
TRAFFIC OPTIMIZATION WITH REDUNDANCY ELIMINATION ON MOBILE
AND WIRELESS NETWORKS

by

Shan-Hsiang Shen

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2015

Date of final oral examination: 12/18/14

The dissertation is approved by the following members of the Final Oral Committee:
Srinivasa A. Akella, Associate Professor, Computer Science
Suman Banerjee, Associate Professor, Computer Science
Shan Lu, Associate Professor, Computer Science
Thomas Ristenpart, Assistant Professor, Computer Science
Xinyu Zhang, Assistant Professor, Electrical and Computer Engineering

© Copyright by Shan-Hsiang Shen 2015
All Rights Reserved

i

ACKNOWLEDGMENTS

I would like to express my millions of thanks to my advisor, Prof. Aditya Akella. He gave me

a lot of flexibility to work on the research I wanted to do, and patiently understood my half-baked

ideas and gave me right directions. I have learnt a lot from him especially about how to think

about research problem carefully. He is always full of passion for research that encourages me to

keep moving on. In addition, I also appreciate his financial support during my study that released

my stress and focused on research. He has done what the best advisor can do, and if time were

rewound, I would still choose him as my advisor.

I would also like to thank Prof. Suman Banerjee. I worked on some interesting projects with

him. He let me know the importance of deploying our research as a working system to benefit our

society. In addition, I would also like to thank Prof. Shan Lu, Prof. Thomas Ristenpart, and Prof.

Xinyu Zhang who gave me lots of valuable suggestion and comments on my thesis.

I would also like to thank Dr. James Kempf, Dr. Neda Beheshti, and Ramesh Mishra who

are my mentors at Ericsson Lab where I spent one summer. I learned from them how to do good

implementation in industry. I would also like to thank Dr. Jia Wang, Dr. Zihui Ge, Dr. He Yan,

and Dr. Ajay Mahimkar at AT&T lab. They mentored me on some projects, and gave me many

suggestions on my research.

I am so lucky to get the opportunity to work with the following graduate students; we discuss

research ideas and complete great works together: Ashok Anand, Theophuilus Benson, Aaron

Gember-Jacobson, Wenfei Wu, Robert Grandl, Junaid Khalid, Raajay Vishwanathan, Keqiang He,

Liang Wang, Xiaoyang Gao, Anand Krishnamurthy, Li-Hsiang Kuo, Vivek Shrivastava, Shravan

Rayanchu, Sayandeep Sen, Yadi Ma, Tan Zhang, Jongwon Yoon, Ashish Patro, Peng Liu, and

Joshua Hare.

ii

I would especially like to thank my friends from Taiwan: Cara Chen, Phoebe Yip, Yaya Huang,

Kevin Ying-Tien Lin, Hsiang-Kuo Tang, Elise Wu, Yu-Ting Ho, Jie Yang, David Wang, Randy

Wang, Ping Chen, Sarah Lin, Jiun-Yi Tsai, Hsun-Yu Chan, Pi-Yu Kao, Huan-Yang Chen, Chang-

Mei Liu, See-Yeun Chen, Ya-Fang Cheng, Chi-Wei Tsang, Elu Tu, David Chiu, Hoilai Tseung,

James Shih, Chia-Chen Yang, Eric Fu, Ting Ong, Wesley Lee, Szu-Yi Chen, Claire Pi, Sara Chen,

Chien-Ming Huang, Shih-Yi Ho, Jeremy Liu, Janice Hwang, Amy Chen, Mike Hsieh, Tien-Yi

Tsai, Sen Yan, Vicky Chen, Ed Huang, Yi-Fan Su, Yueh-Hsuan Chiang, Po-Hung Wu, Yu-Chi Lai,

Shengnan Wang, and Yi-Cheng Wang. Thank all of you for spending wonderful time with my, and

make Madison as my second hometown.

Finally, I would like to thank my father, Lie-Hang Shen, my mother, Hui-Rui Li, and my

younger sister, Joyce Shen. Without your support, I cannot complete any works and get the de-

gree. My father shares his research experience with me. My mother and my sister encourage and

motivate me to keep my passion to pursue this path. I would also like to thank my other family

members.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vii

ABSTRACT . x

1 Introduction . 1

1.1 Mobile and Wireless Networks Today . 1

1.2 Improving Network Capacity . 2

1.3 Improving Network Efficiency . 2

1.4 Redundancy in Networks . 3

1.5 Redundancy Elimination in Mobile and Wireless Networks 4

1.6 Existing RE technologies . 4

1.7 REfactor . 7

1.8 iProxy . 9

1.9 Outline . 10

2 REfactor-ing Content Overhearing to Improve Wireless Performance 12

2.1 Background and Motivation . 12

2.2 REfactor Design . 18

2.3 Network Coding and Subcarriers . 29

2.4 Implementation . 37

2.5 Evaluation . 37

3 An Information-Aware QoE-Centric Mobile Video Cache 54

3.1 Motivation and Background . 54

3.2 Efficient Caching in iProxy . 65

3.3 Optimizing QoE . 73

3.4 Evaluation . 82

iv

Page

4 Related Works . 98

4.1 Finer-grained RE . 98

4.2 Solutions Relying on Wireless Overhearing Nature 99

4.3 Video proxy . 100

4.4 New Video Encoding Schemes . 101

4.5 Video Adaption . 102

4.6 Video Traffic Optimization . 102

5 Conclusion and Future Works . 105

5.1 Contributions . 105

5.2 Future Research . 107

LIST OF REFERENCES . 114

v

LIST OF TABLES

Table Page

2.1 Median fraction of nodes in the Jigsaw testbed who overhear transmissions at various

802.11g rates [1] . 25

2.2 Comparison of encoding throughput for REfactor and a SHA hash scheme for differ-

ent minimum chunk sizes. 38

2.3 Comparison of effective redundancy removal for REfactor and a SHA hash scheme . . 39

2.4 The mapping from overhearing possibility to BER. 43

2.5 Loss % with REfactor. The loss rates due to “no RE” and “perfect RE” are 8.5% and

5.3%, respectively. We show % lowering of loss rate relative to “no RE” in brackets. . 47

2.6 Performance improvement provided by REfactor in a real infrastructure-based wire-

less setup. 48

2.7 Air time savings %age with REfactor + COPE. 50

2.8 The result for high inter-client redundancy. 52

2.9 The result for low inter-client redundancy. 52

2.10 Comparison of encoding throughput for REfactor and NEWS. 53

3.1 http header. 77

3.2 For a single example video, we show the size of the raw data stored with an iProxy

cache entry, vs. that of different formats of the video file. 88

3.3 Throughput vs. location and population. 89

3.4 Improvement in video start up latency using iProxy and a conventional proxy. ∞
means the client cannot play the original video format, but can play re-encoded video

from iProxy. 90

vi

Table Page

3.5 Video length and encoding time . 91

3.6 We measure average frame rate and total stall time (frame rate/stall time) during

streaming in three cases: (a) fixed bit rate, (b) choosing bit rate at startup time, and (c)

dynamic bit rate adapting. 91

3.7 We repeat the experiment 100 times for each scenario, and iProxy provides higher

average bit rate in both scenario. 94

vii

LIST OF FIGURES

Figure Page

1.1 An overview of network stack . 6

2.1 REfactor applied to diverse scenarios . 16

2.2 REfactor in practice. Solid lines indicate normal packet delivery and dashed lines

indicate overheard packets. Transmissions are numbered in order from 1 to 6. AP and

client cache contents after all transmissions are shown. 22

2.3 Expected benefit from removing a single 64B chunk from a packet with K total re-

dundancy . 27

2.4 An AP maintain a queue for each client . 34

2.5 Impact of cache flush rate and cache size . 40

2.6 Total air time across both clients (a; left) and C2’s goodput (b; right) for a trace with

high overlap. 41

2.7 Total air time across both clients (a; left) and C2’s goodput (b; right) for a trace with

low overlap. 41

2.8 Total air time across both clients (a; left) and C2’s goodput (b; right) for a trace with

medium overlap. 42

2.9 Click modules for goodput evaluation. 43

2.10 Goodput improvements in a multi-AP scenario . 49

2.11 The architecture of NS-3, which connects to Click modules 51

2.12 The scenario we use in our experiment . 51

3.1 Retrieve IBR from an image. 59

viii

Figure Page

3.2 Throughput diversity with in two hours period . 62

3.3 In the IBR table, multiple URLs map to one IBR value, which corresponds to exactly

one video. 65

3.4 The flow of cache matching. 65

3.5 The Process of Video Matching. 67

3.6 A Scenario of iProxy. 67

3.7 IBR score V.S. GDS. 71

3.8 An comparison of IBR score and GDS. 71

3.9 iProxy Cellular network architecture. 72

3.10 Video frames refer to other frames to reduce video size. 75

3.11 iProxy the flow of mpeg4 encoding. 75

3.12 An Example of Performance Cliff Problem. 76

3.13 Throughput is varied with different CellID/location. 78

3.14 Multiple dynamic video encoding nodes can be added to improve scalability. 82

3.15 Hit rates for various cache policies in iProxy. 85

3.16 Hit rate evolution. Y-axis is time: 28/06 refers to 6AM on April 28th. 86

3.17 URL coverage evaluation . 87

3.18 Experimental scenario for video performance. 89

3.19 Scenario 1: the available bandwidth set by the shaper falls over time. The left figure

is for iProxy using the linear adapter, the right is using MPEG DASH. 94

3.20 Scenario 2: the available bandwidth set by the shaper oscillates. The left figure is for

iProxy using the linear adapter, the right is using MPEG DASH. 95

3.21 Video quality evaluation . 96

ix

Appendix

Figure Page

5.1 The references among video frames. 110

5.2 An Overview of the QoS System. 110

5.3 Frame-received Rate Estimation. 112

x

ABSTRACT

Mobile video services dominate half of the cellular traffic and 40 % of the WiFi traffic today [2,

3]. However, spectrum resources in mobile and wireless networks are quite restricted. The Cisco

Visual Networking Index [4] shows that the average mobile network downstream speed in 2013

was 1387 kbps, whereas the standard HD (720p) videos on YouTube are encoded as 5000 kbps [5].

Thus, to provide higher goodput performance and better quality of experience (QoE) for mobile

video services, it is essential to use resources more efficiently.

Redundancy is prevalent in today’s networks, and leads to waste of network capacity and degra-

dation of network performance. The redundancy can be at the byte level-i.e., repeating bytes in

flows or it can be at the information level-i.e., inherent meaning of objects for users such as the

content of videos. In wireless channels, 60% of traffic has been detected as repeating bytes [6],

and among popular video queries, 27% [7, 8] of videos are redundant. Thus, eliminating these

redundancies should improve network performance.

Some existing solutions which improve goodput by removing traffic redundancy at the byte or

information levels. Byte level solutions like EndRE [9] and SmartRE [10] provide fine-grained

redundancy elimination (RE) to eliminate repeating bytes as small as 32-64B, but as they do not

leverage the broadcast nature of wireless radios, they lose the chance to cache inter-client content.

RTS-id [11], ExOR [12], COPE [13], and Ditto [14] leverage the broadcast nature, but they do not

provide fine granularity. Thus, they lose some opportunity to match bytes inside a single packet.

At the information level, some solutions rely on proxies to cache popular videos in order to re-

duce repeating video objects transmitted over the networks. These proxies mostly identify videos

xi

by the URL address rather than the video content. However, a recent study [7] shows that many

videos with different URLs share the same content, so the redundant videos may be cached; the

wasted storage space ultimately leads to a lower cache hit rate and longer video start-up latency.

In addition, the proxies cannot adapt video format and bit rate dynamically based on device and

channel diversity. The unsuitable information downgrades QoE. Other solutions provide dynamic

video adapting such as MPEG-DASH, but they cannot support linear bit rate adapting and band-

width will be underutilized, if the available bandwidth falls between two standard video bitrates.

SoftCast [15] can adapt the bit rate linearly, but it requires physical layer modification, which

makes deployment difficult.

In this thesis, we study how to leverage the unique characteristics of mobile/wireless networks

and services to reduce redundancy and improve efficiency. To this end, we propose REfactor and

iProxy.

REfactor eliminates the byte level redundancy at fine granularity and fully leverages the broad-

cast nature of wireless radios. To realize the benefits of IP-layer content overhearing, various chal-

lenges must be overcome that arise from the probabilistic nature of wireless reception (which could

lead to inconsistent state) and the limited resources of wireless devices. We overcome these chal-

lenges through careful data structure (self-addressing cache) and wireless redundancy elimination

designs (model driven RE). We evaluate the effectiveness of our system by conducting experimen-

tation on real traces. We find that our design is highly effective and can improve goodput by nearly

25%.

REfactor can remove redundancy at the byte level, but it cannot perceive the object related in-

formation at the application layer. Thus, we provide another solution, iProxy, to remove redundant

videos in cache storage and adapt bitrates for clients to improve QoE. iProxy acts as a middlebox

between video providers and clients. It elevates the traditional view of caching from ”data” to

”information”, which optimally will reduce redundant videos in caches. It uses information bound

references as video identification to collapse multiple related cache entries into a single one, im-

proving hit rate and lowering the storage costs. Furthermore, it incorporates a novel dynamic linear

xii

rate adaptation scheme to ensure high stream quality with client and channel diversity. Our evalu-

ation shows that iProxy can improve cache hit rate by 65%, reduce start-up latency by 13 second,

and improve video quality (average bit rate) by 16% compared to MPEG DASH.

1

Chapter 1

Introduction

Mobile and video traffic dominates the global internet traffic. According to the Cisco Visual

Networking Index (VNI) [4], global mobile data traffic increased by 81 percent in 2013; mobile

video traffic composes half of the cellular traffic [3] and 42% of the WiFi traffic in campus net-

works [2]. Moreove, 40% of YouTube traffic is requested by mobile devices [16]. The standard

HD (720P) is encoded as 5000 Kbps bit rate [5], but the average mobile network downstream speed

in 2013 was only 1387 kbps [4] Thus, with the growing traffic volume, it is becoming increasingly

important to propose solutions to improve goodput and Quality of Experience (QoE) in mobile and

wireless networks, and the restricted wireless spectrum resources should be used more efficiently.

1.1 Mobile and Wireless Networks Today

It is more difficult to maintain high goodput and QoE in mobile and wireless networks than

in wired networks. First, the bandwidth of wireless links is more restricted than wired networks;

while average speed in wired networks was 16 Mbps in 2013 [17], the average mobile network

downstream speed was less than 1.4 Mbps in the same year [4]. Second, data is broadcasted into

open wireless channels, so interference from different devices causes random loss that costs extra

time for retransmission. Third, the condition of wireless channels is unstable and varies with time

and location [18]. These transmission issues lead to decrease in goodput and user experience,

mainly due to lower throughput and higher latency.

Limited CPU power and storage space restrict optimization for mobile devices. For example,

most smartphones are equipped with memory space of less than 2 GB (DRAM). Thus, if we want

2

to eliminate redundancy in network traffic, a mobile device cannot cache much content to match

the redundancy. Furthermore, the computation power is also slower than in wired devices. For ex-

ample, one of the fastest mobile processors, Qualcomm Snapdragon 800, is around 6 times slower

than Intel Core i7-3920XM in terms of GeekBench, which is a cross-platform benchmark [19]. It

leads to difficulty in achieving line speed process when a device is doing complex encoding or de-

coding tasks. With these resource limitations, the solutions for mobile and wireless devices should

be lightweight.

1.2 Improving Network Capacity

Aside from traffic optimization, there are still some options to improve goodput and QoE. First,

we can increase network capacity throughout networks, and add more infrastructure such as APs or

cellular towers. But this option is expensive and is not always helpful. For example, adding more

APs may cause higher interference, which degrades performance. Another option is that cellular

carriers offload some traffic to WiFi from cellular networks, which provides higher bandwidth

capacity. Unfortunately, the infrastructure is not always available for offloading. Finally, we can

pre-fetch popular content when network load is low and save transmission time from the original

content providers during peak hours. However, this option does not optimize the last hop, i.e. the

wireless link. Thus, it still leads to bad performance caused by unstable channel quality.

1.3 Improving Network Efficiency

Other solutions use limited network capacity more efficiently by optimizing network traffic. In

mobile and wireless networks, severely constrained throughput and unstable channel quality are

some of the common issues that make it difficult to maintain good mobile services. For example,

during video streaming, if the required data is delayed, video frames will be lost or delayed. This

results in poor quality and degraded video QoE.

Goodput is defined as the application level throughput, i.e., the number of useful information

bytes received by a particular destination; the useful information bytes exclude retransmitted bytes,

3

and redundant bytes for protection. At a higher level, clients will be more willing to use the services

that provide better QoE. Various factors determine QoE; in this thesis, the focus is mainly on video

performance, including start-up latency, video stall, and video quality, as mentioned in some of the

previous studies [20, 21].

To this end, the amount of actual bits that need to be transmitted should be reduced, yet the

full information should still be delivered to destinations, or recovered. Without information loss,

clients can receive high quality services.

1.4 Redundancy in Networks

The resources should be used more efficiently to achieve higher goodput and better QoE. How-

ever, todays networks are rendered less efficient due to redundancy.

Redundancy consumes network capacity and is observed at two levels: byte and information

levels. Redundancy at the byte level occurs when data repeats in traffic; it can be detected by

comparing traffic content byte by byte. [6] detects 60% redundant traffic in wireless channels.

Redundancy can also happen at the information level.

Different objects may provide the same information from a client’s point of view, but the files

associated with these objects may not be exactly the same at byte level. We convert 100 videos

into five different formats, which are .mp4, .flv, .mov, .mpg, and .avi; then we put all of them into

an existing byte level RE encoder; only 1.06% of redundant bytes are detected. However, they

include 80% redundant information. The videos encoded in different formats will look the same

to the video viewers, if they include the same information. The two videos become redundant, if

both of them are stored in a cache. It leads to a wastage of storage that drops the performance of a

proxy system, and increases video start-up latency.

