
GWENA: gene co‑expression networks 
analysis and extended modules characterization 
in a single Bioconductor package
Gwenaëlle G. Lemoine1, Marie‑Pier Scott‑Boyer2, Bathilde Ambroise3, Olivier Périn3 and Arnaud Droit1,2* 

Abstract 

Background:  Network-based analysis of gene expression through co-expression net‑
works can be used to investigate modular relationships occurring between genes per‑
forming different biological functions. An extended description of each of the network 
modules is therefore a critical step to understand the underlying processes contribut‑
ing to a disease or a phenotype. Biological integration, topology study and conditions 
comparison (e.g. wild vs mutant) are the main methods to do so, but to date no tool 
combines them all into a single pipeline.

Results:  Here we present GWENA, a new R package that integrates gene co-
expression network construction and whole characterization of the detected mod‑
ules through gene set enrichment, phenotypic association, hub genes detection, 
topological metric computation, and differential co-expression. To demonstrate its 
performance, we applied GWENA on two skeletal muscle datasets from young and 
old patients of GTEx study. Remarkably, we prioritized a gene whose involvement was 
unknown in the muscle development and growth. Moreover, new insights on the vari‑
ations in patterns of co-expression were identified. The known phenomena of connec‑
tivity loss associated with aging was found coupled to a global reorganization of the 
relationships leading to expression of known aging related functions.

Conclusion:  GWENA is an R package available through Bioconductor (https://​bioco​
nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​GWENA.​html) that has been developed to 
perform extended analysis of gene co-expression networks. Thanks to biological and 
topological information as well as differential co-expression, the package helps to 
dissect the role of genes relationships in diseases conditions or targeted phenotypes. 
GWENA goes beyond existing packages that perform co-expression analysis by includ‑
ing new tools to fully characterize modules, such as differential co-expression, addi‑
tional enrichment databases, and network visualization.

Keywords:  Co-expression network, Differential co-expression, R package, Pipeline, 
Aging, Skeletal muscle
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Background
The study of biological functions through discrete genes analysis methods has allowed 
the elucidation of numerous pathways and the understanding of gene-disease associa-
tions [1]. The full comprehension of the complex interactions taking place in cellular 
processes requires methods that are able to grasp the connections between the genes 
involved [2]. To address this issue, biological networks have been used as a framework to 
represent and study relationships between genes. In a gene network, a node represents 
a gene and an edge joining two nodes represents their relationship. Among the meas-
ures of relationship, weighted co-expression is one of the most widely used thanks to the 
popularity of the WGCNA R package [3] where the relationships are quantified (weight) 
instead of only a presence/absence information. The use of gene co-expression networks 
thus led to important discoveries such as the characterization of functional elements in 
Arabidopsis [4], help with prognosis in breast cancer [5], and more generally identifica-
tion and prioritization of disease candidate genes [6].

When constructing gene co-expression networks, existing tools usually follow the 
same methodology. Using either microarray or RNA-seq gene expression, a co-expres-
sion score based on correlation is computed between each pair of genes in the samples. 
A clustering method is then selected to detect groups of strongly co-expressed genes 
called modules. The search for meaning in the co-expression relations classically involves 
the integration of biological information, as well as the study of topology [6]. Biologi-
cal integration usually involves two methods, namely gene set enrichment and pheno-
typic association [3, 6]. A phenotypic association is based on the correlation between the 
eigengene (a representative of gene expression profile) of the module and a phenotype 
measured on the samples. Despite typically having a low yet significant correlation [7], 
phenotypic associations are used as a surrogate to study the molecular changes related 
to a condition. By looking for the genes responsible for the correlation, this method 
serves as a means of causal genes discovery or a way to find the effect of the condition on 
the phenotype [8]. As for the gene set enrichment, the most common enrichment test is 
based on the over-representation analysis (ORA) of a group of genes (in this case mod-
ules) compared to a reference of biological annotations such as Gene Ontology (GO) 
[9] or Reactome [10]. This approach, based on the guilt-by-association approach, allows 
the identification of new gene functions. The consideration of the scale-free topology 
property of gene co-expression networks also allow the use of graph theory metrics and 
methods to analyze the networks from a new perspective. The highly-connected genes 
also known as hub genes are often relevant for the functionality of the module, either 
being a regulator [11] or a gene coding for an essential function [12]. Their detection and 
the investigation of the neighboring gene is therefore an opportunity to understand the 
mechanisms at work.

