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Abstract 

Background and objective:  Cancer Immunoediting (CI) describes the cellular-level 
interaction between tumor cells and the Immune System (IS) that takes place in the 
Tumor Micro-Environment (TME). CI is a highly dynamic and complex process compris‑
ing three distinct phases (Elimination, Equilibrium and Escape) wherein the IS can both 
protect against cancer development as well as, over time, promote the appearance of 
tumors with reduced immunogenicity. Herein we present an agent-based model for 
the simulation of CI in the TME, with the objective of promoting the understanding of 
this process.

Methods:  Our model includes agents for tumor cells and for elements of the IS. The 
actions of these agents are governed by probabilistic rules, and agent recruitment 
(including cancer growth) is modeled via logistic functions. The system is formalized as 
an analogue of the Ising model from statistical mechanics to facilitate its analysis. The 
model was implemented in the Netlogo modeling environment and simulations were 
performed to verify, illustrate and characterize its operation.

Results:  A main result from our simulations is the generation of emergent behavior in 
silico that is very difficult to observe directly in vivo or even in vitro. Our model is capa‑
ble of generating the three phases of CI; it requires only a couple of control parameters 
and is robust to these. We demonstrate how our simulated system can be character‑
ized through the Ising-model energy function, or Hamiltonian, which captures the 
“energy” involved in the interaction between agents and presents it in clear and distinct 
patterns for the different phases of CI.

Conclusions:  The presented model is very flexible and robust, captures well the 
behaviors of the target system and can be easily extended to incorporate more 
variables such as those pertaining to different anti-cancer therapies. System charac‑
terization via the Ising-model Hamiltonian is a novel and powerful tool for a better 
understanding of CI and the development of more effective treatments. Since data of 
CI at the cellular level is very hard to procure, our hope is that tools such as this may be 
adopted to shed light on CI and related developing theories.
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Introduction
The scientific understanding of the interaction between the Immune System (IS) and 
cancer has come a long way since the formal postulation of the cancer immunosurveil-
lance hypothesis by Burnet & Thomas in the late 1950s. Said development, however, has 
not been without difficulties due to both technological limitations as well as justified 
resistance from the scientific community to embrace certain ideas that were only par-
tially supported by the evidence available at the time. By the beginning of the twenty-first 
century, several important discoveries had guided the evolution of the immunosurveil-
lance hypothesis into the concept of cancer immunoediting (CI); a brief review of that 
evolution is found in [1, 2]. Two decades later, CI is a well established idea describing 
the process whereby the IS can both protect against cancer development as well as, over 
time, promote the appearance of tumors with reduced immunogenicity [3].

Cancer immunoediting comprises three phases that take place in a Tumor Micro-
Environment (TME): (1) Elimination (immunosurveillance), wherein the IS detects and 
largely eliminates abnormal cells; (2) Equilibrium, describing a process (that may occur 
over several years) during which the IS maintains a selection pressure (in an evolutionary 
sense) on tumor cells, which in combination with increasing genetic instability (muta-
tions that generate cell heterogeneity), promotes the appearance and survival of tumor 
cell variants with augmented capabilities to avoid or suppress immune actions (detec-
tion and attack); and (3) Escape, wherein the immunologically adapted tumor gradually 
expands without control until it becomes clinically apparent [4].

Although conceptually simple, the different processes referred to as CI are extremely 
complex and dynamic, since the interaction between the IS and tumor cells involves 
numerous components from both the Innate and the Adaptive IS, and the behavior of 
these components, as well as that of the tumor cells, changes over time. From a practical 
point of view, the Escape phase, or rather the transition between the Equilibrium phase 
and the Escape phase, is of most interest because it can be considered as the point at 
which the IS losses effectiveness and cancer in a strict sense (a disordered replication of 
malignant cells in an organ tissue [5]), develops. Because of this, current immunother-
apy research is focused on acquiring a better understanding of how cancer cells evade 
or suppress the immune response against them and on finding solutions for this tumor 
resistance.

Cancer immunoediting

The interaction between Cancer Cells (CCs) and the Immune System (IS) taking place 
in the primary TME is quite intricate, since it involves numerous kinds of cells (see 
Table 1), as well as a complex exchange of chemical signals (cytokines, see Table 2) that 
govern their behavior [6]. Herein we provide a very brief and basic explanation of the 
CI stages, merely enough to serve as a technical underpinning for our model. Detailed 
overviews of CI can be found in [1, 2, 7]. The IS is composed of two subsystems [8]: the 
Innate IS (IIS) and the Adaptive IS (AIS). The IIS comprises the genetically inherited 
immune actions and includes cell types such as the NKs, M ϕ s and Ns that act as first 
responders against aberrant cells [9, 10]. The AIS evolves via a training process based on 
the successful immune responses to previously unknown diseases; it includes T and B 
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cells of many varieties [11]. Other cell types that are involved in CI are DCs and, impor-
tantly, MDSCs [12, 13].

Elimination

Normal cells are transformed into CCs because of carcinogens or mutations and 
express tumor antigens (NKG2D ligands, MHC-I molecules, etc.) which are recog-
nized by NKs and the cytotoxic CD8+T cells. NKs induce apoptosis in cancer cells 
via cytotoxic molecules (such as perforin) or antibodies, and recruit M ϕ s and Ns to 
dispose of dying tumor cells. DCs act as messengers between the IIS and the AIS by 
processing antigen material and presenting it to the elements of the AIS: CD4+T, 
CD8+T, NKT, and B cells. Activated T cells and NKs secrete IFN-γ (inflammatory) 
which activates M ϕ s and Ns, and inhibits angiogenesis. The activated B cells pro-
duce tumor specific antibodies while CD8+T cells induce apoptosis via cytokines 
and interaction with TRAIL receptors on CCs. γδ T, CD8+T and NK cells use 
NKG2D receptors to recognize induced-self antigens [6, 14]. In an immunocompe-
tent host with a healthy IS, immunosurveillance continuously eliminates abnormal 

