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Abstract

We examine the formation of networks among a set of players whose payo�s depend on
the structure of the network. We focus on games where players may bargain by promising
or demanding transfer payments when forming links. We examine several variations of
the transfer/bargaining aspect of link formation. One aspect is whether players can
only make and receive transfers to other players to whom they are directly linked, or
whether they can also subsidize links that they are not directly involved in. Another
aspect is whether or not transfers related to a given link can be made contingent on the
full resulting network or only on the link itself. A �nal aspect is whether or not players
can pay other players to refrain from forming links. We characterize the networks that
are supported under these variations and show how each of the above aspects is related
either to accounting for a speci�c type of externality, or to dealing with the combinatorial
nature of network payo�s.

JEL classi�cation numbers: A14, C71, C72

Key words: Networks, Network Games, Network Formation, Game Theory, EÆcient
Networks, Side Payments, Transfers, Bargaining, Externalities
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1 Introduction

Many social, economic, and political interactions take the form of a network of bilateral
relationships. This ranges from friendships to trading relationships and political alliances.
As the structure of the network of relationships can have a profound impact on the
welfare of all the involved parties, it is essential to develop a good understanding of which
networks are likely to form and how this depends on the speci�cs of the circumstances.
This paper contributes to a growing literature that models network formation.1

Here, our focus is on the role played by transfers payments in the formation of social
and economic networks. In many applications, agents bargain on possible transfers at
the time of forming relationships. For example, when two airlines form a code-sharing
agreement, included in that agreement are the details of how the costs and revenues on
cross-booked passengers are to be split. Similarly, when two political parties form an
electoral pact, they explicitly or implicitly agree on the division of seats, committee po-
sitions, cabinet posts, and government bene�ts. Without transfer payments (in currency
or in kind), many agreements would simply never exist.

Our �rst objective in this paper is to construct a simple model where the agreement
on transfers is part of the process of the formation of links. Our second objective is to
study how the formation of networks depends on the types of transfers that agents can
make. How important is it that agents can subsidize the formation of links that they
are not directly involved in? How important is it that agents be able to make payments
contingent on the full network that emerges? What is the role of making payments to
other players if they refrain from forming links? Since the types of payments that agents
will have at their discretion depends on the application, the answers to these questions

�Financial support from the Lee Center for Advanced Networking and from the NSF under grant
SES{0316493 is gratefully acknowledged. We thank Anke Gerber and the participants of the Ninth
Coalition Theory Network Workshop for a helpful discussion of the paper, and Toni Calvo-Armengol for
comments on an earlier draft.

1See Jackson (2003b) for a survey of the literature that is most closely related to our work here.



help us to understand the relationship between the networks that emerge, and for instance
whether eÆcient networks form, and the speci�cs of the social or economic interaction.

Our results outline some simple and intuitive relationships between the types of trans-
fers available and the networks that emerge. The main results can be summarized as
follows. If transfers can only be made between the players directly involved in a link,
then the set of networks that emerge as equilibria are characterized by a balance con-
dition. While there are some settings where eÆcient networks are supported with only
direct transfers, there are many settings where the networks that form will be ineÆcient.
If players can make indirect transfers, so that they can subsidize the formation of links
between other players, then they can properly account for some forms of positive exter-
nalities. However, even with indirect transfers, we still need to worry about the fact that
there are many di�erent combinations of links that players might consider forming or
not forming. Thus, even though links are bilateral, the multitude of such relationships
results in some multilateral decision problems. This means that in order to guarantee
that eÆcient networks form, players need not only to be able to make indirect transfers
in order to deal with (positive) externalities, but also to make those transfers contingent
on the network that emerges in order to take care of the multitude of interrelated bilat-
eral problems. Thus, there is a basic sense in which one can view the role of indirect
payments as taking care of externalities, and contingencies as taking care of the combi-
natorial nature of network formation. Finally, in order to handle negative externalities,
players need to be able to pay other players not to form links. Our analysis also includes
some discussion of how to model equilibrium, and we defer all discussion of that analysis
until we have laid out the details of the network formation games. This outlining of the
relationship between the types of transfers admitted and the types of externalities and
the multilateral decision problem that are overcome is the �rst that we know of in the
networks literature, or even the contracting literature for that matter.

Before presenting the model, let us brie
y discuss its relationship to the most closely
related literature. This paper �ts into a recent literature that examines network formation
when players act in their own interest and their payo�s may depend on the whole structure
of the network.2 In such network games, Jackson and Wolinsky (1996) showed that the
networks that maximize society's overall payo� will often not be stable in an equilibrium
sense, regardless of how players' payo�s are allocated or re-allocated (subject to two
basic conditions of anonymity and component balancedness).3 Moreover, simple examples
showed that even when players have the ability to make side-payments, eÆcient networks
may fail to form because side-payments do not enable players to overcome the diÆculties
linked with network externalities.

This tension between eÆciency and stability underlies our analysis of link formation
with transfers, and we develop a deeper understanding of the source of such ineÆciencies.

2See Jackson (2003a) for a survey of this literature; as well as Slikker and van den Nouweland (2001a)
for a look at the literature that deals with communication structures in cooperative game theory, where
a graph structure determines which coalitions can generate value.

3See Jackson and Wolinsky (1996) and Dutta and Mutuswami (1997) for detailed discussion of the
role of the conditions.

2



We identify two reasons why side-payments may be ine�ective in resolving the con
ict
between eÆciency and stability. First, there is the fairly obvious point that widespread
externalities in the network may imply that agents have to have input into the formation
of links by other players for the eÆcient network to form. For example, if the eÆcient
network involves the formation of a link between two players who get a negative utility
from that link, side-payments will be ine�ective in reaching the eÆcient outcome. Second,
is the less obvious point that since players are involved in multiple bilateral relationships
at the same time, side-payments negotiated bilaterally may not be suÆcient to sustain
the formation of eÆcient networks. In some situations, players may have an incentive to
renege on di�erent relationships at once, even though each bilateral relationship can be
sustained by side-payments. The main message of this paper is that the two diÆculties
identi�ed above can be overcome by enlarging the range of possible transfers, and can
be traced to speci�c features of the transfers. Network externalities can be dealt with if
players have the ability to make indirect transfers, subsidizing the formation of links by
other players or paying players not to form links. The combinatorial diÆculties linked to
the multitude of bilateral relationships can be solved if players have the ability to make
contingent transfers depending on the network being formed. In particular, if players
can make indirect contingent transfers, eÆcient networks can be sustained by individual
incentives under very mild regularity conditions.

Ours is not the �rst paper to look at the endogenous determination of payo�s together
with network formation. Recent models of network formation by Currarini and Morelli
(2000) and Mutuswami and Winter (2002)4 allow players to simultaneously bargain over
the formation of links and the allocation of value. In particular, Currarini and Morelli
(2000), and Mutuswami and Winter (2002), model network formation as a sequential
process where players move in turn and announce the total payo� that they demand
from the eventual network that will emerge, as well as the speci�c links that they are
willing form. The network that forms as a function of the announcements is the largest
one such that the total demands are compatible with the total value that is generated.
They show that the equilibria of such games are eÆcient networks, assuming that there
are no externalities across network components and that some other payo� monotonicity
conditions are satis�ed. Part of the intuition is that by moving in sequence and making
such take it or leave it demands, players can extract their marginal contribution to an
eÆcient network, and this provides correct incentives in some situations.

Currarini and Morelli (2000) and Mutuswami and Winter (2002) make the important
point that the ability to determine payo�s in conjunction with link formation may aid in
the emergence of eÆcient networks. However, these sequential games have special features
and are better for illustrating the importance of taking such bargaining seriously (or for
implementing variations on the Shapley value), than for providing reasonable models
of network formation. In particular, the end-gaming and �nite extensive forms drive
the results. Moreover, while they provide some suÆcient conditions for the support of
eÆcient networks, they do not give us much of a feel for how generally this might hold, or
how this depends on the structure of the process. In particular, the nature of the game

4See also Slikker and van den Nouweland (2001b) in the context of communication games.
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does not even allow an analysis of which players pay which others - essentially everything
is implicitly centralized.5

The rest of this paper is organized as follows. Section 2 introduces our notations for
players and networks. We describe the di�erent models of network formation in Section 3.
We then study the di�erent models in turn. Section 4 is devoted to the direct transfer
game, Section 5 to the indirect transfer game, Section 6 to contingent transfers and
Section 7 to a game where players may pay to prevent the formation of links by other
players. We conclude in Section 8. The paper ends with two Appendices. Appendix A
discusses the relation between pairwise stability, as de�ned by Jackson and Wolinsky
(1996), and the networks supported by the direct transfer game. Appendix B contains
the proofs of our results.

2 Modeling Networks

Players and Networks

N = f1; : : : ; ng is the set of players who may be involved in a network relationship.6

A network g is a list of pairs of players who are linked to each other. For simplicity,
we denote the link between i and j by ij, so ij 2 g indicates that i and j are linked in the
network g. Let gN be the set of all subsets of N of size 2. The network gN is referred to
as the complete network. The set G = fg � gNg denotes the set of all possible networks
on N:

For any network g 2 G, let N(g) be the set of players who have at least one link in the
network g. That is, N(g) = fi j 9j s:t: ij 2 gg. Given a player i 2 N and a network g 2 G,
let Li(g) denote the set of links in g involving player i, Li(g) = fjk 2 gjj = i or k = ig:

Paths and Components

A path in a network g 2 G between players i and j is a sequence of players i1; : : : ; iK
such that ikik+1 2 g for each k 2 f1; : : : ; K � 1g, with i1 = i and iK = j.

