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Background
Genetic structural variants (SVs) normally include deletions, insertions, inversions and 
duplications of gene segments with variation lengths greater than 50 bp [1]. Compared 
to single-nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs), 
SVs occupy a more prominent position in human genetic diversity and have a signifi-
cant impact on gene functioning and gene regulation [2]. For example, the deletion of 
16p11.2 (AUTS14; MIM611913) is observed for autism spectrum disorder [3]. Multiple 
deletions are considered responsible for schizophrenia [4], a chronic, debilitating illness 
that affects ~ 1% of the population. The accurate and comprehensive detection of SVs is 
particularly important, but the detection of SVs is much more difficult than SNP detec-
tion. Sequencing and alignment errors usually interfere with the characterization of var-
iant regions and affect the variant detection results.

Abstract 

Background:  Structural variations (SVs) occupy a prominent position in human 
genetic diversity, and deletions form an important type of SV that has been suggested 
to be associated with genetic diseases. Although various deletion calling methods 
based on long reads have been proposed, a new approach is still needed to mine fea-
tures in long-read alignment information. Recently, deep learning has attracted much 
attention in genome analysis, and it is a promising technique for calling SVs.

Results:  In this paper, we propose BreakNet, a deep learning method that detects 
deletions by using long reads. BreakNet first extracts feature matrices from long-read 
alignments. Second, it uses a time-distributed convolutional neural network (CNN) to 
integrate and map the feature matrices to feature vectors. Third, BreakNet employs a 
bidirectional long short-term memory (BLSTM) model to analyse the produced set of 
continuous feature vectors in both the forward and backward directions. Finally, a clas-
sification module determines whether a region refers to a deletion. On real long-read 
sequencing datasets, we demonstrate that BreakNet outperforms Sniffles, SVIM and 
cuteSV in terms of their F1 scores. The source code for the proposed method is avail-
able from GitHub at https://​github.​com/​luoju​nwei/​Break​Net.

Conclusions:  Our work shows that deep learning can be combined with long reads to 
call deletions more effectively than existing methods.
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Many computational methods have been proposed. Existing methods can be divided 
into three categories: de novo assembly-based approaches, short-read alignment-based 
approaches, and long-read alignment-based approaches.

De novo assembly-based approaches can leverage both short and long reads and can 
use the assembled sequence or construct an assembly graph to detect SVs. De novo 
assembly methods can theoretically find all types of variations and are less affected by 
the reference sequence. However, this type of method is computationally expensive and 
has difficulty in terms of reconstructing haplotype sequences [5]. These shortcomings 
have limited the development of de novo assembly-based methods for variant detection.

Short-read alignment-based approaches directly analyse read alignments and detect 
SVs. Methods based on short-read sequencing technologies have been well studied; 
they operate by extracting SV signatures such as read depths, discordant read pairs, and 
split reads to find candidate sites and detect SVs [6]. Note that the signatures used in SV 
callers have major impacts on their performance. For example, BreakDancer relies on 
the distances and orientation of reads to call SVs [7], and it exhibits less sensitivity to 
small variations because the sizes of SVs may blend into the normal paired read distribu-
tion, and callers cannot be detected easily. Delly not only uses discordant reads as SV 
signatures but also takes split reads into account and shows better sensitivity to small 
variations [8]. LUMPY integrates discordant reads, read depths, and split reads as SV 
signatures to detect SVs and achieves high accuracy and sensitivity with respect to large 
SVs [9].

Due to technological advances and the widespread use of third-generation sequencing 
technologies, the greatly increased lengths of reads have helped aligners produce high-
quality alignments. Longer reads can overlap better in highly repetitive or low-complex-
ity regions that are prone to SVs [10]. Several studies have shown that long read-based 
methods can find a substantial number of SVs that are missed by short-read methods 
[11–13]. However, long reads are commonly accompanied by high sequencing error 
rates, and compared to that of second-generation sequencing technology, the sequenc-
ing error rate of third-generation sequencing technology is more than ten times higher. 
Third-generation sequencing methods also suffer from higher sequencing costs than 
those of short-read approaches when sequencing at the same coverage levels. Despite 
these disadvantages, many long read-based SV detection methods have been proposed 
and have achieved better performance than short read-based methods.

