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Abstract 

Mass movement mapping is essential for susceptibility, vulnerability and risk assessments. 

Various mapping approaches based on Earth observation (EO) data have been used to 

identify different types of hazards. Object-based image analysis (OBIA) has been employed 

for EO-based landslide mapping worldwide. The development and application of efficient 

methods for recognition and mapping are essential to create standards for landslide 

inventory mapping, notably in Brazil where landslides are a frequent natural hazard. This 

study aims to detect landslide features and differentiate them into shallow landslides and 

debris flows using a semi-automated OBIA approach. RapidEye satellite images (5 m) were 

analysed and the Normalized Difference Vegetation Index (NDVI) was calculated. A Digital 

Elevation Model (DEM) (12.5 m) and its derived products were integrated into the analysis 

to support the OBIA landslide mapping. The results show that the method is suitable for the 

recognition of this type of hazard and are potentially of use for local stakeholders and 

decision-makers in disaster management. 
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1 Introduction  

Landslides are a major natural hazard worldwide. They occur under varied climatic conditions 

and in different types of landscape, cost billions of dollars to manage and repair and in terms 

of financial losses, and are responsible for thousands of deaths and injuries every year 

(Highland and Bobrowsky, 2008). Creating a landslide inventory is the first and main step for 

susceptibility, vulnerability and risk analysis, and it should be noted that the accuracy of any 

inventory has a direct effect on the efficiency of subsequent studies. Manual, semi-automated 

and automated methods have been used to identify and map this type of hazard (Carou et al., 

2017; Hölbling et al., 2017; Barella et al., 2019; Comert et al., 2019; Canavesi et al., 2020; 

Karantanellis et al., 2021; Dias et al., 2021c; Soares et al., 2022; Liang et al., 2022). Object-
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based image analysis (OBIA) has a high potential for landslide recognition in satellite imagery 

(Martha et al., 2010; Hölbling et al., 2017; Comert et al., 2019; Hölbling, 2022). It allows spatial 

and spectral information (e.g. shape, texture, contextual and morphological information) to be 

used for object segmentation and classification (Blaschke, 2010). It has been demonstrated 

that the method is suitable for landslide detection and classification in different environments 

using different remote sensing data (Hölbling, 2022). The method also enables the 

differentiation between shallow landslides and debris flows (Hölbling et al., 2015). However, 

semi-automated differentiation between different mass movement types is not common and 

only a few OBIA studies have proposed such approaches (Hölbling et al., 2012, 2015; Eisank 

et al., 2014a; Plank et al., 2015; Heleno et al., 2016). 

In Brazil specifically, semi-automated and automated mapping of shallow landslides and debris 

flows is not often performed, although 37% of rainfall-triggered landslides in South America 

occur there (Froude & Petley, 2018). Despite the high landslide frequency, Brazilian landslide 

inventories are poorly developed (Dias et al., 2021a, 2021b), and recognition and mapping are 

mainly done manually through image interpretation (Dias et al., 2021a). This study therefore 

focuses on an area in Brazil to detect mass movement features, classifying them into shallow 

landslides and debris flows using OBIA. 

2 Materials and Methods 

2.1 Study area 

The study area is part of the Ribeira Valley region, in the southwestern part of the Serra do 

Mar in the state of São Paulo (Figure 1). The Guarda-mão basin is located in the municipality 

of Itaóca and has an area of 7.3 km2. It was selected because of the occurrence of numerous 

shallow landslides and debris flows triggered by an extreme rainfall event on 12–13 January 

2014, which caused damage to local infrastructure and economic losses, and lead to 25 deaths 

and 332 people becoming homeless (Brollo et al., 2015; Gramani and Martins, 2016; Dias et 

al., 2022). The debris flows themselves were caused by shallow landslides, which provided the 

initial material (Dias et al., 2022) (Figure 2). 