A component of a network g, is a nonempty subnetwork g0 � g, such that

� if i 2 N(g0) and j 2 N(g0) where j 6= i, then there exists a path in g0 between i
and j, and

5We have become aware of independent work by Matsubayashi and Yamakawa (2004) who analyze
a game which operates on a link by link basis, as do some of the games we study here. Their work
focuses on Jackson and Wolinsky's (1996) connections model, and a game where players negotiate over
how much of the cost of a link each player will bear. Thus, there is almost no overlap with our results.

6For background and discussion of the model of networks discussed here, see Jackson (2003b).
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� if i 2 N(g0) and ij 2 g, then ij 2 g0.

Utility Functions

The utility of a network to player i is given by a function ui : G! IR+.
7 Let u denote

the vector of functions u = (u1; : : : ; un). We normalize payo�s so that ui(;) = 0.

A utility function tells us what value accrues to any given player as a function of the
network. This might include all sorts of costs, bene�ts, and externalities.

For any network g 2 G and subset of links ` � g, we de�ne the marginal utility of
the links ` in g to player i by mui(g; `) = ui(g)� ui(g n `):

Externalities

While the class of utility functions we consider is completely general, the following
de�nitions of externalities will prove useful.

A pro�le of utility functions u satis�es no externalities if ui(g) = ui(g + jk) for all g,
jk =2 g, and i =2 jk.

A pro�le of utility functions u satis�es nonpositive externalities if ui(g) � ui(g + jk)
for all g, jk =2 g, and i =2 jk.

A pro�le of utility functions u satis�es nonnegative externalities if ui(g) � ui(g+ jk)
for all g, jk =2 g, and i =2 jk:

These de�nitions of externalities are not exhaustive since there are settings where
some links may result in positive externalities and others in negative externalities, or
the nature of the externality may di�er across players. Nevertheless, these de�nitions
provide a useful organizing device, and can easily be interpreted. Situations with no
externalities correspond to cases where players only care about who they are connected
to, but no further information. Nonpositive (negative) externalities arise when players
are hurt by the formation of links by other players. An example of this is the co-
author model of Jackson and Wolinsky (1996), where a player is hurt if their co-authors
take on other co-authors. Other examples of these are seen in Goyal and Joshi (2003),
where two �rms form strategic alliances and other �rms are harmed by the resulting
reduction in marginal cost; or in Goyal and Joshi (2000) and Furusawa and Konishi
(2002), where two countries enter into a free-trade agreement and other countries su�er.
Nonnegative (positive) externalities arise when players bene�t from the formation of
new links. In Jackson and Wolinsky's (1996) and connections model, externalities are

7As opposed to Jackson and Wolinsky (1996) we do not distinguish between a value function and an
allocation rule. Instead, our primitive is the set of individual values for every network.
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positive as all players bene�t from an increase in the friendship/communication network.
Positive externalities also emerge in Belle
amme and Bloch (2001)'s collusive networks,
where market sharing agreements reduce the number of competitors on the market to
the bene�t of other �rms.

Values and EÆciency

A network g 2 G Pareto dominates a network g0 2 G relative to u if ui(g) � ui(g
0)

for all i 2 N , with strict inequality for at least one i 2 N . A network g 2 G is Pareto
eÆcient relative to u if it is not Pareto dominated.

A network g 2 G is eÆcient relative to u if it maximizes
P

i ui(g).

When transfers are possible, Pareto eÆciency and eÆciency are equivalent, so we
focus here on eÆcient networks.8

3 Network Formation Games

We consider several models of network formation where various types of transfers are
available, and examine which networks emerge as equilibria of these games. There are
two basic versions of the game, allowing for direct or indirect transfers. In the direct
transfer game, players can only bargain over the distribution of payo�s of the links they
are involved with. In the indirect transfer game, players can subsidize the formation of
links by other players. We later extend both games to allow for contingent transfers.

The Direct Transfer Network Formation Game

In the direct transfer game, every player i 2 N announces a vector of transfers
ti 2 IRn�1. We denote the entries in this vector by tiij, representing the transfer that
player i proposes on link ij: Announcements are simultaneous.

Link ij is formed if and only if tiij + tjij � 0: Formally, the network that forms as a
function of the pro�le of announced vectors of transfers t = (t1; : : : ; tn) is

g(t) = fij j tiij + tjij � 0g

In this game, player i's payo� is given by

ui(g(t))�
X

ij2g(t)

tiij:

8For a detailed discussion of various notions of eÆcient networks in the presence of transfers, see
Jackson (2003a).
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This game is easily interpreted. Players simultaneously announce a transfer for each
possible link that they might form. If the transfer is positive, it represents the o�er
that the player makes to form the link. If the transfer is negative, it represents the
demand that a player requests to form the link. Note that the o�er may exceed the
demand, tiij+ tjij > 0. In that case, we hold both players to their promises. If for instance

tiij > �tjij > 0, player i ends up making a bigger payment than player j demanded.
Player j only gets his demand, and the excess payment is wasted.

It is important to note that wasted transfers will never occur in equilibrium, and
alternative speci�cations of the game (for instance, letting player i only pay player j's
demand or player j receive the total o�er of player i) would not change the structure of
the equilibria.

The Indirect Transfer Network Formation Game

In the indirect transfer game, every player i announces a vector of transfers ti 2
IRn(n�1)=2. The entries in the vector ti are given by tijk, denoting the transfer that player
i puts on the link jk. If i =2 jk, tijk � 0. Player i can make demands on the links that he
or she involved with (it is permissible to have tiij < 0), but can only make o�ers on the
other links. The reasoning here is that a player cannot prevent the formation of a link
between two other players (except possibly by paying them not to form the link, as we
consider later).

Link jk is formed if and only if
P

i2N tijk � 0: Formally, the network that forms as a
function of the pro�le of announced vectors of potential transfers t = (t1; : : : ; tn) is

g(t) = fij j
X
i2N

tijk � 0g

In this game, player i's payo� is given by

ui(g(t))�
X

jk2g(t)

tijk:

Network Formation Games with Contingent Transfers

In the games we have de�ned above, players only have a limited ability to condition
their actions on the actions of other players. Those games do not allow for contingent
contracts of the form \I will pay you to form link ij only if link jk is also formed." It
turns out that being able to make this kind of contingent contract can be very important,
and so we now de�ne such games.
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Every player announces a vector of contingent transfers ti(g) contingent on g forming,
for each conceivable nonempty g 2 G. In the direct transfer game, ti(g) 2 IRn�1 for each
i, while in the indirect transfer game, ti(g) 2 IRn�1!

There are many possible ways to determine which network forms given a set of con-
tingent announcements. We consider the following one, but it will become clear that
the results are robust to changes in the way the network is determined. Let there be
an ordering over G, captured by a function � which maps G onto f1; : : : ;#Gg. The
network that forms is determined as follows. Start with the �rst network, g1 such that
�(g1) = 1, and check whether g(t(g1)) = g1: If the answer is yes, then this is the network
that forms. Otherwise, move on to the second network, g2, and continue the process until
we �nd such a network. The network formed is thus the �rst network gk in the ordering
for which g(t(gk)) = gk. If there is no such k, then the empty network forms.

Equilibrium and Supporting a Network

Given a vector of transfers t in any of the variants of the game, a players payo� is
given by

�i(t) = ui(g(t))�
X

jk2g(t)

tijk

in the non-contingent game,9 and

�i(t) = ui(g(t))�
X

jk2g(t)

tijk(g(t))

in the contingent game.

A vector t forms an equilibrium of one of the above games if it is a pure strategy
Nash equilibrium of the game. That is, t is an equilibrium if

�(t) � �(t�i; bti);
for all i and bti.

We say that a network g is supported via a given game relative to a pro�le of utility
functions u = (u1; : : : ; un) if there exists an equilibrium t of the game such that g(t) = g.

A Comment on Simultaneous Move Games

A critical advantage of considering a simultaneous version of network formation is that
after seeing the resulting network and transfers, players will not wish to make further

9This equation includes tijk, even when i =2 jk, and such transfers are not included in the direct

transfer game. Simply set tijk = 0 when i =2 jk for the direct transfer game.
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changes to their transfers and links. This is not true if one instead models network
formation sequentially, by having the players move in some order. It could be that the
resulting network and transfers would not be stable if players could then come back and
make further changes.

Regardless of whether one thinks that network formation is simultaneous, the condi-

tions imposed by equilibrium are necessary conditions for any process to come to a stable

position. That is, the equilibrium conditions that are derived here are conditions that
capture the idea that we have arrived at a network such that no players would gain from
further changes.

A Re�nement: Pairwise Equilibrium

The simultaneity of announcements has a drawback; but one that we can easily deal
with. It allows for a multiplicity of equilibrium networks as a result of coordination
failures. Consider for example the following example where all the transfer games are
equivalent.