Unnecessary information is also redundancy. For example, the screen resolution of mobile

devices is usually lower; if we send a higher resolution video, the mobile devices cannot play it in

this high resolution. Based on our evaluations, if we send a video with resolution higher than device

screen resolution, the start-up latency increases as high as 14 s. In addition, clients cannot play the

video with wrong formats provided by video servers. Channel quality varies more frequently in

4

mobile and wireless networks than wired networks, so the amount of information that can fit the

channel condition should be considered carefully.

1.5 Redundancy Elimination in Mobile and Wireless Networks

The redundancy should be removed for better network efficiency. Redundancy elimination

(RE) is of greater benefit in wireless environments than in wired environments. Bytes are broad-

casted to the channel, so any nearby devices can easily overhear them. If we can leverage this

feature, more useful content can be cached and more future redundant bytes can be potentially

detected. Furthermore, wireless channels are not reliable, so we should use the spectrum more

carefully for higher goodput. Finally, shorter packets provide lower packet loss rate. A packet can

be successfully received only if every bit of it is correctly decoded. Therefore, when the bit error

rate is fixed, it is significantly beneficial to reduce packet size by removing redundant bytes.

1.6 Existing RE technologies

There are several previously existing RE technologies working at the byte level or the informa-

tion level.

Existing Byte Level Approaches

To remove the redundant bytes, many previous studies worked on redundancy elimination (RE)

in the network layer. To achieve better granularity, a number of existing approaches either cut pack-

ets into chunks for matching (i.e., EndRE [9]) or match shorter content first and then extend the

matching length (i.e., SmartRE [10]). With better granularity, these approaches provide more op-

portunities to maximize matched traffic content. However, they are not designed for mobile and

wireless environments, and do not take into consideration overhearing features, so they fail to max-

imize the advantage of caching more useful content and detecting inter-mobile device redundancy.

5

Some wireless approaches leverage overhearing and broadcast features. For example, RTS-

id [11] reduces unnecessary transmissions between nodes, ExOR [12] chooses better forwarding

relays, and COPE [13] combines content by network coding. These approaches match redundancy

at the packet-level. Other recent studies also involve inter-flow overhearing, which overhear and

cache content for different destinations. For example, Ditto [14] leverages overhearing at the data

chunk level (chunks are 8 to 32 KB long) in multi-hop mesh networks. Ditto can take advantage

of caching more useful content from multiple different flows.

However, existing mobile and wireless approaches cannot leverage the full benefits of content

overhearing. They overhear and match redundant content in coarse granularity. For instance, Ditto

overhears content based on the granularity of 8 - 32 KB, which is as long as several packets, so

it cannot work on shorter flows. Previous studies [22, 23] show that short flows and flows with

dynamic content dominate a significant fraction of the Web and enterprise flows. Another issue

is that Ditto uses pull-based transport, which is limited to request-response applications. Finally,

Ditto is only available for mesh networks and is difficult to apply to other scenarios such as the

infrastructure mode. ExOR and COPE work in a finer granularity at packet level, but they are still

not fine-grained enough to match redundancy inside a packet.

Existing Information Level Approaches

With byte level RE, we can remove some redundancy, but it still difficult to remove redundancy

at higher levels. Since the application layer is closer to users and can more easily determine

the inherent information of the content, some studies have also paid attention to the application

layer and try to reduce redundant information in networks. A video proxy is a good example

(MiddleMan [24]). According to the historical access records, a video proxy can cache popular

videos and reduce the number of requests to remote content providers. However, proxies are not

currently efficient at identifying content. Since they identify videos only based on their URLs,

if one video is associated with several different URLs, they will be identified as having different

content (different information) and all of them will be cached. A recent study [7, 8] shows that

6

Figure 1.1 An overview of network stack

among 25 popular queries from YouTube, Google Video, and Yahoo! Video, 27% of the videos are

redundant. As a result, cache space is wasted due to redundancy, and this wastage leads to lower

cache hit rates.

In addition, it is also redundant to send more information than clients need. For example,

clients cannot play videos with resolution higher than screen resolutions, or videos with wrong

encoding formats. In addition, the information should fit network conditions. However, traditional

proxies directly pass videos to end-users and do not take into account that wireless channels are

unstable and user devices vary; end-users may experience lower quality (high stalling time and

start up latency), because the redundant amount of information uses up network capacity.

Some existing solutions provide suitable information to clients. For example, MPEG DASH

can adapt video bit rate according to the network and device condition. However, MPEG DASH

only provides limited numbers of video versions, so if the available bandwidth is between two ver-

sions, the bandwidth will be underutilized. Another study called SoftCast implements a new linear

video encoding scheme which provides linear bit rate adaption that fits any network conditions.

However, SoftCast [15] needs to modify physical layers on both sender and receiver sides, which

makes the deployment difficult.

To summarize, the existing content-aware approaches have some known issues. At the byte

level, solutions are not fine-grained enough to detect redundant bytes in shorter flows or inside a

7

single packet. Other solutions consider fine-grained redundancy detection, but are not designed for

mobile and wireless networks. At the information level, existing proxy solutions detect redundant

information only by comparing the URLs associated with the content. It fails to detect some

redundancy based on content information.

In this thesis, we propose novel RE technologies in different layers of a network stack, as

shown in Figure 1.1, to further reduce redundancy by leveraging the unique characteristics of

mobile/wireless networks. In the network layer, REfactor removes redundancy from traffic toward

mobile devices at the byte level. REfactor focuses on traffic from APs to mobile devices. The

iProxy system is located mainly in the application layer and also acquires information from the

transport layer. It works as a novel video proxy between video providers and mobile devices, and

improves the experience of video clients.

1.7 REfactor

REfactor focuses on the network layer RE and provides a fine-grained solution leveraging the

wireless overhearing feature. It provides more opportunity to improve goodput and lower packet

loss rate, and it results in better bandwidth usage and the improvement of service performance.

Challenges

To efficiently remove redundancy in mobile and wireless networks, the following are the chal-

lenges. Firstly, wireless overhearing is probabilistic, so a sender cannot know exactly which con-

tent a receiver has overheard. It means caches in senders and receivers are not guaranteed to fully

synchronize. This affects the correctness and performance of RE. Estimation is needed to deter-

mine which redundant bytes are worth being removed. If this estimation is wrong, a recovery

approach is desirable. Another challenge comes from the limitation in resources such as compu-

tation power and memory space in mobile devices. Thus, a lightweight solution is required for

design and implementation.

8

REfactor Design

To overcome these challenges, we developed novel data structures. A simple approach is pro-

posed to estimate reception probabilities used in a model-driven fashion; it calculates the expected

benefit to remove a redundancy and the cost if the estimation is wrong. A recovery approach is

designed to solve correctness issues. To provide a lightweight design for mobile devices, REfactor

uses the concept of self-addressing packet chunks. A shorter and cheaper hash value is provided

for each chunk; it is directly used to locate each chunk in cache memory. This way, no storage

space is needed for an extra map pointing from hash values to cache locations (memory address).

In addition, the hash is short and does not require any complicated calculation. Consequently,

REfactor is easy to use.

Evaluation

We implemented REfactor in Click software router as modules and ran an encoder module

on a desktop computer that sent encoded packets to a laptop computer running a decoder module

through an AP. Our evaluation showed that REfactor can improve goodput in infrastructure by

about 25%. REfactors goodput improvements are not just the result of removing repeated chunks

from packets; its focus on packet chunks provides more opportunities for overhearing, and the

smaller packets create a much lower probability of errors in the packets, resulting in 7-27% fewer

packet losses. We found that, while blindly applying RE to all packets can result in a drop in

goodput, model-driven RE is quite beneficial. The REfactor system can tolerate up to a 20%

error in the estimation of the probability of overhearing. In addition, our self-addressing-chunks

approach offers high-speed operation (e.g., up to 0.8 Gbps in software) while requiring modest-

sized caches (64 - 256 MB) and ensuring effective duplicate removal (75% of optimal).

9

1.8 iProxy

With REfactor, we can remove most redundancy at the byte level. However, it only scans for

byte by byte redundancy and cannot retrieve an overview of object information. Video content, for

example, may be encoded into different resolutions or formats whose video files will be different,

even though they include the same information. Redundancy is also caused by sending too much

or unsuitable information.

Thus, we need an approach to detect and remove redundant information in a higher layer con-

tent. We provide a novel video proxy, called iProxy, with two key features: efficient caching and

video adaption.

Caching on Content

In the application layer, to reduce network transmission delay and increase 4G core network

capacity, iProxy acts as a middle box or proxy between clients and video providers, and it caches

frequently accessed videos. To efficiently use storage in the proxy and provide smooth videos,

iProxy presents a novel system for video streaming. Instead of using a URL, iProxy looks into the

content and retrieves the information to identify the videos. Information-bound references (IBR)

are borrowed to do this. IBR is the frequency domain data transferred from the original video data

and is linear to the scene that the human eye sees; as such, similar IBR values imply that the videos

also look similar. Thus, an IBR value is a better tool than a URL for identifying videos. When

iProxy receives a video, it calculates the videos IBR value and compares the IBR value to others

in the cache. If the IBR value matches, it recognizes that this video has already been cached in an

iProxy, so that only one of the versions is kept in storage. In this way, limited storage space can be

used much more efficiently, and more requests can be hit to satisfy more end users.

Dynamic Bit Rate Adaption

10

IBR can identify videos even with different resolutions, formats, or bitrates. However, if iProxy

only caches one version of a video, it might not satisfy all end users, since they might use different

devices supporting different versions of the video. To solve this issue, iProxy includes a dynamic

video encoder that can convert videos to the formats that satisfy end-users requests. With a suitable

video format, we can reduce video startup latency by reducing unnecessary video pre-processing

time. In addition, iProxy can trace available network bandwidth to the end users and dynami-

cally adjust the bitrate of video streaming. Thus, end users have a better experience, with lower

stalling time and smoother videos. To enhance the performance of dynamic video encoding, iProxy

caches the frequency domain data instead of the original data. When an end user requests a video

with a particular format, iProxy can just encode the video with frequency domain data instead of

re-encoding the video from its original format. Thus, when a new video comes in, iProxy first

converts it to frequency domain data; this can be used not only to retrieve the IBR value, but also

to be cached for future requests.

Evaluation

We implement the video adapter by modifying FFmpeg, which is a popular open-source video

encoder. iProxy is used in a desktop computer and streams videos to clients through cellular

networks (AT&T). At the client side, we use a commercial video player called VPlayer, which is

installed in an Android phone. According to the evaluation, iProxy improves cache hit rate by 65%

with the same storage space. In addition, iProxy reduces start-up latency by 13 seconds compared

to fixed-rate video stream, and improves video quality (average bit rate) by 16% compared to

MPEG DASH. Thus, iProxy can use storage space more efficiently and satisfy more requests than

a traditional proxy. Moreover, iProxy improves the QoE of watching videos.

1.9 Outline

The rest of this thesis is organized as follows. In Chapter 2, we introduce the solution for byte

level RE named REfactor, and our information level RE solution is presented in Chapter 3. Chapter

11

4 introduce some related works, and compare them with our solutions. We conclude and discuss

future direction in Chapter 5.

12

Chapter 2

REfactor-ing Content Overhearing to Improve Wireless Perfor-

mance

REfactor is designed to remove byte level redundancy and improve channel resource usage.

The bandwidth in wireless environment is more limited than wired networks. Besides, interference

make random error and retransmission more serious. Thus, reducing redundant traffic become

more critical.

Wireless nodes can overhear each others’ traffic with the same channel. We can use the over-

hear natural to benefit wireless transmission. In this work, we present a wireless RE called REfac-

tor, which can cache more useful content and remove more redundancy content by overhearing

others’ traffic.

2.1 Background and Motivation

Traditional overhearing-based approaches to improve wireless network capacity and through-

put have relied on packets being overheard in full. For example, RTS-id [11] adds a special ID

field to an RTS packet to allow receivers to determine if they recently overheard a packet, thereby

avoiding transmission of the packet. In contrast, some recent approaches have argued that shifting

the focus from packets to content can result in substantial throughput and capacity improvements.

Ditto [14] was the first system based on this notion of content overhearing (as opposed to the con-

ventional packet overhearing ideas). Ditto functions on named data chunks that are independent of

packets. Wireless mesh routers in Ditto cache directly received chunks and chunks reconstructed

from overheard packets. When a client requests a particular chunk, Ditto attempts to serve the

13

request from a upstream wireless mesh router, avoiding the need to transfer a chunk all the way

from the mesh gateway to the client.

Limitations of the State-of-the-art

In what follows, we argue that Ditto’s approach does not leverage all redundancy opportunities,

and its narrow focus limits its applicability to a variety of practical scenarios.

Limitations due to large chunks. Ditto names data chunks of size 8KB or larger. This leads to

two problems: First, Ditto fails to identify finer-granularity content overlap across network flows.

In fact, recent studies have shown that a major portion of redundancy in Internet traffic arises from

overlapping chunks as small as 64B in size [22]. Second, many nodes may not overhear a large

chunk in full and may fail to reconstruct it. Indeed, experiments using Ditto show that, on average,

75% of the potential locations for overhearing in a campus testbed could not completely overhear,

and failed to reconstruct, almost 50% of chunks [14]. A recent RE framework for cellular networks

operates on chunks as small as 8 Bytes, enabling redundancy removal within a client’s traffic at

fine granularities [6]. However, applying this system to other wireless scenarios (such as those in

Section 2.1) misses out on overhearing opportunities to remove redundancy between clients.

Limitations due to pull-based transport. Ditto’s reliance on named data chunks, each of

which spans several packets, forces it to use an alternate transport protocol instead of using TCP

end-to-end. Specifically, Ditto uses a pull-based transport protocol, DOT [25], where remote

servers send chunk IDs to clients, who then request them one after the other; requests may be

opportunistically served by a local cache. This leads to several problems:

First, it requires chunk identifiers to be known beforehand. This works for static content but not

for dynamically generated content; clients are forced to use default transport designs for dynamic

content, removing the opportunity for performance improvements. Second, applications with with

short messages—e.g., gaming flows, twitter feeds, several request-response applications, short

HTTP flows, etc.—may actually observe a degradation in performance in the average case (because

the pull-based approach invariably adds additional RTTs). Lastly, no performance benefits are

14

offered on last hop wireless links. Chunks must be transferred in full across the last link from

mesh router to client.

Another set of popular approaches for improving wireless capacity are those based on network

coding [26, 13]. As the authors of Ditto mention, it may be possible to use opportunistic content-

overhearing to augment coding and improve its overall effectiveness. However, given the mismatch

in the granularities and transport models used in Ditto and prior coding approaches, it is unclear if

the synergy between overhearing and coding can be exploited.

REfactor

REfactor shows that a careful re-factoring of content overhearing can address the problems

above optimally and dramatically improve wireless capacity and performance. We argue for push-

ing content-awareness “lower down the stack” through the use of IP-layer packet caches that per-

form redundancy elimination (RE) [27]. Packet caches can be used to suppress byte strings that

have appeared in earlier overheard packets both within and between clients. We refer to our ap-

proach as REfactor. The cleaner re-factoring in REfactor offers many benefits:

• IP layer RE can remove duplicates as small as 64 Bytes in an application-agnostic fashion,

even from dynamically generated content. REfactor benefits applications with short flows—

even those lasting a single packet—which are common in enterprise settings [23]. Thus

REfactor leads to more effective overhearing-based designs.

• REfactor requires small IP-layer modifications and retains the conventional push based model

of content dissemination that is prevalent today.

• Because REfactor leverages all possible opportunities for overhearing, it’s performance is

reasonably robust to errors in some aspects of the design (in particular, reception probability

estimation, which is a notoriously hard problem). Thus, it is easy to use in practice.

• REfactor leads to smaller packets which consume less bandwidth and suffer lower loss rates.

Operating on packets also allows REfactor to run at very high speeds: As we show in Sec-

tion 2.3, our prototype offers 0.6-0.9Gbps.

15

• REfactor can be applied transparently in a variety of scenarios, including wireless infrastructure-

based and peer-to-peer communications, and opportunistic routing in multi-hop mesh net-

works. In particular, REfactor is more directly aligned with packet-based coding approaches.

Hence it provides practically viable opportunities to enhance network coding to further im-

prove network capacity.

REfactor Overview

We start with a common scenario where REfactor can be used: an AP operating in infrastructure

mode with some number of associated clients. The AP and clients can overhear and cache packets.

When the AP receives a packet from the wired network, it scans the content for duplicate strings of

bytes that appeared in earlier packets. The AP then calculates the expected benefit for the receiving

client from performing RE on the packet, which depends on the AP’s estimate of whether the

receiving client is likely to have cached the relevant earlier packets, either from transmissions to

the client or from overheard transmissions to some other clients. If the likely benefit is high, the

AP “encodes” this packet, i.e., removes the duplicate bytes and inserts a shim instead. The shim

contains a pointer to a memory location in the client and allows the client to reconstruct the original

packet using its local cache. Thus, if the receiving client has the content pointed to by the shim,

then it can decode the packet. However, if the content is not cached in the client, the client needs

to request the missing content from the AP, incurring additional transmissions. This penalty is

imposed when the AP’s estimate of whether the client has the content is incorrect.

In Figure 2.1(a), we illustrate the benefit REfactor offers in this scenario. The transmission

of the packet payload abc to C1 is overheard by C2, and the chunk ab is added to all caches.

The data abd is sent to C2 via a packet with a shim header “1” plus the non-redundant data d.

Because C2 overheard and cached the chunk ab, it as able to reconstruct the full packet using the

cache entry specific in the shim header. The reduction in the size of the second packet transmission

improves overall network throughput.

REfactor in Other Scenarios

16

Figure 2.1 REfactor applied to diverse scenarios

REfactor also helps in other diverse scenarios.