Table 1  Immune system elements in the TME

Elements in the top eleven rows are included in our model

Cell type Description Role in the TME

CC Cancer (tumor) cells Produce antigens

NK Natural Killer cells Respond to tumor antigens and recruit other IS 
elements

Mϕ Macrophages Innate immune system element

M1 Anti-tumor Assocd. M ϕs Pro-inflammatory and cytotoxic (anti-tumoral) 
effects

M2 Pro-tumor Assocd. M ϕs Anti-inflammatory (pro-tumoral) and wound healing 
effects

N Neutrophils Part of the IIS; phagocytes and first responders to 
inflammation

N1 Anti-tumor Assocd. Ns Cytotoxic; activate T and B cells, NKs and DCs

N2 Pro-tumor Assocd. Ns Promote tumor growth, metastasis and angiogenesis

Treg Regulatory T cells Immunosuppessive, modulate IS and maintain 
tolerance

CD4+T Helper T cells Promote activation of other cells via cytokines 
and co-stimulation

CD8+T Killer T cells Cytotoxic; attack tumor cells, recruit other cells via 
cytokines

B B lymphocytes Present antigens and secrete cytokines

Breg Regulatory B cells Suppression of immune responses by production 
of IL-10

DC Dendritic Cells Present antigens to T cells and B cells

γδT Gamma delta T cells Multiple effector (anti-tumoral) and regulatory (pro-
tumoral) functions

NKT Natural Killer T cells Recognize CD1d molecule (an antigen-presenting 
molecule)

MDSC Myeloid-derived suppressors Interact with other IS cells to regulate their functions
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cells throughout the body and prevents the outgrowth of cancer cells. Nevertheless, 
some CCs can survive this immune control and enter Equilibrium.

Equilibrium

This is an immune-mediated state of quiescence wherein proliferation and elimina-
tion rates of CCs equal each other. This state also implies a balance between the 
production of anti-tumor (IL-12, IFN-  γ ) and pro-tumor (TGF-β [15, 16], IDO) 
cytokines. The IS continued response is mostly carried out by CD4+T and CD8+T 
cells, with participation of NKs and T reg cells. Most importantly, during the Equilib-
rium phase tumor cells undergo an evolutionary process (often described as editing 
or sculpting) in which the IS activities constitute a form of environmental pressure 
and mutations act as adaptations to said environment (i.e. Darwinian selection lead-
ing to survival of the fittest). The Equilibrium phase may occur throughout several 
years during which poorly/non-immunogenic and immunosuppresive transformed 
cell variants emerge [7, 17, 18]. At this point the IS losses effectiveness and the 
Escape phase begins.

Table 2  Cytokines present in the TME involved in Cancer Immunoediting

Label Description and function

IFN-γ Interferon produced by NKs and T cells; activates M ϕs; induces MHC molecule 
expression

IFN-α/β Type-I interferons, help activate and regulate the IIS; they are inhibited by IL-10

IDO Produced in response to inflammation; immunosuppressor, limits T cells; pro‑
motes immunotolerance

Galectin-1 Regulates cell proliferation; immunosuppression by regulation of T cells; overex‑
pression signals Escape phase

IL-6 Interleukin-6 produced by M ϕ s; inflammatory; stimulates production of 
Ns;   antagonizes T reg cells

IL-10 Interleukin-10 from monocytes and T cells; enhances cytotoxin prod. by 
CD8+Ts; anti-inflammatory

IL-12 Interleukin-12 from DCs, M ϕ s, Ns and B cells; stimulates IFN-γ and TNF-α; anti-
angiogenic; etc.

NKG2D Transmembrane protein receptor expressed by NKs, γδ T and CD8+T cells; recog‑
nizes induced-self antigens

TGF-β Transforming Growth Factor beta; causes immunosuppression and angiogen‑
esis; converts T cells

TNF-α Tumor Necrosis Factor released by M ϕ s to alert other cells; inflammatory

TRAIL TNF-related ligand (cytokine) induces apoptosis in tumor cells

Perforin Cytolytic protein found in CD4+T cells and NKs

PD-1 Programmed cell death protein 1; regulates IS, promotes immunotolerance, lim‑
its T cell inflammatory effects

CTLA-4 Cytotoxic protein; downregulates IS; expressed by activated CD4+T and T reg 
cells, inhibits T cells
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Escape

This phase is characterized by tumor growth without hindrance from the IS. For this to 
occur, a number of complementary and intricate mechanisms are set in motion that essen-
tially causes the TME to function in a diametrically different manner to what it would 
normally do. CCs implement strategies to: (1) Evade immunorecognition by decreasing 
their expression of antigens and increasing that of anti-apoptotic molecules; (2) Suppress 
immune function by secreting cytokines such as TGF-β , IL-6, IL-10 and NKG2D ligands 
(that inhibit the cytotoxicity of γδ T cells); and (3) Recruit immune cells to indirectly pro-
mote tumor growth (also by suppressing immune function). Recruited cell types include 
B, B reg , NKT, NK, γδ T and MDSCs (that suppress the activation of T and NK cells) [4, 19].

Scope and contributions

In previous paragraphs, the phases of CI have been conceptualized as dynamic scenar-
ios wherein two rivaling forces face each other. In the Elimination phase the IS prevails 
over tumor cells; during the Equilibrium phase the opposing forces remain balanced; in 
the Escape phase tumor cells triumph over the IS. This is of particular significance for 
the present work because herein we propose to characterize the IS-tumor interaction 
by means of an energy-based model developed for the study of phase transitions. Spe-
cifically, we employ the Ising-model Hamiltonian [20] which we have used before for 
the analysis of complex interactions between opposing agents [21, 22] and apply it to the 
analysis of CI. To the best of our knowledge, this is the first model of CI that employs this 
energy-based approach. Note that the “energy” to which we refer is a unitless measure 
used to characterize computational models1 not to be understood as a physical quantity.