Example 1 Why re�ne?

t t

1 1

t t

0 0

There are two supported networks. One is the empty network and the other is com-
plete network (one link). The complete network is supported by transfers t112 = t212 = 0.
To support the empty network, set t112 = t212 = �t, where t � 1. In the second equilibrium,
the link is not formed because both players expect the other to make an unreasonable
demand.

Note that the equilibrium supporting the empty network survives an elimination of
weakly dominated strategies and is also a trembling hand perfect equilibrium.10 To
eliminate this equilibrium using standard re�nements would require the machinery of
iterative elimination of strategies, which is cumbersome in games with a continuum of
actions.

10Demanding �t fares well in the case where the other agent happens to o�er at least t.
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Alternatively, we should expect players forming a link to be able to coordinate their
actions on that formation, as the real-life process that we are modeling would gener-
ally already involve some form of direct communication. This suggests a very simple
re�nement.

Given t, let t�ij indicate the vector of transfers found simply by deleting tiij and tjij.

A vector t is a pairwise equilibrium of one of the above games if it is an equilibrium
of the game, and there does not exist any ij =2 g(t), and bt such that

(1) �i(t�ij; btiij; btjij) � �i(t),

(2) �j(t�ij; btiij; btjij) � �j(t), and

(3) at least one of (1) or (2) holds strictly.11

This re�nement allows any two agents who have not yet formed a link to change their
demands and o�ers in order to add a link. We focus attention on the addition of links, as
players can already unilaterally choose to sever links by increasing their demands. Hence,
the proper incentives to sever links are already captured by Nash equilibrium.12

While it is clear that Nash equilibria always exist in all the games we consider (the
empty network is always supported in equilibrium), the existence of pairwise equilibria
is not guaranteed. The following example shows that there exist environments for which
no pairwise equilibrium exists.

Example 2 Nonexistence of Pairwise Equilibria

11Given the continuity of transfers, this is easily seen to be equivalent to requiring that both (1) and
(2) hold strictly.

12There are many other re�nements we could also consider. In the indirect transfer game, it seems
natural to allow all agents to change their transfers on a given link, and we do introduce this more
stringent re�nement later. However, we believe that these more stringent re�nements are harder to
justify. Once one allows for such group deviations, it makes sense to go all the way to allowing general
group deviations. At that point one is led to something that is equivalent to the concept of strong
stability with side payments of Jackson and van den Nouweland (2000). Such a re�nement is quite
stringent, and while it has the nice property of only supporting eÆcient networks, it only applies in
situations where there is substantial room for communication between all individuals.
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1

0 0

1

1

The empty network is a (pure strategy Nash) equilibrium, but not a pairwise equi-
librium: two players can set zero demands to form a link and get 1 > 0. No network
that has at least two links can be supported as an equilibrium. Any such network must
involve a player who gets a negative payo�, and who could pro�tably deviate by setting
high demands on all his links which results in a payo� of 0. Finally, a network with
one link cannot be a pairwise equilibrium. The unlinked player and either of the linked
players would bene�t from setting transfers �3:5 and 3:5, respectively.

4 The Direct Transfer Game

We now provide an analysis of the direct transfer network formation game. This is a
natural, and the simplest, game to capture direct bargaining in the formation of links.
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We start with a simple example to show that externalities may prevent the emergence of
an eÆcient network in equilibrium.

Example 3 IneÆcient Network Formation with Direct Transfers and Positive External-
ities

t t t

u1(g)=2 u2(g)=0

1 2 3

u3(g)= -1

All other networks result in a utilities of 0 for all players.

The eÆcient network is the line f12; 23g. For this network to be supported, we must
have t323 � �1, as otherwise 3 would bene�t by lowering t3. If t223 � 1 � �t323, player 2
will bene�t by lowering t223, regardless of what other links have formed as u2 is 0 for all
other networks. Thus, the network f12; 23g cannot be supported in equilibrium.

This example shows that, in the presence of positive externalities, direct transfers may
be insuÆcient to guarantee that eÆcient networks are supported in equilibrium. In fact,
this example clearly suggests that indirect transfers (in the form of link subsidization)
are needed to support eÆcient networks in equilibrium.

The next example shows that, even in the absence of any externalities, the eÆcient
network may fail to form in equilibrium.

Example 4 The EÆcient Network is Not Supportable in the Complete Absence of Ex-
ternalities.

Consider a three-player society and a pro�le of utility functions described as follows.
Any player gets a payo� of 0 if he or she does not have any links. Player 1 gets a payo�
of 2 if she has exactly one link, and a payo� of 1 if she has two links. Player 2 gets a
payo� of -2 if he has exactly one link, and a payo� of 0 if he has two links. Player 3's
payo� function is similar to that of player 2: he gets a payo� of -2 if he has exactly one
link, and a payo� of 0 if he has two links.

It is clear from this speci�cation that all players' payo�s depend only on the con�gu-
ration of their own links and so there are no externalities in payo�s. This payo� structure
is pictured in the network below.
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0 �2

u1 = 0
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Let us argue that there is no equilibrium of the direct transfer game that supports
the complete network, which is the unique eÆcient network . By setting t22i � 0 for each
i, player 2 gets a payo� of at least 0. The same is true for player 3. Thus, players 2 and 3
must have a payo� of at least 0 in any equilibrium. Now, suppose by contradiction that
the complete network were supported in an equilibrium. It would follow that t11i � 0 for at
least one i, or otherwise one of players 2 and 3 would have a negative payo�. Without loss
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of generality, suppose that t112 � 0. Player 1's payo� would then be 1� t112� t113. Suppose
that player 1 deviated and changed t112 so that t112 + t212 < 0. Then the network that
would form would be 13; 23 and player 1's payo� would become 2� t113 which is greater
than 1� t112 � t113 (since t

1
12 � 0). Hence player 1 would have a pro�table deviation, and

the complete network cannot be supported in equilibrium.

This example points to another diÆculty in sustaining eÆcient networks. Players
can choose to delete any combination of links. In order to sustain a given network as an
equilibrium, it must be that each possible deviation is unpro�table, and each combination
of links that could be deleted might require di�erent transfers in order to be avoided.
Some of these combinations might be in con
ict with each other. In the above example,
it is the possibilities that either player 2 or 3 might sever both of his links that lies in
con
ict with what player 1 can get by severing a single link at a time.

The preceding examples suggest two features that the link formation game must have
in order to always result in eÆcient networks in equilibrium. First, indirect transfers
are needed in order to take care of externalities, as suggested by Example 3. Second, as
Example 4 suggests, transfers need to be contingent on the network in order to adjust to
the particular combination of links that are formed.

Before turning to a full analysis of the games with indirect transfers and/or contingent
transfers, we analyze the game with only direct transfers. We do this for several reasons.
First, there may be applications where this is the most appropriate game; second, this
serves as a useful benchmark; and third, if an eÆcient network can be supported via just
direct transfers, then it is in a sense more plausible that it will emerge than one that
requires a more involved transfer scheme to sustain it.

We �rst o�er a complete characterization of the networks that can be supported in
equilibrium of the direct transfer game, and then we identify some settings where direct
transfers suÆce to support eÆcient networks.

A Complete Characterization of Networks Supported by Direct Transfers:

The Network Balance Condition

A set of nonnegative weights f�i`gi2N;`�Li(g) is balanced relative to a network g ifX
`�Li(g):ij2`

�i` =
X

`�Lj(g):ij2`

�j`

for each ij 2 g.

The network g is balanced relative to the pro�le of utility functions u ifX
i

X
`�Li(g)

�i`mui(g; `) � 0:
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for every balanced vectors of weights.

We should emphasize that the balance conditions identi�ed here are di�erent both
in structure and implications from the balance conditions used in cooperative game the-
ory. Our balance condition assigns weights to each player and combination of bilateral
links involving that player. This contrasts with weights assigned to coalitions in cooper-
ative games, and re
ects the bilateral structure of networks. This also re
ects the fact
that these balance conditions are set to address an equilibrium notion that deals with
deviations by at most two individuals at a time.

Proposition 5 A network g is supportable as an equilibrium of the direct transfer net-
work formation game relative to the pro�le of utility functions u if and only if it is
balanced relative to the pro�le of utility functions u.

The proof of Proposition 5, together with all of our other proofs, appears in the
appendix. It follows a logic similar to that of the proof of the existence of the core for
balanced games, exploiting duality to convert the problem of existence of transfers into
a set of balance conditions. There are a couple of twists due to the bilateral nature of
the problem, but the proof is fairly short. While balance conditions are not transparent
to interpret, they still have a simple intuition. They examine whether or not all of
the possible marginal utilities from potential deviations can be overcome via some set
of transfers. Our balance conditions prove useful in exploring suÆcient conditions for
eÆcient networks to be supported in equilibrium.

Proposition 5 only characterizes supportability, and not supportability via pairwise
equilibrium. Clearly this provides necessary, but not suÆcient conditions for supportabil-
ity via pairwise equilibrium. The additional constraints imposed by pairwise equilibrium
are diÆcult to capture through balancedness conditions. Nevertheless, we can identify a
suÆcient condition, as follows.

