PS scorea

 0 35 15.9 109 55.1
 1 116 52.7 71 35.9
 2 37 16.8 11 5.6
 3 22 10.0 4 2.0
Cancer stageb

 I 32 14.5 40 20.2
 II 51 23.2 50 25.3
 III 114 51.8 80 40.4
 IV 18 8.2 22 11.1
Duration since diagnosis, day, median (25th-75th percentile)d 40.5 26.8-189.3 82.0 -1.0-479.8
Nutritional therapy (Past one month)c

 None 101 45.9 146 73.7
 Yes 83 37.7 35 17.7
Cancer therapy phase
 Before operation 43 19.5 77 38.9
 After operation before chemotherapy 104 47.3 26 13.1
 After operation undergoing chemotherapy 33 15.0 37 18.7
 After operation after chemotherapy 40 18.2 58 29.3
an = 405, bn = 407, cn = 365, dn = 386



Page 6 of 14Fu et al. BMC Cancer         (2024) 24:1195 

glycerophospholipid metabolism; phenylalanine, tyro-
sine, and tryptophan biosynthesis; tyrosine metabolism; 
ubiquinone and other terpenoid-quinone biosynthesis; 
phenylalanine metabolism; and purine metabolism. See 
Fig. 5 and Table S1 for more details.

A predictive model of malnutrition in patients with gastric 
cancer
As displayed in Fig.  6, four metabolites, i.e., indole-
acrylic acid, LysoPC(18:3/0:0), L-tryptophan, and 
LysoPC(20:3/0:0), clearly achieved greater significance 
(> 7) than the other metabolites between malnourished 
and non- malnourished patients with gastric cancer. A 
predictive model of malnutrition in patients with gastric 
cancer was established based on these four metabolites 
to screen malnutrition. The corresponding ROC curve 
had an area under the curve (AUC) of 0.702 (95% CI: 
0.651–0.768).

Discussion
This study explored serum fingerprinting of malnutrition 
in patients with gastric cancer based on non-targeted 
metabolomics using LC-MS analysis. We annotated 25 
significantly differential metabolites that had lower inten-
sities and two higher in malnourished patients with gas-
tric cancer as compared with those non-malnourished. 
We matched eight metabolic pathways associated with 
malnutrition based on the 27 annotated significantly dif-
ferential metabolites identified between malnourished 
and non-malnourished patients with gastric cancer. A 
reliable predictive model of malnutrition was developed 
based on the intensities of metabolites with the highest 
importance between malnourished and non-malnour-
ished patients with gastric cancer.

Literature indicated that few metabolomics studies 
were performed on malnutrition in patients with can-
cer, whereas some metabolomics studies investigated 

Fig. 1 Exploratory multivariate statistical analysis. (A) Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots between malnour-
ished (red dots) and non-malnourished (blue dots) patients with gastric cancer. ESI (+): Positive ion mode, R2Y = 0.698, Q2 = 0.430; ESI (-): Negative ion 
mode. R2Y = 0.441, Q2 = 0.328. (B) Permutation tests: All blue Q2 values on the left are lower than the original point on the right and the blue regression 
line at point Q2 intersects the vertical axis (left side) at or below zero
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Fig. 3 Heatmap of serum levels of 27 annotated significantly differential metabolites (VIP > 1, |p(correlation)| >0.2, and p < 0.05) between malnourished 
and non-malnourished patients with gastric cancer. The colour from blue to red indicates that the peak intensity of the significantly differential metabolite 
is from low to high, i.e., the redder the significantly differential metabolite, the higher the peak intensity of the significantly differential metabolite. The 
peak intensities of metabolites were normalized by sum

 

Fig. 2 Volcano plot of metabolites between malnourished and non-malnourished patients with gastric cancer. Red dots are significantly up-regulat-
ed differential metabolites (VIP > 1, |p(correlation)| >0.2, and p < 0.05) and blue dots are significantly down-regulated differential metabolites (VIP > 1, 
|p(correlation)| >0.2, and p < 0.05)
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cachexia in patients with cancer [21]. Our research 
extended the current understanding of malnutrition. 
It revealed both novel and previously established sig-
nificantly differential metabolites in patients with gas-
tric cancer suffering from malnutrition compared to 
those without malnutrition. Newly identified signifi-
cantly differential metabolites include indoleacrylic 

acid, 2-methylbutyroylcarnitine, phenylalanylphenyl-
alanine, 1-O-hexadecyl-sn-glycero-3-phosphocholine, 
indole-3-carboxaldehyde, leucylalanine, glutamylleucine, 
N-sulfotyrosine, gamma-CEHC, testosterone sulfate, 
androsterone sulfate, pregnenolone sulfate, pregnano-
lone sulfate, N-palmitoyl arginine, LysoPE(18:3/0:0), 
LysoPC(18:3/0:0), LysoPC(20:5/0:0), hydroxybutyric acid 