Our proposal is developed in the context of systems biology [8, 23, 24] as an Agent-
Based Model (ABM) where emergent behavior is driven by Gompertzian growth and the 
probabilistic interactions between the agents. Just as any model describing the intricate IS-
tumor interaction, wherein many processes are not completely understood yet, the present 
proposal introduces simplifications in order to make the model manageable and under-
standable: we disregard the tumor physical structure which gives place to further categori-
zation of the CCs according to their location inside a solid tumor; also, this work is limited 
to the avascular phase of tumor growth. Such aspects have been discussed elsewhere [25–
29]. We emphasize that the main objective of modeling and simulation of CI is to promote 
the scientific understanding of this complex process, by the generation of emergent behav-
ior in silico that is very difficult to observe directly in vivo or even in vitro. In the following 
section we offer a brief recount of relevant prior efforts towards said objective.

Related work
The tumor-immune system interaction in the TME can be formalized as a biological 
system [23]. Computational models of such a system are of great importance, since the 
analysis made possible by simulations can improve our comprehension of the process 
behind the disease [21, 30, 31].

1  In computer science, an energy-based model associates a scalar probability (called energy) to each configuration of 
observed and latent variables; the name is imported from statistical physics to machine learning, without the literal 
meaning.
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In the scientific literature on cancer tumor growth [32], as well as on that related to the 
IS response [33, 34], the system biology modeling is carried out under either the con-
tinuous [35] or the ABM approaches [25, 36]. The continuous approaches use ordinary 
differential equations (ODE) [31, 37] or partial differential equations (PDE) [38, 39] to 
establish the parameters of tumor growth and control growth dynamics; however, fre-
quently the required initial and border conditions are not well defined, and changes that 
can emerge during the process are difficult to incorporate [26]; these issues constitute 
main drawbacks of this approach.

In the ABM approach, simple agents represent the elements of cancer and of the IS 
[40]; the interaction between these results in a complex emergent behavior which is not 
restricted to the linear combination of the individual elements [41, 42]; hence ABMs can 
incorporate the changes that bring about non-deterministic interactive processes [21, 
25, 36].

In 2006, Novozhilov et al. [35] described a deterministic model for oncolytic viruses 
used as anti-cancer therapy. The Lotka-Volterra logistic equations were employed to 
model the spread of the virus infection in the tumor, and the high proliferation of CCs 
followed an exponential growth-function at early stages of tumorigenesis. Using the 
model of the virus therapy it was concluded that both the infected and uninfected tumor 
cells could be eliminated over time, even to complete recovery.

Studies of in-vitro stimulation of T cells for patient treatment have addressed the loss 
of immunocompetence with age, particularly to fight cancer. Figueredo and Aickelin [34] 
employed an ABM simulation to show that the processes of immune system aging causes 
the populations of naïve T cells (those able to respond to novel pathogens) to decay over 
time; aging affects the naïve T cells response against cancer as well as the response to the 
anti-tumour vaccination process.

In 2012, Wilson and Levy [37] reported experiments that suggest that TGF-β inhibi-
tion could amplify the anti-tumor immune response when combined with a tumor 
vaccine. The ODE-based model of cooperative interaction follows the dynamics of the 
tumor size, TGF-β concentration, cytotoxic and T reg cells.

In 2015 Wells et  al. [43] developed a hybrid discrete-continuous computational 
model of a nascent metastatic tumor to investigate how functional and spatial het-
erogeneity of cell types impact tumor pathogenesis. They discovered that tumor 
escape was enhanced by heterogeneity in the responses of individual immune cells 
to their environment. The authors carried out simulations assuming determinis-
tic or stochastic polarization of M ϕ s. Stochastic polarization was modeled by2: 
p(M2) = 0.5(1+ erf ((−1+MS2/p13)/p16)) where erf is the error function, p13 is 
a threshold on MS2 (an effector cytokine) and p16 is a stochasticity parameter; in 
turn, p(M1) = 1− p(M2) . Although the model of Wells et al. is limited to very specific 
mechanisms (such as macrophage functional polarization occurring within 5 days of 
tumor implantation), their work is noteworthy because it presented multi-parametric 
sensitivity analyses through which the capabilities of ABMs to build an understanding 
of the phenomena being modeled are illustrated.

2  This expression is found in Additional file 1: S1 Text of the cited work.
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Ku-Carrillo et al. [44] described a model of cancer tumor growth that includes the 
IS response, which is weakened by the effects of obesity and highly-caloric diets. Their 
model employs ODEs and logistic growth of the amount of fat stored in the adipocyte 
cells of the patients.

In 2017, Pourhasanzade et al. [25] presented an ABM of tumor growth with some 
resemblance to this work. Their study discussed the immune response to prevent can-
cer development, focusing on the growth of solid tumors; in contrast, our proposal 
models more of the IS elements and employs an energy-function to evaluate the state 
of the system. Thus, these two works could be considered complementary.

In 2019 Norton et al. [6] summarized the applications of ABM and hybrid modeling 
to the TME and cancer immune response, with an emphasis on intra-tumor hetero-
geneity and interactions between cancer cells and stromal cells, (including immune 
cells), on the tumor-associated vasculature in relation to the immune response, and 
on cancer immunotherapy. In their review, the approaches to model the immune 
system are broadly categorized into top-down and bottom-up models; top-down 
approaches include those based on ODE, PDE and stochastic differential equations 
(SDE), and model population of cells and their mean behavior at the macroscopic 
level. In contrast, the bottom-up approaches track individual cells (or other micro-
scopic elements) and their interactions, from which complex emergent behaviors 
arise. Although features such as stochastic behavior and heterogeneity are easier to 
capture via bottom-up models, these require more computational power to track the 
individual agents, and thus the number of agents that can be modeled is a function of 
the computational resources available.