Proposition 6 If a network g is supportable via pairwise equilibrium by the direct trans-
fer network formation, then it is balanced relative to the pro�le of utility functions u.
Conversely, if u satis�es nonnegative externalities, and g is eÆcient and balanced rel-
ative to u, then g is supportable via pairwise equilibrium by the direct transfer network
formation game.

More generally, we show the following lemma, which also applies to the indirect
transfer game.

Lemma 7 If g is eÆcient and supportable via the direct or indirect transfer game, and
u satis�es nonnegative externalities, then g is supportable in pairwise equilibrium.

Supportability with Nonpositive Externalities and Convexity in Own-Links
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We now identify suÆcient conditions for the eÆcient network to be supported in
equilibrium, using the intuition of Examples 3 and 4. Example 3 suggests that we should
look at situations where externalities are nonpositive. Example 4 suggests a restriction
that marginal payo�s from a given set of links be at least as high as the sum of the
marginal payo�s from separate links. This condition is formalized as follows.

A pro�le of utility functions u are convex in own-links if

mui(g; `) �
X
ij2`

mui(g; ij)

for all i, g, and ` � Li(g).

Under these two conditions eÆcient networks are supportable, as stated in the fol-
lowing proposition.

Proposition 8 If utility functions are convex in own-links and satisfy nonpositive exter-
nalities, then any eÆcient network g is supportable via the direct transfer game. If utility
functions are convex in own links and satisfy no externalities, then g is supportable via
a pairwise equilibrium.13

Goyal and Joshi (2003)'s model of networks of collaboration in oligopoly provides
an example of a setting where convexity in own links and nonpositive externalities hold.
Suppose that n �rms are engaged in quantity competition in a market for a homogeneous
good. By forming a link, �rms can decrease their constant marginal cost of production.
Suppose that cost reductions are an increasing but concave function of the number of
links, c(�i(g)) where �i(g) denotes the number of edges of �rm i in the graph g: It is
easy to check that the formation of links by players j and k reduces the production
costs of those two �rms, resulting in a decrease in the pro�t of �rm i and so there are
nonpositive (negative) externalities. Furthermore, when the additional bene�t of a new
link is decreasing with the number of links the �rm has already formed, convexity in own
links holds. Thus, Proposition 8 applies and the eÆcient network is supportable via the
direct transfer game.

Link-Separable Payo�s

13Toni Calvo-Armengol has pointed out to us that this proposition holds if we weaken convexity in
own-links to only require that there exist some � > 0 such that mui(g; `) � �

P
ij2` mui(g; ij) for all

i, g, and ` � Li(g). [The proof in the appendix is easily modi�ed, by simply placing an � on the right
hand side of the inequalities.] This captures some applications, such as the co-author model of Jackson
and Wolinsky (1996), which satis�es nonpositive externalities and the � version of convexity in own
links, but does not satisfy convexity in own links. We have not stated the proposition using this weaker
convexity condition, as Proposition 13, which uses a parallel convexity condition cannot be stated in the
weaker form.
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While Proposition 8 shows that the eÆcient network is supported as one equilibrium
of the game, it does not guarantee that no other networks will be supported as equilibria
as well. In order to check when eÆcient networks may be supported as the only pairwise
equilibria of the direct transfer game, we turn to a special case of convexity in own links,
where payo�s are separable across links.

Payo�s are link-separable, if for each player i there exists a vector wi 2 IRn�1, where
wi
jk is interpreted as the net utility that player i obtains from link jk forming. Then

ui(g) =
X
jk2g

wi
jk:

This very strong condition states that players view relationships completely separately.
A special case of link separable payo�s is one where agents only care about their direct
links.

Corollary 9 If payo�s are link-separable and have nonpositive externalities, then any
eÆcient network g is supportable via the direct transfer game. Furthermore, if payo�s are
link-separable and have no externalities, then g is supportable via a pairwise equilibrium
if and only if g is eÆcient.

The �rst statement and �rst part of the second statement follow from Proposition 8.
To see the only if claim, suppose to the contrary that g is supportable via a pairwise
equilibrium but not eÆcient. Then there exists g0 such that

P
i ui(g

0) >
P

i ui(g). As
payo�s are link separable and have no externalities, either there exists ij 2 gng0 such
that wiij + wjij < 0 or there exists ij 2 g0ng and wiij + wjij > 0. In the �rst case, g
cannot be supported as an equilibrium, because one of the two players has an incentive
to increase her demanded transfer thereby severing the link; in the second case, g cannot
be supported as a pairwise equilibrium, since will exist a pair of compatible transfer such
that the players have an incentive form the link.

Distance-Based Payo�s and Stars

Convexity in own links and nonpositive externalities are suÆcient conditions for the
eÆcient network to be supported as an equilibrium of the direct transfer game, but are
by no means necessary, as there are other conditions that ensure that network balance
is satis�ed. We now exhibit another class of utility functions, which violate both these
conditions, but for which the eÆcient network can be sustained in equilibrium. This is
the class of distance based utilities, where players get value from the number of players
they are linked to, and this value is decreasing with the distance of the connection.

Let d(i; j) denote the distance between i and j in terms of the number of links in the
shortest path between them (setting d(i; j) =1 if there is no path).
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A pro�le of utility functions is distance-based if there exist c and f such that

ui(g) =
X
j 6=i

f(d(i; j))� cjLi(g)j

for all i, where c � 0 is a cost per link, and f is a nonincreasing function.

A distance-based payo� structure is one where players may get bene�ts from indirect
connections, but where those bene�ts are determined by the shortest paths. Special cases
of distance-based payo�s are the connections model and truncated connections models of
Jackson and Wolinsky (1996). In such settings, \star" networks play a very central role,
as captured in the following proposition.

Proposition 10 If u is distance-based, then the unique eÆcient network structure is

(i) the complete network gN if c < f(1)� f(2),

(ii) a star encompassing all players if f(1)� f(2) < c < f(1) + (n�2)f(2)
2

, and

(iii) the empty network if f(1) + (n�2)f(2)
2

.

In the case where c is equal to f(1) � f(2) or f(1) + (n�2)f(2)
2

, there are can be a
variety of network structures that are eÆcient. Nevertheless, the star is still eÆcient in
those cases.

The proof of Proposition 10 is an easy extension of the proof of a Proposition in
Jackson and Wolinsky (1996), but we include it in the appendix for completeness.

It turns out that eÆcient networks can be supported (even by pairwise equilibrium)
in the direct transfer game for distance-based payo� structures. This result is related to
the special nature of the eÆcient network. In a star, every player is related to the center
and positive externalities pass through the center. Peripheral players can subsidize the
center of the star to keep their links formed, and this properly accounts for externalities.
This is captured in the following corollary to Propositions 5 and 6.

Corollary 11 If u is distance-based, then some eÆcient network is supportable as an
equilibrium the direct transfer game, and is also supportable in pairwise equilibrium.

The claim is easy to see directly in cases where either the empty or complete networks
are eÆcient. Consider the remaining case where f(1)� f(2) � c � f(1) + (n�2)f(2)

2
, and

thus a star involving all players is eÆcient. Here, we let us discuss how one can verify
the balance conditions. An agent i connected to the center j in a star has only one
link, we can simply set �ifijg = c for any c � 0. Then for the center j, it must be

that
P

`�Lj(g):ij2` �
j
` = c. The fact that a star is balanced then follows from noting

that cmui(g; ij) + c�j(g; ij) = 2f(1) + (n � 2)f(2) � 2c � 0 in situations where the
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star is eÆcient, and noting that the center's payo� is additively separable across links.14

Proposition 6 implies that we can support an eÆcient g as a pairwise equilibrium, noting
that there are nonnegative externalities in a distance-based u (as adding a link that does
not involve i can only increase i's payo� as it may decrease the distance between i and
some other agent, but does not impose a cost on i)

5 Indirect Transfers

As discussed above, indirect transfers are needed to overcome some of the diÆculties
linked to positive externalities in the network. However, in the indirect transfer game,
convexity in own-links is no longer suÆcient to overcome the diÆculty due to the deletion
of combinations of links, as a player's deviation can result in the severance of links
in which he is not involved. Thus the problem associated with the interaction of the
multitude of bilateral relationships is more complex when indirect transfers are present.
This is illustrated in the following example.

Example 12 EÆcient Network are not Supportable with Indirect Transfers and Con-
vexity in Own-Links

Consider a three-player society with payo�s pictured below.
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14This also gives us an idea of which transfers support a star as an equilibrium with agent 1 as the
center. Setting ti1i = f(1)+(n�2)f(2)�c, tiji = �(n�1)f(1) for j > 1, and t11i = �[f(1)+(n�2)f(2)�c]
for each i. It is easily seen that these form an equilibrium that supports the star.
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The complete network is eÆcient but is not the outcome of any equilibrium of the
indirect transfer network formation game. Consider any player i. Player i must o�er to
subsidize the link jk by an amount of at least .4, as otherwise at least one of j and k will
have an incentive to \sever" the link (set their demand to be less than �:2).

Consider some player i and link ij such that tiij � 0. Such a link must exist if the
complete network is supported. Consider the following deviation: player i reduces the
payment on the link jk and \severs" link ij (setting tiij to be low enough so that ij does
not form). In that case, the only link formed is link ik, and player i's base payo� is the
increased, and transfers have decreased which is strict improvement for player i.