Sniffles is a long read-based SV caller [14]. By preforming parameter estimation at the 
beginning, Sniffles updates its model to fit the given data and uses a statistical model 
to reduce the number of false-positive calls. PBHoney is a long read-based SV detec-
tion tool designed to work with PacBio data [15]. It uses two different approaches to 
detect SVs. The first approach is called PBHoney-spot. By learning the stochastic natures 
of PacBio reads, PBHoney-spot is able to detect abnormal increases or decreases in the 
error rates of long reads. The second approach is PBHoney-tail. By extracting soft-clip 
sequences from read alignments and realigning them to the reference genome, realign-
ments are clustered by their locations and orientations. The SV identification method 
(SVIM) uses both intra- and inter-alignment signatures to call SVs [16]. Intra-alignment 
signatures include large gaps in references and reads, and they can be extracted from 
CIGAR strings. Inter-alignment signatures include discordant alignment positions and 
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abnormal read alignment orientations. The SVIM uses a graph-based cluster to separate 
and merge SV signatures and classify them into different classes. cuteSV uses a heuris-
tic method to merge small SVs into large SVs, thereby producing more homogenous SV 
signatures. cuteSV uses a clustering-and-refinement approach to improve breakpoint 
accuracy and reduce the number of generated false positives [17]. The set of PacBio SV 
calling and analysis tools (PBSV) is an SV detection method developed by PacBio. By 
selecting abnormal reads and realigning them to the reference genome, PBSV exhibits 
better sensitivity to large insertions than other approaches.

Deep learning has gained much attention in recent years and has outperformed exist-
ing methods in many fields, such as image recognition and speech translation. In recent 
years, deep learning-based methods have been used by several genome variation callers 
[18–21]. Unlike traditional SV detection methods that rely on handcrafted designs, deep 
learning models can integrate information by themselves. This enables a deep learning 
model to find more useful information and improve SV calling. DeepVariant was the 
first application deep learning to the detection of SNPs; it uses short-read data to detect 
variants and achieves higher performance than traditional methods. DeepSV also uses 
short-read data with a deep learning approach, but this method focuses on large genome 
deletions.

However, read alignment-based SV calling still faces many difficulties. For example, 
due to the complexity of SVs and high sequence error rates, current methods suffer from 
low sensitivity to low-coverage data. Here, we present BreakNet, a deletion detection 
method based on long reads and deep learning. BreakNet uses a time-distributed con-
volutional neural network (CNN) model to extract deletion signatures and analyse the 
signatures with a bidirectional long short-term memory (BLSTM) model in both the 
forward and backward directions. BreakNet achieves better performance than existing 
methods and has better sensitivity to lower-coverage data.

Methods
BreakNet uses the read alignment file produced by long reads and the corresponding 
reference genome as input, and it outputs deletion regions. BreakNet contains four main 
modules (Fig. 1). The first module is a feature matrix generation module, which splits 
the reference sequence into subregions, and then each subregion is transformed into a 
feature matrix based on alignment information. The second module is a CNN module, 
which maps the features to feature vectors. The third module is a bidirectional recur-
rent neural network (BRNN) module, which analyses the feature vectors associated with 
multiple time steps in both the forward and backward directions and integrates more 
deletion information. The fourth module is a classification module, which makes predic-
tive judgements regarding the vectors output from the BRNN module and determines 
whether deletion has occurred.

Feature matrix generation module

The feature matrix generation module first divides the reference into subregions of 
length m (200 bp by default). This module extracts long reads that can be aligned in each 
subregion. Then, the module extracts the CIGAR string of each aligned long read and 
finds the positions that refer to a deletion (D operations in a CIGAR string).
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We assume that the number of aligned long reads is p. Then, the i-th aligned long 
read is converted to an m-tuple (di1, di2 · · · dim) , where dij represents whether the j-th 
position in this subregion refers to a deletion based on the CIGAR string of the i-th 
aligned long read. When the j-th position is a deletion, dij is set to 1; otherwise, it is 
set to 0.

Then, these aligned long reads are sorted based on their deletion counts in descend-
ing order. Note that the numbers of aligned long reads for various sub-regions are 
commonly different, and the row number of each matrix is also different. To gener-
ate a matrix with the same size, we set the number of rows to n (18 by default). If p is 
greater than or equal to n, this module selects the first n rows to produce the matrix. 
Otherwise, the elements in the remaining n – p rows are set to 0.

