SALUS SECURITY

S

CODE
SECURITY
ASSESSMENT

BINARYX

FEB 2023

Overview

Project Summary

Name: BinaryX

Version: commit 89a0bd9

Platform: BSC

Address: 0x5b1f874d0b0C5ee17a495CbB70AB8bf64107A3BD
Language: Solidity

Repository: https://github.com/vic-dev-ops/bnx-contracts
Audit Range: See Appendix - 1

Project Dashboard

Application Summary

Name BinaryX
Version v

Type Solidity
Dates Feb 15 2023
Logs Feb 152023

Vulnerability Summary

Total High-Severity issues 0
Total Medium-Severity issues 1
Total Low-Severity issues 3
Total informational issues 4
Total 8
Contact

E-mail: support@salusec.io

https://github.com/vic-dev-ops/bnx-contracts/tree/89a0bd966082745970ca11e2506152c2e9736c15
https://bscscan.com/address/0x5b1f874d0b0c5ee17a495cbb70ab8bf64107a3bd

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive
information at risk, or is reasonably likely to lead to
catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

The issue puts a subset of users’ sensitive
information at risk, would be detrimental to the client’s
reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited
on a recurring basis, or is a risk that the client has
indicated is low impact in view of the client’s business

circumstances.

Informational

The issue does not pose an immediate risk, but is
relevant to security best practices or defense in
depth.

Content

Introduction
1.1 About SALUS
1.2 Audit Breakdown
1.3 Disclaimer

Findings

2.1 Summary of Findings

2.2 Notable Findings
1. Centralization risk
2. Missing burner address field in AncestorBurnt() event
3. User should be able to call getMinter()
4. Unchecked ERC20 transfer

2.3 Informational Findings
5. Use of floating compiler version
6. Mismatch between contract name and filename
7. Can use immutable to save gas
8. Code with no effect

Appendix
Appendix 1 - Files in Scope

O 0 3 O N L ~ b~ B~ A

—_— e e
w N = o O

—_
B

Introduction

1.1 About SALUS

At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown

The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):
e Risky external calls
Integer overflow/underflow
Transaction-ordering dependence
Timestamp dependence
Access control
Call stack limits and mishandled exceptions
Number rounding errors
Centralization of power
Logical oversights and denial of service
Business logic specification
Code clones, functionality duplication

1.3 Disclaimer

Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

Findings

2.1 Summary of Findings

ID |[Title Severity Category Status

1 Medium Centralization | Resolved

2 | Missing burner address field in AncestorBurnt() Low Auditing and Acknowledged

event Logging

3 | User should be able to call getMinter() Low Access Control | Acknowledged
4 |[Unchecked ERC20 transfer Low Business Logic | Acknowledged
5 | Use of floating compiler version Informational |Configuration | Acknowledged
6 | Mismatch between contract name and filename | Informational |[Code Quality Acknowledged
7 | Can use immutable to save gas Informational | Code Quality Acknowledged
8 | Code with no effect Informational |Redundancy Acknowledged

2.2 Notable Findings

Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Centralization risk

Severity: Medium Category: Centralization

Target:
- BinaryxToken.sol

Description
In the BinaryxToken contract, there is a privileged owner role.

The owner of the BinaryxToken contract:
- can add or remove minters. The minters can mint _newSupply amount of tokens in
total.
- can add addresses to or remove them from the blocklist. If an address is blocked,
then transfers to and from that address are forbidden.

A malicious or compromised owner can lock a user's BNX token by adding the user’s
address to the blocklist. If the privileged owner account is a plain EOA account, this can be
worrisome and pose a risk to the users.

Recommendation

We recommend transferring the privileged owner role to a community-governed DAO, or at
least to a multisig account. In addition, a timelock-based mechanism can be implemented to
demonstrate the project owners’ commitment to the ongoing health of this project.

