


Overview

Project Summary

● Name: BOUNCE

● Version: v3

● Platform: EVM-compatible chains

● Language: Solidity

● Audit Range: See Appendix - 1

Project Dashboard

Application Summary

Name BOUNCE

Version v2

Type Solidity

Dates Feb 01 2023

Logs Jan 29 2023; Feb 01 2023

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 1

Total Low-Severity issues 5

Total informational issues 5

Total 11

Contact
E-mail: support@salusec.io

1



Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2



Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Missing storage gap for upgradeable contracts 6
2. Message call with hardcoded gas amount 7
3. Lack of protection against signature replay attacks 9
4. Unnecessary comment of the priceHash implementation 10
5. Single-step ownership transfer pattern risk 12
6. Missing check in initialization function 13

2.3 Informational Findings 14
7. Floating compiler version 14
8. Redundant code 15
9. SafeMath library not needed since Solidity 0.8.0 16
10. Lack of NatSpec documentation 17
11. External call to an out of scope address 18

Appendix 19
Appendix 1 - Files in Scope 19

3



Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

https://t.me/salusec
https://twitter.com/salus_sec


Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Missing storage gap for upgradeable contracts Medium Business Logic Resolved

2 Message call with hardcoded gas amount Low Business Logic Resolved

3 Lack of protection against signature replay

attacks

Low Cryptography Resolved

4 Unnecessary comment of the priceHash

implementation

Low Redundancy Resolved

5 Single-step ownership transfer pattern risk Low Authentication Acknowledg

ed

6 Missing check in initialization function Low Data Validation Resolved

7 Floating compiler version Informational Configuration Resolved

8 Redundant code Informational Redundancy Unresolved

9 SafeMath library not needed since Solidity 0.8.0 Informational Redundancy Resolved

10 Lack of NatSpec documentation Informational Code Quality Acknowledg

ed

11 External call to an out of scope address Informational Undefined

Behavior

Acknowledg

ed

5



2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Missing storage gap for upgradeable contracts

Severity: Medium Category: Business Logic

Target:
- contracts/BounceBase.sol
- contracts/BounceDutchAuction.sol
- contracts/BounceFixedSwap.sol
- contracts/BounceSealedBid.sol

Description

contracts/BounceDutchAuction.sol:7

contract BounceDutchAuction is BounceBase

contracts/BounceFixedSwap.sol:L7

contract BounceFixedSwap is BounceBase

contracts/BounceSealedBid.sol:L7
contract BounceSealedBid is BounceBase

BounceDutchAuction, BounceFixedSwap, and BounceSealedBid all inherit BounceBase as
their parent contract. According to the OpenZeppelin document, the parent upgradeable
contract should add a storage gap to avoid storage slot collisions in future upgrades.
For upgradeable contracts, there must be a storage gap to "allow developers to freely add
new state variables in the future without compromising the storage compatibility with existing
deployments" (quote OpenZeppelin). Otherwise it may lose the flexibility of adding new
variables for the new implementation. Without a storage gap, the variable in the child
contract might be overwritten by the upgraded base contract if new variables are added to
the base contract. This could have unintended and very serious consequences to the child
contracts, potentially causing loss of user funds or causing the contract to malfunction
completely.

Recommendation
Recommend adding appropriate storage gaps at the end of upgradeable contracts. Please
reference the OpenZeppelin upgradeable contract document.

Status
This issue has been resolved by the team adding appropriate storage gaps at the end of
BounceBase contracts.

6

https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
https://docs.openzeppelin.com/contracts/4.x/upgradeable


2. Message call with hardcoded gas amount

Severity: Low Category: Business Logic

Target:
- contracts/BounceDutchAuction.sol
- contracts/BounceFixedSwap.sol
- contracts/BounceSealedBid.sol