Fig. 4 Box-and-whisker plots of serum levels of 27 annotated significantly differential metabolites (VIP > 1, |p(correlation)| >0.2, and p < 0.05) between 
malnourished and non-malnourished patients with gastric cancer. The peak intensities of metabolites were normalized by sum
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and palmitoleic acid. The intensities of most of these 
annotated significantly differential metabolites were 
lower in patients with malnutrition than those without 
malnutrition, including significantly differential metabo-
lites indoleacrylic acid, LysoPC(18:3/0:0), L-tryptophan, 
and LysoPC(20:3/0:0), which were used to develop the 
prediction model of malnutrition in patients with gastric 
cancer.

Tryptophan, an aromatic amino acid, is essential for 
protein synthesis in humans and must be obtained exclu-
sively through their diet [32]. In cases of malnutrition, 
the reduced availability of tryptophan can potentially 
heighten the risks for patients [33]. Decreased L-tryp-
tophan in malnourished patients leads to impairment of 
the tryptophan-NAD + pathway, resulting in a decrease in 
NAD+, which may lead to liver dysfunction and further 
exacerbation of malnutrition [34]. In addition, L-tryp-
tophan is thought to regulate skeletal muscle mass [35], 
and therefore a decrease in the biosynthetic pathway of 
tryptophan may contribute to sarcopenia [36]. Exist-
ing research indicates increased body mass index cor-
related positively with tryptophan levels, though the 
role of tryptophan and its metabolites in malnutrition 

remains poorly understood [33]. Numerous studies 
have explored the utilization of tryptophan from vari-
ous sources by both humans and animals, with some of 
these reports emphasizing the potential for tryptophan 
supplementation or fortification [37]. A recent study 
reported treatment with 1-methyl-tryptophan, a com-
pound that inhibits tryptophan degradation, in cachectic 
murine models successfully restored plasma tryptophan 
levels [38]. Cala et al. and Ni et al. also found that plasma 
tryptophan levels were lower in cachectic than in non-
cachectic patients with cancer [23, 26].

Indoleacrylic acid, a metabolite of tryptophan, influ-
ences membrane unsaturated fatty acid levels by mod-
ulating cell lysophospholipase activity [39]. Due to 
this, notable alterations in the ratio of phosphatidy-
ethanolamine to phospatidycholine, coupled with low 
indoleacrylic acid levels, may serve as indicators of cel-
lular membrane permeability damage [40]. Increas-
ing indoleacrylic acid production can stimulate an 
anti-inflammatory response, offering therapeutic ben-
efits for inflammatory bowel disease [41]. Building 
upon this observation, we postulate that the decline in 
indoleacrylic acid levels results in dysfunction of the 

Fig. 5 Bubble diagram of the 8 metabolic pathways associated with malnutrition in patients with gastric cancer. The larger the bubble, the smaller the 
p-value; the redder the colour, the greater the significance
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intestinal epithelial barrier and provokes an inflamma-
tory response, ultimately contributing to the onset of 
malnutrition. There isn’t a substantial body of research 
specifically examining the effects of indoleacrylic acid 
on cancer cachexia and malnutrition, and further studies 
may be warranted to delve deeper into the topic.

LPC can stimulate the migration of lymphocytes and 
macrophages, elevate the production of pro-inflamma-
tory cytokines, trigger oxidative stress, and facilitate 
apoptosis, thus exacerbating inflammation and foster-
ing the development of diseases [42]. Low plasma levels 
of LPC specifically LPC(16:1) and LPC(20:3), in humans, 
are correlated with diminished mitochondrial oxidative 
capacity in skeletal muscle [43]. This dysregulation has 
also been implicated in the muscle atrophy observed in 
tumor-bearing animals [44]. Morigny et al., Ni et al., and 
Cala et al. reported that patients with cancer cachexia 
had lower plasma levels of numerous LPC species com-
pared to patients without cancer cachexia, including 
LPC(20:3) [23, 25, 26]. Taylor et al.’s study also shown 
the concentration of plasma LPC is diminished in can-
cer patients experiencing weight loss and exhibiting acti-
vated inflammatory status [45].

