
RResolver: efficient short‑read repeat
resolution within ABySS
Vladimir Nikolić1,2, Amirhossein Afshinfard1,2, Justin Chu1,2, Johnathan Wong1, Lauren Coombe1, Ka Ming Nip1,2,
René L. Warren1 and Inanç Birol1,2* 

Background
De novo genome assembly has a wide range of applications, such as gene annotation
[1], phylogenetic inference [2], identifying polymorphisms [3] and structural varia-
tions [4]. De novo assembly specifically is used when either no reference genome is

Abstract 

Background:  De novo genome assembly is essential to modern genomics studies.
As it is not biased by a reference, it is also a useful method for studying genomes with
high variation, such as cancer genomes. De novo short-read assemblers commonly use
de Bruijn graphs, where nodes are sequences of equal length k, also known as k-mers.
Edges in this graph are established between nodes that overlap by k − 1 bases, and
nodes along unambiguous walks in the graph are subsequently merged. The selection
of k is influenced by multiple factors, and optimizing this value results in a trade-off
between graph connectivity and sequence contiguity. Ideally, multiple k sizes should
be used, so lower values can provide good connectivity in lesser covered regions
and higher values can increase contiguity in well-covered regions. However, current
approaches that use multiple k values do not address the scalability issues inherent to
the assembly of large genomes.

Results:  Here we present RResolver, a scalable algorithm that takes a short-read de
Bruijn graph assembly with a starting k as input and uses a k value closer to that of
the read length to resolve repeats. RResolver builds a Bloom filter of sequencing reads
which is used to evaluate the assembly graph path support at branching points and
removes paths with insufficient support. RResolver runs efficiently, taking only 26 min
on average for an ABySS human assembly with 48 threads and 60 GiB memory. Across
all experiments, compared to a baseline assembly, RResolver improves scaffold conti-
guity (NGA50) by up to 15% and reduces misassemblies by up to 12%.

Conclusions:  RResolver adds a missing component to scalable de Bruijn graph
genome assembly. By improving the initial and fundamental graph traversal outcome,
all downstream ABySS algorithms greatly benefit by working with a more accurate
and less complex representation of the genome. The RResolver code is integrated into
ABySS and is available at https://​github.​com/​bcgsc/​abyss/​tree/​master/​RReso​lver.

Keywords:  Short reads, De novo assembly, Repeat resolution, Scalable, Bloom filters

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Nikolić et al. BMC Bioinformatics (2022) 23:246
https://doi.org/10.1186/s12859-022-04790-z BMC Bioinformatics

*Correspondence:
ibirol@bcgsc.ca

1 Canada’s Michael Smith
Genome Sciences Centre
at BC Cancer, 570 W 7th Ave,
Vancouver V5Z 4S6, Canada
2 The University of British
Columbia, 2329 West Mall,
Vancouver V6T 1Z4, Canada

https://github.com/bcgsc/abyss/tree/master/RResolver
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04790-z&domain=pdf

Page 2 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246

available, or to avoid the biases that may be introduced by using one. For example, a
reference genome will not be available when sequencing and annotating the genome
of a species for the first time. Another example where de novo genome assembly is of
prime importance is in cancer studies, in which structural differences between the
sequenced tumor and the reference are important.

Many short-read de novo assemblers use a de Bruijn Graph (DBG) based approach
[5–10]. DBGs are directed graphs defined on an alphabet S and node size k, where
all of the nodes are composed of k sized strings containing the characters from the
alphabet. For every pair of nodes x and y there is a directed edge going from x to y
if the k − 1 suffix of x is equal to the k − 1 prefix of y, i.e., they overlap by k − 1 sym-
bols. In graph theory, a DBG has a node for every permutation of S symbols. In the
genome assembly problem, however, a variant is used wherein the nodes are all read
substrings of size k, known as k-mers, and the valid symbols are S = {A,C ,T ,G} . The
assembly process usually starts by splitting all reads into k-mers and storing them in a
data structure, typically a hash table [11]. This allows node adjacency to be queried in
constant time, as opposed to searching for overlaps. In recent years, the use of more
succinct and resource-efficient data structures in de novo genome assemblers, such as
Bloom filters, have increased in popularity [5, 6].

A Bloom filter [12] is a probabilistic data structure that has the operations of a set:
insertion of an element and querying for the presence of an element. The set is typi-
cally implemented as a bit vector initialized with all zeroes. On insertion, the element
is hashed into a predetermined number of hash values, h, which represent indices in
the bit vector where the bits get set. Essentially, the content of the element is com-
pressed into only h bits, making Bloom filters very memory efficient. To query for
the presence of an element, the element is also hashed into h values and those are
used as indices into the bit vector to check if the bits are set. Because the bit vector
is limited in size, some of the bit indices from different elements may overlap. This
can produce a false positive if the queried element bit indices happen to land on indi-
ces of other previously inserted elements, even if the queried element has never been
inserted. The chance of bit index overlap between elements and thus false positives is
increased with the reduction in size of the bit vector. In this way, Bloom filters allow
the user to make the trade-off between memory usage and false positives. Note that
false negatives are not possible in a Bloom filter designed this way, as once an element
is inserted, its set bit indices stay unchanged. Since Bloom filters are highly memory
efficient, they have been widely used with memory intensive genomic data [5, 6, 13,
14] and are also used in this work for memory usage scalability.

Repetitive sequences are one of the main confounders of genome assembly. If the
same DNA sequence is repeated at a single locus, potentially many times, it is known
as a Tandem Repeat (TR). Otherwise, if the same sequence appears at different loci
across the genome, as Transposable Elements (TEs) do, it is an interspersed repeat. In
the context of DBG based assembly, a repeat that is at least k − 1 bases long will create
a false edge as any sequence overlap of that length creates an edge. While construct-
ing a DBG, it is impossible to disambiguate repeats that are k − 1 bases or longer, and
this task is left to the downstream stages of the assembly process.