Status

This issue has been addressed by the team. The owner role of the BinaryxToken contract
has been transferred to a_ multisig account.

https://bscscan.com/address/0xd450d7a6daccef9ffbb5f21ea88024a96218f0f4

2. Missing burner address field in AncestorBurnt() event

Severity: Low Category: Auditing and Logging

Target:
- BinaryxToken.sol

Description

BinaryxToken.sol:L. 253

event AncestorBurnt(uint256 amount);

BinaryxToken.sol:L308-L313

function burnAncestor(uint256 amount) external {
address account = _msgSender();
IERC20(_ancestor).transferFrom(account, address(@xdEaD), amount);
_mint(account, amount * 100);
emit AncestorBurnt(amount);

The AncestorBurnt() event is emitted when a user burns the old BNX token to get the new
BNX token. However, the AncestorBurnt() event does not record the burner’s address,
making it difficult to track the users’ burning behavior.

Recommendation

Consider adding a burner address field to the AncestorBurnt() event, also consider adding
the indexed modifier to this burner address field to make it more accessible to off-chain tools
that parse events.

event AncestorBurnt(address indexed burner, uint256 amount);

Status

This issue has been acknowledged by the team.

https://github.com/vic-dev-ops/bnx-contracts/blob/89a0bd966082745970ca11e2506152c2e9736c15/BinaryxToken.sol#L253
https://github.com/vic-dev-ops/bnx-contracts/blob/89a0bd966082745970ca11e2506152c2e9736c15/BinaryxToken.sol#L308-L313

3. User should be able to call getMinter()

Severity: Low Category: Access Control

Target:
- BinaryxToken.sol

Description

BinaryxToken.sol:L297-L.300

function getMinter(uint256 _index) external view onlyOwner returns (address){
require(_index <= getMinterLength() - 1, "BSCToken: index out of bounds");
return EnumerableSet.at(_minters, _index);

The getMinter() function is modified by the onlyOwner modifier, meaning that only the owner
can call getMinter() to query the minter address at the _index position.

However, the users should be able to query the minter’s address with getMinter(), just as
they can query the owner’s address with owner().

Recommendation

Consider removing the onlyOwner modifier from the getMinter() function.

Status

This issue has been acknowledged by the team.

https://github.com/vic-dev-ops/bnx-contracts/blob/89a0bd966082745970ca11e2506152c2e9736c15/BinaryxToken.sol#L297-L300

4. Unchecked ERC20 transfer

Severity: Low Category: Business Logic

Target:
- BinaryxToken.sol

Description

BinaryxToken.sol:L.308-1.313

function burnAncestor(uint256 amount) external {
address account = _msgSender();
IERC20(_ancestor).transferFrom(account, address(@xdEaD), amount);
_mint(account, amount * 100);
emit AncestorBurnt(amount);

}
Boolean return value for transferFrom() is not checked.

Several ERC20 tokens do not revert on transfer failure and return false instead. If _ancestor
is an ERC20 token which returns false on transfer failure rather than revert, then a malicious
user could free mint the BNX token via burnAncestor(): the malicious user first approves
zero amount of _ancestor token for the BinaryxToken contract, then the user calls
burnAncestor(), the transferFrom() function inside the burnAncestor() returns false, because
this return value is not checked the following _mint() logic is executed, resulting in a free
mint.

Fortunately, the _ancestor variable is expected to be set to the address of the old BNX
token. Upon further investigation, we have found that the transferFrom() in the old BNX
token contract reverts in case of failure. Therefore, when the old BNX token is the _ancestor,
the unchecked transferFrom return value in the burnAncestor() function is unlikely to cause
the aforementioned issue.

Nevertheless, we still recommend that the developers not rely on the assumption of the
_ancestor, and instead add a check on the return value of transferFrom().