Like differential expression analysis, co-expression analysis can be used in a differen-
tial way to compare conditions (e.g. wild vs. mutant). This method aims to isolate dis-
similarities [13] that would not be found by solely studying the GCN of a condition of 
interest (e.g. disease, phenotype). Variations in gene co-expression between multiple 
conditions can translate into appearance/disappearance of modules, changes in gene 
composition of a module, or rearrangement of genes within a module potentially lead-
ing to separation into several other modules [6]. These modifications of patterns reveal 
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insights on the biological alterations in modules of interest and can suggest possible reg-
ulatory events linked to the studied condition (e.g.: transcription factors, miRNA). Such 
concepts were used successfully in recent publications to detect specific gene modules 
involved in ovarian or breast cancer [14, 15] or in recovery from water stress in Cleis-
togenes [16].

To date, multiple tools exist that perform one or few of the functionalities described 
previously but none combine them all into a single pipeline. Moreover, no available tool 
includes differential co-expression, exploits the potential of other topological metrics 
such as connectivity, or enables analysis to be carried out with other R packages or soft-
ware as easily. In order to meet all these needs, we developed an R package for Gene 
Whole co-Expression Network Analysis (GWENA) available on Bioconductor (https://​
bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​GWENA.​html). Based on a modified 
version of WGCNA for the network construction and module detection, GWENA is a 
modular pipeline that provides ORA enrichment on 9 biological sources, phenotypic 
association, hub genes detection, and differential co-expression between multiple condi-
tions. These come with a set of descriptive visualizations that help the user understand 
and interpret complex results of gene co-expression network analysis.

In order to demonstrate the capabilities of our tool, we applied it to investigate skeletal 
muscle aging using publicly available gene expression data from donors spanning dif-
ferent age ranges from the GTEx database (ref ). Skeletal muscle aging is indeed a major 
source of mobility loss in the elderly, resulting in a high fall ratio, depression, and there-
fore an increased mortality [17]. This decrease in the regenerative capacity of skeletal 
muscles and their progressive atrophy (sarcopenia) [18] gradually leads to a reduction of 
the contractile force and thus a loss of autonomy of the individuals [19]. Recent studies 
have made progress in finding factors associated to evolution of sarcopenia [17, 20], such 
as body weight [21], but the understanding of their intricate molecular mechanisms is 
still lacking.

In this article, we will therefore provide details on the implementation of our new R 
package GWENA. A presentation of its application will be done with the study of gene 
co-expression in young muscle, and then in the context of skeletal muscle aging by com-
paring samples from younger and older donors. Finally, a qualitative comparison will be 
made with other existing tools.

Implementation
Designed as an R Bioconductor package, GWENA is a modular pipeline intended to 
ease the construction, interpretation and comparison of GCN. It reproduces a classical 
GCN analysis reinforced by complementary tools (Fig. 1).

Input

Both microarray and RNA-seq normalized expression can be used as input. The choice 
of normalization method is left to the user as it is highly dependent on the technology 
used to produce the raw data and the experimental design. Data must be stored in a 
table with genes as columns and samples as rows, or in a SummarizedExperiment object 
[22]. The minimal number of samples recommended is about 20 samples [23] with 100 
samples ensuring a more robust networks [24].

https://bioconductor.org/packages/release/bioc/html/GWENA.html
https://bioconductor.org/packages/release/bioc/html/GWENA.html
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Transcript-level data (probes or transcript) need to be aggregated to the gene level for 
the next steps (i.e. probes measurement summarized to their corresponding gene) [25]. 
Its execution is left to the user as the transcriptomic technology impacts the aggregation 
method to choose. However, it is recommended to use the highest mean probes expres-
sion for microarray data, and the counts sum for RNA-seq. This can be achieved with 
the collapsing R function as described by Miller et al. [25].

Filtering

Genes are not always informative for modules detection as genes not always vary and 
their expression can be linked to technical biases. An additional filtering step can thus be 
applied to avoid noise and speed up the pipeline analysis. This operation must be carried 
out with caution as it may impact the network construction. Over-filtering may result in 
loss of informative signal and changing the data distribution could break the scale-free 
topology [23, 26]. In addition, co-expression network analysis is a method designed to 
handle larger amount of data than differential expression analyses and can capture more 
subtle significant gene expression variation [8, 27].

Two filters meeting these criteria are available in GWENA: 

1.	 Low count filter : removes genes having a lower count than a pre-defined threshold 
(default is 5). It prevents confusing the true expression of a gene with an expression 
due to technical background noise.