Page 3 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246 	

To illustrate the magnitude of the problem repeats pose to genome assembly, it has
been estimated that half or more of the human genome is comprised of repeats [15]. The
typical length of a TE is on the order of several kbp, ranging up to 20 kbp in eukaryotes
[16]. A third of mammalian genomes consist of TEs and in vertebrates such as zebrafish
they make up more than half of the genome [17]. Since current short-read lengths are in
the 100–300 bp range [18], they are unable to span a large number of TEs. On the other
hand, TRs can have motifs as short as 1 bp. While the motif may be fully spanned by a
short read, the number of repetitions may not be possible to estimate with short reads
alone. The multiplicity of the motif in the sequencing data is also not a reliable clue to
the number of repetitions as the reads are not evenly distributed across the sequenced
genome.

Due to non-uniform genome read coverage in the sequencing data [19], regions of the
genome with less short-read coverage will have more sparse overlaps between reads,
whereas a highly covered region will have an abundant number of reads that have signifi-
cant overlap. This is where the choice of k comes into play—a smaller size will capture
the overlap in both low and high coverage regions, but will additionally include many
spurious overlaps due to repeats, complicating the graph. On the other hand, a larger
size will reduce the number of spurious overlaps but genuine overlaps from less covered
regions will also be missed. To overcome this issue, some de novo assemblers, such as
SPAdes [8], IDBA [20], SOAPdenovo2 [9], and MEGAHIT [21], use an array of k values,
starting from a small k to achieve high connectivity and then proceed to untangle the
graph with higher k values. These methods demonstrate improved assembly quality, but
they have been limited to small k value increments or multiple DBG constructions. This
is problematic for large genomes (e.g., human), where the assembly graph is large and
iterating over a number of k values may significantly inflate the run time. There is also
room for improvement in the span of k that is utilized, as it is not efficient to reach a
high k value with small steps.

To address these issues, we developed RResolver, a tool for resolving junctions in the
assembly graph. The tool utilizes additional short-read information in a scalable man-
ner by taking a larger k value than the one used to construct the initial DBG in order to
resolve junctions caused by sequence repeats. This larger k step bypasses multiple short
k increments, thus reducing the overall run time, but comes with a set of challenges that
have been explored in this study. The initially constructed DBG is worked on directly,
without the need for any costly graph reconstruction steps. Additionally, to minimize
memory usage, a Bloom filter is employed for k-mer storage. Here we show how RRe-
solver helps improve both the contiguity and accuracy of ABySS assemblies, and dem-
onstrate that it scales well to large genomes. Additionally, we show how ABySS with
RResolver compares to other leading genome assemblers on human and E. coli sequenc-
ing data.

Results
Algorithm overview

Herein, DBG assembly k is denoted as kassembly and the larger k used by RResolver as
krresolver . To improve a given DBG assembly, RResolver attempts to find k-mers of size
krresolver along assembly graph paths surrounding a repeat in order to evaluate their

Page 4 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246

correctness. First, all k-mers of size krresolver bases are extracted from the reads and
stored in a Bloom filter [12] for efficient memory use. To find krresolver k-mer counts
along a path, a sliding window of size krresolver is used, querying the Bloom filter for pres-
ence or absence at every step with a step size of 1bp.

Additional file 1: Fig. S1 shows an example in which junction paths can be examined.
All paths of three nodes in length are evaluated; in Additional file 1: Fig. S1, that would
mean all possible paths from nodes to the left to the nodes to the right: ARX, ARY, ...,
CRZ. The algorithm is applied to every repeat short enough for the sliding window to
span the whole repeat node sequence, overlap the nodes adjacent to the repeat along the
path in question, and to perform a sufficient number of tests (sliding window moves).
The number of tests is dynamically determined based on the number of expected
krresolver k-mers (based on local sequencing coverage, assuming the path is correct) along
each tested path.
krresolver sized k-mers found are tallied for every path and the paths where the k-mer

count is below a threshold are considered unsupported and hence removed from the
graph. Any unambiguous paths resulting from this resolution have their nodes merged,
with each path getting its own copy of the repeat sequence.

False positives

As a probabilistic data structure, Bloom filters may return false positives on query oper-
ations. To deal with these false positives when considering path support, a threshold is
set for the number of krresolver k-mers that need to be found along a path for it to be
considered supported. A sufficiently high threshold tolerates a number of false positive
matches in the Bloom filter before considering a path supported.

The Bloom filter False Positive Rate (FPR) increases with the number of stored ele-
ments, therefore the number of krresolver k-mers inserted should be minimized. On the
other hand, storing more krresolver k-mers increases the chance that correct paths are
identified. To compromise between these observations in RResolver, the number of
stored k-mers per read is equal to the support threshold. This effectively allows one read
found along a path sufficient to consider that path supported.

The number of false positives depends on a few factors, such as the number of tests
done per path (which depends on read coverage), the number of possible paths, and
the FPR of the Bloom filters. The FPR of the Bloom filter is modulated with the avail-
able memory budget and as RResolver is used alongside a short-read assembler, we can
assume that it has the same memory constraints. As shown later in Performance assess-
ment subsection, RResolver can work with tight memory constraints alongside the low
memory footprint assembler ABySS.

Varying coverage

Read coverage may fluctuate across the genome [19], thus the number of krresolver k-mers
expected along each path may vary. In order to reliably determine whether a path is sup-
ported, RResolver calculates the number of tests required to find a sufficient number of
krresolver k-mers along a path to pass the support threshold.

Given kassembly k-mer coverage of a graph node, i.e., the sum of multiplicities of all the
kassembly k-mers that comprise the node, provided by the assembler, the expected number

Page 5 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246 	

of krresolver k-mers is found proportionally. Since every read provides l − kassembly + 1
many k-mers of length kassembly , where l is read length, the number of reads that have
contributed to the node in question can be determined. Given the number of reads in
a node and the length of that node, the approximate number of bases between subse-
quent reads is calculated as the node length over the number of reads. To find a read
along a path, on average, the sliding window should move the number of bases equal
to the average number of bases between reads. As each read can provide a number of
krresolver k-mers, the sliding window moves an extra number of bases equal to the num-
ber of krresolver k-mers extracted per read in order to capture all of them.