Multiple AP infrastructure. We start with multiple APs operating in infrastructure mode. As

shown in Figure 2.1(b), a client may be able to overhear transmissions from both it’s associated

AP and other nearby APs. An AP can remove redundancy based on any chunks a client may

have overheard, regardless of which AP they were overheard from. C2, which is associated with

AP2, overhears AP1’s transmission of abc to C1. AP2 can therefore remove redundancy from its

transmission of abd to C2.

Ad hoc meshes. REfactor can also be applied to transmissions between clients via a mesh or

ad hoc network. Figure 2.1(c) shows the use of REfactor to achieve transmission reduction and,

correspondingly, capacity improvement, in a small mesh network; this can be easily extrapolated

to a larger mesh. Using normal forwarding, based on metrics such as ETX [28], 4 transmissions

are required for two clients to send a packet to each other via a relay. By applying REfactor to

the situation, we can reduce the size of the fourth transmission, resulting in 4 − δ transmissions,

17

where δ is proportional to the amount of redundancy removed: C1’s transmission of abc to R1 is

overheard by R2, which caches ab. C2 transmits abd to R2, followed by R1 transmitting abc to

C2. Lastly, R2 removes the redundancy from abd, sending 1d to C1, since it knows C1’s cache

contains ab.

Opportunistic routing in multi-hop meshes. In a similar fashion, REfactor can also be applied

to opportunistic routing schemes in mesh networks (not shown in Figure). In approaches such

as ExOR [12], the transmitter orders relays on the basis of their packet overhearing probability,

before sending a batch of packets. Using REfactor, ExOR can be modified in two ways: First,

the effective batch size can be reduced by removing strings that are duplicated either within the

batch, or across prior batches sent by the transmitter. Second, the ordering of relays could take into

account whether or not a relay has portions of content in the batch already cached; a relay with

high overhearing probability could be given a high priority for forwarding if it has a significant

fraction of bytes in the batch cached as it could prove invaluable in speeding completion time of

the batch.

Networking coding. Network coding systems, such as COPE [13] have traditionally relied on

coding full packets without paying attention to packet contents. REfactor can be combined with

network coding to leverage duplication in packet payloads to help coding improve network capac-

ity even further. We present the combination REfactor + COPE in Figure 2.1(d). In this scenario,

C1 has a packet destined for C4 and C2 has a packet destined for C3, both of which must be sent

via the relay. COPE imposes only 3 packet transmissions compared to 4 in the regular case, as

C3 can overhear C1’s transmission and C4 can overhear C2’s transmission, providing a coding

opportunity. REfactor + COPE leverages this overhearing even further by removing chunks known

to exist in the destination client’s caches: Assuming C3 overheard an earlier transmission abc and

C4 overheard xyz, the relay can remove the redundancy (ab and xy) from the current packets and

code the remainder of the current packets, d ⊕ w. The coded packet, plus small shims to “encode”

the removed redundancy, is broadcast to C3 and C4 simultaneously. COPE, in contrast would

broadcast the much larger abd ⊕ xyw. C3 and C4 are able to obtain their packets by reversing the

network coding and filling in removed chunks from their caches. Thus, REfactor + COPE reduces

18

the number of transmissions to 3 − δ, where δ is the relative difference in the size of a full un-

encoded packet (e.g., abd) and the above coded packet along with the shims. Assuming chunks

are all the same size, δ . 2
3

in the example above, resulting in nearly 2
9

better capacity than COPE.

Design Challenges

Although REfactor can offer substantial advantages as the above examples show, a careful de-

sign is needed to realize the benefits in practice. First, since overhearing is probabilistic in nature

and caches are fixed size (hence, old content is evicted over time), a sender may not have an accu-

rate view of whether the intended receiver has a certain content chunk already cached. In turn, this

could lead to incorrect encodings and the resulting retransmissions negate the benefit of duplicate

suppression in REfactor. Enforcing explicit synchronization of caches—which is a candidate so-

lution for this problem—can add excessive overhead. Second, wireless nodes may be processing

and memory constrained (for example, the clients in the above scenario could be smartphones), so

REfactor mechanisms should require minimal resources from them. Designing REfactor to maxi-

mally leverage IP-Layer content overhearing while accounting for the above issues is challenging.

2.2 REfactor Design

In this section, we describe the design of REfactor. For simplicity, we focus on the setting

outlined in Section 2.1, namely, optimizing the downlink traffic performance of a wireless AP with

a collection of clients. However, our basic building blocks, along with a few extensions described

at the end of this section, apply to other scenarios as well.

REfactor applied to the single AP scenario involves the following steps: (i) When the AP re-

ceives a packet from the wired backend, we “chunk” it and compute a “fingerprint” per chunk. (ii)

For each chunk, the corresponding fingerprint is used to refer to a content cache data structure that

helps determine the probability of the intended receiver having cached the chunk. (iii) The AP

computes the expected throughput benefit from removing chunks in the packet. If this exceeds a

certain threshold, the AP removes the chunks and replaces them with the fingerprints instead. (iv)

19

If the AP observes a hash collision for a chunk, it does not encode the packet, and it invalidates the

chunk stored in its content cache for the collided hash. (v) If a client is unable to decode a packet

using a fingerprint supplied by the AP, it requests a chunk retransmission from the AP. (vi) The AP

updates the cache-residence probabilities associated with each chunk of the packet. We describe

each of these steps and the underlying design issues next.

Chunking

Prior works have considered several different approaches for removing packet-level redun-

dancy, which trade-off memory usage, processing time, and redundancy opportunities. The earli-

est, by Santos and Wetherall [29], supports redundancy elimination (RE) at the full packet level.

While simple, this approach severely limits RE opportunities, because lots of redundant bytes hap-

pen inside a packet. Support for partially redundant payloads is provided by two different classes

of approaches: Max-Match and Chunk-Match [9].

In Max-Match, the encoder computes a rolling Rabin-Karp hash [30] for each 32 Bytes region

of a packet and selects a subset of these, based on hash values, to serve as packet fingerprints. The

fingerprints are stored in a hash table, with each fingerprint pointing to the corresponding packet,

which is stored in a packet cache in FIFO fashion. Fingerprints computed for an incoming packet

are checked against the fingerprint table; a matching packet, if found, is retrieved and compared

byte-by-byte around the 32 Bytes match region to identify the region of maximum overlap. The

overlap region is removed and replaced with a shim, which carries the memory offset of the packet

in the downstream decoder’s FIFO-ordered packet cache from which the missing bytes can be

constructed. The downstream cache is maintained in a similar fashion.

Chunk-Match computes and selects Rabin hashes in a similar fashion, but the chosen 32 Bytes

regions form the boundaries of the chunks into which the packet is divided. A SHA-1 hash, which

forms a fingerprint, is computed for each chunk and inserted into a chunk hash table. Each unique

chunk is cached in FIFO order. When an incoming packet has a chunk matching against the chunk

hash table, the matched region is replaced with the chunk hash.

20

In both cases, the MAXP algorithm1 has been found to be effective at selecting hashes offering

a uniform distribution across a wide variety of packet payloads [27, 22]. We employ this in our

design.

Chunk-Match’s focus on chunks means it is less effective at identifying redundancy than Max-

Match. As a result, packet-level RE systems have traditionally preferred Max-Match [9, 27, 31].

But we choose Chunk-Match in designing REfactor due to the following benefits:

1. Effective memory usage: A specific chunk only needs to be stored once, while Max-Match’s

packet-based approach requires storing full packet payloads, even if part of the payload

already exists in another payload. 2

2. Better at accommodating overhearing: As we argue below, Chunk-Match can be used to

design simple techniques to handle wireless overhearing, without requiring complex oper-

ations at clients or APs or imposing too much overhead. In contrast, Max-Match requires

clients to employ additional data structures and meta data to track overheard content, which

imposes additional memory and computing overhead.

3. More overhearing opportunities Overheard packets that have duplicate bytes suppressed can

be more effectively leveraged in Chunk-Match, because Chunk-Match can cache whatever

chunks remain in those packets. In contrast, Max-Match would discard such packets because

it needs full payloads.

4. Ability to leverage partial packets: Although not discussed in this paper, Chunk-Match can

be effectively combined with partial packet recovery schemes [32] to further leverage par-

tially overheard payloads. It is difficult to do so with Max-Match.

Chunk-Match still has key limitations due to which it cannot be applied directly in REfactor.

First, the large size of the SHA-1 hash means the effectiveness of redundancy removal is limited.

Also, the decoder (i.e., the client) has to compute and store SHA-1 hashes for cached chunks,

which is expensive from both an energy and memory view-points. As an improvement, the en-

coder can only maintain the chunk hashes in a hash table, while the decoder maintains only the

1MAXP selects hashes that are the maximum over all hashes computed over a p-byte region.
2The optimizations to Max-Match suggested by EndRE [9] to address high resource costs are not feasible for

REfactor.

21

chunks in a FIFO cache: the encoder looks up chunk hashes for a match and replaces each match

with a memory address in the decoder’s FIFO cache [9]. However, this approach is only suitable

for point-to-point deterministic RE, e.g., across a wired link. In wireless, probabilistic overhear-

ing causes the encoder to lose track of the decoder’s chunk cache. One alternative, of having

the AP compute chunk hashes and transmit them along with packets and maintaining a chunk hash

table at the client impose high compute, network and memory overhead, as we show in Section 2.5.

Our Modifications

We modify and extend prior Chunk-Match designs in important ways to to address these draw-

backs and to better tailor Chunk-Match to wireless overhearing.

Self-addressing chunks. In REfactor, we need to carefully manage the location of chunks within

AP and client caches. Chunks must be cached such that the AP can provide a fingerprint in place of

a redundant chunk that allows a client to locate a chunk within its cache, or identify a cache miss.

As shown in Figure 2.2, C2 only overhears the second packet transmitted to C1. A FIFO cache

would be insufficient because the AP and C1 would store the redundant chunk in the second cache

slot, while C2 would store the chunk in the first slot because it is the first chunk C2 overheard. A

proposed RE system for cellular networks suffers from a similar issue in the presence of packet

loss [6].

The key innovation in our approach is that we select a slot in the cache (encoding or decoding)

based on the content of a particular chunk(Figure 2.2). Thus, a chunk is self-addressing, i.e., the

chunk itself identifies its location in the cache, and a removed chunk can be identified by the cache

location. In particular, we use a compact n-bit hash (we use n = 20) of a chunk as the memory

address where it is stored. The encoder simply sends the n-bit hash instead of the chunk to the

downstream decoder.

This approach avoids the pitfalls of employing FIFO-based caches without relying on tightly

synchronized caches; namely, an offset into the cache refers to the same chunk regardless of what

other chunks a client may have overheard. It avoids the high computational cost of SHA-1 hashes

22

Figure 2.2 REfactor in practice. Solid lines indicate normal packet delivery and dashed lines

indicate overheard packets. Transmissions are numbered in order from 1 to 6. AP and client cache

contents after all transmissions are shown.

and the overhead of maintaining the corresponding metadata. Furthermore, it is easy to identify

cache misses: a lookup at a fixed-offset given by a chunk-hash can be used to determine whether

or not a chunk is located in the cache.

The size of the chunk-hash represents a trade-off between the amount of memory required

and the potential for redundancy. An n-bit hash allows a cache to store 2n chunks but requires

2n ∗m bytes of memory, where m is the maximum chunk size (based on parameters of the MAXP

algorithm). A larger hash allows more unique chunks to be stored but requires more memory in

clients which may already be resource poor, e.g., smartphones. The size of the chunk-hash and the

method used to compute it also impacts the likelihood of collisions. We evaluate the trade-offs in

hash-size in Section 2.3 and discuss how to deal with collisions in Section 2.2.

Overhearing estimation. Our second modification accounts for the facts that different clients

overhear packets with different probabilities and that overhearing probabilities change over time.

In our example (Figure 2.2), it is possible that C3 (not shown) may not overhear either transmission

to C1 because C3 is farther away and can only receive transmissions at a lower rate. However, C2

23

is able to hear half of the transmissions to C1. If we remove the chunks that have not been over-

heard, it costs some extra transmission to recover the missing chunks. To maximize the removal

opportunities and reduce the cost for missing chunk recovery we want to be able to estimate how

likely it is a particular client has a particular chunk. We add a reception probability vector to each

chunk entry at the AP to aid the decision of whether or not to remove redundancy. Section 2.2

discusses how this vector is computed/updated and how it is used to guide the decision of whether

or not to remove redundancy.

Handling cache misses. Lastly, we need to account for the fact that the AP’s estimation of the

contents of a client’s cache may not be completely correct. In our example, we remove the re-

dundancy from the transmission to C2, but it is possible C2’s cache may not have contained the

removed chunk. We address this cache miss by providing a content chunk request mechanism.

Since the shim header contains all the necessary information to identify a specific block of redun-

dant content, the client uses the shim header from the original packet in its request for missing

data. The AP replies to the missing content request with the shim header and the content of the

chunk, allowing the client to properly reconstruct the packet and pass the packet to the network

stack for normal processing. As a result of this recovery mechanism, our Chunk-Match approach

requires the AP to store the contents of chunks in its cache, contrary to what recent optimizations

suggest [9].

Removing Redundancy

In prior RE systems, a redundant chunk is either always removed [31] or a removal decision

is based on network-wide optimization [10]. Furthermore, these systems assume packet caches

at the sender and receiver are tightly synchronized, so a chunk present in the sender’s cache is

guaranteed to be in the receiver’s cache. This synchrony assumption does not hold in REfactor

because of opportunistic overhearing. Potential differences in the contents of sender and receiver

caches requires REfactor to make a removal decision based on estimates of the receiver’s cache

contents.

24

A naive approach that always removes redundancy imposes high cost: Every chunk missing

from a client’s cache requires two additional packet transmissions to receive the missing data from

the AP. Figure 2.3 shows the expected transmission time savings from removing a single 64 Bytes

chunk from a packet (details in Section 2.2). There is no expected benefit when the probability of

the receiver’s cache containing the chunk is < 90%, due to the high cost of cache misses. There-

fore, we want to minimize cache misses by making a wise decision on whether or not to remove a

redundant chunk.

Reception Probability Vectors

Our insight is to include a reception probability vector with each chunk stored in the AP’s

cache. A vector, V , contains an entry for each client currently connected to the AP, indicating the

likelihood of a client having the chunk in its cache.

We know a client’s cache will be guaranteed to contain a chunk if it existed within packets

successfully sent to that client in the past. Hence, for the destination client d, we set Vd = 1 after

the packet containing the chunk has been ACKed. If the chunk was removed from a packet sent to

the client, we set Vd = 1 either: (a) after a request for the chunk has been received (Section 2.2)

and the reply to the client has been ACKed, indicating the client has now cached the chunk it was

missing; or (b) a few seconds after the original packet was ACKed, indicating the client already

had the chunk because no request for a missing chunk was received.

All other clients could only have received a chunk via overhearing. We show in Section 2.5 that

a highly accurate reception probability estimate is not necessary to realize the benefits of REfac-

tor and wireless resources are limited to do extra complex probing , so we take a low-overhead

approach to estimating overhearing likelihood: reception probability is based on the rate rd used

to communicate with the destination client d and the rate ri the AP uses to communicate with the

overhearing client i. Measurements by Afanasyev et al. on an indoor 802.11g testbed [1] show

that the chance of overhearing is relatively consistent for all 802.11b rates (1-11Mbps) and the five

lowest 802.11g rates (6-24Mbps); noticeable differences in overhearing probability only exist for

25

Rate Fraction of nodes who overhear

6-24Mbps 0.15

36Mbps 0.12

48Mbps 0.08

54Mbps 0.06

Table 2.1 Median fraction of nodes in the Jigsaw testbed who overhear transmissions at various

802.11g rates [1]

the three highest 802.11g rates (36, 48, and 54Mbps). The median fraction of nodes expected to

overhear a transmission at a given rate is shown in Table 2.1.

Based on these findings, reception probabilities for a given wireless deployment can be calcu-

lated using a simple heuristic formula: If ri ≥ rd, Vi = 0.99. A client which normally receives

transmissions at a higher rate is very likely to receive transmissions at a lower rate, but we still

want to be able to discern between clients which are guaranteed to have the chunk(Vd = 1) and

clients which are highly likely to overhear the chunk(Vi = 0.99). If ri < rd, Vi =
ed
ei

based on

conditional probability, where ej is the recipient fraction when sending at rate rj , such as those

shown above in Table 2.1.

More complex mechanisms, e.g., CHARM [33], may be able to provide better estimates of

reception probability. In general, accurate estimation is hard and expensive, in part because over-

hearing probabilities can change at fine timescales [34]. However, as shown in Section 2.3, highly

accurate predictions are unnecessary. In particular, we find that directly using the measurements in

Table 2.1 may be good enough and estimating reception fractions for each deployment may not be

needed. This is a highly desirable property of REfactor.

Reception probability vectors for chunks are updated every time the chunk is transmitted. For

each client we store the maximum of an existing probability and the probability for the current

transmission. When new clients join the network, reception probabilities are recorded for the

clients for any chunks transmitted after they connect. When clients leave the network, reception

26

probabilities for the clients are not stored for any newly transmitted packet chunks, and probabili-

ties for the clients are invalidated in existing vectors.

Deciding to Remove: Model-Driven RE

REfactor decides whether or not to remove a redundant chunk based on the reception probabil-

ity and a simple model of expected benefits. Benefit is measured as the reduction in transmission

time resulting from the removal of a redundant chunk. We refer to this approach as model-driven

RE.

The transmission time for a packet is a combination of wireless header transmission time th

and per-byte payload transmission time tb, which depends on the data rate to the client in question.

Our experiments show a typical value of th = 290µs for an indoor setting with a client and AP

separated by 2m, and tb = 0.885µs for a transmission rate of 11Mbps. For simplicity, we assume

all packets are MTU (1500B) in size, making the total transmission time for a normal packet

th + 1500tb. Removing a k byte chunk of redundant content from a packet and replacing it with a

h byte header makes the transmission time th+(1500−k+h)tb, a savings in air time of (k−h)tb.