2.	 Low variation filter : removes genes which expression is too similar across sam-
ples. As co-expression modules detection relies on the discrimination of similarity 

Fig. 1  Detailed steps of analysis performed in GWENA’s pipeline, from expression data to characterization of 
the modules and comparison of conditions. ① Input : expression matrix pre-normalized and aggregated to 
gene level if it is a transcript matrix. ② Filtering : optional genes filtration according to transcriptomic input 
technology. ③ Co-expression network construction : computation through modified WGCNA function of a 
correlation matrix on the gene expression matrix, then transformation into an adjacency matrix, and finally 
into a topological overlap matrix (TOM). ④ Modules detection : genes clusterization over the TOM with 
another modified WGCNA function. ⑤ Biological integration : gene set enrichment of each module using 
g:Profiler services, and phenotypic association if a phenotype matrix is provided to describe the samples. ⑥ 
Graph analysis : transformation of the TOM in a graph to compute different topological metrics, detect the 
hub genes, and detect sub-modules of one module. ⑦ Modules differential co-expression over N conditions 
: permutation test using NetRep combined with a Z summary to detect preserved or unpreserved modules
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between gene expression profiles across samples, genes that do not vary sufficiently 
across samples may be randomly clustered in the same (or in different) modules 
which would not reflect the biological reality.

Co‑expression network construction

The well-known R package WGCNA [3] was modified in order to be integrated it in 
our modular pipeline : the co-expression network construction step which computes 
the genes pairwise co-expression score has been isolated in its own R function. The first 
step of the co-expression score computation is the calculation of a correlation matrix 
based on the gene expression matrix. The Spearman correlation was added to the auto-
mated version of network construction in WGCNA as it ensures a better representa-
tion of genes monotonic relationships [28]. A power law distribution is then fitted on 
the correlation matrix and the “correlation matrix is then raised to the estimated power, 
resulting in an adjacency matrix [29]. According to the hierarchical organization of gene 
co-expression networks [30], a topological overlap matrix (TOM) [29] is then computed 
using the adjacency matrix which represents the final gene co-expression score matrix. 
Finally, the function return this matrix along with metadata information regarding the 
computation to ensure a good tracking of the performed operations.

Modules detection

The module detection part from WGCNA was isolated in a new R function using the 
previously calculated gene co-expression score matrix as input. A hierarchical clustering 
is performed on the matrix which is then cut according to the dynamic cut tree method 
[31] in order to define the modules and the genes they contain. The first component of 
the principal component analysis of each module is used as a representative of their 
respective gene expression profile and is called an eigengene. In addition to its sum-
marizing function, the eigengene is used to merge the highly-correlated modules. The 
gene co-expression profile of each module is visible using a dedicated function, with the 
eigengene highlighted. The function finally returns a detailed object with the detected 
modules as lists of genes identifiers, the dendrogram of the clustering, and the modules 
before merge.

Biological integration

Biological integration consists of two different analyses, namely gene set enrichment and 
phenotypic association.

The gene set enrichment (or functional enrichment) analysis is performed using 
g:Profiler [32] through their gprofiler2 R package. Their enrichment function covers 9 
biological functional databases: Gene Ontology (GO) [9], Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [33], Reactome [10], Transfac [34], miRTarBase [35], Human Pro-
tein Atlas (HPA) [36], CORUM [37], Human Phenotype ontology (HP) [38], WikiPath-
ways [39]. Realizing a custom enrichment file through a Gene Matrix Transposed (GMT) 
format in gprofiler2 requires the use of additional functions. Also, gprofiler2 does not 
provide a merging function between the output of classical and custom enrichment to 
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return all the enrichments in a single output. GWENA therefore provides a wrapper of 
these functions to have an all-in-one function.

The phenotypic association uses the eigengene returned in the output of the module 
detection function to perform a correlation test on a matrix of given phenotypes. If a 
phenotype is qualitative instead of quantitative, the variable encoding the phenotype is 
transformed into a binary variable (also known as dummy variable).