Estimating coverage allows the algorithm to skip less covered regions of the graph
where kassembly has been an appropriate choice and further increase in k size is not help-
ful. The criteria to skip a region is simply, if the number of required tests is greater than
the possible number of moves the window can do, given the repeat and sliding window
sizes. For a sliding window, there are only so many moves it can perform while still over-
lapping all three nodes that form the path in question, giving an upper limit on the num-
ber of tests that can be done in a repeat. If any path in a tested repeat is found to have
low coverage such that doing a sufficient number of sliding window moves is impos-
sible, the whole repeat is skipped. Despite possibly knowing whether other paths are
supported, the repeat as a whole cannot be resolved accurately without complete infor-
mation and trying to resolve it could lead to misassemblies.

Complex repeats

In highly repetitive regions, the graph becomes particularly complex. The incoming and
outgoing nodes from the tested repeat can be repeats themselves, and are often quite
short. This can result in the sliding window being longer than the three nodes that are
considered as a path. In such cases, the nodes that branch out of the incoming and out-
going nodes are also taken to be possible segments of the path, as shown in Additional
file 1: Fig. S2. Branching is done to the extent to which is needed to accommodate the
required number of moves with the sliding window to determine support.

Given the branching nodes, all the possible path combinations are tested and if at least
one has a sufficient number of krresolver k-mers, the initially considered path of three
nodes is considered supported. For example, in Additional file 1: Fig. S2, if the path in
question is ARX, all the nodes preceding node A and succeeding node X that are within
the sliding window moving distance would be used to form the path combinations to
test. If ARX is a correct path, then at least one combination path should have reads, and
so if any of them are found to be supported, then ARX is considered supported.

If the number of combinations explodes beyond a set threshold, the paths are ran-
domly subsampled in order to limit run time and false positives. Bloom filter FPR is a
factor in determining this threshold because increasing the number of tested paths
increases the probability that a path will be supported by a series of false positive hits.

Repeat resolution

After tallying the found k-mers, the resulting supported paths might not unambiguously
resolve paths in a repeat, but often simplify a repetitive region. Additional file 1: Fig. S3
shows an example of a possible simplification from the repeat in Additional file 1: Fig.

Page 6 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246

S1. Despite not resolving all paths, a simplified repeat helps the downstream algorithms
such as the contig and scaffolding stages of ABySS. In cases where paths are unambigu-
ously resolved, nodes are immediately merged. The repeat simplification procedure is
further explained in the Supplementary Repeat resolution section.

A summary flowchart of the algorithm can be seen in Additional file 1: Fig. S4. If the
dataset used has multiple read sizes, the whole procedure is repeated for each size, start-
ing from the shortest. Each read size works with a distinct krresolver value either provided
or automatically calculated.

Performance assessment

RResolver is integrated in the ABySS 2 assembler [5] and works on the output of the
DBG construction stage. Additional file 1: Fig. S5 shows how the method fits within the
whole pipeline.

To assess the performance of RResolver and explore the parameter space, the method
was tested on 2× 151 bp and 2× 250 bp Illumina data from four human individuals with
fold-coverages ranging between 43× and 58× . Additionally, the method was tested on
2× 110 bp C. elegans and 2× 151 bp A. thaliana datasets with 75× and 50× fold-cover-
ages respectively. Finally, since RResolver improves ABySS assemblies, the performance
of ABySS assembler with RResolver was benchmarked against other state-of-the-art
short-read de novo assemblers. For these benchmarks, as well as using the four human
datasets, the performance was assessed on the small E. coli genome, using 2 bp, 2 bp, and
2 bp E. coli datasets of 209× , 100× , and 132× fold-coverages respectively. Assembly qual-
ity was assessed using QUAST [22] NGA50 and misassemblies, and BUSCO [23] gene
completeness metrics. Further dataset information can be found in Methods.

Figure 1 and Additional file 1: Fig. S6 show ABySS H. sapiens assembly quality results
(QUAST and BUSCO metrics respectively) for a range of kassembly and krresolver sizes,
with and without RResolver in the pipeline. For each dataset, a sweep with a step size
of 5 bp on kassembly values was done in order to find the ABySS assembly without RRe-
solver with the highest N50, as reported by the abyss-fac utility of the ABySS assembler.
This is commonly done with ABySS assemblies in order to pick the optimal k-mer size.
The highest N50 assembly was kept plus the ones with neighbouring kassembly values ( ±5
and ±10 ). The choice of the −kc ABySS parameter, which specifies the minimum k-mer
multiplicity to filter out erroneous k-mers was also selected with the highest N50. The
assemblies without RResolver are used as baseline upon which RResolver with various
krresolver values was tested.

Using the RResolver method, all ABySS human assemblies achieved higher NGA50
lengths (depending on the krresolver value used, between 0.5% 15.1% relative increase) and
most have higher percentage of complete BUSCO genes (up to 2.7% relative increase),
while some have fewer misassemblies (up to 7.3% relative decrease and up to 13.7% rela-
tive increase). We explored the whole range of krresolver values between kassembly and read
size with a step size of 5 bp in order to assess the impact of the krresolver parameter on
assembly quality. This information was used to develop a heuristic for choosing krresolver
that would maximize contiguity and complete BUSCO genes and minimize misasssem-
blies in the absence of a reference.

Page 7 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246 	

For the 2× 151 bp human reads, increasing krresolver monotonically improves the
NGA50 length and complete BUSCO genes for both datasets with a trend of some-
what increased misassemblies. Since RResolver does not make any cuts in the
sequences, misassembly reduction found in some assemblies comes from repeat reso-
lution enabling the downstream ABySS algorithms to more easily avoid making erro-
neous joins. Using the highest krresolver value yields between 3.7 and 15.1% NGA50
relative increase, between 1.8% decrease and 11.0% increase of misassemblies, and
between 0.5 and 2.7% complete BUSCO increase.