2.2 Data 

We used a RapidEye Analytic Ortho Tile multispectral satellite image (5m resolution) dated 30 
January 2014. A 1:10,000 scale map of the drainage network from the Geographic and 
Cartographic Institute of the State of São Paulo (IGC-SP) was used in addition. Supplementary 
data for slope, curvature and flow accumulation were derived from the pre-event ALOS Digital 
Elevation Model (DEM) with 12.5m resolution, acquired from the Alaska Satellite Facility. 
The Normalized Difference Vegetation Index (NDVI) was calculated, an index that has been 
applied to detect varying densities of vegetation coverage and which is commonly used in 
landslide studies (Bhandari et al., 2012; Uehara et al., 2020; Soares et al., 2022). 
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Figure 1: Location of the study area. A: Brazil, South America; B: São Paulo state; C: Guarda-

mão basin. 

 

Figure 2: Mass movement event in Itaóca, 2014. A: Debris flow and shallow landslides on a steep slope; 

B: Deposition area of mostly coarse material in a valley of the Guarda-mão basin. Source: M.F. Gramani. 
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2.3 Object-based mass movement mapping 

Two types of mass movement occurred in the study area: shallow landslides and debris flows. 
For semi-automated mapping and differentiation of landslide types, an object-based approach 
was applied using eCognition 10.0 (Trimble) software. For segmentation, a multiresolution 
segmentation algorithm was used. The algorithm identifies singular objects and merges them 
with their neighbours, based on a homogeneity criterion, which is a combination of spectral 
and shape parameters (Benz et al., 2004). The segmentation settings were as follows: scale 
parameter: 50; shape: 0.3; compactness: 0.9. They were defined based on expert knowledge 
and trial and error, with the aim of creating image objects that suited landslide recognition in 
our study site.  

The recognition, differentiation and classification (Table 1) of shallow landslides and debris 
flows were based mainly on three different metrics: spatial (‘distance’ and ‘border to’), spectral 
(NDVI), and morphological (slope and flow accumulation). Classification thresholds were 
determined and adjusted based on expert knowledge. According to the literature (Varnes, 
1978; Cruden & Varnes, 1996; Highland & Bobrowsky, 2008; Hungr et al., 2014), shallow 
landslides are common on steep slopes and can trigger debris flows near and in stream 
channels. These characteristics were essential for the construction of the classification rule set 
in eCognition. 

Table 1: Classification parameters and thresholds used in OBIA. 

Mass movement type Classification parameters 

Shallow landslide 

Mean NDVI ≤ 0.32 
Mean slope ≥ 16 
Distance to drainage network 
≥ 12 m 
Border to drainage network ≥ 
0.5 m 

Debris flow 

Mean NDVI ≤ 0.32 
Mean slope ≤ 16 
Distance to drainage network 
≤ 1 m 
Border to drainage network ≤ 
0.5 m 

Based on the mapping results, morphological information of the mass movement type 
characteristics was derived from the ALOS DEM. The slope and plan curvature were analysed, 
and the respective means were calculated. 

2.4 Accuracy assessment 

The accuracy of the results was assessed by comparison with a shallow landslide and debris 
flow inventory, created through expert interpretation (Dias et al., 2022) by considering the 
spatial overlap between the reference and the semi-automated OBIA classification. The 
samples (501) were split equally into three categories (167 samples each): shallow landslides, 
debris flows and non-landslides. The accuracy was assessed by determining the numbers of 
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true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN), and 
translated into Producer’s accuracy (PA), User’s accuracy (UA), Overall Accuracy (OA), and 
F1 Score. TP represents objects correctly classified; FP represents objects wrongly classified; 
TN represents objects correctly not classified as shallow landslide or debris flow; FN 
represents objects incorrectly not classified as shallow landslide or debris flow. PA indicates 
the probability that a given object has been correctly classified, and UA indicates the 
probability that a classified object actually represents this class (Dias et al., 2021c). In addition, 
spatial accuracy metrics were applied (Eisank et al. 2014b; Hölbling et al., 2017). 