Graph analysis

To analyze the topology of the graph and allow its visualization, GWENA imports the 
igraph [40] R package. A wrapping function including integrity checks use the gene co-
expression score matrix to build a graph object on which all igraph topological met-
rics can be computed (e.g. degree, connectivity, strength). Among the multiple metrics 
computable on a network, hub genes remain the most studied structure. As they can be 
defined according to different methods, the three most popular ones were implemented: 
highest connectivity [41], highest degree [8], and Kleinberg’s score [42]. GWENA visual-
ization function simplifies the native plotting function of igraph and adapts it to GCN to 
assist in their interpretation (e.g. the native implementation of an edge filter parameter, 
as these are complete graphs). The layout selection was also favored towards scale-free 
topology compatible layouts as they are a main property of GCN. Sub-modules within 
previously detected modules can provide valuable information about the distribution 
and communication between biological functions within a module. GWENA allows 
their detection by performing a partitioning around medoids (PAM) clustering method 
[43, 44] with an automatic estimation of the number of cluster through a silhouette coef-
ficient. These sub-modules can also be passed to the graph plot function to display them 
and see their organization.

Modules differential co‑expression

Analysis of module preservation or non-preservation can be performed between dif-
ferent conditions such as treatments or phenotype. To isolate modules whose topol-
ogy changes between conditions, GWENA first performs a permutation test using the 
NetRep R package [45]. Seven topological metrics are computed on each module in each 
condition. A permutation is then applied to the selected control condition where each 
node label of the modules is randomly reassigned without replacement to another and 
the seven metrics are then recomputed on it. Using these permutations as a null distri-
bution [46], modules are considered preserved if all seven topological metrics are signifi-
cant for the alternative hypothesis (one or two-sided) with the chosen alpha error.

As the unpreservation of a module cannot be assumed from the non-significant mod-
ules, a second step of preservation evaluation is carried out using a Z summary score 
[47, 48]. The final score returned by GWENA is the combination of these two steps 
(Additional file 1: Figure S1).

Results and discussion
To present GWENA’s use and its capability to isolate genes groups or co-expression pat-
terns of interest in a single condition or multiple conditions, we analyzed RNA-seq skel-
etal muscle data from GTEx (v8) [49] (Additional file 1: Table S1). This data set contains 
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19,312 genes from 803 samples representing ages ranging from 20 to 70 years old. Low 
read counts and the low variation genes were discarded using the filtering function of 
GWENA to decrease the noise, resulting in 18870 genes.

As GTEx data is known to be subject to multiple confounding factors (batch effect, 
experimental bias, read contamination, etc.) [26, 50, 51], a partial PC-correction [26] 
was applied to correct the data (Additional file 1: Figure S2 and S3). To investigate the 
aging process two subsets representing contrasting age classes were selected from the 
corrected data set: 73 samples between 20 and 30 years old (referred as young in this 
report), and 292 samples between 60 and 70 years old (referred as old in this report). 
Both datasets were analyzed using GWENA’s pipeline with default parameters, except 
for the correlation method parameter which was selected to be “spearman” instead of 
the default “pearson” as it is less prone to outliers.

Single condition modules analysis

To illustrate the process of analyzing a single condition with GWENA, we initially 
focused on studying the muscle gene co-expression computed in the young sub-popu-
lation. The 95 modules detected on the co-expression score matrix with GWENA were 
merged according to their similarity indices, which resulted in a total of 35 modules 
(Fig. 2a). Each module was then tested for its association with a selected set of pheno-
types related to muscle aging (i.e. age, sex, ethnicity, body weight and BMI) to isolate 
modules of interest. As shown in Fig. 2b, 15 of these modules were significantly associ-
ated with at least one of the phenotypes.

These modules were provided to GWENA enrichment analysis (p value < 0.05 with 
g:SCS multiple testing correction) to identify their biological functions and assess their 
potential involvement in muscle function (Table 1). All modules were at least enriched 
in one term and 8 obtained enrichment terms related to muscle activity or metabolism 
(Table 1). Modules 19, 21 and 25 were the top 3 enriched for terms related to muscle 
function. However, modules 21 and 25 terms were mostly coming from Human Protein 
Atlas and were also related to a wide range of additional tissues such as the pancreas, the 
cervix, the bladder, the stomach, or the skin and were thus deemed less specific for mus-
cle aging than module 19.

Briefly, the remaining module 19 presented 77% of genes positively correlated to its 
eigengene (therefore 23 negatively, Fig.  2d), and the muscle enriched terms involved 
muscle adaptation and negative regulation of hypertrophy (Table  2, Fig.  2c). The 
detection of hub genes by GWENA returned 12 hub genes, some of which are known 
as transcription factors. Among them, ARID5B (ENSG00000150347) is a transcrip-
tion factor strongly co-expressed with KLF15 (ENSG00000163884) and TRIM63 
(ENSG00000158022) (Fig. 2e). These two genes are present in the GO term GO:0014888 
(striated muscle adaptation) to which ARID5B is not associated. The function of ARID5B 
is well known in adipocytes and hepatocytes but is still rarely studied in skeletal muscle 
metabolism. However, the knockout of this gene in mice has shown structural defects in 
the sarcomere structure [52].