For the 2× 250 bp human reads, increasing krresolver as high as the read length can
deteriorate assembly quality, as shown by increased misassemblies and diminishing
trend of complete BUSCO genes. A difference of + 60 between krresolver and kassembly
values on average yields increased NGA50 and increased complete BUSCO genes
without too many additional misassemblies. Using the krresolver = kassembly + 60 heu-
ristic yields between 1.1 to 5.4% NGA50 relative increase, between 0.9% decrease
and 7.4% increase of misassemblies, and between 0.25 and 0.8% complete BUSCO

Fig. 1  H. sapiens parameter sweep QUAST results. NGA50 and misassembly scaffold metrics with and without
RResolver. High-quality assemblies lean towards top left corner, with high contiguity and low misassemblies.
The text labels indicate the offset between krresolver and kassembly used for each data point. Some text labels
(for smaller triangles) and overlapping data points are omitted to reduce crowdedness in the plot, while
keeping the trends. All RResolver data points have higher NGA50 than the corresponding baseline assembly,
and some have fewer misassemblies. For 2 bp datasets, picking the highest krresolver increases NGA50 the most
while keeping misassembly increase moderate. For 2 datasets, picking the highest krresolver is not necessarily
optimal as it leads to increased misassemblies, and a krresolver = kassembly + 60 is a good empirical choice for
balancing NGA50 increase and minimizing misassemblies

Page 8 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246

increase. For both read 2× 151 bp and 2× 250 bp, lower kassembly values benefit more,
reducing the effect of a suboptimal kassembly value for the baseline assembly.

One of the reasons for limiting how high krresolver value should go is the short-read base
quality trend, which tends to drop sharply towards the read’s 3’ end [24]. This can be
seen in the output of FastQC [25] for NA24631 ( 2× 151 bp) and NA24143 ( 2× 250 bp)
in Additional file 1: Fig. S7. For 2× 151 bp reads, Phred quality [26] starts noticeably
dropping in the 140–150 bp range, whereas for 250 bp that happens in the 170–250 bp
range.

The results shown so far are for fold-coverages in the 40–60× range. Figure 2 shows
the NGA50 and misassemblies metrics for a 2× 151 bp and a 2× 250 bp dataset with
the read coverage subsampled down to 28× and 33× respectively with a step of 5 × using
seqtk [27]. The baseline ABySS assembly for each subplot uses the optimal kassembly
value. Across all assemblies, for 2× 250 bp reads, an offset of + 60 between krresolver and
kassembly provides a balanced NGA50 increase while not introducing too many misassem-
blies. For 2× 151 bp, the + 60 offset is limited by read size, and so the highest krresolver
can be used as the optimal value. This confirms the heuristic of setting the krresolver value
to be 60 bp higher than kassembly and is the recommended approach if comparing assem-
blies that use different krresolver values is too computationally costly or the reference is
unavailable.

To demonstrate that the algorithm performs well on genomes other than H. sapi-
ens (3.1 Gbp haploid genome size), Fig. 3 and Additional file 1: Fig. S8 show results for
2× 110 bp C. elegans and 2× 151 bp A. thaliana datasets (101 Mbp and 157 Mbp genome
sizes respectively). For both datasets, we applied the heuristic krresolver = kassembly + 60
bp, with read size as the upper limit. For C. elegans, the baseline ABySS assembly with
the highest NGA50 contiguity ( kassembly = 80 bp) does not yield the highest NGA50 con-
tiguity final assembly with ABySS + RResolver ( kassembly = 75 bp, krresolver = 105 bp ).
The assembly yielding the highest contiguity is the one with a lower kassembly which

Fig. 2  H. sapiens subsampled coverage QUAST results. NGA50 and misassemblies plots for a 2× 51 bp and
a 2× 250 bp human dataset. The text labels indicate the offset between krresolver and kassembly used for each
data point. Each subplot ABySS base assembly uses optimal kassembly value. As in Fig. 1, the highest krresolver is a
good choice for 2× 151 bp datasets, and an offset of + 60 works well for 2× 250 bp, giving a good contiguity
improvement without increasing misassemblies too much

Page 9 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246 	

retains more connections in the graph. While this also results in more false edges, those
can be removed by RResolver whereas it cannot recover connectivity lost by higher val-
ues of kassembly . For A. thaliana, while all assemblies have increased contiguity (between
6.3 and 14.5% relative increase) and BUSCO completeness (between 0.1 and 0.3% rel-
ative increase), they come with a trend of increased misassemblies (between 20.9 and
51.4% relative increase). While the misassembly increase looks significant, there is a
fairly low number of misassemblies in the first place and the absolute increase is not
large (up to 19). In the case of C. elegans, contiguity has a relative increase between 0
and 8.8%, BUSCO completeness between 0 and 0.8%, and misassemblies have a relative
increase of up to 2.5% and a decrease of up to 2.6%.

Along with the improved assembly quality, the average RResolver run time across all
datasets when using the krresolver = kassembly + 60 heuristic was only 2.4% of the whole
ABySS pipeline, with the longest run time reaching 5.8%. For H. sapiens runs, with the
heuristic the RResolver step took between 16 and 52 min, with 26 min being the aver-
age. Its memory usage for the same runs ranged between 54 and 63 GiB, with 57 GiB
being the average. For all datasets, when using the heuristic the overall ABySS pipeline
time increased on average by 0.5% compared to the baseline ABySS. However, pipeline
peak memory usage increased on average by 8.4%. The machine specifications used for
benchmarking can be found in Additional file 1: Table S1.