We matched eight metabolic pathways associated 
with malnutrition in patients with gastric cancer. Two 
of the eight metabolic pathways, aminoacyl-tRNA bio-
synthesis and tryptophan metabolism, were matched 
based on L-tryptophan. Aminoacyl-tRNA biosynthesis 
was matched as a cachexia-related metabolic pathway 
in patients with cancer by More et al., Cala et al., and 

Yang et al. [23, 28, 46]. Glycerophospholipid metabolism 
was matched based on LPC(20:3), which was previously 
matched as a cachexia-related metabolic pathway in 
patients with cancer cachexia by Yang et al. [28]. All these 
findings further validate the robustness of the results 
of this study. Our study has contributed new findings 
because little research exists regarding the relationship 
between malnutrition and tryptophan metabolism.

A major contribution of this study is that we devel-
oped a predictive model associated with malnu-
trition based on the four annotated significantly 
differential metabolites with top importance, indole-
acrylic acid, LysoPC(18:3/0:0), L-tryptophan, and 
LysoPC(20:3/0:0), between malnourished and non-mal-
nourished patients with gastric cancer. Yang et al. also 
reported a distinct diagnostic model for cachexia screen-
ing in patients with cancer, and the corresponding ROC 
curve had an AUC of 0.991 using levels of carnosine, 
leucine, and phenyl acetate [28]. Miller et al. indicated a 
correlation between predicted and actual weight change 
with a combination profile of LysoPC(18:2), L-proline, 
hexadecanoic acid, octadecanoic acid, phenylalanine, 
and LysoPC(16:1) [47]. More et al. developed a predictive 
model of cachexia in patients with cancer based on 10 
non-annotated and 5 annotated metabolites (erythronic 
acid, lactic acid, maltose, methionine, and ornithine) 
[46]. Various studies identified different differential 
metabolites to use when constructing predictive models, 
which may be related to the different study populations. 
Given the variability of metabolism in different tumor 

Fig. 6 Importance of significantly differential metabolites and predictive model for malnutrition in patients with gastric cancer. (A) importance of 27 
annotated significantly differential metabolites (VIP > 1, |p(correlation)| >0.2, and p < 0.05) between malnourished and non-malnourished patients with 
gastric cancer based on random forest analysis. (B) ROC curves of the malnutrition predictive model in patients with gastric cancer based on indoleacrylic 
acid, LysoPC(18:3/0:0), L-tryptophan, and LysoPC(20:3/0:0)
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types, our study included only patients with gastric can-
cer, which is one of the strengths of this study. Future 
relevant studies should focus on patients with the same 
tumor type, or even patients with the same tumor type at 
the same treatment stage, whenever possible.

This study has several limitations. First, all study sub-
jects were from the same hospital. The results of this 
study may not be directly extrapolated to other patients 
with gastric cancer, considering geographic, ethnic, and 
other factors. Second, the subjects in this study were at 
different stages of treatment. Anti-cancer treatment may 
affect the metabolism of the patients. Third, we only 
tested for significantly differential metabolites in patient 
serum. These significantly differential metabolites were 
not validated in other biological specimens. Fourth, 
the results of this study were obtained from non-tar-
geted analyses. Further research is needed to verify the 
top altered metabolites of malnourished compared to 
non-malnourished patients in a targeted analysis, pro-
viding specific concentrations. However, this is a large 
sample untargeted metabolomics study in patients with 
gastric cancer. The significance of our sample size can 
be appraised by comparison with the previous similar 
studies.

Conclusion
In conclusion, 25 of the 27 annotated significantly dif-
ferential metabolite intensities were low in malnourished 
compared to non-malnourished patients with gastric 
cancer, indicating lower differences in metabolite intensi-
ties from non-malnutrition to malnutrition with several 
new significantly differential metabolites. Based on the 
annotated significantly differential metabolites identified 
between gastric cancer patients with and without malnu-
trition, eight metabolic pathways associated with malnu-
trition were matched, informing molecular mechanisms 
of malnutrition in patients with gastric cancer. We devel-
oped a predictive model of malnutrition in patients with 
gastric cancer based on the intensities of four annotated 
significantly differential metabolites, providing empiri-
cal evidence for malnutrition assessment, especially for 
patients who are unable to provide necessary information 
on the clinical prediction or diagnosis of malnutrition. 
These findings may inform biomarkers for malnutrition 
prediction or diagnosis and medications or interventions 
for malnutrition prevention or treatment in patients with 
gastric cancer.
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