Coupled with the results of GWENA, this may corroborate the involvement of 
ARID5B in the adaptation of striated muscle in response to a stimulus. Moreover, it 
has recently been shown that ARID5B knockout in mice was associated with increased 
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glucose metabolism via an increased translocation of SLC2A4 (ENSG00000181856) 
[53]. Since SLC2A4 is a gene that is also regulated by KLF15 [54, 55], this supports 
the idea that ARID5B has implications in skeletal muscle function and more precisely 
in glucose metabolism. GWENA thus allowed the identification of a gene that may 
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give new insight in the muscle development and growth which needs to be confirmed 
by further experiments.

Multiple conditions modules comparison and analysis

Differential expression analysis allowed the detection of genes involved in aging in the 
last years (GenAge [56], Digital Ageing Atlas [57]). Such discriminant analysis is limited 

Table 1  Summary of detected modules and related biological integration

The number (#) of genes is indicated for each module (module 0 being a false module containing the unassigned genes. 
The number of phenotypic associations with the variables of interest (weight, sex, ethnicity, bmi, age) are counted for each 
one. The number of enrichments corresponds to the count of significant terms on each cumulative biological database. 
The ratio (%) of enriched terms associated with muscle is then established as the number of terms containing one or more 
elements of the following corpus: “muscle”, “sarco*”, “*”, “muscul*”, “actin*”, “myosin*” (where * denotes a completion by any 
other character string)

Module # genes # pheno. asso. # enrichment % 
muscle 
enrich.

0 11 NA NA NA

1 5335 1 3288 0.6

2 3661 2 1098 0.4

3 3355 0 1620 0.3

4 1001 1 1883 1.0

5 987 0 1626 0.0

6 699 0 457 0.6

7 546 0 428 1.1

8 409 0 561 0.7

9 310 1 729 0.3

10 308 0 58 5.2

11 261 0 857 0.0

12 214 0 847 15.0

13 207 0 452 1.4

14 197 1 767 0.5

15 175 2 233 0.0

16 137 1 6 0.0

17 136 0 1 0.0

18 129 2 20 0.0

19 108 2 18 3.7

20 77 2 52 0.0

21 72 1 233 2.8

22 63 0 24 0.0

23 57 0 10 0.0

24 55 0 8 0.0

25 47 2 82 8.5

26 47 0 32 0.0

27 46 0 12 0.0

28 43 0 147 4.7

29 40 0 17 0.0

30 35 1 2 0.0

31 31 1 12 0.0

32 27 0 1 0.0

33 24 0 23 0.0

34 20 1 3 0.0
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in helping to understand aging as this phenomenon is composed of concomitant mecha-
nisms [58]. Understanding the relationships between the genes is therefore crucial to 
determine the altered functions and the changes involved. Differential GCN between 
conditions overcomes this problem by detecting the subtle pattern modifications. Using 
our previously defined young (20 to 30 years old) and old (50 to 60 years old) skeletal 
muscle modules, we ran GWENA’s GCN differential co-expression functionality to com-
pare the modules between these age ranges. The GCN of each module detected in the 
young sub-population were taken as a reference and tested against the ones detected in 
the old sub-population.

From the 35 modules detected in the previously described single condition analysis of 
young muscle data, GWENA’s differential GCN of young versus old age range returned 
2 modules that were unpreserved, 17 modules that were moderately preserved, 11 mod-
ules that were preserved, and 4 that were inconclusive (Table 3, Additional file 1: Figure 
S1). Unpreserved and moderately preserved modules are the most promising for identi-
fying groups of genes differently expressed with age. Few and heterogeneous significant 
enrichment terms were associated to unpreserved modules while several moderately 
preserved modules had enrichment terms known to be linked to aging [58–61] such 
as transcription regulation (module 21), cellular stress (modules 20 and 27), immune 
response (modules 7 and 28), cell proliferation (module 13).