CNN module

In this module, we adopt 100 continuous transposed feature matrices as inputs. Each 
feature matrix is fed into a time-distributed CNN, which outputs a 160-dimensional 
feature vector to the next module. The CNN module consists of several operations, 
which include average Pooling, max pooling and 2D convolution (conv2D). In detail, 
this module first applies a 1 × 2 average pooling layer to downsample the input matrix 
and reduce the computational cost. Then, this module uses 6 convolutional blocks to 

Fig. 1  BreakNet module for detecting deletions
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map each feature matrix to the output vector. Each convolutional block consists of 
a conv2D layer, a squeeze-and-excitation (SE) optimization layer and a max pooling 
layer [22]. As an example, the convolution of a matrix can be computed by the follow-
ing equation:

where Im×n and Om′,n′ are the input and output matrices, respectively, wa∗b is the weight 
matrix of the convolution kernel, and row, col are the rows and columns of the output 
matrix. Next, we use a rectified linear unit (ReLU) as the activation function to add 
nonlinearity.

To enhance the performance of the network, we use SE optimization to add weights to 
each computed convolution channel, and the network can adaptively adjust the weight of 
each feature map. Similar to EfficientNet [23], the CNN module uses a 2D global average 
pooling layer and two 1 × 1 conv2D layers as an implementation of the SE module. Finally, 
we apply a max pooling operation on the weighted convolution to reduce the number of 
parameters.

BRNN module

The BRNN module takes a matrix with dimensions of (T , F) as input. F is set to 160, rep-
resenting the 160-dimensional vector produced from the CNN module. T is the time step 
of the BRNN module, and each time step includes a hidden representation of one feature 
matrix. These matrices for each time step must satisfy backward and forward relations in 
the read alignment. In the BRNN module, we use two BLSTM layers, where each layer 
includes 64 LSTM units and is able to capture both the forward and reverse information 
about the input feature vector. The value of an LSTM cell can be calculated recursively 
using the following formulas.

I , F ,O represent the activation vectors of the input gate, forget gate and output gates, 
respectively. C represents the state vector of the cell. W ,U , b are the parameters of the 
LSTM cell.x, h are the input and output vectors of the LSTM cell, respectively. The 

(1)Om′,n′ [row, col] =

a−1
∑

i=0

b−1
∑

j=0

wij × Im,n[row + i, col + j]

(2)xa = ReLu(x) =

{

0, if m < 0

x, if m ≥ 0

(3)It = sigmoid(WIxt +UIht−1 + bI )

(4)Ft = sigmoid
(

Wf xt +Uf ht−1 + bf
)

(5)Ot = sigmoid(WOxt +UOht−1 + bO)

(6)Ct = FtCt−1 + It ⊙ tanh(WCxt +UCht−1 + bC)

(7)ht = Ot ⊙ tanh(Ct)
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output vector of an LSTM cell depends on the current input vector, the output vector of 
the hidden layer at the previous time step and the information stored in the LSTM cell.

Classification module

The classification module uses two fully connected layers to classify the vectors output 
by the BRNN module. Dropout is used after each fully connected layer to improve the 
generality of the network. Finally, a sigmoid function is used to calculate the output val-
ues of the fully connected layers. If the final output is greater than 0.5, the related subre-
gion is a deletion; otherwise, this subregion is not a deletion.

Breakpoint estimation

For a deletion whose size is larger than the window size, the deletion will present in mul-
tiple subregions and corresponds to multiple feature matrices. Then these adjacent sub-
regions will be merged as a large region which refers to a large deletion.

Next, for each region which is determined as a deletion, BreakNet will assign a more 
precise deletion location and size. For a long read which is aligned in this region, 
BreakNet extracts its’ deletion location and size from CIGAR string if its’ deletion size 
is larger than 20 bp. After processing all these long reads, BreakNet can get a deletion 
set {(L1, S1), (L2, S2), … (Lt, St)}, Li and Si separately represent the location and size of i-th 
deletion information from CIGAR strings. Then, BreakNet will classify (Li, Si) and (Lj, Sj) 
into the same cluster, if |Li – Lj| < 40. After iteratively processing all elements in the dele-
tion set, BreakNet selects the cluster which contains the most elements. And BreakNet 
calculates the average location and size of all elements in the cluster, which are the final 
location and size of the deletion about the region.

Model training

Through the high-confidence call set of one sample, we determine the real deletion 
regions in the sample. Then, we label the subregions that overlap with the real deletion 
as 1, while the rest are labelled as 0. The model learns its parameters by minimizing a 
loss function.