If the load due to other nearby APs is ρ, then only (1 − ρ)(k − h)tb of the savings can be used

toward improving the throughput of the current AP’s own transmissions.

A removed chunk which does not exist in a client’s cache requires two extra packet transmis-

sions to obtain the missing chunk. The additional transmission time is 2th + (2h + k)tb, reducing

the savings by this amount. Recall that Vd is the probability client d’s cache contains the chunk.

The expected benefit of removing a chunk in terms of free airtime (in µs) that could be used toward

additional transmissions of the AP is:

Exp[B] = Vd(1− ρ)(k − h)tb − (1− Vd)(2th + (2h+ k)tb)

This equation is a worst case estimate of expected benefit. In practice, the fixed header transmission

time 2th associated with obtaining missing chunks only needs to be incurred once for each packet

with ≥ 1 missing chunks. Applying the equation to multiple chunks in a packet will take into

27

-300

-250

-200

-150

-100

-50

 0

 50

 100

 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xp

ec
te

d
B

en
ef

it
(u

s)

Reception Probability

K=64B
K=128B
K=256B
K=512B

-300

-250

-200

-150

-100

-50

 0

 50

 100

 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xp

ec
te

d
B

en
ef

it
(u

s)

Reception Probability

Figure 2.3 Expected benefit from removing a single 64B chunk from a packet with K total

redundancy

account the fixed header transmission time for missing chunks multiple times. We adjust Exp[B]

by taking into account the total number of redundant bytes, K =
∑

k, in a packet, setting the fixed

header transmission time for obtaining missing chunks to 2k
K
th for each k byte chunk. This change

allows REfactor to be more optimistic in removing redundancy.

Figure 2.3 shows the expected benefit from removing a single 64 Bytes chunk from a packet

with K total redundancies for varying reception probabilities, assuming ρ = 0. As the graph

shows, expected benefits increase with reception probability. Furthermore, for a given reception

probability, higher amounts of total redundancy K increase the expected benefit from removing a

single k-byte (in this case 64 Bytes) chunk. Similar graphs can be plotted for other rates.

The AP uses the expected benefit model to encode redundant chunks if Exp[B] exceeds some

threshold.

Collisions

We say that a hash collision happens when an n-bit hash of a chunk for a new packet indexes to

an already occupied cache slot. Collisions should be handled carefully as they impact transmission

correctness. In REfactor, the AP checks the new and already cached chunks for collisions by

performing a byte-by-byte comparison of their contents. If they do not match exactly, the cache

28

entry is marked as a collision. No chunks which hash to a collided entry are ever removed from a

packet by the AP. All clients will also be able to detect the collision because they will never receive

a packet with a collided chunk removed, so they will recognize the collision in their byte-by-byte

comparison. This approach reduces the potential redundancy removal opportunities, but it ensures

no client application will receive an incorrectly reconstructed packet.

To avoid the entire cache filling with collision entries, the wireless AP will periodically initiate

a cache flush. A cache flush clears all entries from the AP’s and client’s caches using a three phase

process: (1) the AP broadcasts a cache flush request to all clients, (2) the clients clear all the entries

in their cache and send an ACK, (3) when the AP has received ACKs from most of the clients, it

clears its cache. The AP does not cache and chunks from new packets while a cache flush is in

progress. In the event a client does not acknowledge the flush request, due to lost packets or client

disconnect, the AP will not encode any packets sent to the client until a retransmitted flush request

has been acknowledge.

Whenever a client associates with the network, the client empties its local cache. An AP uses

the association as a signal to clear old reception probability entries for the client.

Other Scenarios and Issues

REfactor uses the same caching and model-driven RE mechanisms to improve throughput in

the scenarios presented in Section 2.1 but requires a few design extensions to fully function in these

scenarios. Namely, the ability to estimate reception probabilities and communicate cache contents

for unassociated clients, i.e. clients not directly communicating with an AP or via a specific relay.

Unassociated client reception. Clients may be able to overhear transmissions from other APs (as

in Figure 2.1(b)) or nearby mesh nodes, or relays (as in Figure 2.1(c)). However, the relay has

no way of knowing the client can overhear without explicit knowledge of the client’s presence.

Furthermore, the relay cannot estimate the reception probabilities for the client without knowing

the rate the relay would use to communicate with the client.

29

We extend clients to notify a relay when they can overhear traffic from that relay. In infras-

tructure mode, a client can determine the AP it can overhear from (AP1) based on its beacons and

send a message via its associated AP (AP2) to notify AP1 its transmissions can be overheard by

the client. AP2 includes the rate it uses to communicate with the client, which provides an upper

bound on the rate AP1 would be able to use to communicate with the client. In a mesh network, a

client can send a list of all relays it can overhear from to each of the relays in the list.

Overhearing notifications only need to be sent periodically. A relay will maintain reception

probability vector entries for unassociated clients for all chunks sent after an overhearing notifica-

tion is received.

Unassociated client caches. Knowing a client can overhear transmissions from another AP (AP1)

is insufficient for the client’s associated AP (AP2) to be able to leverage overhearing opportunities.

Periodically, AP2 must request cache information for the client from AP1. AP1 sends a bit vector

to indicate which cache slots the client likely overheard. AP2 can update its reception probability

vectors for these slots to account for chunks it may not have known the client overheard. As shown

in Figure 2.1(b), C2 overheard the chunk ab, allowing AP2 to potentially remove the chunk from

a future transmission to C2. AP2 uses the bit vector from AP1 to update its cache to reflect this.

In a mesh network, cache contents can be updated using the same mechanism, or a relay can

update its cache based on its knowledge of the path taken by a packet. Consider the example

scenario shown in Figure 2.1(c): if abcwas received by R2 from R1 and R2 knows C1 can overhear

R1, R2 can add the chunk ab to its cache and indicate with high likelihood that C1 overheard the

chunk. In this manner, cache contents are communicated implicitly. A similar idea applies to the

network coding approach shown in Figure 2.1(d).

2.3 Network Coding and Subcarriers

In this section, we propose an REfactor enhancement with network coding and subcarriers sup-

ports. The key issue of this idea is that we want to consider in wireless transmission are how to

use subcarriers more efficiently and how to further reduce unnecessary transmission. In addition,

this enhancement improves REfactor to reduce inter-client redundancy even if the content is not

30

overheard.

Subcarriers

Orthogonal frequency-division multiplexing (OFDM) divides channels into subcarriers with

narrower bandwidth, which are used to carry data in parallel. Each sub-carrier works as a tradi-

tional modulation scheme. The key advantage of OFDM is that it can work better when the channel

condition is severe.

As shown in [35], frequency diversity is significant in wireless channels. Thus, a subcarrier

connecting to different receivers may have different signal quality; different bytes also have dif-

ferent features and importance for receivers. Thus, it is critical to interleave bytes with different

requirements into suitable subcarriers.

Consider a simple scenario. There is an AP that transmits packets to two clients: ClientA

and ClientB. The AP has multiple strategies to interleave bytes through different subcarriers.

According to their channel quality, we can classify subcarriers into four categories:

• The subcarriers connecting to both of ClientA and ClientB have higher quality

• The subcarriers connecting to ClientA have higher quality

• The subcarriers connecting to ClientB have higher quality

• The subcarriers connecting to both of ClientA and ClientB have lower quality

A ideal strategy for the AP is to use the subcarriers belonging to the first category to transmit

bytes desired by both clients. The subcarriers in the second and third categories are only suitable

for ClientA and ClientB, respectively. The fourth category subcarriers can only use to carry less

important bytes or shorter content, which is affected by a bit error rate less than longer content.

One of the issues to apply network coding and subcarriers to REFactor is how to encode pack-

ets that can be applied to the strategy mentioned above.

31

Packet Encode

Good packet encoding can reduce traffic on a channel and improve its goodput (defined as valid

bytes excluding retransmitted bytes divided by transmission period). REfactor removes content in

the chunk level from packets if this content appears in previous packet for a destination or is

overheard by this destination. Shorter packets reduce the amount of traffic on channel and the

packet error rate, while the bit error is fixed.

To further enhance REfactor to benefit the content that is not overheard we apply network cod-

ing. By combining several chunks, we can further reduce traffic that improves goodput.

Packet Processing

For each packet, we need to determine how to encode it. We can reduce traffic by RE and/or

network coding and we need to figure out which parts of packets redundant and which part can be

combined with other packets by network coding. Briefly, when an AP receives a new incoming

packet, the AP processes this packet as below:

• Cuts packets into chunks.

• Matches each chunk with an associated entry in the cache.

• If this chunk is in the destination cache, it replaces it with a shim.

• If this chunk is not in the destination cache, but in another mobile devices cache, we mark

this chunk as a candidate for network coding.

• Looking for a candidate packet in queue that can be combined with the new incoming packet.

• If a candidate packet cannot be found, the new incoming packet is inserted into a queue to

wait for future combinations.

32

Notice that each chunk can either be replaced by a shim or marked as a network coding can-

didate, but not both. Furthermore, RE is given a higher priority than network coding, because RE

can reduce a little bit more bytes and require less computation power to decode.

In this section, we discuss how we process packets before inserting them into output queues in

more detail.

Chunking

We still use Chunk-Match as original REfactor to chunk packets. Each chunk only needs to

be stored once instead of caching whole packets as in Max-Match in which cached packets may

have some content overlap. Thus, memory can be used more efficiently in Chunk-Match case.

In addition, Chunk-Match doesn’t need a complex data structure; we can easily locate chunks in

cache by self-addressing which uses the hash value of the chunk as an index pointing to a location

in a cache. Min-Chunk can cache chunks even if a packet is only partially received.

As mention in EndRE, there are several ways to chunk a packet. To decide the boundary of

chunks, we apply MAXP algorithm. We compute Rabin hashes for each byte with in 32 bytes

regions and select a chunk with the largest hash value as a boundary. The MAXP algorithm has

been found to be effective at selecting an uniform distribution hash.

Chunk Categories

After chunking a packet, we mark each chunk as one of the following categories.

• RE chunks: chunks have been already cached by their destination and can be replaced by

shims.

• Network coding chunks: chunks are not in their destination’s caches, but in other clients’

caches. These chunks can potentially be combined with other chunks.

• Remaining chunks: chunks are not in any cache.

33

A chunk in the first category can be inside inter-client traffic or overheard from intra-client

traffic. Its destination has already had this chunk, so it can be removed as redundancy. The second

category of chunks has appeared in intra-client traffic, but was not overheard by its destination.

One or more of other clients has this chunk in its cache (because it was in intra-client traffic). The

third category is a chunk that has either never appeared in a system or has been replaced by another

chunk, so no one has this chunk and we cannot do any encoding on it.

Chunk Classification

Each chunk should belong to one of three categories. To determine the category, we need to

figure out the chunk is in the cache of which mobile devices. If a chunk was periodically sent to a

mobile device, it must be in that mobile device’s cache, because IEEE 802.11 retransmits missing

packets that can guarantee that the packets are successfully received. To determine if the chunk

has been overheard by other mobile devices, we rely on a model-driven RE that uses relative Wi-Fi

transmission rates to establish the expected benefit of removing a chunk by a shim. Each cache

entry maintains a list of reception marks corresponding to each mobile device. If the chunk was

sent to a mobile device or if the expected benefit is larger than a threshold (highly possible that this

chunk is overheard), the associated reception mark is set as true; otherwise it is set as false.

To locate a chunk in a cache, we compute the shorter and computationally cheaper hash value

(20-bit) of this chunk as original REfactor. This hash value is used as an index pointing to a cache

entry. We dont need a separate table which consumes extra memory storage to map hash values to

the locations in the cache and we still can locate where each chunk should be in the cache. This

approach is called self-addressing. After locating a cache entry, we can figure out which mobile

devices have this chunk and its category by checking the reception marks.

Chunk Pairing Algorithm for Network Coding

34

Figure 2.4 An AP maintain a queue for each client

It is straightforward to select and remove RE chunks by REfactor. However, we need to care-

fully select the network coding chunks. All chunks combined together should satisfy the following

criteria:

• Each receiver of this encoded chunk should have all original chunks other than the chunk it

needs. For example, ChunkA, ChunkB, and ChunkC are encoded, and Client1 should

have ChunkB and ChunkC to decode ChunkA.

• Packets for the same flows should be transmitted in order.

Algorithm

We maintain a queue for each client as shown in Figure 2.4. Each packet put in a queue is

tagged a profile that includes a matching list. Each element in the matching list shows the maximal

number of chunks in this packet that can be potentially combined with the chunks in other clients.

This matching list is used to calculate the benefit to combine packets by network coding. To build

up this matching list, we scan all network coding chunks (that cannot be replaced by shims) to

count the number of chunks that are in the cache of other mobile devices.

In Figure 2.4, P1 is the next out-going packet, and we want to select another packet to com-

bine with it. Because packets belonging to a flow should be sent in order, if P4 is picked up, an

AP should send out P3 and P2 first and then combine P1 and P4. In this way, P3 and P2 lose

35

their chance to be encoded. Thus, we need to calculate the overall benefit to select a packet as in

following equation:

Benefit = (Benefit gain)− (Benefit loss) =

min(#ofChunksinPsent,#of Chunks in Ppick)

−
∑

i<I #of Chunks in Pi

where Psent is a packet that is ready for transmission at the head of a queue, and Ppick is a

candidate packet that is picked up to be combined with Psent. #ofChunksinPsent is the number

of chunks that have been cached by Ppick’s destination and #ofChunksinPpick is the number of

chunks that have been cached by Psent’s destination. In addition, I is the number of packets ahead

of Ppick in a queue. The packet ahead of Ppick will loss its encoding opportunity. Thus, if we

choose Ppick, this loss opportunity is a cost, so we need to subtract this cost. If the overall benefit

is larger than zero, we can pick up the packet Ppick to combine.

Symbol Interleaving and Categories

As mention in [35], Wi-Fi frequency diversity is significant. In this section, we discuss how to

take RE and network coding into account to interleave symbols more efficiently.

Consider the scenario with one AP and two clients again. As , Wi-Fi subcarriers can be cat-

egorized into four groups that are: high quality to two clients, high quality to one of them, high

quality to the other, and low quality to both of them.

As subcarriers, symbols can be also divided into four groups according to the requirement of

the chunks to which they belong.

• Network coded symbols: symbols within encoded chunks that are the combination of mul-

tiple flat chunks. Because multiple destinations need these encoded chunks to decode them

36

to flat chucks they require, these symbols should be transferred by the subcarriers that have

good channel quality to all destinations

• Shim symbols: symbols that belong to shims. Shims replace redundancy and include hash

values used to restore them to the original content in the destinations. The length of shims

is quite short, so they encounter much less loss rate than longer content, if we assume a

fixed bit error rate. Thus, it is safer to put these symbols into the subcarriers that suffer

worse channel quality to destinations than any other symbols. The advantage is that we can

increase channel utilization by using all kinds of subcarriers.

• Other symbols: symbols belong to flat chunks that are neither combinations of other chunks

nor shims. Thus, only a single destination needs each of these chunks, and we can use the

subcarriers that are only good for each single destination.

By applying the above strategy, if enough traffic is available to fill up channels, all subcarriers

can be fully utilized during transmission.

Discussion

We enhance REfactor, and in this section, we will discuss the case that we improve from

original REfactor.

Inter-client Redundancies: REfactor can remove inter-client redundancies only if these re-

dundancies have been overheard, otherwise receiver cannot recover packets and need to re-request

missing content that cause overhead. However, if we combine content for different clients by net-

work coding, more inter-client content can be removed especially when overhearing possibility is

low.

Overhearing Possibility: in optimization case, we only use the subcarriers with good quality

connecting to a destination only or few other clients. Thus, most of clients other than the destina-

tion cannot overhear content. In this case, the performance of original REfactor is limited by lower

37

overhearing possibility. To use subcarrier more efficiently, this REfactor extension applies smart

subcarrier interleaving and network coding.

2.4 Implementation

Our REfactor prototype is implemented as a pair of Click [36] modules. The encoder module

is used at the AP to cache chunks, identify and remove redundancy and respond to requests for

missing chunks. The decoder module is used at clients to cache chunks, reconstruct packets and

request missing chunks. Each module is about 400 lines of code. Both use kernel-level Click to

enable REfactor to work at the max 802.11g transmission rate of 54Mbps.

We chose to implement REfactor in Click because of the ease of deployment and flexibility

this approach provides. Clients can easily run our Click decoder module to obtain the benefits of

REfactor without operating system or application modifications. Furthermore, the encoder module

can easily be deployed on an upstream network middlebox to serve multiple wireless APs. This

avoids the need to modify AP firmware, which is often proprietary, and does not constrain REfactor

due to the limited memory and processing power in many APs [37, 38].

2.5 Evaluation

We conduct an evaluation of the various benefits of REfactor. Our default settings is an AP

operating in infrastructure mode with two associated clients. We also show the benefit of using

REfactor in some of the other scenarios discussed in Section 2.1. Our evaluation utilizes traffic

from real-world traces containing realistic packet chunk redundancy patterns. We focus on the

following sets of issues: (i) How does our scheme, which uses self-addressing chunks, compare

against SHA hash based alternatives (Section 2.2) in terms of speed and effective RE? (ii) What

is the trade-off between cache-size and collision likelihood imposed by the self addressing chunks

approach? (iii) What is the overall benefit of REfactor under various realistic redundancy patterns

and varying levels of overhearing? What aspects of REfactor’s design contribute most to its bene-

fits? Can and should REfactor’s operation be adapted to observed traffic patterns? (iv) How does

38

Min chunk size REfactor SHA hash based scheme

32 640 Mbps 64 Mbps

64 910 Mbps 118 Mbps

128 1203 Mbps 152 Mbps

Table 2.2 Comparison of encoding throughput for REfactor and a SHA hash scheme for different

minimum chunk sizes.