The above network is convex in own-links, as the marginal utility of any second own-
link is negative while the marginal utility of any set of two own-links is always positive.
However, note that the convexity in links fails more generally. The marginal utility to
player 1 at the complete network of the links 12,23 is negative, while the marginal utility
of 23 at the complete network is 1.1, and the marginal utility of 12 is -.2, so the sum of
the marginal utilities is positive. Indeed, this is the source of the problem in the example.

Convexity in All Links

A pro�le of utility functions u is convex in all links if

mui(g; `) �
X
jk2`

mui(g; jk)

for all i, g, and any ` � g.

We can now state the following proposition.

Proposition 13 If payo�s are convex in all links, then any eÆcient network g is sup-
portable via the indirect transfer game. If payo�s also have nonnegative externalities,
then g is supportable via pairwise equilibrium.
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With indirect transfers, eÆcient networks can thus be supported irrespective of the
nature of externalities in payo�s if one simply requires equilibrium, and can be supported
under nonnegative externalities if we require pairwise equilibrium. However, the convex-
ity assumption property needed to support eÆcient networks is stronger than "convexity
in own links" which was required to support eÆcient networks in the direct transfer game.
In words, we require that the marginal bene�t of any subset of links (and not only the
links involving the player) be greater than the sum of the additional bene�ts link per link.
This convexity assumption is likely to be satis�ed when the marginal bene�t of a new
link is decreasing with the number of links already formed. Examples of such situations
are trading and information sharing networks. In these networks, the addition of new
connections typically has positive externalities on all the players. All players bene�t from
enlarging the set of trading opportunities, or increasing the number of communication
channels. However, the marginal bene�t of an additional link will often be decreasing
with the number of links already formed. If players incur a cost for forming direct links,
the eÆcient network (typically the complete network) may not be formed at equilibrium,
because players do not internalize the positive externalities they produce on other play-
ers. We claim that indirect transfers will allow for the formation of the complete network
in such trading and information sharing networks.

While indirect transfers enable the support of eÆcient networks as equilibria of the
game, there is no guarantee that eÆcient networks are the only equilibria of the game.
We now show that, in games with link separable payo�s and nonnegative externalities,
eÆcient networks are the only equilibria of the game if we allow cooperation by all
players in the formation of additional links. More precisely, we strengthen the de�nition
of pairwise equilibrium to allow all players to change their o�ers/demands on a given
link.

A vector t is a strong pairwise equilibrium of the indirect transfer game if it is an
equilibrium of the game, and there does not exist any ij =2 g(t) and S � N , and bt that
di�ers from t only on tkij where k 2 S, and such that �i(t�ij; btij) � �i(t), for all players
i 2 S, with strict inequality for some of the players.

This de�nition is weaker than a strong equilibrium, where arbitrary subsets of players
can alter all of their strategies. We work with the weaker de�nition since the Corollary
below still holds for this weaker de�nition. In fact, it turns out that under link separability
and nonnegative externalities, the strong equilibria and the strong pairwise equilibria of
the indirect transfer game coincide. This is easy to see as the payo�s separate completely
across links, and so one can consider links one at a time.

Corollary 14 If payo�s are link-separable and satisfy nonnegative externalities, then g
is supportable via a strong pairwise equilibrium of the indirect transfer game if and only
if g is eÆcient.
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6 Network Contingent Transfers

We now consider network formation games where players can condition their transfers
on the network that is formed.

As we see now, allowing transfers to be contingent on the network that forms has a big
impact on the set of networks that can be supported as equilibrium networks, even when
only direct transfers are possible. To understand why contingent transfers may help
to support eÆcient networks, even when only direct transfers are possible, reconsider
Example 3. In that example, the eÆcient network could not be formed in the direct
transfer game, and we argued that the eÆcient network could be supported if indirect
transfers were allowed, as player 1 needs to subsidize the formation of link 23. There is
another possibility, which does not require the use of indirect transfers, but instead relies
on contingent transfers. Player 1 could make transfers to player 2, to pass them on to
player 3. The diÆculty is that if player 1 makes this transfer to player 2, then player
2 might not form the link with player 3 and keep the transfer. This can be recti�ed if
transfers can be made contingent on the network that forms.

More generally, contingent direct transfers can be built up along paths so that they
end up moving as if they were indirect transfers within connected components. This
insight is the key to the following proposition and corollary.

Proposition 15 Consider the contingent version of the direct transfer game and any u.
There exists an equilibrium where the network g is formed and the payo�s are y 2 IRn

where yi � 0 for all i 2 N(g) if and only if
P

i2N(g0) ui(g) =
P

i2N(g0) yi for all g0 2 C(g),
and yi 6= ui(g) implies i 2 N(g).

Corollary 16 Consider the contingent version of the direct transfer game. Consider
any u and network g such that

P
i2N(g0) ui(g) � 0 for all components g0 2 C(g). There

exists an equilibrium supporting g. Moreover, there is an equilibrium corresponding to
each allocation y 2 IRn such that

P
i2N(g0) ui(g) =

P
i2N(g0) yi for each g0 2 C(g) and

yi = ui(g) or yi < 0 implies i =2 N(g).

Proposition 15 is based on a constructive proof, where we explicitly derive equilibrium
contingent transfers to support the network. While this proposition shows that a wide
set of networks can be supported as equilibria of the contingent direct transfer game, it
is limited by the fact that transfers cannot 
ow across separate components of a network
in the direct transfer game, even if payments are contingent. If we allow for contingent
indirect transfers, then there are additional networks that can be supported, as we now
show.

Proposition 17 Consider the contingent version of the indirect transfer network for-
mation game. Consider any u, any network g, and any allocation y 2 IRn

+ such that
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P
i yi =

P
i ui(g), and yi > ui(g) implies i 2 N(g).15 There exists an equilibrium where g

is formed and payo�s are y.

Corollary 18 Consider the contingent version of the indirect transfer network formation
game, and any u. Any eÆcient network such that disconnected players earn zero payo�s
is supportable. Moreover, there is an equilibrium supporting each allocation y 2 IRn

+ such
that

P
i yi =

P
i ui(g) and yi > 0 implies i 2 N(g).

Proposition 17 and Corollary 17 show that the combination of indirect transfers and
allowing these to be contingent allows the support of almost all eÆcient networks as
equilibria. The artifact that this includes situations where negative externalities might
be present is due to the fact that we are considering only equilibrium and not pairwise
equilibrium.

Pairwise Equilibria with Contingent Transfers

Propositions 15 and 17 have counterparts for pairwise equilibrium,16 provided the
network being supported is eÆcient and there are nonnegative externalities. A simple
extension of the proof Lemma 7 leads to the following corollary.

Corollary 19 Consider the contingent version of the indirect transfer network formation
game, and any u satisfying nonnegative externalities. Consider the contingent version
of the indirect transfer network formation game. Consider any eÆcient network g and
allocation y 2 IRn

+ such that
P

i yi =
P

i ui(g), and yi > ui(g) implies i 2 N(g). Then g
is supportable as a pairwise equilibrium with equilibrium payo�s y.

7 Transfers to Prevent Link Formation

The previous analysis shows that eÆcient networks can be supported as a Nash equi-
librium of the indirect contingent transfer game under very mild assumptions on the
payo� function. However, in order to sustain eÆcient networks as pairwise equilibria, we
needed the additional restriction that externalities are nonnegative. To see why this is
important, consider the following example exhibiting negative externalities.

Example 20 Negative Externalities and IneÆcient Pairwise Equilibria

15The y's in Proposition 17 are required to be nonnegative. One can also support the networks
from Proposition 15 that are not covered in this proposition through the construction used there. The
di�erence is that here one sometimes needs a player not inN(g) to subsidize the formation of a component
that has a negative value to its members. For this to work, it must be that the disconnected player
earns a nonnegative payo�, or they would withdraw their subsidies. Rather than break this into separate
cases, we have simply worked with the assumption of nonnegative payo�s.

16In order to de�ne pairwise equilibrium, allow players i and j to vary their announcements tiij(�) (as
contingent on any network).
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The society has four players. If one link forms, the two players involved each get a
payo� of 3.

t t

3 3

t t

0 0

If two (separate) links form, then the four players each get a payo� of 1.

t t

1 1

t t

1 1

All other networks result in a payo� of 0.

In this example, the only pairwise equilibria are ineÆcient.17 Two players who are
disconnected always bene�t from forming a link, and there is no way to prevent them
from doing so. Indeed, two players involved in a link would like to pay the other players
not to form a link.

A Game with Payments to Prevent Link Formation

In order to overcome the diÆculty exhibited in Example 20, we need to have a game
where players have the ability to make transfers to prevent the formation of links.

We �rst describe a game that allows payments to prevent link formation, but without
considering contingent transfers. We come back to incorporate contingencies after this
game is made clear. The game is based on the indirect link formation game, with the
following modi�cation. Each player announces two transfers per link, instead of just

17The eÆcient network is supportable as an equilibrium, where the two disconnected players fail to
form a link because each demands too large a transfer. This, again, is a case where pairwise equilibrium
is a reasonable re�nement.
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one. This pair of announcements by player i relative to link jk is denoted ti+jk and ti�jk .
Again, these must be nonnegative if i =2 jk, and can be anything otherwise. Player i also
announces mi

j 2 f+;�g for each j 6= i. The interpretation is that i is declaring whether
the default decision on link ij is not to add ij or to add ij.