However, the high-confidence call set used in this study has two key features. One is 
that the information provided in the call set may not be comprehensive, and some of the 
variances are not provided in this call set. Second, the information provided in the call 
set is relatively accurate, and there are few false positives. Therefore, based on the above 
characteristics, we design a new loss function to satisfy the following requirements. 
First, if a deletion predicted by the model is not provided by the high-confidence call set, 
the loss function should produce a smaller loss value and gradient. Second, if a deletion 
is provided by the high-confidence call set and not detected by this model, the loss func-
tion should yield a larger loss value and gradient.

where prediction is the output value of the model,label is the label of the input data point 
and a is a hypermeter used to adjust the maximum output value of this loss function. We 
set a to 0.001 in this paper.

(8)ln (prediction− label + 1+ a)2
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Because deletions are usually rare, ~ 99% of the training samples are negative. To 
ensure that sufficient positive samples are included at each training step, we first ade-
quately shuffle the training data and use a large batch size. We use the Adam optimizer 
for training and set the learning rate to 0.001.

Two techniques are employed to prevent overfitting during the model training pro-
cess. First, we add dropout layers to each fully connected layer and set the dropout prob-
ability to 0.4. Second, we use the early stopping technique during training. By examining 
the performance of the model on the validation set, we save the parameters with the best 
performance. Additionally, if the model does not perform better after 10 epochs, we stop 
the training process and save the best model parameters as the final model.

We use TensorFlow 2.4 to implement the CNN, BRNN, and classification modules.

Results
Data set

In this paper we used several read alignment files from four well studied individuals, 
HG002, HG00514, HG00733 and NA19240. The details of these datasets are shown in 
Table 1.

We benchmarked BreakNet, SVIM (v2.0.0), cuteSV (v1.0.6) and Sniffles (v1.0.12a) 
with several real sequencing datasets. Four PacBio datasets (HG002 CLR, HG002 CCS, 
HG00514 CLR, and HG00733 CLR) were used. The support read parameters of the 
SVIM, cuteSV and Sniffles were set to 10/4/4/3 and 3/2 for the HG002 CLR 69X, 35X, 
20X, and 10X datasets and the HG002 CCS 28X and 10X datasets, respectively. For the 
HG00514 and HG00733 data, we set the support read parameters of Sniffles, cuteSV, 
and the SVIM to 3/2/1. Deletion sizes smaller than 50 bp were removed. Truvari (v2.0.1) 
was used to obtain the evaluation metrics (precision, recall, and F1 score) and assess the 
performance of the different deletion callers.

For the HG00514 and HG00733 samples, we collected a call set from a previous study 
[24] and considered it the ground truth. For the HG002 dataset, two deletion call sets, 
Tier 1 and Tier 2, for this sample (made by the Genome in a Bottle Consortium (GIAB)) 
were used. According to the GIAB [25], the Tier 1 region should include 100% true dele-
tions, and we used the Tier 1 region to assess the precision, recall and F1 score of each 
caller. The Tier 2 regions were defined as additional regions in which there was strong 
evidence regarding the presence of an SV, but the corresponding sequence and size 
could not be determined with confidence [25]. This may be useful for benchmarking a 
tool’s ability to detect more challenging SVs’. The results of the performance comparison 
for the HG002 Tier 2 region are provided in the supplementary materials. Note that, 

Table 1  The detail of datasets

HG002 CLR HG002 CCS HG00514 HG00733 NA19240

Read count 29,157,344 6,596,012 12,430,587 13,521,896 20,452,822

Average length 7937 13,478 11,800 12,295 6503

Coverage 69X 28X 42X 45X 39X

Aligner NGMLR PBMM2 BWA BWA BWA
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GIAB released high quality result (~ 90%) comes from PBSV. To be fair, the callers are 
not compared with PBSV.

Data partition for BreakNet

We partition the dataset into a training set, test set and validation set. The read align-
ments of chromosomes 1–10 from the HG002 PacBio Continuous Long Reads (CLR), 
HG002 PacBio Circular Consensus Sequencing (CCS) and NA19240 PacBio CLR data 
are used as the training set. The read alignment files of HG002 and NA19240 are gener-
ated by the NGMLR aligner, pbmm2 aligner and Burrows-Wheeler aligner (BWA). By 
training the model using the data produced by different aligners, the model can adapt 
to the varying characteristics of the different alignment tools. The validation set is used 
to provide an unbiased estimate of the model’s performance, and this set is not directly 
involved in the training process. By analysing the performance of the model on the vali-
dation set and tuning the hyperparameters during training, the validation set can help 
to improve the performance of the model and prevent overfitting. In this paper, the read 
alignments of chromosome 11 from HG002 and NA19240 are used as the validation set.