REfactor perform in an actual infra-structure-based wireless setup? (v) How does REfactor help in

the other scenarios in Section 2.1?

Speed and Redundancy Removal

We evaluate the effectiveness of self-addressing chunks compared to a scheme where the en-

coder (AP) transmits SHA hashes to the client in encoded packet shims (Section 2.2).

Speed. We benchmark the encoding speed on a desktop with a 2.4 GHz CPU and 8GB DRAM,

mimicking a middlebox (co-located with the AP) which can perform encoding on behalf of the AP.

Table 2.2 compares the encoding speeds for REfactor and a SHA hash based scheme. With a 1GB

chunk cache and a minimum chunk length of 64B, our unoptimized Click module can encode at the

rate of 910Mbps. This rate is sufficient for an AP to serve 30 clients each at the rate of 18Mbps.

In contrast, SHA hash based encoding is 8× slower (118Mbps); SHA1 hash computation is a

major performance bottleneck in this scheme. Our lightweight decoding operations impose low

overheads on clients, as well. We used a low-end laptop with 1.66 GHz CPU and 2GB DRAM

to measure the decoding throughput. The measured decoding throughput is 160 Mbps (for chunk

size ≥32B). In contrast, the decoder throughput for a SHA hash based scheme is only 50 Mbps,

even with 128B chunks, because clients have to compute SHA1 hashes for each cached chunk.

Redundancy removal. We compare the effectiveness of redundancy removal for REfactor and the

SHA hash scheme in Table 2.3. We use a real trace with high overall redundancy (45%) and a 1GB

chunk cache for both schemes. With small chunks (32-64B), REfactor (0.31) detects 75% of the

39

Min REfactor SHA hash based scheme

chunk Redundancy Effective Redundancy Effective Effect. RE w/

size detected RE detected RE hash shipping

32 0.31 0.27 0.41 0.22 0.03

64 0.28 0.26 0.38 0.29 0.19

128 0.23 0.22 0.31 0.27 0.22

Table 2.3 Comparison of effective redundancy removal for REfactor and a SHA hash scheme

redundancy detected by the SHA hashing scheme (0.41), the gap being due to collisions. However,

the shim overhead of the SHA hashing scheme is quite high as a shim must carry a 20B hash. As

a result, REfactor’s redundancy removal (0.27) is 25% better than the SHA hash scheme (0.22).

Using larger chunks (64-128B), the effectiveness of the SHA hash scheme improves, despite a

decrease in detected redundancy, since the relative shim cost drops. However, decoding overhead

on clients is still high.

One way to overcome SHA hash computation overhead at the decoder is for the encoder to

ship SHA hashes for every chunk contained in a packet, as opposed to just sending SHA hashes

for encoded regions. Unfortunately, the additional overhead of shipping SHA hashes reduces the

effectiveness of RE by 25% (Table 2.3, last column). Using larger chunks (256B), the shipping

cost and encoding overhead would go down, but the detected redundancy itself significantly drops

to 0.2 (not shown).

To summarize, REfactor’s design, in particular, the use of self-addressing chunks, gives the

right trade-off in terms of speed, overhead and effectiveness of RE.

Caching

We now study the effectiveness of our self-addressing chunk storage and provide guidelines

on how to configure caches. In particular, we vary the hash-size n from 14-bits to 22-bits in size,

resulting in 1MB to 256MB sized caches, and we compute how much redundancy we are able to

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200
 400

 600
 800

 1000
 1200

 1400
 1600

%
 o

f t
ot

al
 r

ed
un

da
nc

y
re

m
ov

ed

Flush Rate (MB)

64MB Cache
256MB Cache
512MB Cache

1GB Cache

Figure 2.5 Impact of cache flush rate and cache size

remove from network traffic relative to an ideal infinite cache, which identifies 50% of bytes as

redundant for the specific trace we study. In all cases the average chunk size is 64B. We show our

results in Figure 2.5.

As expected, larger caches identify greater amounts of redundancy overall: e.g., a 512MB

cache can identify nearly 60% of the overall ideal redundancy, whereas a 64MB cache can only

identify up to 25%. In practice, caches can be provisioned on the basis of the average client’s

constraints: in an environment with laptops, using 256-512MB for caches is reasonable. When

handhelds are employed, 128MB caches may be used.

We find there appears to be a “sweet spot” for flushing rates for most large cache sizes. For

example, flushing a 512MB cache after every 500MB of traffic allows 10% more redundancy to be

removed than flushing every 100 MB, and 16% more compared to flushing every 1.5GB. This is

because a rapid rate of flushing (e.g., every 100MB) controls collisions better but reduces opportu-

nities for removing redundancy; on the other hand, too slow a rate of flushing (e.g., every 1.5GB)

does not eliminate collided entries fast enough. In general, flushing after every 200-300MB of

traffic works well.

Goodput

41

 20

 40

 60

 80

 100

 120

90% 70% 50% 30% 10%

Percentage Air Time Relative to No RE

Perfect RE

Perfect overhearing with collisions

REfactor

Greedy RE

No RE

90% 70% 50% 30% 10%

Percentage Goodput Relative to Ideal

Figure 2.6 Total air time across both clients (a; left) and C2’s goodput (b; right) for a trace with

high overlap.

 20

 40

 60

 80

 100

 120

90% 70% 50% 30% 10%

Percentage Air Time Relative to No RE

Perfect RE

Perfect overhearing with collisions

REfactor

Greedy RE

No RE

90% 70% 50% 30% 10%

Percentage Goodput Relative to Ideal

Perfect RE

Perfect overhearing with collisions

REfactor

Greedy RE

No RE

Figure 2.7 Total air time across both clients (a; left) and C2’s goodput (b; right) for a trace with

low overlap.

We now evaluate the improvements REfactor provides. We use a simple emulated two-client

setup with a single AP operating in infrastructure mode, as described in Section 2.1. In our setup,

C1 is located close to the AP, with perfect overhearing and a fixed high transmission rate (54Mbps),

42

 20

 40

 60

 80

 100

 120

90% 70% 50% 30% 10%

Percentage Air Time Relative to No RE

Perfect RE

Perfect overhearing with collisions

REfactor

Greedy RE

No RE

90% 70% 50% 30% 10%

Percentage Goodput Relative to Ideal

Perfect RE

Perfect overhearing with collisions

REfactor

Greedy RE

No RE

Figure 2.8 Total air time across both clients (a; left) and C2’s goodput (b; right) for a trace with

medium overlap.

while we vary C2’s location relative to the AP. Depending on C2’s location, its ability to overhear

transmissions to C1 varies.

We experiment with five different overhearing scenarios, using overhearing probabilities at C2

of 90%, 70%, 50%, 30% and 10%. An overhearing probability of 90%, for example, means the bit

error rate is such that a full length packet (1500B) is overheard with 90% chance; a smaller packet

that REfactor creates could, obviously, be overheard at a higher probability. We assume that C1

overhears all transmissions to C2 and the packets for C2 can be received correctly by C2 in the

possibility of 90%.

We use a simple Click [36] configuration to emulate overhearing, where we super-impose

packet reception probabilities at various packet sizes and transmission rates. These are derived

from real-world measurements we collected in a relatively noise-free environment. For the five

overhearing scenarios above, we fix the transmission rate to C2 at 54Mbps, 36Mbps, 24Mbps,

11Mbps and 1Mbps, respectively.

We deploy our Click modules as Figure 2.9. The encoder module encodes incoming packets

according to our Model-driven RE algorithm. The decoder recovers encoded packets and asks for

missing chunks. The random drop module drops packets according to bit error rate (BER) and

43

Figure 2.9 Click modules for goodput evaluation.

Overhearing %age BER

90 8.8× 10
−6

70 29.7 × 10
−6

50 57.8 × 10
−6

30 100.3 × 10
−6

10 191.9 × 10
−6

Table 2.4 The mapping from overhearing possibility to BER.

packet length. This module can simulate which packet can be overheard by C2. We calculate

overhearing probability as following equation:

Overhearing probability = (1− BER)1400×8

In all five cases, we set up different BERs to let full length packet overhearing probability

achieve the desired percentage. Thus, we can map the overhearing probability to BER as Table 2.4.

When receiving a packet, the random drop module determines its destination. If the destination

is C2, we use the BER 8.8 × 10−6 (the lowest lost rate) to calculate the packet lose rate, which is

44

also determined by packet length (longer packets suffer higher loss rate). If the destination is C1,

we pick up a BER according to what overhearing possibility we want to evaluate and Table 2.4 to

calculate final overhearing possibility (shorter packets tend to be overheard in higher possibility).

Finally, the random drop module decides to drop the packet or not by running a random number

depending on packet loss rate (if its destination is C2) or overhearing possibility (if its destination

is C1).

The traffic transmitted to each client in our experiments is based on a real-world trace we

gathered on an outbound link from a university web server. We use traffic to destinations in the real

trace to construct a traffic mix for the two clients in our simulation. We pick three sets of traces

that offer high (49%), medium (23%), and low (4%) inter-client redundancy, i.e., bytes shared

across clients, where redundancy is measured using the Max-Match approach with a large cache;

the intra-client redundancy is 1%, 24% and 46%, respectively. Note that the overall redundancy is

roughly similar (≈50%) across the three traces.

We do not claim the traces we study reflect the actual redundancy we expect to see in traffic

sent to, and shared between, wireless clients; quantifying the redundancy is not a goal of our work

and this issue has been explored in prior studies [9, 22, 2]. Rather, our goal is to use the traces

to recreate a variety of realistic redundancy patterns, i.e., granularities of redundancy, and spacing

of redundant bytes in time and across hosts, to study how they impact the benefits of REfactor

given its design choices, and also to understand the conditions in which REfactor offers the most

benefits.

We use three metrics: (1) Total air time defined as the total amount of time spent in transmis-

sion to either client (including missing chunk requests and responses). This is an indication of the

medium’s utilization. (2) Goodput of a client defined as the total number of bytes transferred to

the client divided by the total time spent by the client in receiving them, which includes time spent

in retransmissions due to packet losses or missing chunk transmissions due to cache misses. (3)

Packet loss rate at the client.

45

High Inter-client Redundancy

We first study the performance where a lot of content is shared across clients and little overlap

exists within a client’s traffic. The results in Figure 2.6 show the overall air time (a) and C2’s

goodput (b).

The bar “perfect RE” corresponds to the case where we assume no collisions occur and all

clients can overhear all traffic. In “perfect overhearing with collisions”, we assume cache sizes

are limited to 512MB, resulting in collisions, but nodes can overhear all traffic. The bar “greedy

RE” reflects a RE approach which always encodes packets as opposed to REfactor’s use of model-

driven RE. Finally, “no RE” represents a situation where no content overhearing or redundancy

elimination is applied.

The overall airtime is plotted relative to the total airtime under “no RE”, showing the lower-

ing in utilization due to various schemes. The goodput is plotted relative to C2’s goodput under

“perfect RE” showing how close to ideal the improvement in goodput gets. We make these obser-

vations:

1. REfactor offers substantial improvements relative to “no RE”, with airtime (Figure 2.6a)

being 20% lower in the highest quality link case (90% overhearing) and 7% lower in the

lowest quality link case (10% overhearing). REfactor’s airtime is between 6% and 30%

worse than “perfect RE,” the difference arising due to the need to account for collisions, and

the need to account for and recover from cache misses. C2’s goodput (Figure 2.6b) is 24%

and 4% better than “no RE” in the highest quality and lowest quality link cases, respectively.

2. In the poor quality link case, e.g., 10% overhearing, REfactor may overhear as few as 10%

of the packets compared to “perfect overhearing with collisions”; thus, one may expect that

it should only be roughly 10% as effective in improving goodput (Figure 2.6b) as “perfect

overhearing with collision”. Instead, we see that REfactor is 4% more effective than “no

RE”, whereas “perfect overhearing with collision” is 34% more effective. Thus, REfactor

does not seem to lose as much performance as we might expect under low quality links. The

reason for this is that encoded REfactor packets are smaller, and hence they experience lower

46

packet loss rates compared to “no RE”; see Table 2.5 which shows that REfactor imposes 7-

27% fewer drops than “no RE”. Fewer losses helps improve goodput. More importantly, the

packets that are not lost also carry valuable unique bytes that contribute to removing redun-

dancy from future packets. This effect is likely to be much more pronounced in situations

where there is a much greater amount of content shared across clients, e.g., in flash crowds.

3. Comparing REfactor against “greedy RE”, the gap is small at high quality links, but increases

significantly when link quality falls below 50%. At 50% overhearing, our approach improves

goodput by over 13%, whereas “greedy RE” results in a 6% drop (Figure 2.6b). Thus, model-

driven RE in REfactor plays a crucial role in ensuring robust performance, especially under

poor overhearing and high inter-client redundancy.

4. Consider the performance for the link with 70% overhearing probability, where “greedy RE”

still offers non-trivial goodput benefits (5%; Figure 2.6b) compared to “no RE”. Comparing

this with the results for the 90% link, we can conclude that if REfactor used 90% as the

reception probability estimate for the link in its model driven RE, but the actual probability

was 70%, then REfactor’s overall performance would still be better than “no RE”. This shows

REfactor’s overhearing probability estimation is robust to a certain degree of error especially

when link quality is reasonable. However, at poorer link qualities (50% or below) mistakes

can prove costly. Thus, it helps to be conservative with encoding, i.e., use a high threshold

for expected benefit in model driven RE, when link quality is poor and when inter-client

redundancy is high.

Low Inter-client Redundancy

Next, we look at the traffic mix with very high redundancy within client traffic (i.e. high intra-

client redundancy) and low redundancy between clients (i.e. low inter-client redundancy). We plot

total airtime and relative goodput achieved by C2, both in relative terms as before, in Figure 2.7.

We note the following:

1. Compared to the high inter-client redundancy case above (Figure 2.6a), REfactor offers bet-

ter airtime goodput improvements relative to “no RE”: e.g., at 30% overhearing, REfactor is

47

Overhearing %age Loss % (% better than “no RE”)

90 6.2 (27)

70 6.7 (21)

50 7.1 (16)

30 7.6 (11)

10 7.9 (7)

Table 2.5 Loss % with REfactor. The loss rates due to “no RE” and “perfect RE” are 8.5% and

5.3%, respectively. We show % lowering of loss rate relative to “no RE” in brackets.

22% better than “no RE” in the low inter-client redundancy case (Figure 2.7a), whereas in

the high inter-client redundancy case (Figure 2.6a), it is 8% better than “no RE”. Because

REfactor does not have to deal with overhearing, it is able to derive substantial benefits most

of which are due to IP-layer RE itself.

2. The variation in overhearing rate has a slight effect on the benefits of REfactor, with benefit

dropping as overhearing becomes poor. While most of REfactor benefits with this trace are

from intra-user redundancy, the trace does have a small amount of inter-client redundancy

(4%); at low overhearing probability, model-driven RE in REfactor would conservatively

decide against encoding most, if not all, inter-client redundant packets, resulting in a drop in

goodput.

3. The performance of “greedy RE”, which encodes all packets, is slightly better than REfactor.

Whatever bytes are saved in this fashion contribute to high goodput and the small number

of cache misses that result (for the inter-client traffic) can be easily recovered through re-

transmissions. Thus, when intra-client redundancy is predominant—the redundancy pattern

can be determined by profiling traffic on the fly—it is best to turn off model-driven RE and

encode all data.

Medium Inter-client Redundancy

48

C2’s Distance No RE REfactor Percentage

from AP Goodput Goodput Improvement

3m 4.0Mbps 3.4Mbps 20%

6m 3.0Mbps 2.6Mbps 14%

10m 1.3Mbps 1.2Mbps 6%

Table 2.6 Performance improvement provided by REfactor in a real infrastructure-based wireless

setup.

In Figure 2.8 we show a situation where redundancy is roughly equally inter- and intra-client.

Comparing with Figures 2.6 and 2.7, the performance offered by REfactor is intermediate com-

pared to the prior two cases, as expected. We also note that the performance of “greedy RE” is

almost comparable to that of “no RE” at 30% and 10% overhearing. Thus, with less redundancy,

the impact of incorrect estimation of link overhearing is even less pronounced: more specifically,

if REfactor used 90% or 70% as the overhearing probability estimate for a link that current has

50% overhearing (or even lower), the performance of REfactor may still be noticeably better than

not using RE or overhearing. This also means that model-driven RE can be somewhat more ag-

gressive, i.e., use a lax threshold for expected benefit, under this kind of traffic pattern.

Overall Benefits: Testbed Results

While the results we have discussed so far are derived from an emulated infrastructure-based

scenario, we also measure REfactor’s performance using an actual wireless AP and two clients.

We use the high inter-client redundancy trace, and we vary C2’s distance from the AP from 3 to

10 meters to explore a range of overhearing probabilities. Table 2.6 compares the goodput without

RE and using REfactor.

Similar to the results in Figure 2.6b (where REfactor’s goodput improvement over “no RE”

ranges from 24% to 4%), the benefits from REfactor in a real wireless setup range from 20% to

6%. This confirms that our emulated setup provides a reasonable representation of REfacotr’s

performance improvements in practice.

49

 20
 30
 40
 50
 60
 70
 80
 90

 100

90% 50% 10%

P
er

ce
nt

ag
e

G
oo

dp
ut

,
N

or
m

al
iz

ed
 to

M
ul

ti-
A

P
 O

ve
rh

ea
rin

g

Overhearing Possibility

Mutli-AP Overhear
Single-AP Overhear

No RE

Figure 2.10 Goodput improvements in a multi-AP scenario

Multi-AP Improvements

We extend our setup to two APs operating in infrastructure mode and three clients: C1 and C2

associated with AP1 and C3 with AP2. Additionally, C2 is able to overhear transmissions from

both APs. Figure 2.10 compares the relative goodput for C2 without RE, when overhearing only

from its associated AP, and when overhearing from multiple APs. We observe that C2 realizes up

to 10% more benefit from REfactor when taking advantage of traffic overheard from other APs.