Nuñez-López et al. [45] studied the interplay between tumor cells and the IS starting 
from a deterministic model and transforming it into an SDE model whose simulations 
were related to the phases of CI. Previously, other works had compared models based on 
SDEs, ODEs and PDEs to ABMs, notably Figueredo et al. [46, 47]. In these works, tumor 
proliferation and death were defined by p(T ) = aTα and d(T ) = bTβ , respectively, 
where T represents the number of tumor cells. The transition rates for proliferation and 
death are given by the logistic growth aT (1− Tb) and the authors described the param-
eters and behaviors of agents involved in tumor growth as follows:

Parameters Reactive behavior Proactive behavior

a, α , b and β Dies if rate < 0 Proliferates if rate > 0

where a, b, α and β are parameters that can vary substantially, depending on the case 
study. A tumor cell agent thus possessed two possible states, alive or dead, and would 
move between states through two possible actions, dies or proliferates (clearly, if an 
agent moves to state dead it will remain in that state). As can be seen, one advantage of 
ABMs is the simplicity of the agents and of the imbedded rules for individual behavior.

Very recently, Sajid et  al. [48] studied cancer niche construction by means of a 2-D 
Ising model to capture the interaction between clusters of cancer cells and of healthy 
cells, employing the Kikuchi free energy approximation to describe the spatiotemporal 
evolution of said model. Without pointing out a direct connection, their study describes 
the building blocks required for CI: apoptosis (or cell death, required in Elimination), 
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local cancer growth (a state akin to Equilibrium since cancer is kept local), and metas-
tasis (which occurs in the Escape phase). However, Sajid et al. do not discuss CI itself, 
their model is not an ABM and they employ a different formulation of the system Ham-
iltonian, more adequate for their purposes, instead of the mean field approximation [21] 
used in our study.

The computational model presented herein is a hybrid proposal between ABM and the 
continuous approach, since the behavior of the different agents in the simulated system 
is governed by relationships derived in both the continuous and the discrete domains, 
including a logistic growth function (a main choice in the ODE- or PDE-based mod-
eling) for the cancer and IS elements, and the Ising-model Hamiltonian [20] to charac-
terize the interaction of agents as cooperation among partners or confrontation between 
opponents [21, 22]. We conclude by pointing out that the works of Torquato [49], Bar-
radas et al. [21], Sajid et al. [48], and the present study can be seen as complementary to 
each other, and together describe the basis for an energy-based computational model of 
cancer from the immunological perspective.

Agent‑based model of cancer immunoediting
In this work, an Ising model energy function is employed to characterize the interac-
tion between cancer-cells and IS-cells within an agent-based framework. A good model 
should allow us to generate and observe the different phases of Cancer Immunoediting, 
while avoiding an inordinate amount of control parameters. Our model requires only 
the setting of four hyperparameters; after that, the model dynamics and the end result 
depend entirely on the stochastic behavior occurring in the simulator according to the 
three main components described below.

Modeling cancer immunoediting

We study a simplified version of the cancer versus IS interaction in the TME, for which 
the biological system modeled is depicted in Fig. 1 and the corresponding elements are 
listed in Table 1. In our ABM there are agents representing these elements, with asso-
ciated rules that govern their behavior. The simulation of the system is carried out by 
sequentially and iteratively invoking the different types of agents, according to the pseu-
docode in Algorithm 1. The actions of agents are probabilistically defined, and the com-
plex behavior of the system which we want to characterize arises from their interaction 
with other agents of different types. Said interaction becomes intricate by the emer-
gence of pro-tumor actions from IS elements. For instance, added complexity occurs 
when M ϕ s and Ns are “recruited” to inhibit immune functions (by release of inhibitory 
cytokines), becoming pro-tumoral [11].

Although it has been simplified, our model contains numerous parameters, the 
most important of which are listed in Table 3. Since adjusting each of these param-
eters individually is undesirable, our approach is to define a small set of four hyper-
parameters, based on which the values of all the parameters can be set automatically. 
Internally, all of the parameters are given individual values, but to the user this 
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Fig. 1  IS-Cancer interaction in TME: some Ns and M ϕ s can become pro-tumoral. T reg cells regulate CD8+T 
and CD4+T cells. NKs attack CCs and promote T cells

Table 3  Model parameters of interaction

“Pr.” stands for “Probability”

ID Cancer growth parameters Notation

1 No. of initial tumor cells Cn

2 Transforming Growth Factor TGF—β β

3 Pr. of antigen production by CCs p1

Innate IS parameters

4 No. of initial NKs K

5 No. of initial M ϕs M1

6 No. of initial Neutrophils N1

7 Pr. of recruiting NKs p2

8 Pr. of recruiting M ϕs p6

9 Pr. of recruiting Neutrophils p1,3

10 Pr. of NKs attacking CCs pA8

11 Pr. of M 1 cells attacking CCs pA6

12 Pr. of N 1 cells attacking CCs pA3

13 Pr. of M ϕ s becoming M 2 pA7

14 Pr. of Neutrophils becoming N 2 p1,4

15 Pr. of M 2 cells promoting tumor cells 1− pA6

16 Pr. of N 2 cells promoting tumor cells 1− pA3

17–21 Max. age of M 1 , M 2 , N 1 , N 2 , and NK cells AM1 , AM2 , AN1 , AN2 , AK

Adaptive IS parameters

22 No. of initial CD8+T cells T

23 No. of initial CD4+T cells T
h

24 No. of initial T reg cells Treg
25 Pr. of recruiting CD4+T cells p8

26 Pr. of recruiting CD8+T cells p7

27 Pr. of recruiting T reg cells p9

28 Pr. of T reg strengthening T cells u1

29 Pr. of T reg strengthening T h cells u2

30 Pr. of T h strengthening T cells u4

31 Pr. of CD8+T cells attacking CCs u3

32–34 Max. age of CD8+T, CD4+T, and T reg cells AT , ATh , ATreg



Page 10 of 25Rojas‑Domínguez et al. BMC Bioinformatics          (2022) 23:200 

process is transparent. A detailed explanation of parameter initialization is provided 
in the “Simulation methodology” section.