For the test set, we use the read alignments of chromosomes 12–22 from the HG002 
CCS and CLR data and the read alignments of chromosomes 1–22 from the HG00514 
and HG00733 data as the test set. The read alignments of HG002 CLR and HG002 CCS 
and HG00514 and HG00733 are produced by the NGMLR, pbmm2 and BWA aligners, 
respectively.

SV detection results on the HG002 dataset

We benchmarked BreakNet, cuteSV, the SVIM and Sniffles on the HG002 CLR 69X 
chromosome 12–22 data. The SVIM achieved the highest F1 scores and recall on the 
Tier 1 region. On the more challenging Tier 2 region, BreakNet outperformed the other 

Table 2  Performance comparison of SV caller on HG002 data

Bold values represent best results

Coverage BreakNet SVIM cuteSV SNIFFLES

CLR 69X Precision 0.9704 0.9678 0.9707 0.9604

Recalll 0.9169 0.9341 0.9282 0.9224

F1 0.9429 0.9507 0.9492 0.9410

35X Precision 0.9469 0.9653 0.9775 0.9556

Recall 0.9169 0.9292 0.8955 0.9160

F1 0.9316 0.9468 0.9351 0.9355

20X Precision 0.9524 0.9722 0.9790 0.9720

Recall 0.8776 0.8389 0.8203 0.7983

F1 0.9135 0.9004 0.8926 0.8770

10X Precision 0.9213 0.9790 0.9819 0.9785

Recall 0.8134 0.6704 0.6646 0.6470

F1 0.8640 0.7959 0.7925 0.7790

CCS 28X Precision 0.9552 0.9400 0.9492 0.9020

Recall 0.9350 0.9430 0.9336 0.8325

F1 0.9450 0.9415 0.9414 0.8657

10X Precision 0.9424 0.9360 0.9609 0.9110

Recall 0.9282 0.8940 0.8398 0.6357

F1 0.9353 0.9146 0.8965 0.7490



Page 9 of 13Luo et al. BMC Bioinformatics          (2021) 22:577 	

callers in terms of recall by 3–4%. Furthermore, we randomly downsampled the HG002 
chromosome 12–22 data to 10 × , 20 × , and 35 × to assess the capabilities of the SV call-
ers on low-coverage datasets. As shown in Table 2, BreakNet achieved higher F1 scores 
on the 10X and 20X downsampled Tier 1 regions. This demonstrated that BreakNet is a 
better option for cost-sensitive sequencing plans (low coverage). For the low-coverage 
Tier 2 region, the highest sensitivity was obtained by BreakNet with respect to more 
challenge deletions.

For PacBio CCS chromosomes 12–22 in the 28X Tier 1 region, BreakNet achieved bet-
ter F1 scores, which were 0.35% higher than those of the runner-up method (the SVIM). 
Furthermore, we randomly downsampled this dataset to 10 × and evaluated the com-
pared callers. BreakNet achieved the highest F1 scores and lowest performance loss 
(~ 1% vs. ~ 3 ~ 11%) in comparison with to the other callers. The results of the perfor-
mance comparison among the various callers for the Tier 2 region are provided in the 
supplementary materials (Additional file 1: Table S1).

SV detection results on the HG00514 and HG00733 datasets

We used two other PacBio CLR datasets from two well-studied human samples 
(HG00514 and HG00733) to benchmark the compared SV callers. BreakNet simulta-
neously achieved the highest precision, recall and F1 scores on these two datasets, as 
shown in Table  3. Compared to the runner-up method (Sniffles), BreakNet achieved 
performance improvements of ~ 4–6% in terms of the F1 scores; this was mainly due to 
the higher sensitivity of BreakNet. Sniffles achieved better performance than to cuteSV 
and the SVIM with respect to the precision and F1 scores. Furthermore, we randomly 
downsampled these two datasets to 24X/21X and 10X and analysed the performance 
of various callers on the corresponding low-coverage datasets. BreakNet achieved the 