As expected, returns diminish as overhearing probabilities decrease.

Our multi-AP simulation assumes both APs can overhear each other’s transmissions, avoiding

collisions. However, collisions may occur in the case of hidden terminals. For example, if AP1

transmits to C1 at the same time AP2 transmits to C3, the two destinations will receive their respec-

tive packets, but the packets will collide at C2, who will be unable to overhear either packet. Such

collisions prohibit C2 from receiving maximum benefits from REfactor. However, REfactor may

be able to reduce the likelihood of collisions due to decreases in the size of C1 and C3’s packets.

REfactor + Network Coding

We implemented a simplified version of COPE [13] within our Click prototype and experi-

mented with the scenario in Figure 2.1d. Our simplified version of COPE XORs packets, but we

50

Overhearing Overall Improvement Relay to C3/C4 Improvement

%age (% better than COPE) (% better than COPE)

90 14 38

70 11 26

50 10 21

30 6 13

10 3 7

Table 2.7 Air time savings %age with REfactor + COPE.

ignore confounding factors like pseudo-broadcast, retransmissions, and reception reports. When

the relay is scheduled to send packets, it determines if it has packets for C3 and C4 that can be

coded, removes redundancy from them and sends a coded packet along with a shim. For simplicity,

we assume the relay has perfect knowledge of what C3 and C4 overheard for both COPE and our

approach; in practice, the relay has to rely on feedback from clients [13].

The air time savings of REfactor + COPE, compared to just COPE, are shown in Table 2.7 for

different overhearing percentages between C1–C3 and C2–C4 (assuming both links have the same

overhearing probabilities). With 90% overhearing, REfactor provides 14% air time savings. This

savings is purely from reduced transmission sizes from the relay to C3/C4: the savings for relay–

C3/C4 transmissions is 38% with 90% overhearing. Compared to air time savings with “perfect

overhearing with collisions” in the single AP case, this is almost twice as much, a result of the

transmission reductions realized via network coding. At lower overhearing (e.g., 10%), the overall

relative benefit of using REfactor reduces (to 3%) because there is less content overheard.

REfactor + NEWS

We evaluation the performance of NEWS by simulation. In lower layers and application layer,

we rely on NS-3 [39], which supports WiFi channel simulations such as delay and random loss. We

implement IP layer algorithms in Click [40], which cuts packets into chunks, caches the chunks,

51

Figure 2.11 The architecture of NS-3, which connects to Click modules

Figure 2.12 The scenario we use in our experiment

and removes or combines the chunks to reduce traffic. Figure 2.11 shows the architecture we uses.

Click modules can be embedded into NS-3 as a layer. Packets coming from application helper are

sent to the input of a Click module. After processed, these packets are outputted to lower NS-3

layers.

We set up a simple scenario that includes one AP and two clients as shown in Figure 2.12.

The AP send traffic to both of clients. There are three different kinds for subcarriers. ClientB

encounter better overall channel quality connecting to the AP than ClientA. ClinetA can overhear

52

REfactor NEWS

The percentage of bytes saving 9% 1.2%

Goodput 773 kbps 708 kbps

Table 2.8 The result for high inter-client redundancy.

REfactor NEWS

The percentage of bytes saving 18% 17%

Goodput 1000 kbps 980 kbps

Table 2.9 The result for low inter-client redundancy.

the traffic for ClientB in low possibility. Part of subcarriers have good channel quality (30dB)

connecting to both clients. We use these subcarriers to carry network coded chunks. Because the

subcarriers with good channel quality connecting to ClientA are too narrow, so we send the chunks

only for ClientA using a lower bit rate. We observe the goodput(bytes received by application

layer divided by time) received by ClientA, and compare NEWS with REfactor.

As REfactor, the traffic transmitted to clients is based on real world-trace files. We use traffic

to destinations in the real trace to construct a traffic mix for the two clients. We pick two sets

of traces that offer high (49%) and low (4%) inter-client redundancy. In addition, the intra-client

redundancy is 1% and 46% respectively.

Table 2.8 shows experiment results for high inter-client redundancy, while Table 2.9 provides

experiment results for low inter-client redundancy. Because ClientA cannot overhear most traffic

for ClientB, we remove much fewer redundancies in high inter-client redundancy case. REfactor

can only remove 1.2% in this case; however, NEWS can apply network coding on some bytes, so

it can remove 9% bytes, which is more than 6 times more than REfactor. The number of packets

doesn’t change much, so goodput improvement is not as critical as byte saving, but NEWS is still

more than 9% better than REfactor.

In low inter-client traffic case, the performance different between NEWS and REfactor are less.

Both or them can remove intra-client redundancy well.

53

REfactor NEWS

708 Mbps 678 Mbps

Table 2.10 Comparison of encoding throughput for REfactor and NEWS.

To understand the overhead of network coding, we compare the encoding throughput of REfac-

tor and NEWS module in Click. We run our experiment in a laptop with Intel i5-3210M CPU and 4

GB RAM. Because NEWS need to scan packet chunks for network coding, its encoding throughput

(678 Mbps) is slightly lower than REfactor (708 Mbps).

In summary, NEWS removes more inter-client redundancy than REfactor does, which increase

goodput on wireless links. Although overhead is added, the encoding throughput is still acceptable

for nowaday wireless traffic.

54

Chapter 3

An Information-Aware QoE-Centric Mobile Video Cache

In this work, we discuss a how to optimize transmission in application viewpoint. We focus on

video service, because it becomes a dominate service now. The key metrics to evaluate is watching

experience. To improve video watching experience, we provide a middle box called iProxy.

In this section, we describe the motivation first in Section 3.1, the design in Section 3.2, and

finally give some evaluation in Section 3.4.

3.1 Motivation and Background

Video Caching

In [41], they mention that 3G/4G networks trace all traffic centrally for device location track-

ing and billing issues. The gateway becomes a bottleneck with high traffic concentration, when

the number of base stations grows. Thus, caching in a gateway reduces the load in 3G/4G core

networks (CNs). [42] also says that the key to improve 4G networks is to increase capacity and to

handle more users, but not speed.

However, a convention proxy only uses URLs to identify objects, thus it may cache the same

content with different URLs which provides redundancy in cache. Instead, iProxy identifies ob-

jects by looking into the content of objects. It results better video caching performance.

Video Watching Experience

55

Video watching experience determines the client engagement; with better watching experience,

clients will be more willing to enjoy the services. if more clients use video services and spend more

time on watching videos, both video providers and network operators can get more revenue. Thus,

video watching experience becomes an important factor, when providing video services.

Multiple key factors determine user engagement. For example, if a client waits for long time

before receiving a video service, s/he may loss toleration and quit the service before video playing.

However, some other factors such as user interests are not easy to be predicted by video providers

(may need some history records).

In [20, 21], they define user engagement as follows:

• Watching time of each video view. Higher user engagement implies that a client is willing

to spend more time on one video view.

• The number of video watch for each viewer. If a client satisfies a video service, s/he will

watch more videos, because s/he expects the same good quality for other videos provided by

the same video service.

Their works figure out how quality metrics are relative to user engagement and build a model

for it. The quality metrics they consider are:

• Join Time: How long clients need to wait before videos play. When receiving videos,

players at client side spend some time to pre-process videos and fill up their buffers. Higher

bit rate videos take longer time. Thus, if we send unnecessary higher bit rate videos to

clients, longer processing time increases the join time. For example, smartphones can show

only lower resolution videos, so they prefer lower resolution videos (lower bit rate).

• Buffering Rate: The percentage of time is spend on re-filling a buffer. When network

condition is not good enough, videos stall to wait for incoming data. To reduce the buffering

rate, we need stable bandwidth. However, wireless environment provides various channel

quality, so video bit rate should be adapted to fit current available bandwidth.

56

• Rate of Buffering Event: The number of buffering events during video playing. The buffer-

ing events interrupt video watching, and affect watching experience. It is caused by unstable

channel quality. To reduce the events, we can adapt video bit rate or increase buffer size at

client side.

• Average Bit Rate: Higher video bit rate implies better video quality. Clients usually feel

better when watching higher quality videos. However, higher bit rate also means higher

bandwidth requirements, so when channel quality is unstable, a higher video bit rate causes

more and longer buffering events. Therefore, a bit rate is a trade-off and should be set

carefully.

• Rendering Quality: A rendering rate is the number of video frames per second. It deter-

mines how smooth videos are playing. Usually, if the rending rate is lower than 30 fps, video

viewers may affect watching experience. When channel quality is terrible or computational

power at client side is not enough, some frames may be received later than their deadline and

video players drop these frames.

Based on user engagement and quality metrics presented above, we propose the design require-

ments of iProxy as the next section.

Design Requirements

The goal of iProxy is to use cache storage efficiently and provides good quality of experience

(QoE) that is reflected in engagement, i.e., fraction of the total video time that a user watches, and

abandonment, i.e., whether a user quits a video before it starts.

Efficient caching: Cache space is restricted and the performance is limited. If we can reduce

redundant content in cache, high cache hit rate, which lowers video start-up delay, can be achieved.

A conventional proxy identifies videos by URLs. Thus, for each requested URL, a proxy needs

to store a copy of its content. However, the content associating with different URLs may be actually

the same. For example, the same video may be uploaded to youtube.com and dailymotion.com.

57

People use different URLs to request the different instants of this video from these two video

providers through a conventional proxy. The proxy identifies the videos as different content. Cache

storage space is wasted, if both of the copies are stored.

Furthermore, a video can have various versions such as different resolutions, bit rates, and

file formats, but the content of the different versions is actually the same (they include the same

information). In this case, if we can store only one of the versions, storage can be further saved to

satisfy more requests.

Good QoE: It is nontrivial to correctly define what good QoE is, because different users may

care about different criteria, but in my thesis, I focus on start-up latency, video stall time, and video

quality (bit rate) as mentioned in Section 3.1. clients are more willing to use the video service with

good QoE and decrease the chance that clients leave before the end of videos.

• Lower start-up delay: It is the the waiting time after an user requests a video. This delay

is mainly affected by cache hit rate and video pre-processing time. If the request is hit in

cache, a proxy do not need to redirect this request to a video provider such as Youtube, which

takes extra round-trip time between a proxy and a video provider. In addition, if a video is

unnecessarily too high in bit rate, an user device takes long time to pre-process it before the

video plays. Thus, increasing cache hit rate and providing suitable videos for clients are our

goals.

• Video stall: If available bandwidth is not enough or video bit rates are too high, some frames

are loss or retransmitted, which cause video stall. Video players stall the videos to wait for

following data. Thus, videos are interrupted and clients may not be comfortable with it.

• Video quality: If we reduce the bit rate of videos to prevent traffic from using out band-

width, some detail in videos will miss. This affects users’ experience, because they may

expect better video quality. In addition, because bit rate is lower than available bandwidth,

remaining bandwidth is wastage.

• User device: It determines what kinds of videos can be decoded and played. If we give

an end user incompatible videos, the end user may be unable to play it or need to degrade

58

video quality to play it. For example, if video resolution is higher then screen resolution, the

user device needs to reduce the resolution to fit screen size. Higher resolution videos usually

come with higher bit rate. Thus, it wastes bandwidth for transmission and also results higher

start-up latency caused by longer pre-processing time.

Other requirements: our another goal is that our system should be deployed more easily. To

make our system work, we only need to add a middle box as a proxy in a network without modi-

fying existing end user devices and video providers.

Information-Bound Referencing

The previous section mentions that an URL is not a good identification for video content. Thus,

we introduce information-bound referencing (IBR) from [43]

IBR retrieves information from multimedia data as identification. This identification isn’t tied

to a specific protocol, host, file name, and multimedia format such as resolution and bit rate, but is

bounded only to the information it presents.

IBR transforms multimedia information into frequency domain. For each frame of video or a

picture, its frequency domain data is linearly relative to how it looks like by human eyes. Thus,

frequency domain data is a good choice to identify content.

In this section, we discuss how to calculate IBR value for multimedia content and how to apply

it to iProxy.

IBR for a single frame

We begin by the IBR calculation of a single frame. [43] presents three options to retrieve

fingerprinting for an image, which are leveraging spatial structure, using color distribution, and

frequency domain analysis.

Frequency domain analysis, which uses Hamming distance to distinguish images is the better

choice for the following reasons. First of all, the Hamming distance between transmission images

59

Figure 3.1 Retrieve IBR from an image.

is low enough to recognize them that include the same or very similar information. Second, the

Hamming distance between different images is high enough to distinct images. [43] shows that

frequency domain analysis provided by Discrete Cosine transforms(DCT) works well with the

threshold Hamming distance of 11.

To calculate IBR value for an image, we use the 64-bit fingerprint as Hash64 which is provided

by [44] called ImgIBR. As shown in Figure 3.1, We represent an image as three components:

luma (Y), chromablue (Cb), and chromared (Cr). YCbCr representation can concentrate energy

in the first few low frequency coefficients in Cb and Cr, so it is easier for us to sample important

information.

We do DCT on YCbCr to get FY, FCb, and FCr that are frequency domain data. Then, We

couple [LumLow, LumHash, LumHigh, ChromBlue, ChromRed) as a fingerprint for an image

(ImgIBR). LumLow and LumHash provide an overview of the fingerprint, and others capture

60

information in more detail.

IBR for a Video

In [43], videos are cut into chunks and we only process frames at chunk boundaries. The

way to chunk videos is using scene detection [45]. Scene detection scans the similarity of frames

and groups frames with similar content together.Thus, frames in each scene look similar, so their

ImgIBRs are also similar. We call the frames at chunk boundaries keyframes where the images

change significantly named scene changes. To identify the scene changes, we need to pick up an

good image feature that can be easily computed and is consistent. According to experiments, [46]

decide to use the variation in the amplitude of the zero-th frequency of the Y-component.

Chunking algorithm: to measure the similarity, [46] defines a distance DistSeq and a

ChunkThresh. The distance between frame i and i + 1 is DistSeq(i) = |Ai+1−Ai|
min(Ai+1,Ai)

. If the

distance is less than ChunkThresh, we say these two frames are similar and group them into the

same chunk.

Smaller chunks are more sensitive to identify content variants. However, cutting a video into

smaller chunks means that the number of chunks increases. Thus, it also increases IBR calculation

time and matching time. [46] suggests that ChunkThresh should set to 0.5.

For each chunk, only the first and the last ImgIBRs are stored. All ImgIBR pairs of chunks

are concatenated to form the IBR value of a video, V ideoIBR. 424-byte audio IBR using an ex-

isting audio fingerprinting algorithm [47] is included.

IBR lookup

After IBR calculation, we need to know how to look up and match IBR, then we can identify

videos. As mentioned in 3.1, the same content may provide slightly different IBRs caused by

different encoding methods. Thus, to lookup matching IBRs, fuzzy matches are used.

61

To do the fuzzy matches, a suitable data structure is desired. Locality-Sensitive Hashing(LSH)

[48, 49] has been used to solve multimedia search problems.

[46] use bit sampling to implement Locality-Sensitive Hashing(LSH) [48, 49] which has been

used to solve multimedia search problems. Assuming l is the number of hash functions and k is

the number of bits per hash function. We can get a k-bit string from each hash function which is

the concatenation of hi
1(Hash64),... ,hi

k(Hash64) where hi, i = 1...l, is a hash function. We note

this k-bit string as gi(Hash64). Because there are l hash functions, we can map each Hash64 to

l buckets that are g1(Hash64),... ,gl(Hash64). Given a new query for Hash64′, we retrieve the

entries in buckets g1(Hash64′),... ,gl(Hash64′) and match these against Hash64′. [46] suggests

l = 20 and k = 20 which is reasonable.

When we try to match a given video chunk IBR, we first look for some candidate IBRs in LSH

data structure for the Hash64 of the first fame of the video chunk IBR. Then, we try to match the

other fields directly.

IBR Lookup Performance

The analysis of IBRs over a large collection of videos in the wild shows that, using conser-

vative match thresholds, IBRs can match related variants with zero false positive rate. We found

zero false positives in our own trace-based analysis (Section 3.4). However, false negatives are

non-negligible (5%) meaning that not all hits will be identified. We believe that evolution in mul-

timedia fingerprinting schemes will result in even more robust IBRs with far lower false negative

and zero false positive rates for matching. In [50], they shows that IBR can defense the integrity

attacks of inset (bogus content is embedded), quantization (lower the video quality), and resize

(rescale videos), but IBR cannot determine the subtitle deference. However, many modern mp4

videos separate video content from subtitles.

Channel Diversity

62

 0

 500

 1000

 1500

 2000

 2500

12:00 12:05 12:10 12:15 12:20 12:25 12:30 12:35 12:40 12:45 12:50 12:55 13:00

T
hr

ou
gh

pu
t (

kb
ps

)

Time (hour:minute)

Figure 3.2 Throughput diversity with in two hours period

For higher QoE, we should estimate and efficiently use available bandwidth on channel. Video

streaming requires stable bandwidth instead of higher average bandwidth. However, wireless net-

works are not stable enough to stream videos. Channel quality is varying with different time and

different locations.

WiScape [18] measures the throughput, jitter, and loss rate of 3G networks in many spots

around Madison, WI, and it also measures how moving speed affects performance. It presents that

a cell phone experiences various channel quality in different locations. Even in the same location,

standard deviation of throughput may be high.

To further understand channel diversity, we measure throughput variation during the period of

one hour. We run a server in a desktop. The server sends TCP dummy data to a cell phone via 3G

network as fast as possible. We measure the throughput observed by the cell phone as showed in

Figure 3.2. The measurement starts at 12:00 and ends at 13:00.

Throughput lies in the range between 85 kbps and 2208 kbps. We can observe that there is

one burst which are over 1500 kbps , and just after this burst the throughput drops to less than 250

kbps. It means channel quality is highly various.

63

We can conclude that during a video playback, available bandwidth keeps changing. To achieve

our goal of reducing video stalls and keeping video quality, video bit rate should be adjusted dy-

namically with channel diversity.