In addition to this biological information, the topological comparison of these modules 
allows to grasp the nature of the variations in the relationships between genes (nodes in 
the network) and their co-expression score (edge weight in the network). Connectivity, 
as defined by J. Dong and S. Horwath [62], is a common topological metric computed 
in GCN as it is representative of the network robustness and is known to be linked to 
network deregulation [63, 64]. Over all modules, the connectivity of the genes in module 

Table 2  Module 19 young enriched terms table

Multiple enrichment are linked to muscle development and growth

Source Term name p val.

GO:BP Response to hormone 0.0015

GO:BP Negative regulation of muscle hypertrophy 0.0033

GO:BP Muscle adaptation 0.0118

GO:BP Response to peptide hormone 0.0129

GO:BP Striated muscle adaptation 0.0255

GO:BP Platelet-derived growth factor receptor signaling pathway 0.0328

GO:BP Regulation of muscle adaptation 0.0434

GO:MF Enzyme binding 0.0097

MIRNA hsa-miR-6882-5p 0.0002

MIRNA hsa-miR-197-5p 0.0039

MIRNA hsa-miR-152-5p 0.0125

MIRNA hsa-miR-6878-5p 0.0282

REAC Regulation of FOXO transcriptional activity by acetylation 0.0126

TF Factor: Zbtb37; motif: NYAC​CGC​RNTCA​CCG​CR; match class: 1 0.0073

TF Factor: RNF96; motif: BCCC​GCR​GCC; match class: 1 0.0074

TF Factor: ETF; motif: GVGGMGG; match class: 1 0.0193

TF Factor: AP-2; motif: SNNNCCNCAGGCN 0.0306

TF Factor: AP-2; motif: SNNNCCNCAGGCN; match class: 0 0.0306
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7 was noticeably dropping between young and old age range (Fig. 3, Additional file 1: 
Figure S4). Using a co-expression score filter of 0.95, this loss of connectivity material-
ized in the network through a disconnection (edge loss) of peripheral genes (genes with 
low degree) such as in sub-module 4 between the young and old age range (Fig. 4a, b). 
Several other genes of the module 7 from the young age range also showed an increased 
connectivity when observed in the old age range, which therefore reflects a reconnection 
(edge gain) to other genes. These results confirm the observations from previous studies 
of a connectivity loss in the network of modules linked to aging [64, 65]. Overall, they 
support an alteration of the transcription regulation.
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Fig. 3  Modules 7 and 19 genes (nodes) connectivity distribution between young and old age ranges. Young 
age range is used as reference for sorting genes by increasing connectivity. A comparison over all modules 
can be found in Additional file 1: Figure S4

Table 3  Modules comparison between young and old age range and their comparison status

Comparison status # modules Modules id

Preserved 11 1, 2, 3, 4, 6, 8, 9, 11, 12, 14, 19

Moderately preserved 17 7, 10, 13, 17, 18, 20, 21, 22, 
23, 24, 25, 27, 28, 30, 31, 
33, 34

Unpreserved 2 16, 32

Inconclusive 4 5, 15, 26, 29
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GWENA sub-module detection method on the module 7 revealed an impact of this 
reorganization of the gene connections by detecting 5 optimal sub-modules for the 
young age range, and 6 optimal sub-modules for the old age range. The gene composi-
tion of the sub-modules was highly similar between the condition (at least 81% common 
genes). Most of the differences in the gene composition are due to the disconnection of 
peripheral genes as previously spotted, and a small portion of the differences are due to 
the reconnection of genes or their attribution to another sub-module (Fig. 4a, b). This 
rewiring of the network is in line with known compensatory processes occurring during 
aging [60]. By triggering molecular processes involved in limiting or repairing cellular 
stress damage, these adaptive modifications aim to restore a homeostatic state.
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Fig. 4  Module 7 network comparison between young and old. a Module 7 GCN graph plotted with GWENA 
(0.95 co-expression score filter) for young age range with sub-clusters detected. b Same as a but for the 
old age range. A zoom is made on sub-module 4 to show the peripheral genes disconnection. The new 
sub-module 6 is visible in purple in the old graph. c Difference network heatmap (old–young) ordered 
according to young age range network dendrogram. Sub-modules from old age range are visible on the top 
of the heatmap in columns, and sub-modules from young age range on the right in rows. Three zooms are 
made on the heatmap on the areas corresponding to sub-module 6 genes. Zoom ① contains the genes 
reconnecting in the old age range
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To support this information, the new sub-module (sub-module 6 in Fig. 4b) appearing 
in the old age range was investigated further. Its creation is at the expense of the sub-
module 1 of the young age range and of the 13 genes composing it, 8 of the genes are 
from the sub-module 1, 3 are reconnecting genes, and 2 are from sub-modules 2 and 3. 
A gene set enrichment analysis with GWENA of this sub-module 6 revealed significant 
enrichment in functions related to wound healing, coagulation, vessel diameter, platelet 
degranulation, and plasminogen activation (Additional file 1: Table S2). This is coherent 
with known morphological alterations of the vascular system in the aged skeletal muscle 
[66, 67], and the global immune/inflammatory response increased in aging [61]. Also, 
51 enrichments from young sub-module 1 were not found significant in any of the sub-
modules in the old age range. These enrichments involve antibacterial humoral response 
and negative regulation of endopeptidase activity. These terms are known to be associ-
ated with satellite cells (muscle stem cells responsible for muscle regeneration) regula-
tors released by the vasculature in higher quantity in young skeletal muscle [67].