Description

contracts/BounceDutchAuction.sol:L183

payable(pool.creator).transfer(actualAmount1);

contracts/BounceDutchAuction.sol:L227

payable(msg.sender).transfer(unfilledAmount1);

contracts/BounceDutchAuction.sol:L258

payable(sender).transfer(_excessAmount1);

contracts/BounceFixedSwap.sol:L187

payable(msg.sender).transfer(excessAmount1);

contracts/BounceFixedSwap.sol:L209

payable(pool.creator).transfer(_amount1);

contracts/BounceFixedSwap.sol:L266

payable(msg.sender).transfer(amount1);

contracts/BounceSealedBid.sol:L211
payable(msg.sender).transfer(unFilledAmount1);

contracts/BounceSealedBid.sol:L229
payable(msg.sender).transfer(amount1);

contracts/BounceSealedBid.sol:L259
payable(pool.creator).transfer(actualAmount1);

The transfer() and send() functions forward a fixed amount of 2300 gas. Historically, it has
often been recommended to use these functions for value transfers to guard against

7



reentrancy attacks. However, the gas cost of EVM instructions may change significantly
during hard forks which may break already deployed contract systems that make fixed
assumptions about gas costs. For example, EIP-1884 broke several existing smart contracts
due to a cost increase of the SLOAD instruction.

Recommendation
Avoid the use of transfer() and send() and do not otherwise specify a fixed amount of gas
when performing calls. Use address.call{value: amount}("") instead. Use the
checks-effects-interactions pattern and/or reentrancy locks to prevent reentrancy attacks.

Status
This issue has been resolved by the team using OpenZeppelin’s
AddressUpgradeable.sendValue and address.call{value: amount}("") instead of transfer().

8



3. Lack of protection against signature replay attacks

Severity: Low Category: Cryptography

Target:
- contracts/BounceBase.sol
- contracts/BounceDutchAuction.sol
- contracts/BounceFixedSwap.sol
- contracts/BounceSealedBid.sol

Description

contracts/BounceBase.sol:L58-63
function checkCreator(bytes32 hash, uint256 expireAt, bytes memory signature) internal

view {

require(block.timestamp < expireAt, "signature expired");

bytes32 message = keccak256(abi.encode(msg.sender, hash, block.chainid,

expireAt));

bytes32 hashMessage = message.toEthSignedMessageHash();

require(signer == hashMessage.recover(signature), "invalid signature");

}

contracts/BounceDutchAuction.sol:L113

checkCreator(keccak256(abi.encode(poolReq, PoolType.DutchAuction)),

expireAt, signature);

contracts/BounceFixedSwap.sol:L102

checkCreator(keccak256(abi.encode(poolReq, PoolType.FixedSwap)),

expireAt, signature);

contracts/BounceSealedBid.sol:L94
checkCreator(keccak256(abi.encode(poolReq, PoolType.FixedSwap)),

expireAt, signature);

The checkCreator() function is used in the project to verify the signature. The function
parameters are hash, expireAt and signature. The user cannot complete the create
operation until the signature has been verified.

There is an expireAt parameter in the checkCreator() function to ensure the validity of the
signature, but it lacks the functionality to prevent signature replay. A user who has obtained
a valid signature can repeatedly use the same signature to call the create() function to
create a large number of pools before the signature expires.

Recommendation
Add the parameter nonce to the checkCreator() function to prevent signature replay

Status
This issue has been resolved by the team using a state variable poolMessages to record
whether a signature was used.

9



4. Unnecessary comment of the priceHash implementation

Severity: Low Category: Redundancy

Target:
- contracts/BounceSealedBid.sol

Description

contracts/BounceSealedBid.sol:L119-152
function bid(

// pool index

uint256 index,

// amount of token1

uint256 amount1,

// priceHash = keccak256(abi.encode(index, sender, amount0, amount1))

bytes32 priceHash,

// signMessage = keccak256(abi.encode(chainId, sender, priceHash))

bytes memory signature,

bytes32[] memory proof

) external payable nonReentrant isPoolExist(index) isPoolNotClosed(index) {

checkWhitelist(index, proof);

Pool memory pool = pools[index];

require(pool.openAt <= block.timestamp, "pool not open");

require(amount1 != 0, "amount1 is zero");

require(myAmountBid1[msg.sender][index] == 0, "already bid by sender");

bytes32 signMessage = keccak256(abi.encode(block.chainid, msg.sender,

priceHash));

bytes32 hashMessage = signMessage.toEthSignedMessageHash();

require(signer == hashMessage.recover(signature), "invalid signature");

address token1 = pool.token1;

if (token1 == address(0)) {

require(amount1 == msg.value, "invalid ETH amount");