Table 3  Performance comparison of SV caller on HG00514 and HG00733 data

Bold values represent best results

BreakNet Sniffles cuteSV SVIM

HG00514 42X Precision 0.7197 0.6772 0.4539 0.5547

Recall 0.351 0.3137 0.3286 0.2261

F1 0.4721 0.4290 0.3811 0.3213

21X Precision 0.5900 0.7358 0.4660 0.4407

Recall 0.2624 0.2898 0.3442 0.1632

F1 0.3633 0.4158 0.3960 0.2382

10X Precision 0.5552 0.5986 0.5562 0.2593

Recall 0.3310 0.2585 0.3013 0.3003

F1 0.4147 0.3611 0.3909 0.2783

HG00733 48X Precision 0.7160 0.6528 0.4834 0.5166

Recall 0.3578 0.3076 0.2932 0.2277

F1 0.4772 0.4182 0.3650 0.3162

24X Precision 0.7598 0.7197 0.4250 0.5981

Recall 0.3386 0.2832 0.3379 0.2218

F1 0.4685 0.4065 0.3765 0.3235

10X Precision 0.5444 0.6440 0.5117 0.2361

Recall 0.3364 0.2510 0.2959 0.3147

F1 0.4158 0.3611 0.375 0.2700
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best performance on these datasets in terms of the recall and F1 score metrics. Sniffles 
attained the best overall precision on these four downsampled datasets.

Window size and deletion size

For verifying the influence of the widow size on the detection results, we separately set 
the widow size to 50 bp, 100 bp, 200 bp, 400 bp, 800 bp and run BreadNet. The HG002 
CLR 69X chromosome 1 and chromosome 2 are used to generate training and test data 
separately. The training and test results are shown in the supplementary materials (Addi-
tional file 1: Fig. S1).

Considering the performance of each caller with different deletion sizes, BreakNet 
also can achieve better performance for deletion sizes below 4000 bp, especially on the 
low-coverage data. The results of the performance comparison among the various call-
ers with different deletion sizes are provided in the supplementary materials (Additional 
file 1: Fig. S2).

Loss function

To verify the effectiveness of our proposed loss function, we trained BreakNet with 
the new loss function (Formula 8) and the log loss function. Training the model with 
the new loss function was faster and yielded a higher area under the receiver operat-
ing characteristic curve (AUC) during each training epoch. As shown in Fig. 2, the new 
loss function used only five training epochs and achieved better AUC values than those 
output by the log loss function with ten training epochs (0.848 vs. 0.828). Because the 
training data involved a class-imbalanced dataset, the new loss function produced larger 
gradients for data that were incorrectly predicted to be negative and helped the model 
complete training faster. Simultaneously, the large gradients produced by the new loss 
function also reduced the impact of incorrectly labelled data on model training.

Running time and peak memory

We perform all callers on a PC with a 64-core, 128-thread CPU (AMD Ryzen Thread-
ripper 3990X @4.8  GHz). We use a single RTX 3090 video card to train the model. 
The running time and peak memory usage of BreakNet on HG002 are provided in the 
supplementary materials (Additional file  1: Table  S2 and Additional file  1: Table  S3). 
As shown in Additional file  1: Table  S2 and Additional file  1: Table  S3, the efficiency 
of BreakNet has a poor performance. BreakNet needs to generate lots of feature matri-
ces, which consumes more resource. Note that, the training time of BreakNet is time 

Fig. 2  Effect of using new loss and log loss functions on the AUC values of the model training
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consuming (~ 30 days). We supply the module that has been trained for users. And the 
users only need generate the feature matrices and could apply the trained module to 
obtain the detection results. In Additional file 1: Table S2, we ignore the training time. 
For the same species, no matter the sequencing coverage, the number of feature matrices 
is the same for BreakNet. Hence, the peak memory usage of BreakNet varies little.

Discussion
Long-read sequencing technologies are promising for discovering SVs. Due to the high 
sequencing errors and the complexity of SVs, it is still nontrivial to fully take advantage 
of long-read technologies. In this study, we developed BreakNet to detect deletions 
based on a deep learning method and long reads. We tested BreakNet on several well-
studied datasets, and it could achieve better performance than three other SV callers. 
However, long-read sequencing still incurs a greater computational cost than short-
read sequencing when the same coverage is required. Previously developed methods 
require high data coverage to detect sensitive call deletions, and low-coverage data have 
a great impact on sensitivity. BreakNet achieved more stable performance than the other 
approaches on low-coverage data, especially on the HG002 CLR 10X dataset. BreakNet 
outperformed the runner-up method (the SVIM) by 6%.

In this paper, we only took deletions into consideration, but other types of variations, 
such as insertions, inversions, and copy number variations, play important roles in 
human health. We will examine the calling of other types of SVs in future work.

Conclusions
In this paper, we present BreakNet, which is a deletion detection method that utilizes 
long reads and deep learning. Compared to state-of-the-art SV callers, BreakNet yields 
better F1 scores on most datasets and provides better sensitivity and F1 scores on low-
coverage data. Limited by the features extracted by BreakNet, only deletions can be 
efficiently detected. The extraction of more features to call other types of SVs will be 
investigated in our future work.
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