To complement these analyses, we investigated the variations of co-expression scores 
leading to the appearance of sub-module 6 in the old age range. Using the network co-
expression matrix δ returned by GWENA for each condition, a co-expression differ-
ence matrix (Fig. 4c) was computed such as δold − δyoung . In this matrix, gene pairs with 
a negative score indicates a decrease in the co-expression over aging while a positive 
score indicates an increase in the co-expression. Among the variations, 3 genes showed 
a significant increase in co-expression between them but also towards other genes of 
sub-module 6. The pattern visible in Fig. 4c ① and ② suggest that these genes may be 
driving the co-expression changes occurring in this sub-module. These genes are FGG 
(ENSG00000171557), FGA (ENSG00000171560), and FGB (ENSG00000171564), the 
three fibrinogen chain coding genes involved in the polymerization of a fibrin matrix. 
This finding is consistent with previous studies about the increasing fibrinogen content 
in the elderly skeletal muscle leading to persistent fibrin deposition preventing myofiber 
repair [68, 69]. They also support the hypothesis of an inflammatory response triggered 
by a fibrin accumulation. All these results allowed by GWENA’s capacity to study the 
topology and the biological context easily tend to support the idea of not only a global 
loss in connectivity in aging but also of a gene co-expression reorganization. Our tools 
also highlighted the biological translation of this reorganization as a potential compensa-
tory response from antibacterial humoral response and endopeptidase activity towards 
coagulation and wound response.

GWENA’s contribution and comparison with existing tools

Weighted GCN can be computed from existing tools such as WGCNA [3], wTO [70], 
CEMiTool [71]. As both GWENA and CEMiTool use elements from WGCNA, they 
share notable functionalities. They use similar network construction and modules detec-
tion functions from WGCNA but offer their own filter on the datasets. GWENA has 
been enhanced with additional checks on the network construction (such as aberrant 
power check) compared to WGCNA and CEMiTool. On its side, wTO used a different 
version of a topological score to construct the network as they don’t perform a power 
law conversion on the correlation matrix and don’t use the same definition of topological 



Page 14 of 20Lemoine et al. BMC Bioinformatics          (2021) 22:267 

transformation. Therefore, the main differences between WGCNA, wTO, CEMiTool 
and GWENA lie in the added functionalities for module analysis.

Regarding biological integration, wTO provides neither phenotypic association nor 
gene set enrichment. The other three tools allow phenotypic association but differ on 
gene set enrichment analysis. While CEMiTool only allows enrichment on imported 
GMTs, WGCNA and GWENA allow enrichment on gene ontology. GWENA is the only 
one allowing enrichment on other databases of pathways, regulatory agents, and pro-
teins (in addition to imported GMTs).

Additional topological analysis functions are also available in several of these tools. 
The most common, hub gene detection, is present in WGCNA, CEMiTool, and GWENA 
in different forms. CEMitool and WGCNA offer respectively as hub gene the top 10 
most connected genes and genes with a top kME score (membership module based on 
eigengene). However, methods based on a fixed number of hub genes tend to bias the 
information since the number of hub genes can vary according to the number of genes 
present in the module. GWENA therefore proposes several methods (highest connectiv-
ity, superior degree, Kleinberg’s score) based on a selection of genes with a hub score 
above a threshold. Another addition specific to GWENA is the ability to re-detect sub-
modules into a defined module in order to further investigate the co-expression recon-
nection organization, and then identify the relations between enrichments associated to 
each sub-module by visualizing them on the graph plot.