Client Diversity

Client may use different kinds of devices such as laptops, tablets, and smart phones to access

videos. The screen sizes and supported resolutions are different. Thus, videos with different

resolutions may be requested.

Besides hardware, software in client devices may be also inconsistent. Operation systems can

be iOS or Android. The video decoders each device have installed are different. To dynamically

support the diversity, we need to first detect what software each device is running and then we can

provide suitable video formats.

Thus, the issue is how we figure out the hardware and software of client devices. In addition,

after we retrieve this information, how do we stream videos with suitable formats.

Cache Replacement Policy

In any cache systems, replacement policy is an important issue and is critical for cache perfor-

mance. A main metric for cache performance is hit rate (HR). HR is the number of requests that

match previous cached requests divided by the number of total requests. Hit requested won’t be

forwarded to data providers. Thus, higher HR provides lower video start up delay.

The key goal of cache replacement policy is to keep more useful data that will be requested

in future as possible. [51, 52] describes some typical cache replacement policies including first-

in-first-out(FIFO) policy, the random replacement policy, the last recently used(LRU), the least

frequently used(LFU) policy, the last frequently used-aging policy, and greedy dual size(GDS).

FIFO: This is a low overhead policy and it doesn’t need to record any extra information for

cache entries. Incoming data is inserted into the tail of a queue and the oldest data is removed if

64

cache is full. This policy doesn’t consider the importance of data, so some important data may be

removed that can decrease HR.

Random replacement: This is also a low overhead policy. When cache is out of space, we

randomly pick up one or more entries to remove. Thus, it may also remove some important data.

LRU: This policy keeps record when each entry is referenced. The main motivation of this

policy is that an entry which is referenced recently will have more chance to be referenced again

in near future. We can implement this policy by a queue. A referenced entry is moved to the tail

of the queue. Thus, when cache is out of space, the entry in the head of the queue is removed,

because it will have not be referenced for the longest period. This policy consumes some overhead

to move entries.

LFU: This policy maintains a counter for each entry. This counter represents the number of

times this entry is referenced. LFU will choose the entries with lowest count to remove when

cache is full. It assumes the entry with higher used frequency will be referenced in future in higher

possibility. However, we need to spend some space to store the counter and some time to update

the counters.

LFU-aging: It is a modified version of LFU. LFU has a cache pollution problem. Some entries

may be very popular in a particular period, so they can gain high count. However, after this period,

they are less or never used. Because their counters have been already high, they have less chance

to be removed. Thus, these entries occupy cache space as pollution. LFU-aging is developed to

solve this problem. It reduces counts periodically ,so after awhile, the pollution will be removed.

GDS: This policy takes multiple factors into account. To calculate the importance of each

entry, GDS defines a score which is the ratio of cost and object size (cost
size

) for each entry. The cost

is composed of reference count and other costs to ask data from remote provider including network

bandwidth and delay. The size is the data size. When cache is full, GDS pick up the entry with

the lowest score. GDS considers how expensive to remove each entry in more detail, and also take

data size into account.

We will describe modified cache replacement policy for iProxy in Section 3.2.

65

Figure 3.3 In the IBR table, multiple URLs map to one IBR value, which corresponds to exactly

one video.

Figure 3.4 The flow of cache matching.

In this section, we discuss the overview of iProxy first, and then look into its key components.

The key design requirements are efficient caching and good QoE.

3.2 Efficient Caching in iProxy

iProxy is located between cellular network users and video providers. No modifications are

necessary at either end user devices or video providers; so, for example, end users can still use

conventional schemes such as search engines and HTTP requests to peruse and retrieve video

content. The users only need to set proxy in their browsers.

66

As mentioned in Section 3.1, we use IBR to identify video content. If videos have similar

IBR value, we can say that they are the same content. Thus, URLs corresponding to the videos

represent the same content (the IBR value). We need a data structure to store this information.

Therefore, iProxy stores an IBR table that maps URLs to IBR values. As shown in Figure 3.3

Each IBR value corresponds to exactly one video file. Multiple URLs may map to the same IBR

value because these URLs represents videos with the same information.

After receiving a request for a URL, iProxy checks the IBR table first as Figure 3.4 to figure

out if the same content has been already stored in the cache. There are three cases that arise:

The URL hits: The URL requested by an end user can be found in the IBR table, which means

that this exact URL was requested previously. In this case, iProxy can send the cached video to the

end user.

The IBR (eventually) hits: When the requested URL cannot hit any entry in the IBR ta-

ble, iProxy forwards the request to the corresponding content provider. The provider transmits

the requested video, and iProxy transforms it into frequency domain data. The transmission and

transformation can be processed in parallel to reduce overhead. iProxy then derives its IBR from

this frequency domain data as described in Section 3.1, and we try to match this IBR with other

IBR in the IBR table. If a match is found, the same content was requested earlier, but from a

different source and/or in a different format. In this case, iProxy compares the quality of the new

downloaded video against the in-cache video corresponding to the matched IBR. iProxy keeps the

higher quality version and drops the other. Finally, the IBR table is updated by inserting the new

URL into the existing entry corresponding to the matched IBR. Using this approach ensures that

with a limited cache size, iProxy can cover more and more URLs over time than a conventional

proxy, which means its cache can potentially satisfy more requests.

Neither URL nor IBR hits: After video transmission from the provider and frequency domain

transformation, the computed IBR may not hit any entry in the IBR table. In this case, a new entry

created for the IBR, the requested URL added to the entry, and the frequency domain data for the

video is cached. The new entry and the corresponding video need to replace one or more IBR

entries and corresponding videos in the cache (discussed in Section 3.2).

67

Figure 3.5 The Process of Video Matching.

Figure 3.6 A Scenario of iProxy.

Figure 3.5 shows whole process to match video when a request comes in. As mentioned earlier,

iProxy is just a middle box between clients and video providers. Clients as usual use URL to

68

request videos, and iProxy looks the URL up in the IBR table. If the URL is found, we can say

that iProxy has already cached this video, and directly streams the video to the client.

However, if the URL is not found, iProxy downloads the video from an original video provider

according to the requested URL. The downloaded video is transferred to frequency domain data

and an IBR value is retrieved from the data. Then, iProxy does another IBR table lookup. In

parallel, iProxy streams the video to client at this time point. If a similar IBR value is found in the

IBR table, a video with the same information has been already in cache, so we only keep one of

the copies and update the IBR table (add the URL to the corresponding entry). If no video in cache

has the same information, iProxy inserts a new entry for this new cached video.

Example: Figure 3.6 compares iProxy to a conventional proxy. In this scenario, there are

three smartphones called Client1, Client2, and Client3 which connect to a cellular tower; iProxy

is behind the cellular tower. We assume there are several video providers, but Figure 3.6 only

presents one of them. Assuming there are two entries in a cache and in beginning one of the entries

is occupied by an URL and its content. The upper table is the cache table of a convention proxy

and the lower table is the IBR table of iProxy. Both of them use FIFO as their replacement policy.

In Figure 3.6(a), Client1 requests a video with URL1. URL1 is not in IBR table, which

maps an URL to a particular IBR value, so iProxy forwards the request to a video provider. After

receiving a video named V ideo1, iProxy calculate its IBR value as IBR1 which does not exist in

IBR table. Thus, the mapping between URL1 and IBR1 is inserted, and V ideo1 is cached. Then,

the video is forwarded to Client1 via dynamic video encoding. A convention proxy works similar

that insert URL1 into its table.

The URL2 request from Client2 is not in IBR table either in Figure 3.6(b). Thus, iProxy

fetches V ideo2 from a video provider and calculate its IBR value, IBR1, which is close enough

to the IBR value of V ideo1. Thus, we can say that V ideo1 and V ideo2 include the same or similar

information. iProxy decides to keep V ideo1 and drop V ideo2. Finally, URL2 is inserted into IBR

table to show that URL2 also maps to IBR1. In this case, iProxy does not replace any entry and

all of URL1, URL2, and URL3 stay in the table. However, a convention proxy replace URL3 by

69

URL2 in this case and waste storage to cache the content for both URL1 and URL2, because they

refer to the same video.

Later, any requests for either URL1, URL2, or URL3 will be hit in iProxy, but URL3 cannot

be hit in a convention proxy. For example, Client3 request a video with URL2 and URL3. Both

of URL2 and URL3 are in IBR table and maps to IBR1 and IBR3, respectively, so V ideo1 and

V ideo3 will be forwarded to Client3 via dynamic video encoder. However, a convention proxy

can only hit URL1 and needs to request V ideo3 for URL3 from a video provider that spends extra

communication time and initial delay.

Replacement Policy

Section 3.1 describes typical cache replacement policies. However, iProxy presents some dif-

ferent features that the importance of each entry also depends on the number of URLs associating

to this entry and how these URLs are referred. Thus, we modify some of typical cache replacement

policy to fit into IBR features.

There are three criteria for the importance of each entry. The first two is the same as regular

proxy and the third one is iProxy specific.

• Keep high frequent referred entries.

• Keep most recently referred entries.

• Keep more URLs covered.

To capture these three criteria, we develop a new replacement policy called ”LFU-based IBR-

score”. We give each entry a score which is defined as

scorei =

∑
URLs(

Chit
Cstay

)

V ideoSize

scorei is the score of entryi and
Cu

hit

Cu
stay

is the sub-score for individual URL u which refers to

the IBR value that entryi represents. Cu
hit is the ”hit count”, i.e., the number of hits for URL u

70

and Cu
stay is the ”stay count”, i.e., how long URL u has been in cache in terms of the number of

total requests arriving at the cache. Thus,
∑

u∈URLs(
Cu

hit

Cu
stay

) captures the contributions of different

URLs u to the overall ”interest” in the information represented at entryi. We divide the frequency

by video size to increase cache hit rate, because larger videos occupy more storage that is a cost.

It results that shorter videos tend to get higher scores.

Compared to LFU, LFU-based IBR-score does not have the ”cache pollution” problem because

it considers how long an entry stays in cache(Cu
stay).

GDS is shown that it is more effective than LRU and LFU, but it is not designed for IBR-based

cache. LFU-based IBR-score (the number of access per URL for an IBR table entry) outperforms

GDS (the number of access per IBR table entry), because it captures more detail information

that means that different encoding/formats and different content providers (associate with different

URLs) may provide different access pattern as Figure 3.7. Thus, LFU-based IBR-score shows

better prediction for future access. Larger objects occupy more storage space, so as GDS our

scheme treats video size as a cost.

We take a scenario shown in Figure 3.8 as an example. There are two candidate entries to

replace in an IBR table. One of them includes two URLs that are URL1 and URL2, and the other

has another two URLs that are URL3 and URL4. There are nine access slots, and the URLs are

accessed in different slots. We assume both entries associate with the videos with the same size,

and we only consider access frequency in this scenario.

We compare LFU-based IBR-score and GDS to see how they choose an entry to replace. Both

of them calculate access frequency as score and pick the entry with lower score. GDS considers

whole entry and doesn’t care about each individual URL. Thus, it scores Entry1 as 4
9

and Entry2

as 4
7
, so it will choose Entry1 to replace. URL1 affects the score of whole entry a lot, because it

was accessed long time ago. However, URL2 belonging to Entry1 is accessed more frequently

than others recently, so URL2 should be kept in cache that implies we should replace Entry2

instead of Entry1.

However, LFU-based IBR-score calculates the access frequency of each URLs separately, so

it can reduce the effect of URL1. In this scenario, LFU-based IBR-score scores Entry1 as 10
9

and

71

Figure 3.7 IBR score V.S. GDS.

Figure 3.8 An comparison of IBR score and GDS.

Entry2 as 9
14

. Therefore, LFU-based IBR-score selects Entry2 with lower scores to replace. In

this way, URL2 with high recent access frequency stays in the cache.

We also design a modification to LRU called ”LRU-based IBR-score” and it is computed as

scorei =
∑

URLs(
1

Clast
)

V ideoSize
. Clast means how long the last hit for a URL has been in the cache in terms

of the number of total requests to the cache. 1
Clast

is the sub-score for an individual URL. Higher

1
Clast

means this URL is hit more recently. As the earlier scheme, this simultaneously prioritizes

most recently referred entries and those that cover more URLs.

Cache Deployment

Figure 3.9 shows a 3G cellular network architecture. There are some potential candidates to

locate iProxy, which are radio network controller (RNC), serving GPRS support node (SGSN),

72

Figure 3.9 iProxy Cellular network architecture.

and gateway GPRS support node (GGSN). RNC is closer to user equipment(UE), so the latency

between RNC and UE is lower. However, RNC can serve less users, because it is in the lower layer

of the architecture. The number of served users affects the amount useful data a proxy can cache

that determines hit rate. Thus, locating at RNC may provide lower hit rate. GGSN is far away

from UE, so it can provide higher hit rate with higher latency from it to UE. Thus, the location is

a trade-off between latency and cache hit rate.

Cache hit rate is affected by served population. However, the population each cellular network

component covers is varying and depends on its service area. For example, the cellular network

components in urban may serve more population than the ones in rural. In Section 3.4 we evaluate

the trade-off between hit rate and latency.

Many cellular providers already employ transcoding proxies [53] that transform web content

to a suitable format for mobile device users to save bandwidth and computation resources. For

example, the transcoding proxies reduce image resolution for smartphone users. However, they

dont dynamically adapt video according to channel quality. Thus, iProxy can work with them in

parallel. iProxy focus on video content, and transcoding proxies work on other content.

73

3.3 Optimizing QoE

As mentioned in Section 3.1, iProxy should provide better QoE for users. There are three

aspects: ensuring high bit rate, lower buffering time, and lower start-up delay. Good QoE can

maximize user engagement and minimize abandonment. To this end, iProxy provides dynamic

video encoding which can dynamically change video bit rate during streaming and video format

according to user devices. Our goal is to stream videos with high bit rate without using out band-

width.

Bit Rate and Buffering: Handing Channel Diversity

3G Network condition such as channel quality, traffic congestion, signal interference may vary

in different location and different time [54, 18]. Available bandwidth is highly varying and the

dynamic range can change between Kbps to several Mbps within 10s. To provide better QoE,

iProxy needs to ensure higher bit rate without using out bandwidth.

Current video streaming either sets up bit rate only when start up or reacts to network condi-

tion change slowly and discretely. In some cases, clients can decide video quality before or during

playback. For example, Youtube provides different video resolutions from 240p, 360p to 1080p

for some videos. It can also detect available bandwidth and automatically choose appropriate res-

olution to stream. However, they cannot change the bit rate smoothly and the change is discretely

that causes performance cliff problem.

Besides, because of client diversity, end users need and can play different versions of encoded

videos such as particular video resolution and formats. Dynamic video encoding can encode video

according to client requirements, instead of storing every possible versions in cache. Storage can

be used more efficiently.

iProxy provides a novel approach to dynamically encode videos to suitable bit rates and for-

mats. This approach do not need to cooperate with CDN servers, and do not require modification

at both content provider side and client side.

74

Before describing our framework, we give some background on MPEG 4-based video encoding

whom our dynamic encoder is based on.

Mpeg 4-based Video Encoding Figure 3.11 presents a regular Mpeg 4 video encoding process.

The whole process can be divided into discrete cosine transform(DCT), scale, quantization, motion

estimation, and entropy coding.

DCT [55, 56] computes frequency domain data for video content. More important data is

located in low frequency components and data including more detail is located in high frequency

components. DCT is widely used in lossy compression multimedia content such as MP3 and JPEG.

Quantization determines the bit rate of video stream. The quantization process is following

DCT and compresses a range of continuous values into one discrete value. Usually we give more

bits to represent low frequency components, which are more important, and less bits to represent

high frequency components, which are less important. By different quantization strategies, we can

determine the bit rate.

Motion estimation can further reduce video size. Before compressing a video frame, we cut a

video frame into multiple blocks and match these blocks with other blocks in the same, previous,

or following frames. If some blocks are matched, we only keep their reference pointers (also called

motion vectors) instead of blocks themselves. Frames can be categorized into I-frames, P-frames,

and B-frames. I-frames do not refer to any other frames, P-frames refer to earlier frames (usually

I-frames), and B-frames refer to earlier or following frames as shown in Figure 3.10.

Finally, we code all data including the output from quantization and motion estimation using

entropy coding. Entropy coding gathers statistic about how offer each symbol appears. High

frequency symbols are given shorter codes for representation. Thus, in average the length of code

is reduced which decrease the size of encoded videos.

In this paper, we provide a dynamic video encoding which can encode video dynamically into

different bit rate or format according to what clients need.

Dynamic video encoding: a linear bit rate adapter: To provide high QoE in cellular net-

works with channel diversity, iProxy proposes a flexible video bit rate that is closer to available

bandwidth and suitable video formats to match clients’ requirements.

75

Figure 3.10 Video frames refer to other frames to reduce video size.

Figure 3.11 iProxy the flow of mpeg4 encoding.

Many studies use layered video encoding for the channel and client diversity issues such as

MPEG DASH. MPEG DASH pre-encodes a video into several versions with different bit rates

and works with a http server. Each video version is cut into several chunks. Clients measure the

76

 30

 35

 40

 45

 50

 55

 60

 500 1000 1500 2000

P
S

N
R

 (
dB

)

Available Bandwidth (Kbps)

Linear Bit Rate

Figure 3.12 An Example of Performance Cliff Problem.

performance of a current chunk and select the next chunk from different versions. Thus, clients

can dynamically change video bit rates.

However, MPEG DASH encounters Performance cliff [15] problem that causes a waste of

network resources. For example, there are only six versions of videos which provide 38 dB, 42

dB, 46 dB, and 50 dB in peak signal-to-noise ratio(PSNR) as shown in Figure 3.12, but require

channel quality as high as 5 dB, 9 dB, 13 dB, and 17 dB in SNR. we can only serve clients one of

them in any particular time. Therefore, when channel quality is 7dB, network can accept a video

with 40dB quality. However, we can only transmit a video with lower 38 dB quality; sending 42dB

video causes buffering because bandwidth is not enough. Both of the cases result in poor QoE. In

addition, it is hard to predetermine a set of versions that will work for all possible mobile clients

and MPEG DASH needs k× storage space than in iProxy to store k possible versions.