The probabilities referred to in this subsection regulate the behavior of the elements 
involved in the TME. The actions to be carried out by the cancer and IS elements 
are summarized in three diagrams. A complete system flowchart is shown in Fig. 2; 
the cancer-IIS interaction is summarized in Fig. 3, and the cancer-AIS interaction is 
described in Fig. 4.

For every possible action to occur, certain conditions must be met, which are 
defined in terms of the corresponding probabilities. Over time, and as a result of 
the different actions, the number of CCs and IS cells will change, and with them, the 
energy of the system, characterized by the Ising-like Hamiltonian (see “Characteriz-
ing the stochastic interaction” section).

If the CCs are not eliminated by the anti-tumor elements of the IS, the rate of 
tumor growth will depend on the strength of the tumor (expressed through the TGF-
β ) and on the Ns and M ϕ s that become pro-tumoral. Meanwhile, the strength of the 
IS response depends on the age and health of its elements (NKs, Ns and M ϕ s) and 
those of the AIS (CD4+T, CD8+T, and T reg cells). If not killed by other agents, the 
active period of the cells will be probabilistically adjusted based on their age.

Fig. 2  System flowchart. Points numbered 1 to 4 indicate entry and exit points to the diagrams in Figs. 3 and 
4. Blue and red indicate mostly anti-tumoral and pro-tumoral processes, respectively
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It has been suggested that the probability of successful interaction between CCs 
and the anti-tumor neutrophils N 1 is complementary to the probability of interaction 
between tumor cells and the pro-tumor neutrophils N 2 [11]. A similar relationship 
holds for the probability of interaction between the tumor cells and the anti-tumor 
macrophages M 1 and the complementary probability of interaction between the 
tumor cells and the pro-tumor macrophages M 2.

Modeling growth in cancer immunoediting

A needed complementary component in the above description is a model for the tumor 
growth and for the recruitment of IS elements, which define the strength of the cancer 
and of the immune response, respectively. We describe the growth of the cell popula-
tions by means of logistic functions, which approximate Gompertzian growth, a popular 
choice in modeling growth patterns, in particular for modeling the population of cells in 
tumor growth [39, 50–52]. The logistic function f(t) with midpoint t0 , maximum value of 
a, and growth rate k, is given by:

which has R as the usual domain, but as time is positive, we translate it to R0+ (see the 
bottom right plot in Fig. 5).

Having defined the growth of a cluster of cells as f(t), the growth rate is given by the 
derivative of said function; letting ϕ(t) = 1/(1+ e−k(t−t0)) we have:

(1)f (t) =
a

1+ e−k(t−t0)

(2)f ′(t) = aϕ′(t) =
−a

(

1+ e−k(t−t0)
)′

(

1+ e−k(t−t0)
)2

=
ak

(

e−k(t−t0)
)

(

1+ e−k(t−t0)
)2

= akϕ(t)(1− ϕ(t))
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Through γ (t) := f ′(t) (a logistic distribution), the size of the cell clusters can be updated 
over time by means of the expression:

where �t represents a positive interval of time of arbitrary length, and the domain of 
n(t) is also R0+ . The cell clusters are revisited in (5) and (6) below.

(3)n(t +�t) = γ (t +�t)n(t)

Fig. 3  The cancer growth and the IIS response at the micro-environment
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Modeling actions and interactions of agents

To model the actions of agents listed in Algorithm 1, first let us distinguish between 
actions involving two agents, called interactions, and actions involving only one 
agent, like cell aging or one anti-tumoral cell becoming pro-tumoral. For all interac-
tions, an agent is invoked and paired with a probabilistically-chosen second agent of 
adequate target-type (for instance, a M ϕ is paired with a CC) and their interaction 
(with anti- or pro- tumoral effect depending on the polarization of the M ϕ in this 
example) occurs according to the following rule:

where pk represents the applicable probability from those listed in Table 3. Equation (4) 
describes a generic rule for interactions. The particular interaction rules are described in 
Table 4, among the rules for single-agent actions.

Aging of the IS cells leads to loss of efficiency against cancer [34]. In this work, 
individual cell age is modeled by dividing a cell’s life into three parts: the first third 
includes the time from cell division to the beginning of maturity; the second third 
comprises the period of time during which the cell is fully developed and works most 
efficiently; the last third includes the cell’s aging and death; T reg cells have a role in 
regulating or suppressing other cells in the IS, such as CD4+T and CD8+T cells [53]. 
Below we describe the way in which these interactions are characterized.

(4)Interaction =

{

True, pk ≥ r, r ∈ [0, 1] is a uniform random variable.
False, otherwise.

Fig. 4  The tumor immune interaction in the TME with the AIS elements CD8+T, CD4+T and T reg cells
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Characterizing the stochastic interaction

The Ising model is a classic in the formalization of ferromagnetism that arises from 
the interaction between molecule spins [14]; it is a simple model from statistical 
physics used to describe energy interactions and phase transitions of matter. The 2-D 
Ising model Hamiltonian H, given in (5), is increasingly employed in the modeling of 
complex processes in biology, chemistry and their interdisciplinary matters [49, 54]. 
In our present context, xi and xj represent two interacting clusters of cells, belong-
ing to the tumor and to the IS. The Hamiltonian quantifies the energy involved in the 
interaction between those clusters, which determines the outcome of the interaction, 
i.e. whether the CCs or the IS cells dominate the interaction.

The characterization of each cluster of cells is given by:

where ci ∈ {1,−1} according to whether the cluster xi acts in favor of the IS or the can-
cer, respectively. The variable ni , computed by (3) is the number of cells in xi ; notice that 
this may refer to groups of cells or to a whole population of them.