Recommendation

Consider ensuring that the transferFrom return value is checked.

bool success = IERC20(_ancestor).transferFrom(account, address(@xdEaD), amount);
require(success);

Status

This issue has been acknowledged by the team.

https://github.com/vic-dev-ops/bnx-contracts/blob/89a0bd966082745970ca11e2506152c2e9736c15/BinaryxToken.sol#L308-L313
https://bscscan.com/address/0x8c851d1a123ff703bd1f9dabe631b69902df5f97
https://bscscan.com/address/0x8c851d1a123ff703bd1f9dabe631b69902df5f97

2.3 Informational Findings

5. Use of floating compiler version

Severity: Informational Category: Configuration

Target:
- BinaryxToken.sol

Description

BinaryxToken.sol:L.3

pragma solidity "0.8.0;

The BinaryxToken contract uses a floating compiler version *0.8.0.

Contracts should be deployed with the same compiler version and flags that they have been
tested with thoroughly. Locking the pragma helps to ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that might introduce bugs that
affect the contract system negatively.

Recommendation

Consider locking the pragma version.

Status

This issue has been acknowledged by the team.

10

https://github.com/vic-dev-ops/bnx-contracts/blob/89a0bd966082745970ca11e2506152c2e9736c15/BinaryxToken.sol#L3

6. Mismatch between contract name and filename

Severity: Informational Category: Code Quality

Target:
- BinaryxToken.sol

Description

BinaryxToken.sol:L 242
contract WindToken is DelegateERC20, Ownable2Step {

The entry contract name is WindToken while the filename is BinaryxToken. It is best practice
to use the same name for the entry contract and the filename.

Recommendation

Consider changing the entry contract name from WindToken to BinaryxToken.

Status

This issue has been acknowledged by the team.

11

https://github.com/vic-dev-ops/bnx-contracts/blob/89a0bd966082745970ca11e2506152c2e9736c15/BinaryxToken.sol#L242

7. Can use immutable to save gas

Severity: Informational Category: Code Quality

Target:
- BinaryxToken.sol

Description

The BinaryxToken contract when deployed has a few fixed storage variables.
BinaryxToken.sol:L255-1.263

constructor(
address ancestor,
uint256 ancestorMaxSupply,
uint256 newSupply
) ERC20("BinaryX", "BNX") {
_ancestor = ancestor;
_maxSupply = (ancestorMaxSupply * 100 + newSupply) * 1el8;
_newSupply = newSupply * 1el8;

The _maxSupply and _ancestor storage variables are defined in the contract.
BinaryxToken.sol:L.245
uint256 public _maxSupply;

BinaryxToken.sol:L.248

address public _ancestor;

But they are never changed.

Recommendation

Consider setting _maxSupply and _ancestor storage variables as immutable for a
considerable gas improvement.

uint256 public immutable _maxSupply;
address public immutable _ancestor;

Status

This issue has been acknowledged by the team.

12

https://github.com/vic-dev-ops/bnx-contracts/blob/89a0bd966082745970ca11e2506152c2e9736c15/BinaryxToken.sol#L255-L263
https://github.com/vic-dev-ops/bnx-contracts/blob/89a0bd966082745970ca11e2506152c2e9736c15/BinaryxToken.sol#L245
https://github.com/vic-dev-ops/bnx-contracts/blob/89a0bd966082745970ca11e2506152c2e9736c15/BinaryxToken.sol#L248

8. Code with no effect

Severity: Informational Category: Redundancy

Target:
- BinaryxToken.sol

Description

BinaryxToken.sol:L

pragma experimental ABIEncoderV2;

ABI coder v2 is activated by default since Solidity v0.8.0. The pragma pragma
experimental ABIEncoderV2; is deprecated and has no effect.

Recommendation

Consider removing the redundant code.

Status

This issue has been acknowledged by the team.

13

https://github.com/vic-dev-ops/bnx-contracts/blob/89a0bd966082745970ca11e2506152c2e9736c15/BinaryxToken.sol#L9
https://github.com/ethereum/solidity/blob/develop/docs/080-breaking-changes.rst

Appendix

Appendix 1 - Files in Scope

This audit covered the following file in commit 89a0bd9:

File SHA-1 hash

BinaryxToken.sol 7874319365cba58999eb003fcd5f51659ed0893c

14

https://github.com/vic-dev-ops/bnx-contracts/tree/89a0bd966082745970ca11e2506152c2e9736c15