We also compared the ABySS assembler with RResolver to other state-of-the-art de
novo assemblers to ensure its competitiveness. Additional file 1: Fig. S9 shows assembly
quality results for the four human individuals with ABySS, DISCOVAR de novo [10], and
MEGAHIT [21] assemblers. For the assemblies using 2× 151 bp reads, ABySS produces
the highest NGA50 length (93 Kbp and 101 Kbp) and BUSCO completeness (79.9% and
81.3%), and a comparable number of misassemblies (834 and 808) to DISCOVAR de
novo (597 and 576). When comparing the assemblies using 2× 250 bp reads, DISCO-
VAR de novo generates assemblies with higher contiguity (189 Kbp and 194 Kbp) and
BUSCO completeness (86.0% and 86.1%), but a comparable number of misassemblies
(295 and 340) to ABySS (578 and 635). For all datasets, MEGAHIT performs the worst in
all three metrics. Additional file 1: Fig. S10 shows the run time and memory benchmarks

Fig. 3  C. elegans and A. thaliana QUAST results. NGA50 and misassembly plots for C. elegans and A. thaliana.
The krresolver = kassembly + 60 bp heuristic is used, limited by read size of 110 bp and 151 bp. Both datasets
see an improvement in contiguity, with a moderate increase in misassemblies in some cases. For C. elegans
kassembly = 85 , no resolveable repeats were found and hence no change in assembly quality

Page 10 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246

for each tool. In terms of peak memory usage, DISCOVAR de novo is by far the most
demanding, using 1.6–1.7 TiB for 2× 151 bp datasets, and around 2TiB for 2× 250 bp.
ABySS memory usage peaks between 50 and 60 GiB, whereas MEGAHIT memory usage
peaks between 80 and 120 GiB for all datasets. DISCOVAR de novo has the fastest run
time, averaging 9 to 10 h per run. This is followed by ABySS which completes under a
day for both 2× 151 bp datasets and one 2× 250 bp dataset, and a day and a half for the
other 2× 250 bp dataset. MEGAHIT has comparable run time to ABySS for 2× 151 bp
datasets, but runs over 2 days for 2× 250 bp datasets.

When assembling small genomes such as E. coli, ABySS is comparable to SPAdes [8]
and Unicycler [28] in all three metrics—NGA50 length, number of misassemblies, and
BUSCO completeness. Additional file 1: Figs. S11 and S12 show assembly quality and
resource usage comparison for 2× 100 bp, 2× 150 bp, and 2× 151 bp E. coli datasets.
All three assemblers have similar NGA50 contiguity (different at most by 2.6%) and mis-
assembly count (differing at most by 43 misassemblies), with ABySS having more mis-
assemblies on average. All assemblies recover 100% of the BUSCO complete genes. In
terms of peak memory usage, ABySS uses less RAM by far ( < 5GiB , as opposed to 10–30
GiB for SPAdes and Unicycler) and has comparable run time to SPAdes with less than 15
min. Unicycler is the slowest, running on average between 30 and 60 min.

Discussion
Resolving repeats in assembly graphs has been a widely researched topic. For DBGs,
one way in which this has been achieved is using multiple k-mer sizes. The smaller sizes
ensure connectivity in the graph whereas the larger sizes resolve repeats and untangle
the graph. The current state-of-the-art methods have used multiple k-mer sizes, but
only for smaller genomes, leaving a gap in the methodology. The studies so far have not
addressed the scalability issues of their methods when dealing with large genomes. The
concept of a multisized DBG, as used in the SPAdes assembler, relies on using multi-
ple k values (i.e., k-mer sizes) to build the graph. This requires constructing contigs for
each k value, which can be prohibitively slow for large genomes. Another approach, as
employed by the IDBA assembler, is to make small k increments, making the exploration
of a larger range of k values costly.

There are a number of challenges that come with attempting to use a multiple k val-
ues approach scalably—high memory usage, long execution times, complex repeats with
a large number of possible paths, and errors. The work presented here addresses these
challenges and the gap in the methodology, expanding upon the ways in which short-
read information can be used to the fullest extent. In addition to the k value used by
DBG, RResolver uses only one additional, larger k value in order to resolve repeats. This
is different from the previous approaches of processing a list of k values and is a key ena-
bler of scalability of the algorithm.

The two main aspects in which the RResolver algorithm could be improved are the
krresolver k-mer coverage estimation and handling of read errors. Coverage approxima-
tion is coarse, as the information available is at the contig level and so a higher reso-
lution approximation could potentially help avoid erroneous resolutions. Read errors
play a part in both coverage estimation, as they confound the number of reads that have

Page 11 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246 	

contributed to a contig, and in missing krresolver k-mers on queries, possibly resulting in
mistakes.

If a read has an erroneous base call within the extracted krresolver k-mers, RResolver will
miss those k-mers when querying a correct path, reducing its support and potentially
resulting in a misassembly. This is especially problematic for longer reads and larger
krresolver values, as there would be more bases that could be erroneous. It may be the case
that the erroneous base call is found at the end of a krresolver k-mer, while a preceeding
kassembly k-mer of the same read might not have that error. This results in an inaccuracy
in the proportion calculation in the coverage formula.

Another source of error is graph node read coverage. Since the ABySS assembler
provides average kassembly k-mer multiplicity along a node, the information granular-
ity decreases the longer the node is. For a particularly long node with highly varying
coverage, this will lead to overestimation in low-coverage regions and to underestima-
tion in high-coverage regions. Overestimating the number of expected krresolver k-mers
results in fewer tests done and therefore a greater chance of missing k-mers on a correct
path. While it is possible to simply increase the number of tests overall by a factor, doing
so reduces the number of repeats that can possibly be resolved, as the sliding window
might not be long enough to do the required number of tests.

Conclusions
Generating high-quality de novo assemblies is crucial for many downstream analyses.
More contiguous and correct assemblies can greatly benefit various clinical applications
and have found use in oncological projects [4]. Gene annotation can only go so far if
the draft assembly being annotated is of limited quality [29], further emphasizing the
point. However, improving de novo genome assemblies still has ways to go, as sequenc-
ing errors and repetitive sequences are major obstacles to achieving accurate assemblies
[30].