The network g(t;m) is then determined as follows.

� If mi
j 6= mj

i , then ij =2 g.

� If mi
j = mj

i = +, then ij 2 g if and only if
P

k t
k+
ij � 0.

� If mi
j = mj

i = �, then ij =2 g if and only if
P

k t
k�
ij � 0.

Payo�s are then

ui(g(t))�
X

jk2g(t);mj
k
=mk

j=+

ti+jk �
X

jk=2g(t);mj
k
=mk

j=�

ti�jk :

The contingent version of the game with payments to prevent the formation of links
is the version where the ti and mi

j's are announced as a function of g, and then solved
via an ordering over games, just as before.

Equilibrium is again pure strategy Nash equilibrium in pure strategies, and pairwise
equilibrium and strong pairwise equilibrium are the obvious extensions to this game.
In particular, here a pairwise equilibrium is an equilibrium such that no pair i and j
could alter their strategies pertaining to ij (as contingent on any g's mi

j(�), m
j
i (�), t

i+
ij (�),

tj+ij (�), t
i�
ij (�)) and both be weakly better o� and one strictly better o�. A strong pairwise

equilibrium is an equilibrium such that there does not exist any ij and a deviation by
some set of players S � N on the strategies tk+ij (�), t

k�
ij (�), (and mi

j(�) if k 2 ij) such that
all members of S are strictly better o� as a result of the deviation.

To see how the game de�ned above works, reconsider Example 20.

Example 21 Negative Externalities with Payments to Prevent Links

Consider the payo� function of Example 20. Let us �nd a pairwise equilibrium of
the game with payments not to form links that supports an eÆcient network. Let us
support the eÆcient network f12g. Have all players set ti+12 (f12g) = 0. Set t1�34 (f12g) =
t2�34 (f12g) = 1=2 and t3�34 (f12g) = t4�34 (f12g) = �1=2, and m3

34(g) = m4
34(g) = � for all g,

and mi
ij(g) = + otherwise. For any other transfers set ti�ij(g) = �2, and ti�jk(g) = 0 when

i =2 jk.

Here, players 1 and 2 pay players 3 and 4 if the link 34 is not formed. It is straight-
forward to check that this is a pairwise equilibrium.
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Proposition 22 In the contingent game with indirect transfers to form or not to form
links, any eÆcient network is supportable via pairwise equilibrium, and in fact via strong
pairwise equilibrium.

Proposition 22 shows that with the ability to make contingent indirect transfers that
both subsidize the formation or the prevention of links, eÆcient equilibria are supportable
via pairwise equilibria.

8 Concluding Remarks

We have de�ned a series of games of network formation where transfers among players are
possible, and through an analysis of the equilibrium networkse have shed light on how the
type of transfers is related to the support of eÆcient networks. We pointed out two basic
hurdles in supporting eÆcient networks in equilibrium. First, the presence of positive
externalities in payo�s may prevent the formation of eÆcient networks, because players
involved in a link do not internalize the external e�ects the link has on other players.
Second, players may be unable to reach an eÆcient network because the transfers needed
to prevent the deletion of various subsets of links may be incompatible. Overcoming
positive externalities relies on players' ability to subsidize the formation of links by other
players, and overcoming negative externalities relies on their ability to pay to prevent the
formation of links. The problem of dealing with the combinatorial nature of the set of
bilateral links that need to be considered together is overcome if players have the ability
to condition their transfers on the entire network.

We would like to point out a limitation of our analysis. While some of our results
provide complete characterizations of supportable networks (for instance, the network
balance conditions, the link separability conditions, and the conditions outlined for the
contingent direct transfer game); others only outline suÆcient conditions for the support
of eÆcient networks and rely on constructive proofs. This leaves open some questions
of the precise necessary conditions for supportability in some of the games, which goes
together with a question of which ineÆcient networks might emerge in some of the games.
Closing the remaining gaps to developing a full understanding of the situations where
eÆcient networks emerge as the unique plausible equilibria of a network formation game
is a priority for future research.
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Appendix A Pairwise Stability and Equilibrium

Networks

In this Appendix, we discuss the relation between the networks supported in the direct
and indirect transfer games, and the pairwise stable networks introduced by Jackson and
Wolinsky (1996). This discussion highlights the connections between situations where
the allocation rule is �xed before the formation of the networks, and situations where
players can freely bargain over the allocation of the value of additional links.

The following de�nitions identify networks that are stable when the payo�s are �xed
before the formation process.18

A network g is pairwise stable with respect to a pro�le of utility functions u if

(i) for all i and ij 2 g, ui(g) � ui(g � ij), and

(ii) for all ij =2 g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

This is a self-evident solution concept that requires that no player bene�t by severing
a link and no two players bene�t by adding one.

A network g is pairwise stable� with respect to a pro�le of utility functions u if

(i) for all i and ` � Li(g), ui(g) � ui(g n `), and

(ii) for all ij =2 g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

This variation on pairwise stability is stronger than pairwise stability in that it allows
players to sever sets of links rather than just considering one link at a time. This solution
is discussed by Jackson and Wolinsky (1996) and is also essentially the same as the
pairwise Nash equilibrium re�nement of pairwise stability discussed by Goyal and Joshi
(2003).19

The next de�nition is a way of incorporating transfers into the study of network
formation without actually modeling the bargaining process explicitly.20

A network g is pairwise stable with transfers with respect to a pro�le of functions u
if

18The �rst two de�nitions are from Jackson and Wolinsky (1996). Strong pairwise stability is discussed
by Jackson and Wolinsky (1996, section 5), but is not named.

19For a more in depth discussion of the relation between the concepts of pairwise stable and pairwise
stable�, see Calvo-Armengol (2004). We stay away from the term pairwise Nash equilibrium, to avoid
confusion with pairwise equilibrium.

20This di�ers from the concept of pairwise stability allowing for side payments that is discussed by
Jackson and Wolinsky (1996). That concept had a stronger requirement in (i), requiring that ui(g) �
ui(g � ij) and uj(g) � uj(g � ij). If transfers are possible in sustaining a network, and not just in
deviations, then arguably the de�nition here is more appropriate.
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(i) ij 2 g ) ui(g) + uj(g) � ui(g � ij) + uj(g � ij), and

(ii) ij =2 g ) ui(g) + uj(g) � ui(g � ij) + uj(g � ij).

Part (ii) captures the idea that there are no two players who could add a link between
them, together with some transfers, and both be better o�. Part (i) captures the idea
that if a link is in the network, then there must be some transfer (possibly 0) for which
both players do not wish to delete the link.

While the notions of pairwise stability and pairwise stability� can di�er from the
equilibria of the direct transfer game, the notion of pairwise stability with transfers
captures some of the spirit of the equilibria of the direct transfer game.

Proposition 23 The set of networks supportable as pairwise equilibria is exactly the
intersection of those networks that are supportable via the direct transfer game and the
networks that are pairwise stable with transfers.

The relationship between supportable networks, pairwise equilibria, and the other
pairwise stability concepts is outlined in the following proposition. The relationships
between the solution concepts 24 are captured in the following Venn diagram.

Equilibrium (Supportable)

Pairwise Stable

Pairwise Stable�

Pairwise Equilibrium

Proposition 24

(i) The set of pairwise equilibria is a subset of the set of equilibria.
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(ii) If a network g is pairwise stable� relative to a pro�le of utility functions u, then it
is supportable via the direct transfer game and it is pairwise stable.

(iii) There exist u and g for which g is pairwise stable� (and thus pairwise stable and
supportable), but not supportable via pairwise equilibrium.

(iv) There exist u and g for which g is supported via pairwise equilibrium (and thus
supportable) and pairwise stable but not pairwise stable�.

(v) There are networks that are supportable and not pairwise stable nor supportable via
pairwise equilibrium.

(vi) There are networks that are pairwise stable and not supportable (nor supportable
via pairwise equilibrium, nor pairwise stable�).

(vii) There are networks that are both supportable and pairwise stable, but not pairwise
stable� nor supportable via pairwise equilibrium.

(viii) There are networks that are supportable via pairwise equilibrium and not pairwise
stable.

(ix) There exist networks that are pairwise stable� (and thus pairwise stable) and at the
same time supported via pairwise equilibrium (and thus supportable).

Proof of Proposition 24: (i) follows from the de�nition of pairwise equilibrium. The
pairwise stable part of (ii) is direct. To see the other part of (ii), set tiij = tjij = 0 for
each ij 2 g, and tiij = �X for each ij =2 g, for some X > 0. For large enough X this
forms an equilibrium. To see (iii), consider the empty network in Example 26. To see
(iv), see Example 27. To see (v), consider the empty network in Example 1. To see (vi),
see Example 25. To see (vii), see Example 28. To see (viii), see Example 26. To see (ix),
see the complete network in Example 1.

The examples illustrating the claims in Proposition 24 are as follows.