The OBIA classification was based on the initial segmentation. These objects were suitable for 
the classification of areas affected by landslides, but due to the variability of landslides it is 
difficult to delineate landslides as single objects and thus to identify the number of landslides 
(Hölbling et al., 2016). Due to over-segmentation, the delineation of the objects did not agree 
with the manual landslide delineation (e.g. one manually identified landslide might contain 
several smaller OBIA objects). Therefore, objects classified as landslides using OBIA were 
merged into larger polygons based on proximity and contiguity. This allowed a geometric 
comparison of the object delineations, and five spatial accuracy metrics were calculated: (1) 
Quality Rate (QR), (2) Area Fit Index (AFI), (3) Over-Segmentation Rate (OR), (4) Under-
Segmentation Rate (UR), and (5) Root mean square (D). These metrics rely on the area 
proportions, with a range of values between 0 and 1 (except for AFI). The closer the value is 
to zero, the better the spatial match between the test and reference datasets (Eisank et al. 
2014b; Hölbling et al., 2017). Equations for the spatial accuracy metrics can be found in Eisank 
et al. (2014b). 

3 Results and discussion 

3.1 Differentiating between shallow landslides and debris flows using OBIA 

Figure 3 shows the results of the semi-automated object-based classification of shallow 
landslides and debris flows. Generally, the semi-automated classification generates lower totals 
than the reference mapping. A total area of 215,125 m2 (128 polygons after merging) was 
classified as shallow landslides, whereas the reference mapping showed 292,980 m2 (149 
polygons). For debris flows, an area of 234,275m2 (13 polygons after merging) was classified 
by OBIA, and 295,427 m2 (2 polygons) were mapped in the reference. 

The differences between the semi-automatically classified shallow landslides and debris flows 
and the reference amount to approximately 27% and 21% of the areas respectively. The 
classification of debris flows showed slightly better accuracy than that of shallow landslides 
(Table 2). This may result from the differences in the morphological characteristics of 
landslides and debris flows. Debris flows create a clear path of erosion due to entrainment, 
which mobilizes most of the sediments and materials present in the streams (e.g., boulders and 
logs). The larger size of debris flows in comparison to small shallow landslide scars favours 
their identification through both methods (manual and semi-automatic). The major debris flow 
initiated in the Guarda-mão reached the Palmital river and caused damage to downtown Itaóca 
(Dias et al., 2022). 
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The accuracy metrics produced results similar to those reported in the literature (Hölbling et 
al., 2015; Dias et al., 2021c; Soares et al., 2022), namely for shallow landslides an F1 Score of 
78% and an OA of 87; and for debris flows an F1 score of 86% and an OA of 89%. Satisfactory 
results were achieved for the spatial accuracy metrics. By merging the OBIA classification 
objects, it was possible to compare the total number of semi-automatically classified landslides 
with the manual mapping. However, some small shallow landslides were missed by OBIA, 
some neighbouring landslides were incorrectly merged into a larger polygon, and 
fragmentation of specific debris flow sectors occurred. Nevertheless, the geometric 
comparison of the final landslide objects indicated a good to high agreement between the 
reference inventory and the OBIA mapping, with most of the spatial indices showing values 
below 0.5 (Table 2). For debris flows, a better spatial agreement was obtained between the 
reference and OBIA polygons than for landslides, which was confirmed by the other accuracy 
metrics (PA, UA, F1 Score and OA). Although the OBIA debris flows were more fragmented 
(i.e. there were more polygons), the delineations of large sectors in the centre-north of the 
Guarda-mão basin matched well. 

 
Figure 3: Comparison of manual and OBIA mapping in the Guarda-mão basin. A: RapidEye image of 

the Guarda-mão basin after the mass movement event in 2014; B: Manual mapping of shallow 

landslides and debris flows; C: Identification of shallow landslides and debris flows using OBIA. 

Table 2: Accuracy assessment results. 

 Shallow landslide   Debris flow 

PA (%) 66 95 

UA (%) 
F1Score (%) 
OA (%) 
QR 
AFI 
OR 
UR 
D 

95 
78 
87 
0.66 
0.26 
0.56 
0.40 
0.48 

79 
87 
89 
0.51 
0.21 
0.41 
0.25 
0.33 
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3.2 Mass movement type characteristics 