In this work, we have demonstrated a method for improving the quality of de novo
genome assemblies from short reads by utilizing unused range information. The pre-
sented algorithm, RResolver, resolves repeats in a DBG by storing large k-mers in a
Bloom filter to estimate graph path support and remove unsupported paths. We have
shown that the method consistently increases the contiguity of the assemblies and recov-
ers fragmented or missing genes.

RResolver works seamlessly with the ABySS assembler pipeline, without requiring user
involvement. When enabled, the output assembly benefits from higher quality. In this
work, RResolver was tested on H. sapiens, C. elegans, A. thaliana, and E. coli genomes
to assess performance on different genome sizes and complexities. Its execution time
is only a fraction of the ABySS assembler pipeline it is a part of. We reported that on
average RResolver increases the ABySS pipeline total run time by 2% and peak mem-
ory usage by 8%. The ABySS assembler was designed to work on large genomes, and so
working within similar run time and memory constraints is important.

RResolver adds one more piece of the puzzle to generating high-quality de novo assem-
blies of large genomes and does so at the early stages of the assembly, benefiting any
downstream algorithms that build contigs, scaffold the assembly, or do a final polishing.

Page 12 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246

Methods
The RResolver algorithm runs the following steps in order:

•	 For each read size, starting from the shortest:

1	 Populate a Bloom filter with krresolver k-mers.
2	 Identify repeats small enough to be spanned by krresolver k-mers.
3	 Slide with a step of 1 bp a krresolver sized window along all paths going through

the identified repeats and query the Bloom filter on each step for presence of a
k-mer.

4	 Delineate true from false paths using a threshold for the number of krresolver
k-mers found along each tested path.

5	 Modify the assembly graph to remove the false paths and leave the true paths.
If this modification results in unambiguous paths of nodes, merge the nodes
together.

The algorithm is summarized in the flowchart in Additional file 1: Fig. S4.
We used nine datasets in our experiments, assessing performance for different genome

lengths and complexities, and for evaluating proper parameter choice. We used a C. elegans
N2 strain dataset, with 2× 110 bp paired end Illumina reads with 75-fold coverage. A. thal-
iana 2× 151 bp paired end Illumina reads with 50-fold coverage. Four H. sapiens datasets
— two 2× 151 bp Illumina (NA12878, NA24631), and two 2× 250 bp Illumina (NA24143,
NA24385) paired end datasets were used with 45-, 43-, 48-, and 58-fold coverage respec-
tively. The H. sapiens reference used for reference-based assessment was GRCh38. We also
used three E. coli datasets with 2× 100 bp, 2× 150 bp, and 2× 151 bp paired end Illumina
reads with 209-, 100-, and 99-fold coverage respectively.

SRA and ENA accession IDs and links to download the data are provided in the Availabil-
ity of data and materials section.

Assemblies were performed using ABySS v2.3.4, MEGAHIT v1.2.9, DISCOVAR de novo
52488, SPAdes v3.15.3, and Unicycler v0.4.8. ABySS without RResolver assemblies use
ABySS v2.3.4 with RResolver disabled in the pipeline. For assembly evaluation, QUAST
v5.0.2 and BUSCO v5.2.2 were used. Parameters used for each tool can be found in Addi-
tional file 1: Table S3.

In order to make k-mer extraction from reads and paths fast, ntHash [31], a rolling hash
algorithm for nucleotide sequences, is used to efficiently calculate hashes of successive
k-mers.

To consider a repeat for path evaluation, its length must be:

where Lrepeat is the repeat length, tests the required number of tests (sliding window
moves), and margin the minimum number of bases the sliding window should overlap
on adjacent nodes at a minimum (2 by default).

The formula for the number of required tests is:

Lrepeat ≤ krresolver − (tests − 1)− 2 ·margin

(1)tests = max(m, s · f + t)

Page 13 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246 	

where m is the minimum number of tests (18), s the approximate space between neigh-
bouring reads along the tested path, calculated by the coverage estimation formula
described further in the text, f inaccuracy correction factor (4), and t support threshold
(4). The minimum number of tests is enforced in order to make sure a path is not found
unsuported due to not making a sufficient number of tests. The inaccuracy correction
factor compensates for the errors of coverage estimation. Each read provides a number
of krresolver k-mers equal to the support threshold and so a constant equal to the thresh-
old (t) is added to the formula to ensure that all extracted krresolver k-mers are found. The
parameter M sets the maximum number of tests (40). If tests is calculated as above M,
the repeat is skipped. The numbers shown in parentheses are the default values, and are
tunable through runtime parameters. Parameter s is calculated as:

where L is the length of the tested path, l read length, and Rp the number of reads that
have contributed to the path during the assembly DBG stage. Calculating Rp is further
described in the Supplementary Varying coverage section. This number is approximated
based on the kassembly coverage of the path, provided by the assembler.

Equation 2 is only an approximation and its output should be interpreted carefully.
To make sure no reads are missed, in Eq. 1 its output is multiplied by a factor of 4. The
same rationale is behind setting a minimum number of sliding window moves (18). The
formula may overestimate the number of krresolver k-mers expected and perform too few
tests, which this lower limit prevents.

To consider a path supported, a threshold of 4 krresolver k-mers is used. Additionally,
4 krresolver k-mers are extracted per read, starting from the 5’ end, reducing the effect of
the read quality drop towards the 3’ end [24]. The number of hash functions per krresolver
k-mers when inserting into the Bloom filter is 7.

Additional file 1: Fig. S13 shows the histogram of krresolver k-mers found along all the
tested paths for the kassembly = 100, krresolver = 145 H. sapiens NA24631 assembly with
a threshold of 4. There is a clear separation between the two distributions of unsup-
ported and supported paths, with the first noticeable histogram bar of supported paths
at 4 k-mers suggesting that the threshold of 4 is appropriate. The paths with Bloom fil-
ter false positives are found between the two distributions, however, due to low FPR of
7.57 · 10−11 for this assembly, they are few and not visible. The spike at 18 k-mers is due
to a default minimum number of sliding window moves of 18.