Example 25 Pairwise stable but not Supportable.
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Example 26 Supportable via Pairwise Equilibrium but not Pairwise Stable

t t

u1(g)=2 u2(g)=-1

1 2

t t

u1(g)=0 u2(g)=0

1 2

Example 27 Supportable via Pairwise Equilibrium and Pairwise Stable but not Pair-
wise Stable�
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All other networks have value of 0. The network f12; 23g is supportable via pairwise
equilibrium and pairwise stable but not pairwise stable�.

Example 28 Supportable and Pairwise Stable but not Pairwise Stable� nor Supportable
via Pairwise Equilibrium

This is the same as Example 27, except that the complete network leads to u1 = 6,
u2 = �3, and u3 = �1. The network f12; 23g is still supportable and pairwise stable,
but no longer supportable via pairwise equilibrium.

Appendix B Proofs

This Appendix contains the proof of the Propositions in the body of the paper.

Proof of Proposition 5: The network g is supported via an equilibrium of the direct
transfer network formation game relative to the pro�le of utility functions u if and only
if there exists a vector of transfers t such that:

�
P

ij2` t
i
ij � mui(`), for all players i and subsets of their links ` � Li(g), and
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� tiij + tjij � 0 for all ij 2 g.

Furthermore, we know that in equilibrium, we cannot have tiij + tjij > 0 for any ij, as
then either one of the players would strictly bene�t by lowering their tiij.

21

Therefore, to check whether g is supportable, we can solve the problem

mint
P

ij2g t
i
ij + tjij

subject to:

�
P

ik2` t
i
ik � �mui(`); 8i 2 N; ` � Li(g) and

tiij + tjij � 08ij 2 g

and verify that the solution satis�es:

min
P
tiij + tjij = 0:

The dual of this problem is22

maxf�i
`
gi2N;`�Li(g)

;f�ijgij2g �
P

i

P
`�Li �

i
`mui(g; `) subject to

P
`�Li(g):ij2` �

i
` � �ij = �1; for all ordered pairs i 2 N and ij 2 g, and

�i` � 0 for all i 2 N and ` � Li(g), �ij � 0 for all ij 2 g.

Since we are free to choose any the �ij's do not appear in the objective function, this
problem is equivalent to

maxf�i
`
gi2N;`�Li(g)

;f�ijgij2g �
P

i

P
`�Li �

i
`mui(g; `) subject to

P
`�Li(g):ij2` �

i
`� �ij =

P
`�Lj(g):ij2` �

j
` � �ij for all ordered pairs i 2 N and ij 2 g, and

�i` � 0 for all i 2 N and ` � Li(g).

As the objective can be set to 0 by setting all of the �i`'s to 0, we need only verify
that

P
i

P
`�Li �

i
`mui(g; `) is at least 0 for all sets of �

i
`'s that satisfy the constraints. The

constraints correspond to the de�nition of balanced weights, and thus the proposition
follows.

21We can set tiij = tjij = �X for some large enough scalar X for any ij =2 g, to complete the
speci�cation of the equilibrium strategies.

22By standard techniques, one can write the tiij = ti+ij � ti�ij , where t
i+
ij and ti�ij are both nonnegative.

Working across the two inequalities generated by each one of these, we �nd the equality to -1.
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Proof of Proposition 6: Given Propositions 24 and 5, the �rst statement follows
directly. Thus, the result follows from Lemma 7.

Proof of Lemma 7: Consider t supporting g in either game. In the indirect transfer
game, for any ij =2 g and k =2 ij, without loss of generality rearrange transfers so that
tkij = 0. Since g is eÆcient, and satis�es nonnegative externalities, it must be that
ui(g + ij) + uj(g + ij) � ui(g) + uj(g), and so mui(g; ij) +muj(g; ij) � 0. Given that
tkij = 0 for all k =2 ij, it follows that any joint deviation by i and j on ij that leads to an
improvement for one player, must lead to a loss for the other player.

Proof of Proposition 8: Let g be an eÆcient graph, then for all link ij we must
have X

k

muk(g; ij) � 0:

As the game has nonpositive externalities, this implies that for all links muk(g; ij) � 0
for all k 6= i; j. Hence, mui(g; ij) + muj(g; ij) � 0: Now by convexity in own-links,
mui(g; `) �

P
ij2`mui(g; ij) for any ` � Li(g). HenceX

i

X
`�Li(g)

�i`mui(g; `) �
X
i

X
`�Li(g)

�i`
X
ij2`

mui(g; ij)

=
X
i

X
ij2g

mui(g; ij)
X

`�Li(g):ij2`

�i`

=
X
ij2g

(mui(g; ij)
X

`�Li(g):ij2`

�i` +muj(g; ij)
X

`0�Lj(g):ij2`0

�j`0)

Now, by balancedness,
P

`�Li(g):ij2` �
i
` =

P
`0�Lj(g):ij2`0 �

j
`0 = �ij � 0: Hence,X

i

X
`�Li(g)

�i`mui(g; `) �
X
ij2g

�ij(mui(g; ij) +muj(g; ij)) � 0;

which is the required balance condition.

The Second statement obtains from Lemma 7.

Proof of Proposition 10:(i) Given that f(2) < f(1)� c, any two players who are not
directly connected will improve their utilities, and thus the total value, by forming a link.

(ii) and (iii). Consider g0, a component of g containing m players. Let k � m� 1 be
the number of links in this component. The value of these direct links is k(2f(1)� 2c).
This leaves at most m(m � 1)=2� k indirect links. The value of each indirect link is at
most 2f(2). Therefore, the overall value of the component is at most

k(2f(1)� 2c) + (m(m� 1)� 2k)f(2): (1)

If this component is a star then its value would be

(m� 1)(2f(1)� 2c) + (m� 1)(m� 2)f(2): (2)
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Notice that
(1)� (2) = (k � (m� 1))(2f(1)� 2c� 2f(2));

, which is at most 0 since k � m� 1 and c > f(1)� f(2), and less than 0 if k > m� 1.
The value of this component can equal the value of the star only when k = m� 1. Any
network with k = m�1, which is not a star, must have an indirect connection which has
a path longer than 2, getting value at most 2f(2). Therefore, the value of the indirect
links will be below (m� 1)(m� 2)f(2), which is what we get with star.

We have shown that if c > f(1)�f(2), then any component of a eÆcient network must
be a star. Note that any component of a eÆcient network must have nonnegative value.
In that case, a direct calculation using (2) shows that a single star of m+m0 individuals
is greater in value than separate stars of m and m0 players. Thus if the eÆcient graph is
nonempty, it must consist of a single star. Again, it follows from (2) that if a star of n
players has nonnegative value, then a star of n + 1 players has higher value. Finally, to
complete (ii) and (iii) notice that a star encompassing everyone has positive value only

when f(1) + (n�2)
2

f(2) > c.

Proof of Proposition 13: Let g be an eÆcient network. If ij =2 g, let the transfers
be tiij = tjij = �X and tkij = 0 for k =2 ij, where X is suÆciently large to be exceed
the largest marginal utility of any agent for any set of links. If ij 2 g, by eÆciencyP

kmuk(g; ij) � 0: If muk(g; ij) � 0 for all k set all the transfers tkij = 0. Ifmui(g; ij) < 0

and/or muj(g; ij) < 0 then set the corresponding tiij and or tjij equal to the marginal
utility, and then for each k such that muk(g; ij) > 0 set tkij 2 [0; muk(g; ij)] so thatP

l t
i
ij = 0. This is possible by the eÆciency of g.

These t are such that for any ij 2 g, mul(g; ij) � tlij whenever l 2 ij or l =2 ij and
tlij > 0. Let us argue that this forms an equilibrium of the indirect transfer game.

First, note that by the de�nition of X, if there exists an improving deviation, there
will exist one that only changes t's on links in g.

By convexity in all links, if there exists a deviation that is improving for some l on tl

on some set of links, then there exists some deviation that involves at most one link tlij,
with the possibility that l 2 ij. For ij 2 g, increasing transfers is costly and does not
change the outcome. Reducing transfers implies that the link will not be formed. Such
a deviation cannot be pro�table as mul(g; ij)� tlij � 0 if l 2 ij or if l =2 ij and tlij > 0.
It is not possible to lower tlij below 0 if l =2 ij.

The last claim in the Proposition follows from Lemma 7.

Proof of Corollary 14 We �rst show that the eÆcient network is supported in a
strong pairwise equilibrium. Clearly, an eÆcient network must satisfy ij 2 g if and
only if

P
k w

k
ij � 0. Consider then the following transfer scheme. For any link such thatP

k w
k
ij � 0. If wi

ij � 0 and wj
ij � 0, let tkij = 0 for all k. If at least one of the two involved
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players has a negative marginal utility from that link, consider all players k for which
wk
ij > 0 and set transfers so that tkij = wk

ij � (
P

k w
k
ij=jKj) and for i such that wi

ij < 0 set
tiij = wi

ij:For any link such that
P

k w
k
ij < 0 set transfers tkij = X where X is very large.