} else {

IERC20Upgradeable(token1).safeTransferFrom(msg.sender, address(this),

amount1);

}

totalBidAmount1[index] = totalBidAmount1[index].add(amount1);

myAmountBid1[msg.sender][index] = amount1;

myPriceHash[msg.sender][index] = priceHash;

emit Bid(index, msg.sender, amount1, priceHash);

}

As the contract name BounceSealedBid implies, BounceSealedBid.sol hopes to complete
the sealed bid through the bid() function. Each user's bid is not revealed to the public until
the transaction is completed. The implementation method of the bid function is to convert the

10



amount1 given by the user and the desired amount0 via keccak256(abi.encode(index,

sender, amount0, amount1)) into priceHash and pass it as a parameter to avoid
exposing one's own bid directly.

However, there is an issue with this implementation, if the smart contract is open sourced,
based on the implementation comment of priceHash and the index, msg.sender, and
amount1 parameters in the emitted event of a user's bid(), an attacker can solve the
amount0 and amount1 of the user’s bid through exhaustion over a certain price range.

Therefore, the user's bid in BounceSealedBid is not actually sealed.

Recommendation
Consider removing the priceHash implementation details comment.

Status
This issue has been resolved by adding parameter salt to prevent priceHash collision.

11



5. Single-step ownership transfer pattern risk

Severity: Low Category: Authentication

Target:
- contracts/BounceBase.sol
- contracts/Random.sol

Description

contracts/BounceBase.sol:L5
import

"@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";

contracts/Random.sol:L8
import

"@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";

Inheriting from OpenZeppelin's OwnableUpgradeable contract means that you are using a
single-step ownership transfer pattern. If an admin provides an incorrect address for the new
owner this will result in none of the methods modified by onlyOwner being callable. The
better way is to use a two-step ownership transfer pattern, where the new owner should first
claim the ownership before it is transferred. There is an OpenZeppelin
Ownable2StepUpgradeable contract designed for two-step ownership transferring.

Recommendation
Use OpenZeppelin's Ownable2StepUpgradeable.sol instead of OwnableUpgradeable.sol

Status
This issue has been acknowledged by the team.

12



6. Missing check in initialization function

Severity: Low Category: Data Validation

Target:
- contracts/BounceBase.sol

Description

contracts/BounceBase.sol:L35-L42
function __BounceBase_init(uint256 _txFeeRatio, address _stakeContract, address _signer)

internal onlyInitializing {

super.__Ownable_init();

super.__ReentrancyGuard_init();

txFeeRatio = _txFeeRatio;

stakeContract = _stakeContract;

signer = _signer;

}

Checking addresses against zero-address during initialization or during setting is a security
best-practice. However, such checks are missing for address variables during initialization.
Also missing checks for txFeeRatio can lead to excessively high rates

Recommendation
Add zero-address checks for all initializations/setters of all address state variables. Add a
check for txFeeRatio.

Status
The team fixed this by adding a zero address check and txFeeRatio check during
initialization.

13



2.3 Informational Findings

7. Floating compiler version

Severity: Informational Category: Configuration

Target:
- all

Description

pragma solidity ^0.8.0;

The BOUNCE contracts use a floating compiler version ^0.8.0.
Using a floating pragma ^0.8.0 statement is discouraged, as code may compile to different
bytecodes with different compiler versions. Use a locked pragma statement to get a
deterministic bytecode. Also use the latest Solidity version to get all the compiler features,
bug fixes and optimizations

Recommendation
It is recommended to use a locked Solidity version throughout the project. It is also
recommended to use the most stable and up-to-date version.

Status
This issue has been resolved by the team using locked Solidity version 0.8.17.