The energy in (5) is also determined by variables wij , which weight the interaction of cells 
that cooperate or antagonize each other as members of xi or xj . Finally, ν denotes the whole 
(magnetic in ferromagnetism) field energy, and hi the way in which this affects each cluster 
of cells xi . In the present application, these parameters are related to the effect of the com-
bined chemical signals in the micro-environment. The specific values for the weights and 
the field energy require to be specifically tuned to experimental data, which for simplicity is 
not used in this work. Instead we set wij = 1 and ν = 0 , which will allow us to analyze the 
unweighted and unbiased interaction of the elements in our system.

(5)H = −
1

2

n
∑

i,j

wijxixj − ν

n
∑

i

hixi

(6)
xi = cini

Fig. 5  Interface of our simulator with results of one simulation illustrating the Equilibrium phase
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The model Hamiltonian (5) is a suitable measure of the model energy, which indicates the 
dominating side in a system of opposing forces at any time during the simulation.

Simulation methodology
With the purpose of demonstrating the potential uses of our proposed model, we carried 
out simulations to illustrate how the model can be employed to analyze the interaction 
between cancer cells and the immune system through time. In particular, we are interested 
in showing that the model is capable of generating the different phases of Cancer Immu-
noediting, that the phases occur for reasonable values of the model’s hyperparameters, and 
that these phases can be correctly characterized by the model’s Hamiltonian. The model 
was implemented in the NetLogo multi-agent modeling environment [55] and includes 
a graphical interface through which a user can input the model’s hyperparameters and 
observe the outcome of one individual simulation as a set of plots (Fig. 5) that show (a) the 
number of anti-tumoral and pro-tumoral cells through time; (b) the number of each type of 
cell in the CI system; (c) the Hamiltonians for the anti-tumoral and pro-tumoral portions as 
well as the total Hamiltonian in the TME; (d) the tumor growth rate.

The four hyperparameters, two for the IS (µ1, σ1) and two for the CCs (µ2, σ2) can be 
introduced into the simulator by means of slider controls; these variables can be set to any 
values between 0 and 1 to define two Normal probability distributions. Next, scaling fac-
tors ηk ∈ [0, 1] are sampled from the distributions defined by (µ1, σ1) or by (µ2, σ2) depend-
ing on whether the k-th parameter (of those listed in Table 3) relates to the IS cells or the 
tumor cells, respectively. In this way, the individual probabilities and strength levels of the 
elements of the IS and the cancer can be adjusted automatically, by setting:

where bk is the base value for Parameterk.
Notice that this procedure is not part of the model, but a methodology to simulate 

the model under different sets of parameters to carry out the system characterization. A 
similar procedure was followed in [43] to characterize the TME network robustness and 

(7)Parameterk = ηk · bk

Table 4  Rules for actions and interactions between agents ( N  : Normal distribution)

Cancer growth

Cancer growth through (1) with a = 10β − 1, k = 4, t0 = 0.5, β ∼ N (µ2, σ2)

Innate IS response with ηk ∼ N (µ1, σ1)

Generate Innate IS cells: {K,M1, N1} = 100× {η4 : η6}

Recruiting of IS cells through (4) with {p2, p6, p1,3} = {η7, η8, η9}

Success of attack by IS cells through (4) with {pA8 , pA6 , pA3 } = {η10, η11, η12}

Mϕ s and Ns become pro-tumoral with {p7, p1,4} = {η13, η14} ∼ N (µ1/(µ1 + µ2), σ1)

Adaptive IS response with ηk ∼ N (µ1, σ1)

Generate Adaptive IS cells: {CD4+T ,CD8+T , Treg} = 100× {η22, η23, η24}

Recruiting of T cells through (4) with {p7, p8, p9} = {η25, η26, η27}

T-cells strengthen each other using (4) with {u1, u2, u4} = {η28, η29, η30}

Success of CD8+T cells attacking CCs (4) with probability u3 = η31
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the role of heterogeneities, but it was done by sampling the values of their parameters 
through a linear distribution. In this study it is more convenient to sample the parameter 
values under Normal distributions centered around reference values chosen for each of 
the phases of CI, because this facilitates the organization of the simulations and allows 
us to control the variance of initial parameters between simulations; specifically, for all 
the simulations we fixed σ1 = σ2 = 0.05 . Keeping the variance of the initial parameters 
fixed becomes relevant for the analysis of the results, because then the observed differ-
ences in variability between CI phases can be attributed to the functioning of the model, 
rather than to the way in which the initial parameters were distributed.

As stated, herein we are particularly interested in generating the scenarios corre-
sponding to the three phases of Cancer Immunoediting: Elimination, Equilibrium 
and Escape. For the Elimination phase the strength of the IS was set significantly 
higher than that of the cancer ( µ1 = 0.7 , µ2 = 0.3 ) since the objective is to simulate 
an IS operating optimally by consistently eliminating a moderate amount of abnormal 
cells. For the Equilibrium phase the strength of both subsystems was lowered and set 
much close to each other, with that of the IS still being higher than that of cancer 
( µ1 = 0.3 , µ2 = 0.15 ); this corresponds to an IS that keeps in check, but just barely, 
a small number of cancer cells. For the Escape phase the strength of the cancer was 
increased, but most importantly, the strength of the IS was set to a value for which 
the IS remains operational although it cannot prevent the survival and reproduction 
of CCs ( µ1 = 0.4 , µ2 = 0.6 ). The distributions are shown in Fig. 6.

The simulations described above are designed to show the robustness of our model 
to variability of its parameters around central values (this variability is called Vari-
ance). In a second batch of simulations the central values (the means of the distribu-
tions used to sample the hyperparameters) were displaced to show that our model is 
also robust to changes of the central values (this is described as Bias). Overall, our 
model was tested on 15 sets of hyperparameters, and for each set of hyperparameters 
50 simulations were performed to provide statistical support.