GWENA includes a differential co-expression analysis in the analysis pipeline as 
opposed to packages dedicated solely to it (DiffCoEx [72], CoDiNA [73], CoXpress [74]) 
or packages like wTO or CEMiTool that do not contain this analysis. The method in 
GWENA differs from the one present in WGCNA in that it includes a permutation test 
to prevent the problem of multi-testing. With the addition of the Z-summary score to 
detect unpreserved modules, GWENA is therefore the only pipeline including a differ-
ential co-expression analysis with high confidence in modules found unpreserved. The 
Table 4 finally provide a head-to-head comparison for all functionalities made available 
by GWENA.

CEMiTool and wTO are built as stand-alone tools with little or no eased interfacing 
with other tools. WGCNA is similar to them except for exporting networks to Cytoscape 
[75] or VisANT [76]. Conversely, GWENA has been developed according to a modular 
architecture in order to facilitate the realization with an external tool of one of the stages 
of the analysis pipeline defined in Fig. 1. GWENA will thus be more easily adaptable to 
follow future developments in co-expression network analysis methodology.

GWENA, as other GCN analysis tool, has limitations. A first one common to all GCN 
construction method is that the quality of input data (e.g. filtration and/or proper nor-
malization) will inevitably bias the results, especially if it breaks the scale-free prop-
erty. A second limitation is the design of the permutation test that prevents reporting 
a significant unpreservation. The non-rejection of the null hypothesis of unpreserva-
tion can only state a lack of evidence of preservation. Therefore, unpreserved modules 
are determined among these modules lacking evidence (the non-significant modules) 
by the calculation of Z summary which only provide a tendency in the unpreservation 
[47]. The present application of GWENA to skeletal muscle aging also presents its own 
limitation. All analyses were performed on skeletal muscle sample and results were 
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commented regarding this context. However, to be sure of the specificity of the findings, 
an additional differential co-expression of the modules should be performed on samples 
from other tissues from subjects with similar age range. As single-cell technologies are 
becoming common, the differential co-expression could also be used to target the cell-
to-cell specific aging variation inside a tissue. Finally, as co-expression networks were 
unsigned and aging is a complex phenomenon involving actors beyond gene expression, 
causal effect of any finding need to be experimentally verified.

Conclusion
In this paper, we introduced GWENA, an R package on Bioconductor to construct and 
analyze GCN in a single pipeline through a whole range of tools from biological integra-
tion, topological analysis, and differential co-expression. The package reduces complex-
ity of the GCN analysis through simple input and output functions combined to a set of 
visualizations to explore the results. The separation of each step of the analysis in one 

Table 4  Key features of GWENA compared to similar tools such as WGCNA, CEMiTool and wTO

As some differences remain under the same labels, details are provided about their content
a CEMiTool allows network visualization only if a protein-protein interaction network file is provided
b WGCNA only provides a single hub gene selection by module
c CEMiTool persistently provides the top 10 hub genes independently of the module size or connectivity
d WGCNA’s differential co-expression does not correct for multiple testing
e wTO have no differential co-expression method available but provides a consensus network method

Functionnalities Details GWENA WGCNA CEMiTool wTO

Gene set enrich‑
ment

Gene ontology yes yes no no

Pathways (KEGG/
Reactome)

yes no no no

Regulation actors 
(TRANSFAC/miR‑
TarBase)

yes no no no

Protein databases 
(Human Protein 
Atlas/CORUM)

yes no no no

Custom GMT 
import

yes no yes no

Native network 
visualization

yes no noa yes

Phenotype associa‑
tion

yes yes yes no

Hub gene detec‑
tion

yes yesb yesc no

Igraph compatibil‑
ity for extended 
topology metrics 
calculation

yes no no no

Sub-module 
detections 
inside module & 
graph coloration 
accordingly

yes no no no

Modules differen‑
tial co-expression

yes yesd no noe
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function also allows quick and easy replacement if users wish to use another method for 
this block.

GWENA demonstrated its performances on both single and multiple condition anal-
ysis through an exploration of variations of skeletal muscle function and processes in 
aging. The single condition analysis showed it is possible to find new genes potentially 
involved in an existing GO annotation using hub genes, network neighboring genes and 
gene sets enrichments. The differential co-expression analysis between young and old 
samples isolated modules specifically linked to aging and detected the rearrangement 
in connectivity related to aging. Additional analysis supported the observed genes co-
expression reorganization beyond simple connectivity loss. This resulted in a reinforce-
ment of previous supposition on inflammatory response to fibrin increases in skeletal 
muscle aging.
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