For any ij 2 g(t), it is clear that those transfers form an equilibrium strategy. If ij =2 g(t),
there cannot be any transfer scheme such that

P
k t

k
ij � 0 and

P
k w

k
ij �

P
k t

k
ij > 0:

Next, suppose by contradiction that an ineÆcient network is supported in a strong
pairwise equilibrium. As g is ineÆcient, there must exist either ij 2 g and

P
k w

k
ij < 0 or

ij =2 g and
P

k w
k
ij > 0. Because payo�s satisfy nonnegative externalities, if

P
k w

k
ij < 0

then wi
ij+wj

ij < 0. Hence, one of the players must have a pro�table deviation by changing
transfers so as to sever the link. If

P
k w

k
ij > 0, construct a transfer scheme as above. (

If wi
ij � 0 and wj

ij � 0, let tkij = 0 for all k. If at least one of the two involved players has
a negative marginal utility from that link, consider all players k for which wk

ij > 0 and
set transfers so that tkij = wk

ij � (
P

k w
k
ij=jKj) and for i such that wi

ij < 0 set tiij = wi
ij:)

Under this transfer scheme the link is formed and all players increase their utilities.

Proof of Proposition 15: The necessity of
P

i2N(g0) ui(g) =
P

i2N(g0) yi for all g
0 2 C(g),

and yi 6= ui(g) implies i 2 N(g) follow from the balance of transfers across components
and the observation that in equilibrium the transfers will sum to 0 on any link that is
formed.

To complete the proof, let us show that any such network g and allocation y can be
supported as an equilibrium.

Let Y = 3maxfmaxi jyij; maxi;g0 jui(g
0)jg.

For g0 6= g, set tiij(g
0) = �Y for all i and j.

For g, set transfers as follows. For any ij =2 g set tiij = tjij = �Y .

For ij 2 g we set transfers as follows.

Consider a component g0 2 C(g).

Find a tree h � g0 such that N(h) = N(g0).23

Let player i be a root of the tree.24 Consider each j who has just one link in the tree.
There is a unique path from j to i. Let this path be the network h0 = fi1i2; : : : ; iK�1iKg,
where j = i1 and i = iK .

23A tree is a network that consists of a single component and has no cycles (paths such that every
player with a link in the path has two links in the path).

24A root of the tree is a player who lies on any path that connects any two players who each have just
one link in the tree.
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Iteratively, for each k 2 f1; : : : ; Kg set25

tikik�1ik =
X
k0<k

yik0 � uik0 (g)

and
tikikik+1

=
X
k0�k

�
�
yik0 � uik0 (g)

�

Do this for each path in the tree.

For any link ij 2 g but ij =2 h, set tiij = tjij = 0.

Under these transfers, g will be the network that forms and y will be the payo� vector.
Let us check that there are no improving deviations.

Consider a deviation that leads to another network g0 6= ; being formed. This must
involve a net loss for any i as i's payo� must be below ui(g

0) � Y . Next, consider a
deviation that leads to the empty network. It must be that that the deviating player is
i 2 N(g) in which case the new payo� is 0 for i, which cannot be improving as yi � 0. So,
consider a deviation by a player i that still leads to g being formed. Player i's promises
tiij(g) can only have increased, which can only lower i's payo�.

Proof of Proposition 17:

Let Y = 3maxfmaxi jyij; maxi;g0 jui(g0)jg.

For g0 6= g, set tiij(g
0) = �Y for all i and j, and set tijk(g

0) = 0 for i =2 jk.

For g, set transfers as follows. Let A = fijyi > ui(g)g and B = fijyi < ui(g)g.

For i 2 A let `i(g) be the number of links that i has in g. Set tiij(g) =
�yi+ui(g)

`i(g)
if

ij 2 g and set tiij(g) = �Y if ij =2 g, and tijk = 0 otherwise.

For i 2 B let

�i =
ui(g)� yiP

j2B uj(g)� yj
:

Then for i 2 B set

tijk(g)

= �i

 
yj � uj(g)

`j(g)
+
yk � uk(g)

`k(g)

!
if jk 2 g; j 2 A and k 2 A;

25For k = 1 only the second equation applies, and for k = K only the �rst applies.
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= �i

 
yj � uj(g)

`j(g)

!
if jk 2 g; j 2 A and k =2 A;

= �Y if jk =2 g and i 2 jk; and

= 0 otherwise:

For i =2 A [ B, set tiij = �Y if ij =2 g and tijk = 0, otherwise.

Under these transfers, g will be the network that forms and y will be the payo� vector.
Let us check that there are no improving deviations.

Consider a deviation that leads to another network g0 6= ; being formed. This must
involve a net loss for any i as i's payo� must be below ui(g

0) � Y . Next, we consider a
deviation by a player i that leads to the empty network. This cannot be improving as
yi � 0. So, consider a deviation by a player i that still leads to g being formed. Player
i's promises tijk(g) can only have increased, which can only lower i's payo�.

Proof of Proposition 23: It is clear that the set of pairwise equilibria is a subset of the
set of equilibria of the direct transfer game. Let us show that any network supportable
as a pairwise equilibrium is also pairwise stable with transfers. Consider a pairwise

equilibrium bt. For any link ij 2 g, player i prefers to announce ctiij than any transfer X

such that X +
c
tjij < 0: Hence, ui(g)�

ctiij � ui(g � ij): Similarly, uj(g)�
c
tjij � ui(g � ij).

Summing up the two inequalities, ui(g)+ uj(g)� ( ctiij +c
tjij) � ui(g� ij)+ uj(g� ij) and

as ( ctiij +c
tjij) � 0, ui(g)+uj(g) � ui(g� ij)+uj(g� ij): Conversely, suppose that ij =2 g:

If ui(g)+uj(g) > ui(g� ij)+uj(g� ij), de�ne a new transfer vector et where ethkl = cthkl for
all kl 6= ij and etiij = ui(g)�ui(g� ij)� "; etjij = uj(g)�uj(g� ij)� " where " is chosen so

that etiij+ etjij � 0: It follows that ui(g(et))�Pk;ik2g(et) etiik = ui(g� ij)�
P

k 6=j;ik2g(et) ctiik+ " >

ui(g(bt)) � P
k;ik2g(bt) ctiik and similarly, uj(g(et)) � P

k;jk2g(et) etjjk > uj(g(bt)) � P
k;jk2g(bt) ctjjk,

contradicting the de�nition of pairwise equilibrium.

Finally, let us argue that any network g that is supportable and is also pairwise stable
with transfers is supportable as a pairwise equilibrium. Consider an equilibrium bt that
supports g. We argue that bt must also be a pairwise equilibrium. Suppose to the contrary
that there exists some ij =2 g such that

ui(g + ij)�
X
ik2g

tiik � btiij � ui(g)�
X
ik2g

tiik

and
uj(g + ij)�

X
jk2g

tjjk � btjij � uj(g)�
X
jk2g

tjjk;

with one inequality holding strictly, and where btiij + btjij � 0 (as otherwise the link ij does
not form and the payo�s could not have changed). Thus,

ui(g + ij)� btiij + uj(g + ij)� btjij > ui(g) + uj(g):
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Since btiij + btjij � 0 it follows that

ui(g + ij) + uj(g + ij) > ui(g) + uj(g);

which contradicts the fact that g is pairwise stable with transfers.

Proof of Proposition 22: For n = 2, the Proposition is straightforward, as the only
networks are the empty and single link network. The single link network is supportable
as a (strong pairwise) equilibrium if and only if it has nonnegative value. In the case
where a link's value is nonpositive, the empty network is clearly supportable as a (strong
pairwise) equilibrium.

So consider a setting where n � 3. Let g be such that
P

i(g) � 0.

Let Y = 3maxi;g0 jui(g0)j.

For g0 6= g, set ti+ij (g
0) = ti�ij (g

0) = �Y for all i and j, and set tijk(g
0) = 0 for i =2 jk.

Set mi
j(g

0) = + if ij =2 g0 and mi
j(g

0) = � if ij 2 g0. Note that under these rules,
g(t(g0); m(g0)) (the links that would form given these announcements) is the complement
of g0.

For g, set transfers as follows. Let u =
P

i
ui(g)

n
be the average payo� from g, which

is at least 0. Let A = fijui(g) � ug and B = fijui(g) < ug, and nA and nB be the
corresponding cardinalities.

Set mi
j(g

0) = + for all ij 2 g and mi
j(g

0) = � if ij =2 g. Set the t's as follows. If
nB = 0, then set tk�ij = 0 for all k and ij.

For nB > 0, let �j =
u�uj(g)P
k2B

u�uk(g)
for k 2 B and �j = 0 if j 2 A.

For i 2 B set ti+ij (g) = ti�ij (g
0) = u�ui(g)

n�1
for all j, and set ti�jk(g) = 0 when i =2 jk. For

i 2 A set ti+ij (g) = ti�ij (g
0) = �j

ui(g)�u
n�1

for all j, and set ti�jk(g) = (�j + �k)
ui(g)�u
n�1

when
i =2 jk.

Under these announcements, g is formed and each player's payo� is u. Consider any
deviation by a player i. Given the announced t�i and m�i (and the fact that there are
three or more players), i can only induce the empty network and a payo� of 0. This can
not be improving. Consider a deviation by some group of players S on the announcements
pertaining to a link ij. Again, they can only induce the empty network and a payo� of
0, or else the network g and some reallocation of their own payo�s. Neither of these
deviations can make each member of the group as well o� and some better o�.
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