14



8. Redundant code

Severity: Informational Category: Redundancy

Target:
- contracts/BounceDutchAuction.sol
- contracts/BounceLottery.sol
- contracts/BounceSealedBid.sol

Description

contracts/BounceDutchAuction.sol:L66
mapping(uint256 => uint256) public amountSwap1;

contracts/BounceDutchAuction.sol:L253
amountSwap1[index] = amountSwap1[index].add(_amount1);

The state variable amountSwap1 in BounceDutchAuction is not used

contracts/BounceDutchAuction.sol:L106
poolReq.openAt < poolReq.closeAt &&

uint256(poolReq.closeAt).sub(poolReq.openAt) < 7 days,

contracts/BounceSealedBid.sol:L88
poolReq.openAt < poolReq.closeAt &&

uint256(poolReq.closeAt).sub(poolReq.openAt) < 7 days,

For this && condition statement, if the latter condition is true, then the former condition must
also be true. Thus, the former condition check is redundant.

contracts/BounceLottery.sol:L82
require(poolReq.maxPlayer < 65536, "max player must less 65536");

The declaration statement of the maxPlayer variable is uint16 maxPlayer; so maxPlayer
is always less than 65536.

Recommendation
Remove redundant code.

Status
poolReq.openAt < poolReq.closeAt and require(poolReq.maxPlayer < 65536,

"max player must less 65536"); has been deleted.

15



9. SafeMath library not needed since Solidity 0.8.0

Severity: Informational Category: Redundancy

Target:
- contracts/BounceBase.sol
- contracts/BounceDutchAuction.sol
- contracts/BounceFixedSwap.sol
- contracts/BounceSealedBid.sol
- contracts/BounceLottery.sol

Description

contracts/BounceBase.sol:L6
import"@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Up

gradeable.sol";

SafeMath is used to check underflow and overflow for arithmetic operations. However, since
Solidity version 0.8.0, arithmetic operations revert on underflow and overflow by default.
Since the bounce project uses a Solidity version no less than 0.8.0, it is unnecessary to use
the SafeMath library.

Recommendation
Remove the SafeMath library.

Status
This issue has been acknowledged by the team.

16



10. Lack of NatSpec documentation

Severity: Informational Category: Code Quality

Target:
- All

Description

NatSpec documentation for all public methods and variables is essential for better
understanding of the code by developers and auditors, and is highly recommended.

Recommendation
Add NatSpec documentation.

Status
This issue has been acknowledged by the team.

17



11. External call to an out of scope address

Severity: Informational Category: Undefined Behavior

Target:
- contracts/BounceDutchAuction.sol
- contracts/BounceFixedSwap.sol
- contracts/BounceSealedBid.sol
- contracts/BounceLottery.sol

Description

contracts/BounceDutchAuction.sol:L188
(bool success, ) = stakeContract.call{value:

txFee}(abi.encodeWithSignature("depositReward()"));

contracts/BounceFixedSwap.sol:L219
(bool success, ) = stakeContract.call{value:

txFee}(abi.encodeWithSignature("depositReward()"));

contracts/BounceLottery.sol:L177
(bool success, ) = stakeContract.call{value:

txFee}(abi.encodeWithSignature("depositReward()"));

contracts/BounceSealedBid.sol:L264
(bool success, ) = stakeContract.call{value:

txFee}(abi.encodeWithSignature("depositReward()"));

There is a Charge function in the program, which invokes the depositReward() function of
stakeContract. However, the code in the stakeContract address is outside the scope of this
audit and unknown to the auditors. Therefore, there may be potential risks when making an
external call to stakeContract

Recommendation
Add stakeContract to the audit scope.

Status
This issue has been acknowledged by the team.

18



Appendix
Appendix 1 - Files in Scope
This audit covered the following files:

File SHA-1 hash

BounceBase.sol 474200fb15e61322dd9fb7695959df9538a7
8c84

BounceDutchAuction.sol 43a68a600888dfed981a896efb03d5e8e31e
c984

BounceFixedSwap.sol 84b04231342122654c1a294a11608e5e84f
5c960

BounceLottery.sol c25131a22f3588fa78d8d3eb4a4cc279ca69
9705

BounceSealedBid.sol 3a2c25b1defff370a9c792e8795001ad677d
0615

Random.sol e35a435df39910ce3f51687c6de73f5cbc35
8830

19