Results
The results presented in this section come from a probabilistic system and thus a mean-
ingful analysis must consider the average result and dispersion over many simulations. 
Representative results (over 50 simulations per scenario) regarding the number of cells 
and the Hamiltonians are shown in Figs. 7, 8 and 9 for the Elimination phase, Equilib-
rium phase and Escape phase, respectively. The shaded region around each curve illus-
trates the standard deviation of the results. The sign of the Hamiltonian is positive for 
the pro-tumoral agents in the system and negative for the anti-tumoral agents (signs are 
arbitrarily assigned and can be reversed with no effect on the final conclusion). The fig-
ures also show the sum of the two Hamiltonians: values close to zero indicate that the 
forces of the adversaries are nearly balanced at that particular time.

Figures  10, 11 and 12 illustrate the effect of using different hyperparameters on the 
number of cells and the Hamiltonians while simulating the Elimination, Equilibrium, 
and Escape phases, respectively. The objective is to observe how sensitive is our model 
to the setting of its control parameters.
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Finally, Fig. 13 shows the probability density estimates of the energies in the system 
corresponding to the second half of the simulations (once the system has converged), 
presented as violin plots for each of the three CI phases. These density estimates were 
obtained via kernel density estimation [56]. Table 5 reports the means and medians of 
the probability densities.

Discussion
Based on the results shown in Figs. 7, 8 and 9 the following observations can be made. 
First, with respect to the number of anti-tumoral and pro-tumoral cells, it should be 
noticed that the simulations start with an initial population of these cells and it is only 
during the first fourth of the simulations that the growth rate of CCs increases; after 
that, following Gompertzian growth, it decreases gradually. Thus, as time passes, the 
number of cells naturally tends to diminish due to apoptosis and, in the case of CCs due 
to elimination by cytotoxic cells (except in Escape).

During the Elimination phase (Fig. 7), an anti-tumoral strength of 0.7 versus a pro-
tumoral strength of 0.3 translates into initial cell populations of about 180 anti-tumor 
cells versus 60 pro-tumor cells. Cell population growth is not observable, because 
the significantly larger number of anti-tumor cells prevents the proliferation of CCs 
and in turn the decreasing number of these impedes recruitment of more anti-tumor 
cells. Notice how the corresponding Hamiltonians reflect this behavior: the energy of 
the pro-tumoral agents is initially about one third of the anti-tumoral energy, then the 
pro-tumoral energy falls rapidly during the first few iterations and remains at a very 
low level for the rest of the simulation time (CCs and pro-tumoral cells have been 
mostly eliminated). This causes the total Hamiltonian of the TME (shown in green) 
to be aligned with the anti-tumoral Hamiltonian. In other words, a TME-Hamilto-
nian exhibiting a negative sign during the simulation shows that the system is in the 

Fig. 6  Hyperparameter distributions used to model the three phases of CI
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Elimination phase, while the magnitude of the Hamiltonian indicates the energy of 
the agents’ interactions.

In the Equilibrium phase (Fig. 8), relative strengths of 0.3 versus 0.1 produce initially 
about 80 anti-tumoral cells and 60 pro-tumoral cells. In this case, a moderate increase in 
the population of pro-tumoral cells can be observed during the beginning of the simu-
lations. As time passes this growth is counteracted by the anti-tumoral agents and the 
population of pro-tumoral cells remains quite stable for the remaining time of the simu-
lations. Interestingly, as the number of anti-tumoral cells decreases substantially towards 
the end of the simulations, the number of pro-tumoral cells begins to show a moderate 
increase and the dispersion of the data grows larger. We believe that this behavior cor-
responds well with what is expected during the Equilibrium phase: in general and on 
average, the CCs are kept in check, but after balance has been maintained for a while the 
confrontation must be resolved either by the elimination of the CCs, or by their prolif-
eration (leading to the Escape phase). Since the model contains stochastic elements, the 
resolution sometimes favors one side and sometimes favors the opposite, which is shown 
by the dispersion of the data. Values around zero of the corresponding TME-Hamilto-
nian reflect the balance between the opposing strengths from the beginning to the end 

Fig. 7  Simulation of the elimination phase of cancer immunoediting

Fig. 8  Simulation of the equilibrium phase of cancer immunoediting



Page 19 of 25Rojas‑Domínguez et al. BMC Bioinformatics          (2022) 23:200 	

of the simulations, even when the energy of the anti-tumoral and the pro-tumoral agents 
is not zero at the starting point.

In the Escape phase (Fig. 9), strength levels of 0.4 versus 0.6 generate initial popula-
tions of approximately 80 anti-tumoral cells and 100 pro-tumoral cells, respectively. In 
this case the pro-tumoral cells rapidly increase their numbers and surpass those of the 
anti-tumoral cells, although only up to a certain point (reaching about 110 cells on aver-
age). Then the population of pro-tumoral cells declines at varying rates up to the middle 
point of the simulations and grows again at a steady pace for the remaining time. Quite 
interestingly, the dispersion of the pro-tumoral data is significantly larger through the 
Escape phase than through the other two phases of CI. This is not caused by a larger 
spread in the sampling of the initial parameters (since the spread hyperparameter is the 
same as for the other phases), but is a result of the stochastic interaction in the pres-
ence of a larger population of pro-tumoral cells. The data of the TME-Hamiltonian also 
exhibits a larger dispersion, but a clear indication that the pro-tumor agents dominate 
the interaction in the TME is the fact that the Hamiltonian always shows a positive sign. 
In other words, a TME-Hamiltonian with a positive sign throughout the simulation indi-
cates that the system is in the Escape phase. Also, in this phase the TME-Hamiltonian 

Fig. 9  Simulation of the escape phase of cancer immunoediting

Fig. 10  Effect of hyperparameters variations on simulation results for the elimination phase ( µ1 = µ2 + 0.40)
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is always aligned with the pro-tumoral Hamiltonian and the magnitude of the energy is 
similar to that in the Elimination phase, but of opposite sign.