Morphological and spectral analyses were performed to reveal the different characteristics of 
the shallow landslides and debris flows. Three parameters were analysed: slope, curvature and 
NDVI. Table 3 shows the mean values of each parameter. Slope presented very distinct means: 
24◦ and 6.8◦, for shallow landslides and debris flows respectively. Shallow landslides are prone 
to occur on slopes ≥ 20◦ (Fernandes et al., 2001; Zhou et al., 2002), while debris flows are 
directly related to stream channels (Costa, 1984; VanDine, 1996; Jakob, 2005). Both processes 
present a negative value for curvature; a negative result indicates that the pre-event surface was 
concave and responsible for converging materials and flows (Fernandes et al., 2001; Dias et 
al., 2017; Martins et al., 2017). NDVI means were similar for both processes. The NDVI was 
very useful for identifying mass movements in the first step, because both processes lead to 
the exposure of bare ground with no or sparse vegetation (NDVI ≤−0.2). However, 
differentiation between shallow landslides and debris flows based on the NDVI was not 
possible. 

Table 3: Morphological and spectral characteristics of shallow landslides and debris flows in the Guarda-

mão basin. 

Characteristics Parameters Shallow landslides 
(means) 

Debris flows 
(means) 

Morphology 
Slope 24° 6.8° 

Curvature -0.31 -0.34 

Spectral NDVI 0.18 0.11 

3.3 Common classification errors 

The object-based method proved to be suitable for the identification and differentiation of 
shallow landslides and debris flows. Nonetheless, some errors occurred, mostly false positives 
– in other words, objects that were wrongly classified (Figure 4). The main FP errors were 
related to non-vegetated areas other than mass movements (Figures 4A and B), stream 
channels (Figure 4B), and debris flows incorrectly classified as shallow landslides (Figure 4C). 
The false negative objects were mainly small shallow landslide features (Figure 4D) and specific 
debris flow sectors (Figure 4E). These findings are similar to those of other remote sensing-
based landslide mapping studies in Brazil. These studies include Dias et al. (2021c), who 
applied three pixel-based algorithms in São Paulo state and found that the most common 
errors were related to non-vegetated areas, such as pasture classified as landslides, or clouds 
and stream channels. The same authors also reported difficulties in classifying small landslide 
scars. Soares et al. (2022) applied a deep learning method in the states of Rio de Janeiro and 
Rio Grande do Sul and mentioned challenges in landslide detection: their model confuses 
streams, bare soil, roads and roofs. In general, shallow landslides and debris flows have almost 
the same spectral responses and NDVI values. This explains the misunderstanding regarding 
the case shown in Figure 4C. Steep slopes are prone to shallow landslides and, in some cases, 
show the same conditions as where debris flows initiate. As most debris flows are triggered by 
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shallow landslides, it is important to evaluate where one process ends and another begins. The 
comparison between pre- and post-event images of the affected area allows the expert to 
identify the initiation zone (in this case, the landslide which triggered the process). 
Unfortunately, in our study, the rule set could not always differentiate between the two 
processes if they occurred under similar morphological conditions. The investigator’s expertise 
is therefore crucial in correctly identifying the features. 

 

Figure 4: Classification errors (false positives and false negatives). A: Non-vegetated areas wrongly 

classified as shallow landslides; B: Stream channels wrongly classified as debris flows; C: Debris flow 

wrongly classified as shallow landslides; D: Small shallow landslides not classified by OBIA; E: Debris flow 

not classified by OBIA. 
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4 Conclusion 

An object-based approach for shallow landslide and debris flow classification was applied in 
Itaóca, southeastern Brazil. Spatial, spectral and morphological information was used for the 
segmentation and classification of objects using a high-resolution satellite image. The results 
showed that the method is suitable for identifying this type of hazard. The classification 
correctly identified more than 70% of all shallow landslides and debris flows. The errors were 
concentrated in non-vegetated areas and stream channels, and were due to confusion between 
the two classes. In addition, very small shallow landslides were not identified by the method. 
In future studies, improvements could be achieved by using higher resolution EO data, which 
would give greater mapping accuracy and avoid common classification errors. Multi-temporal 
analysis based on NDVI changes could also improve mapping accuracy. The results could be 
useful for local stakeholders and decision-makers, as information on the location and spatial 
distribution of landslides is important in disaster management. As the first application of 
OBIA in the Serra do Mar Paulista, a mountain range heavily affected by mass movements, 
this study contributes to improving approaches to mass movement mapping in Brazil and 
elsewhere. 
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