When dealing with complex repeats (Additional file 1: Fig. S2), a maximum of 75 paths
are allowed on either side of the repeat for a maximum total of 5625 path combinations.
In case there are more than maximum, the paths are randomly subsampled down to
5625.

Two iterations of graph path evaluation and resolution are done per read size, as the
path evaluation completes very quickly and can uncover additional opportunities for
repeat resolution.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04790-z.

(2)s =
L− l + 1

Rp

https://doi.org/10.1186/s12859-022-04790-z

Page 14 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246

Additional file

Additional file 1. Supporting data (supplementary methods, figures and tables) for RResolver: efficient short-read
repeat resolution within ABySS.

Acknowledgements
We would like to thank Shaun Jackman, one of the original authors of ABySS, for the discussions and clarifications around
ABySS design and concepts as well as for a number of suggestions on the algorithm design presented here. Thanks to
Martin Krzywinski, a staff scientist at Canada’s Michael Smith Genome Sciences Centre, for providing the colorblind-
friendly color palette used in the paper figures. Finally, thanks to Kirstin Brown from Knowledge Translation & Communi-
cation team at Genome Sciences Centre for helping proofread the manuscript.

Author contributions
IB devised the original concept. VN designed and implemented the method, and wrote the manuscript. RLW, JC, JW, LC,
KMN contributed to the design and troubleshooting of the algorithm. AA benchmarked ABySS against other assemblers.
All authors read and approved the final manuscript.

Funding
This work was supported by Genome BC and Genome Canada [281ANV]; the National Institutes of Health
[2R01HG007182-04A1]; and the Natural Sciences and Engineering Research Council of Canada. The content of this
paper is solely the responsibility of the authors, and does not necessarily represent the official views of the funding
organizations.

Availability of data and materials
The accession IDs and URLs to the datasets used in this study can be found in Additional file 1: Table S2. Source code
can be downloaded from: https://​github.​com/​bcgsc/​abyss/​tree/​master/​RReso​lver. The ABySS release with the RResolver
algorithm used in the results can be downloaded from: https://​github.​com/​bcgsc/​abyss/​relea​ses/​tag/2.​3.4. ABySS
README includes relevant tutorials and sample synthetic data.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 7 March 2022 Accepted: 9 June 2022

References
	1.	 Warren RL, Keeling CI, Yuen MMS, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD,

Robertson G, Yang C, Boyle B, Hoffmann M, Weigel D, Nelson DR, Ritland C, Isabel N, Jaquish B, Yanchuk A, Bousquet
J, Jones SJM, MacKay J, Birol I, Bohlmann J. Improved white spruce (Picea glauca) genome assemblies and annota-
tion of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J. 2015;83(2):189–212.
https://​doi.​org/​10.​1111/​tpj.​12886.

	2.	 Fitz-Gibbon S, Hipp AL, Pham KK, Manos PS, Sork VL. Phylogenomic inferences from reference-mapped and de novo
assembled short-read sequence data using RADseq sequencing of california white oaks (quercus section quercus).
Genome. 2017;60(9):743–55. https://​doi.​org/​10.​1139/​gen-​2016-​0202.

	3.	 Das P, Sahoo L, Das SP, Bit A, Joshi CG, Kushwaha B, Kumar D, Shah TM, Hinsu AT, Patel N, Patnaik S, Agarwal S, Pandey
M, Srivastava S, Meher PK, Jayasankar P, Koringa PG, Nagpure NS, Kumar R, Singh M, Iquebal MA, Jaiswal S, Kumar N,
Raza M, Mahapatra KD, Jena J. De novo assembly and genome-wide SNP discovery in rohu carp, labeo rohita. Front
Genet. 2020. https://​doi.​org/​10.​3389/​fgene.​2020.​00386.

	4.	 Jamshidi F, Pleasance E, Li Y, Shen Y, Kasaian K, Corbett R, Eirew P, Lum A, Pandoh P, Zhao Y, Schein JE, Moore RA,
Rassekh R, Huntsman DG, Knowling M, Lim H, Renouf DJ, Jones SJM, Marra MA, Nielsen TO, Laskin J, Yip S. Diagnostic
value of next-generation sequencing in an unusual sphenoid tumor. Oncologist. 2014;19(6):623–30. https://​doi.​org/​
10.​1634/​theon​colog​ist.​2013-​0390.

	5.	 Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren RL, Birol
I. ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome Res. 2017;27(5):768–77.
https://​doi.​org/​10.​1101/​gr.​214346.​116.

	6.	 Chikhi R, Rizk G. Space-efficient and exact de Bruijn graph representation based on a bloom filter. Algorithms Mol
Biol. 2013. https://​doi.​org/​10.​1186/​1748-​7188-8-​22.

	7.	 Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res.
2008;18(5):821–9. https://​doi.​org/​10.​1101/​gr.​074492.​107.

https://github.com/bcgsc/abyss/tree/master/RResolver
https://github.com/bcgsc/abyss/releases/tag/2.3.4
https://doi.org/10.1111/tpj.12886
https://doi.org/10.1139/gen-2016-0202
https://doi.org/10.3389/fgene.2020.00386
https://doi.org/10.1634/theoncologist.2013-0390
https://doi.org/10.1634/theoncologist.2013-0390
https://doi.org/10.1101/gr.214346.116
https://doi.org/10.1186/1748-7188-8-22
https://doi.org/10.1101/gr.074492.107

Page 15 of 15Nikolić et al. BMC Bioinformatics (2022) 23:246 	

	8.	 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD,
Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm
and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. https://​doi.​org/​10.​1089/​cmb.​2012.​
0021.

	9.	 Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B,
Lu Y, Han C, Cheung DW, Yiu S-M, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam T-W, Wang J. SOAPde-
novo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012. https://​doi.​org/​
10.​1186/​2047-​217x-1-​18.