The results in Figs.  10, 11 and 12 show that the characteristic system behavior dis-
cussed above and corresponding to each of the CI phases can be obtained for different 

Fig. 11  Effect of hyperparameters variations on simulation results for the equilibrium phase ( µ1 = µ2 + 0.15

)

Fig. 12  Effect of hyperparameters variations on simulation results for the escape phase ( µ1 = µ2 − 0.20)

Fig. 13  Energy probability density estimates in different phase of CI
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sets of hyperparameters: in these experiments the results were obtained using mean val-
ues for the anti-tumoral and the pro-tumoral agents with a constant difference between 
them (according to the equation reported in the caption of each of the referred figures). 
In other words, the hyperparameters’ values for which our model generates a certain 
phase of CI are neither unique nor arbitrary, but correspond to relationships between 
the values chosen for the anti-tumoral and the pro-tumoral agents that can be logi-
cally inferred from the desired system behavior. These results also demonstrate that the 
model is robust (not over-sensitive) to the hyperparameters, since small changes in these 
do not lead to qualitatively different responses, but to proportional changes within a 
qualitatively similar behavior.

The probability densities in Fig.  13 provide a visualization of the energy distribu-
tion for the latter half of the simulations. Rather than showing the system’s dynamics 
through time, these plots summarize the energy in the system as it reaches a stable state. 
By including five different hyperparameter settings (corresponding to those used to pro-
duce the plots in Figs. 10, 11 and 12), each of them simulated 50 times, we obtain enough 
data to generate conclusions with confidence. All the densities show that the highest fre-
quency of occurrence is located around zero, except for the pro-tumoral energy (and 
consequently the TME energy) in the Escape phase. These results demonstrate how 
the system’s behavior is clearly captured by the energy densities as quantitative infor-
mation that can be subjected to statistical analysis. For instance, examining the differ-
ence between the mean and the median values (Table 5) we can determine whether the 
corresponding distribution is left-skewed or right-skewed. A pro-tumoral median value 
of zero and a left-skewed TME distribution describe a system in the Elimination phase, 
while a TME median value of zero with a right-skewed distribution characterizes a sys-
tem in the Equilibrium phase. A bimodal right-skewed TME distribution with a large 
median, signals that the system is in the Escape phase.

The densities of the TME in Fig.  13 are presented in a combined form in Fig.  14. 
This can be interpreted as snapshots of a system’s energy as it goes through the three 
phases of CI. In Elimination, the median pro-tumoral energy is zero. A system in 
Equilibrium has a median TME energy of zero but with a right-skewed distribution 
that indicates that CCs are kept in check but they are not being completely elimi-
nated. A system in the Escape phase exhibits a lot of energy, both anti-tumoral and 
pro-tumoral; this can be related to the presence of more CCs compared to the other 

Table 5  Central tendency statistics of probability densities: the difference between the means and 
the medians make the distributions in Fig. 13 left- or right-skewed

CI phase Anti-tumoral Pro-tumoral TME

Mean value

Elimination − 6.5121 0.6923 − 5.8198

Equilibrium − 19.1849 68.3668 49.1818

Escape − 48.4486 654.6104 606.1618

Median value

Elimination − 3.1006 0 − 2.6661

Equilibrium − 4.0000 0.6990 0

Escape − 23.8471 616.3473 589.6464
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CI phases and more interaction between CCs and IS elements. The much wider 
spread of the distribution shows that systems in the Escape phase behave much more 
heterogeneously than in the other phases of CI. The bimodality of the distribution in 
the Escape phase indicates the presence of anti-tumoral and pro-tumoral elements in 
the system, while the higher frequency and larger values of the positive mode identify 
the prevalence of the CCs in the system.

Conclusion
By conceiving the cellular-level interaction between cancer and the immune response 
as a confrontation between two adversaries (each of them with multiple agents) whose 
actions are governed by probabilistic rules, we developed a computational model 
of the biological system in the TME and framed this model under the more general 
Ising model from statistical mechanics. This allowed us to analyze the system’s sta-
tus through time by means of its Hamiltonian. Through simulation of our proposed 
model in a multi-agent environment, we were able to verify its operation and generate 
the different phases involved in Cancer Immunoediting. These results show the abil-
ity of this model to capture complex stochastic behavior in a manner that is useful to 
understand the system and, eventually, control its outcome. Significantly scaling up 
the populations of cancer cells and IS elements is a future challenge that implies very 
time-consuming simulations, but we foresee that the results and conclusions would 
remain qualitatively similar to those reported herein.

The proposed quantitative analysis method integrates variables and parameters that 
model some of the biochemical elements in the TME; the system’s Hamiltonian cap-
tures these in an equation that expresses how the interaction among such simple cells 
emerges as the Cancer-IS complex behavior. The biological system in the TME is well 
described by our computational model, which can be tuned to general (Elimination, 
Equilibrium or Escape) or specific conditions of a unique organism, given the appro-
priate data. The cellular interaction in CI comprises stochastic processes that are 
accounted for in our current model by means of flexible probabilistic rules and driven 
in this study by Gompertzian growth. Nevertheless, the methodological proposal is 
not restricted to these choices; thus one can incorporate the formalisms that best fit 
the laboratory data available. It is worth mentioning that to date we have observed 
a scarcity of real data that could be employed in the validation of CI models; this 

Fig. 14  Energy probability density estimates in different phase of CI
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unavailability of data is attributed to the complexity of the CI process and the numer-
ous associated obstacles for its observation in the laboratory.

The method presented herein opens alternatives for exploring different aspects of 
the Cancer Immunoediting process; for instance, the variables and parameters cor-
responding to the biochemical elements in anti-cancer therapies may be directly inte-
grated through the Ising-model Hamiltonian formalism, such that complementary 
extensions of the proposed model may capture the system’s dynamics that quantify 
the effect of diverse (chemo-, radio- or immuno-) therapies. In future work we will 
pursue these ideas by combining our findings with important contributions in related 
studies, particularly those related to DE-based and hybrid modeling of therapeutic 
elements. Our ultimate goal is the development of a comprehensive energy-based 
model of cancer immunology.
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