	10.	 DISCOVAR: Assemble genomes, find variants. https://​www.​broad​insti​tute.​org/​softw​are/​disco​var/​blog. Accessed 8
Apr 2020

	11.	 Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS: a parallel assembler for short read sequence
data. Genome Res. 2009;19(6):1117–23. https://​doi.​org/​10.​1101/​gr.​089532.​108.

	12.	 Bloom BH. Space/time trade-offs in hash coding with allowable errors. Commun ACM. 1970;13(7):422–6. https://​doi.​
org/​10.​1145/​362686.​362692.

	13.	 Vandervalk BP, Yang C, Xue Z, Raghavan K, Chu J, Mohamadi H, Jackman SD, Chiu R, Warren RL, Birol I. Konnec-
tor v2.0: pseudo-long reads from paired-end sequencing data. BMC Med Genom. 2015. https://​doi.​org/​10.​1186/​
1755-​8794-8-​s3-​s1.

	14.	 Warren RL, Yang C, Vandervalk BP, Behsaz B, Lagman A, Jones SJM, Birol I. LINKS: scalable, alignment-free scaffolding
of draft genomes with long reads. GigaScience. 2015. https://​doi.​org/​10.​1186/​s13742-​015-​0076-3.

	15.	 de Koning APJ, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the
human genome. PLoS Genet. 2011;7(12):1002384. https://​doi.​org/​10.​1371/​journ​al.​pgen.​10023​84.

	16.	 Kidwell MG. Genetica. 2002;115(1):49–63. https://​doi.​org/​10.​1023/a:​10160​72014​259.
	17.	 Chalopin D, Naville M, Plard F, Galiana D, Volff J-N. Comparative analysis of transposable elements highlights

mobilome diversity and evolution in vertebrates. Genome Biol Evol. 2015;7(2):567–80. https://​doi.​org/​10.​1093/​gbe/​
evv005.

	18.	 Bansal V, Boucher C. Sequencing technologies and analyses: where have we been and where are we going? iSci-
ence. 2019;18:37–41. https://​doi.​org/​10.​1016/j.​isci.​2019.​06.​035.

	19.	 Ekblom R, Smeds L, Ellegren H. Patterns of sequencing coverage bias revealed by ultra-deep sequencing of verte-
brate mitochondria. BMC Genom. 2014;15(1):467. https://​doi.​org/​10.​1186/​1471-​2164-​15-​467.

	20.	 Peng Y, Leung HCM, Yiu SM, Chin FYL. Idba—a practical iterative de Bruijn graph de novo assembler. In: Berger B,
editor. Research in Computational Molecular Biology. Berlin: Springer; 2010. p. 426–40.

	21.	 Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex
metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6. https://​doi.​org/​10.​1093/​
bioin​forma​tics/​btv033.

	22.	 Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics.
2013;29(8):1072–5. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btt086.

	23.	 Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and anno-
tation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​btv351.

	24.	 Dohm JC, Lottaz C, Borodina T, Himmelbauer H. Substantial biases in ultra-short read data sets from high-through-
put DNA sequencing. Nucleic Acids Res. 2008;36(16):105–105. https://​doi.​org/​10.​1093/​nar/​gkn425.

	25.	 Andrews S, Krueger F, Segonds-Pichon A, Biggins L, Krueger C, Wingett S. FastQC. Babraham: Babraham Institute;
2010.

	26.	 Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces UsingPhred. I. Accuracy assess-
ment. Genome Res. 1998;8(3):175–85. https://​doi.​org/​10.​1101/​gr.8.​3.​175.

	27.	 Seqtk, a fast and lightweight tool for processing sequences in the FASTA or FASTQ format. https://​github.​com/​lh3/​
seqtk. Accessed 13 Jan 2021.

	28.	 Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long
sequencing reads. PLoS Comput Biol. 2017;13(6):1005595. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10055​95.

	29.	 Salzberg SL. Next-generation genome annotation: we still struggle to get it right. Genome Biol. 2019. https://​doi.​
org/​10.​1186/​s13059-​019-​1715-2.

	30.	 Denton JF, Lugo-Martinez J, Tucker AE, Schrider DR, Warren WC, Hahn MW. Extensive error in the number of genes
inferred from draft genome assemblies. PLoS Comput Biol. 2014;10(12):1003998. https://​doi.​org/​10.​1371/​journ​al.​
pcbi.​10039​98.

	31.	 Mohamadi H, Chu J, Vandervalk BP, Birol I. ntHash: recursive nucleotide hashing. Bioinformatics. 2016. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​btw397.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1186/2047-217x-1-18
https://doi.org/10.1186/2047-217x-1-18
https://www.broadinstitute.org/software/discovar/blog
https://doi.org/10.1101/gr.089532.108
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1186/1755-8794-8-s3-s1
https://doi.org/10.1186/1755-8794-8-s3-s1
https://doi.org/10.1186/s13742-015-0076-3
https://doi.org/10.1371/journal.pgen.1002384
https://doi.org/10.1023/a:1016072014259
https://doi.org/10.1093/gbe/evv005
https://doi.org/10.1093/gbe/evv005
https://doi.org/10.1016/j.isci.2019.06.035
https://doi.org/10.1186/1471-2164-15-467
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1093/bioinformatics/btv351
https://doi.org/10.1093/bioinformatics/btv351
https://doi.org/10.1093/nar/gkn425
https://doi.org/10.1101/gr.8.3.175
https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
https://doi.org/10.1371/journal.pcbi.1005595
https://doi.org/10.1186/s13059-019-1715-2
https://doi.org/10.1186/s13059-019-1715-2
https://doi.org/10.1371/journal.pcbi.1003998
https://doi.org/10.1371/journal.pcbi.1003998
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw397

	RResolver: efficient short-read repeat resolution within ABySS
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Results
	Algorithm overview
	False positives
	Varying coverage
	Complex repeats
	Repeat resolution

	Performance assessment

	Discussion
	Conclusions
	Methods
	Acknowledgements
	References