To fully use channel resources, iProxy provides a linear bit rate adapter that dynamically en-

codes videos. Thus, the bit rate of encoded videos can fit any amount of available bandwidth as

the strictly rising line in Figure 3.12. According to channel condition, it can dynamically encode

video with suitable bit rate.

77

Host: gdata.youtube.com\r\n

Connection: Keep-Alive\r\n

User-Agent: com.google.android.youtube/2.3.4(Linux; U; Android 2.2.1; zh TW; HTC Desire Build/FRG83D) gzip

Table 3.1 http header.

At a high level, the linear bit rate adapter works as follows: The original Mpeg 4 encoder uses a

rate controller. The rate controller takes a particular bit rate and feedback from a quantization mod-

ule as inputs. Then, it calculates and adjusts appropriate parameters for the quantization module

to output video stream with this bit rate. iProxy adds two modules to the origial MPEG 4 encoder

that are a link monitor module and an user information module as Figure 3.11. The link monitor

module keeps monitoring available bandwidth during streaming and user information module col-

lects the information of user devices. These two modules provide parameters for MPEG 4 encoder

to determine a right bit rate and format.

To increase the performance of dynamic video encoding, we cache frequency domain data and

motion estimation vectors for each video instead of caching encoded videos. The advantage is we

can skip DCT when dynamic video encoding.

When receiving a video from a video provider, iProxy transforms the video into frequency

domain data and retrieves its motion vectors. As showed in Section 3.1, frequency domain data

is also needed during IBR value calculation. Thus, caching frequency domain data and IBR value

calculation can be done simultaneously.

Different from other mobile video schemes, iProxy don’t need any modification at client and

video provider sides. In addition, it don’t rely on physical layer support. Consequently, it is easier

to deploy in existing infrastructures.

Baseline bit rate using in-context information: A baseline bit rate should be chosen before

dynamic bit rate adapting. The baseline bit rate may be picked up or reset each time we start

a streaming or there is a significant change in the mobile device context. For example, mobile

devices may change associated cell towers or cell sectors during streaming. The change can result

78

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 50 100 150 200 250 300 350 400 450

T
hr

ou
gh

pu
t (

K
bp

s)

Time (s)

Cell ID 1 Cell ID 2 Cell ID 3 Cell ID 4 Cell ID 5

Figure 3.13 Throughput is varied with different CellID/location.

significant available bandwidth change, and we can adapt the bit rate quickly based on the in-

context information. We build a history record about this in-context information. When iProxy

start to stream a video, the history record can be applied to determine the baseline bit rate.

[54] shows how in-context information affects network performance. We also measure the

throughput of 3G networks with five different cell sectors/locations as shown in Figure 3.13. Dis-

tance between any two locations are about 2 miles on average. We can observe that average

throughput in different locations can be as large as 4000 Kbps. Thus, we can set a baseline bit

rate according to the cellID that clients communicate with.

TCP information feedback After picking up a baseline bit rate, we must adapt the bit rate to

fit achievable throughput, which is varying during streaming. For this, we rely on per-packet TCP

feedback; iProxy collects TCP information from network stack such as the congestion window

(CWND) and RTT. This information is a good indicator that shows how congestion a link is. We

can estimate available bandwidth as the following equation.

Available bw =
CWND × segment size

RTT

Finally, iProxy uses an exponentially-weighted moving average (EWMA) of Available bw to

compute a suitable bit rate. EWMA can avoid rapid bit rate shift. We set the alpha to 0.9, which

79

makes bit rate change more smoothly. This bit rate is sent to the rate controller module in Fig-

ure 3.11. iProxy also monitors the changes of cell towers clients communicate to. Baseline bit rate

will be reset, if the changes are detected. If the expected bit rate do not exactly match real net-

work bandwidth, we rely on buffer at client side to smooth the videos. Compared to conventional

video service, our solution uses the buffer more efficiently and reduces the chance to use out the

buffer. Cellular providers may not want video streaming use out bandwidth, so they can set a max

bandwidth for each streaming according to their QoS strategies.

Access control: Video providers may prohibit clients from accessing high resolution video, if

the clients pay less. To realize this access control, we add an access control layer above iProxy that

can set a max resolution for each URL in IBR table or client request. This max resolution is one

of the input of dynamic video encoder and is an upper bound when the encoder adapts bit rate.

Low Start-up Time: Accommodating Client Diversity

Because of client diversity, clients may use varying devices with different operating systems,

screen resolution, and decoders. The video formats clients can deal with may be inconsistent. Thus,

to stream compatible videos, client specific information is required by dynamic video encoding.

Operating systems: One of our goals is to intelligently provides end users videos with suit-

able formats to improve video quality and compatibility. The major operating systems running in

mobile devices include Android, iOS, and windows mobile version. The videos each operating

system can handle are not totally the same. For example, iOS cannot support flash relative format

such as .flv files.

Most of video requests use Hypertext Transfer Protocol (http). A http header provide some

useful information including an operating system version as Table 3.1.

In this example, the field User-Agent shows client’s operating system version, which is Android

2.2.1 and its device model, which is HTC Desire.

Screen resolution: The common screen resolutions of smartphones vary from 240x320 to

720x1280 as shown in [57] which is the maximal resolution a smartphone can show. Thus, it

80

is unreasonable to send a smartphone videos with resolution larger than the smartphone can play,

because larger resolution means higher bit rate that consumes more bandwidth and smartphones

take longer time to pre-process high bit rate videos before the video plays. The smartphone needs

to shrink video resolution to fit its screen resolution. It wastes network bandwidth and increases

start-up latency.

As showed earlier, we can retrieve device model from packet headers and the screen resolution

of any particular model is fixed. This is the upper bound of resolution iProxy should provide to

end users. It means we may reduce the resolution if the screen resolution cannot support high

resolution videos.

Decoder: iProxy should deliver compatible video formats to end users that means we should

ascertain what end users can decode. The videos end users can decode are decided by the decoder

end users install.

Operating systems in-built support some video decoders. For example, as shown in [58], An-

droid 2.3.3 supports 3GPP(.3gp), MPEG-4(.mp4), MPEG-TS(.ts), and webM(.webm). Different

operating systems may support different video formats. Thus, the operating systems end users use

give us an important hint what video formats they can decode.

However, end users may install other extra decoders. For instance, end users can install flash

player to play .flv videos. This information can be provided by application markets such as Google

Play or 3G providers.

Device power In [59], smartphones consume more power to decode higher resolution videos.

The smartphone HTC Touch HD consumes two times more power to decode DivX video in VGA

resolution than to decode DivX videos in CIF resolution. Decoding videos in CIF also consume

more power than decoding videos in QCIF. Moreover, video formats affect power consuming, too.

For example, videos in H.264 format save more power than videos in DivX.

Therefore, iProxy should deliver videos in suitable formats and resolution depending on device

power level, especially when power is low. However, retrieving power level without modifying

end users is difficult. It is helpful to let end users insert power level into http request, so iProxy can

decide how to encode videos according to this power level.

81

When the power level drops under a threshold, dynamic video encoder in iProxy encodes

videos in lower resolution which may be lower than the screen resolution of end user’s devices. It

is a reasonable strategy to keep mobile devices longer when video playback.

Applicability to Prefetching

While iProxy operates as a cache, it is also applicable to prefetching which is becoming popular

in the mobile video context. In particular, the cellular provider can prefetch high quality versions

of videos that users are likely to access and store the corresponding frequency domain representa-

tions in iProxy, just as above. For each entry created in this manner, the provider can also obtain

a list of URLs where alternate versions of the video are stored; this could be done by crawling

the Web and identifying the duplicates of the stored entries using the IBR matching algorithms

described in Section 3.1. Subsequently, iProxy operates just as described above both in terms of

how storage is managed and how content is streamed.

Scalability

In Section 3.4, we show that the time needed to dynamic-encoded video is 42 times shorter

than the video’s length, so one single machine can support multiple clients at the same time. To

support even more clients simultaneously, we can leverage parallelism, as shown in Figure 3.14.

Here, a single cache tries to match requested videos and download unmatched videos. In addition,

there are multiple nodes that work on dynamic video encoding. Encoding workload can be spread

among these nodes. All requests are sent to the cache first and, after obtaining the requested videos,

each video is redirected to one of the dynamic video encoding nodes. The dynamic encoding nodes

finally transmit videos to clients with a specific video format. Cellular network providers can add

dynamic video encoding nodes based on expected total workload.

82

Figure 3.14 Multiple dynamic video encoding nodes can be added to improve scalability.

3.4 Evaluation

Our evaluation addresses the following issues: (a) Caching: How do different replacement

policies compare and how important is info-awareness? How much cache storage is needed? (b)

Handling diversity: To what extent does selecting the right resolution and encoding help improve

start up times? (c) Dynamic encoding: How well does dynamic encoding adapt to changing

conditions? Does it lead to improvements in quality metrics such as buffering rate and bit rate that

impact end-user QoE?

We first describe our prototype implementation.

Implementation

At the client side, we use unmodified Android smartphones, running VPlayer [60]. VPlayer

can send a request with a URL to iProxy through a 3G connection.

83

We implemented iProxy in a 4-core desktop with Intel(R) Core(TM)2 Quad 2.66GHz CPU

Q6700 and 8GB RAM. Our prototype proxy, written in C, can fetch videos from video providers,

calculate IBRs, compare IBRs, cache raw video data, match videos, and dynamically encode

videos. We modified the pHash library [61] to calculate IBRs.

For each request, our proxy iProxy checks its IBR table; we use a locality-sensitive hash-

ing (LSH) [62] based index to aid fast lookups at scale. If the URL is not in the table, iProxy

downloads the video from an original website and redirects it to the client. After the video is

downloaded, we derive its IBR, and compare this IBR to others in cache (using LSH to retrieve

candidates, and then obtaining nearest matches). If we find a matched IBR, we delete the copy

with lower quality and update the IBR table by adding the new URL.

The video is then sent to a modified FFmpeg [63] module that supports our dynamic video

encoding. It interprets requests from clients to determine client-side constraints. FFmpeg uses

FFserver [64] to stream the video to VPlayer in the client’s device. During streaming, the FFserver

module retrieves dynamic CWND and RTT by reading the relevant network stack variables and

calculates suitable video bit rates to use. It then sends this information to FFmpeg which adapts

bit rate.

Traces

Our analysis of iProxy relies on two sets of real traffic traces. Our first trace is the Web video

data set [65] we used the motivating statistics in Section 3.1. This data set had a total of 10,000

videos corresponding to the search results for the top 25 queries at three popular video content

providers. This amounts to about 400 URLs per query: note that the videos corresponding to some

of the URLs corresponding to a query may point to the same underlying information, whereas

others may correspond to “related” videos that have entirely different information altogether.

In addition, we leverage packet traces collected over the University of Wisconsin’s Wireless

Network. The traces span three days, from April 26, 2010 (Monday) to April 28, 2010 (Wednes-

day). We prune the traces to only capture the subset of devices that are known to be smartphones

84

or tablets, using the techniques identified in [2]; the techniques have known false negatives (but

minimal false positives), meaning that we don’t capture all handheld devices. Furthermore, we

focus mainly on the trace subset containing the HTTP protocol. For each packet, we collect the

first 128B, which includes the HTTP header. The total size of the videos is about 300GB.

We identify video traffic based on the “content type” field in the HTTP header, similar to [2].

We derive URLs from the HTTP requests for videos, and download the corresponding video files

in their entirety. The total size of the videos is about 40 GB. 58% of these videos are duplicated

requests according to their URLs (their URLs are them same as another videos in the data set). In

addition, 21.5% videos are unique videos that means 78.5% videos includes the same content with

other videos.

Caching: Hit Rates, Storage, Deployment

Replacement Policies: To evaluate the performance of our IBR specific cache replacement

policies, we can compare it with other traditional cache replacement policies, including FIFO,

Least Recently Used (LRU), Least Frequently Used (LFU), and Greedy Dual Size-Frequency

(GDS) [66]. Unless otherwise specified, we assume that the underlying cache is IBR-based. We

use hit rate (HR) as the main metric to compare the policies. We use different cache size to do the

evaluation that are 20 GBytes, 15 GBytes, 12 GBytes, 8GBytes, and 4GBytes. We also compare

iProxy with conventional proxy with GDS policy marked as ”No IBR”.

Results from our analysis of the university data set are shown in Figure 3.15. If we use a cache

as large as 20 GB, iProxy with any replacement strategy can catch almost all duplicate URLs.

However, conventional proxy (marked as No IBR in Figure 3.15) cannot (1.8% less than iProxy),

because they don’t use cache space efficiently. When cache size gets smaller, the performance

difference of replacement policies becomes more obvious. If we just use FIFO, the hit rate is even

worse than a conventional proxy, when cache size is less than 12 GB. The conventional proxy use

GDS policy that works much better than FIFO, so iProxy with FIFO loss its benefit.

85

 20

 25

 30

 35

 40

 45

 50

 55

 60

 4 6 8 10 12 14 16 18 20

H
it

P
er

ce
nt

ag
e

(%
)

Cache Size (GB)

LFU-basedIBR score
LRU-based IBR score

GDS

LFU
LRU

FIFO

No IBR

Figure 3.15 Hit rates for various cache policies in iProxy.

Other replacement policies can get benefit from IBR-based iProxy. When cache size is larger

than 12 GB, they achieve similar performance as 20 GB cache size. Even when cache size is as

small as 8 GB, iProxy still can catch 92 % of duplicate requests. Among these policies, our newly

designed LFU-based IBR score works better than others, especially when cache size is small. LFU-

based IBR score is 7 % better than GDS and 28 % better than conventional proxy with 8 GB cache

size. When the cache size shirks to 4 GB, LFU-based IBR score is 10 % better than GDS and 65

% better than conventional proxy.

In summary, iProxy can improve cache hit rate as much as 65 % when cache size is small. In

addition, with our newly designed policies (LFU-based IBR score and LRU-based IBR score) can

extend the benefit, because they are aware of the importance of information as captured by the

hit rate across multiple related URLs. This shows that we need to use an info-aware replacement

policies to realize the benefits of iProxy.

The rest of the paper assumes the LFU-based IBR-score policy is employed in iProxy with

12GB cache.

A closer look at hit rate: To obtain better insights into the results above, we now examine: (1)

hit rate over time and (2) the coverage of URLs. We compare iProxy with a conventional proxy that

uses URLs to identify videos and the GDS replacement policy which prior works have identified to

86

Hit rate evaluation

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

26/12 26/18 27/00 27/06 27/12 27/18 28/00 28/06 28/12 28/18
H

it
ra

te
Time (day/hour)

(a)

regular proxy
iProxy

 0

 20

 40

 60

 80

 100

26/12 26/18 27/00 27/06 27/12 27/18 28/00 28/06 28/12 28/18

T
he

 r
at

e
iP

ro
xy

 o

ve
r

re
gu

la
r

pr
ox

y

Time (day/hour)

(b)

Figure 3.16 Hit rate evolution. Y-axis is time: 28/06 refers to 6AM on April 28th.

be optimal for conventional caches. Figure 3.16 shows the hit rates of the two caches. The y-axis

represents time in day/hour format.

We write a proxy emulator by C++ and feed the same university trace file as Section 3.1 into it

and count how many requests can be hit by iProxy and a convention proxy. Proxy setup is also the

same as Section 3.1.

Before 18:00 April 26, the cache is not full, so we cannot see any benefit from using iProxy.

After that iProxy can perform better than a conventional proxy. The improvement ranges from

0-20%. In addition, the highest benefit we can see is 100% HR improvement which happens at

10:00 April 28.

Larger URL coverage benefits hit rate improvement. To show this fact, in Figure 3.17, we

compare URL coverage between the conventional proxy and iProxy. The URL coverage of iProxy

increases dramatically compared to conventional proxy just after the cache has warmed up, because

until this time most entries only cover a single URL in iProxy. Soon, many of them are replaced

by new entries with multiple URLs. Over time, some entries with multiple URLs may be replaced,

so we cannot see significant URL coverage increases, but the coverage continues to be better than

a conventional proxy.

Storage Requirement: Recall that iProxy stores the frequency domain (DCT) data for the

highest quality video each IBR entry. What storage cost does this impose? As exemplified in

87

 0

 200

 400

 600

 800

 1000

 1200

26/12
26/18

27/00
27/06

27/12
27/18

28/00
28/06

28/12
28/18

T
he

 N
um

be
r

of
 U

R
Ls

C
ov

er
ed

Time (day/hour)

Conventional proxy
iProxy

Figure 3.17 URL coverage evaluation

Table 3.2, DCT data is larger than individual video files (we show only four different bit rates for

a single example video), but: (1) the difference is not significant compared to any single video file

(2.1X in the worst case) and (2) the DCT data size is 2.4X smaller than the sum of the sizes of

the individual video files, meaning that iProxy outperforms the naive strategy of storing multiple

versions.

Deployment Evaluation: As mentioned in Section 3.2, the performance of iProxy depends on

where we deploy it and what is the served population. If we put iProxy closer to clients, the latency

is lower and performance better. However, less served population means lesser overlap in accesses

which affects hit rate. We study this question using an emulation based on our traces.

To understand this, we first measure the throughput between a machine at our university and the

nearest YouTube server, which determines the cost of a cache miss and the relative improvement

from a hit. We calculate mean and variance, and model the cost as a normal distribution. In

addition, we use the data in [67] which shows the delay to RNCs, to SGSNs, and to GGSNs from

UEs in a tier-1 cellular network.

We identified a total of 1400 unique users in our traces. We divide them into smaller groups

and associate each group with a node in the same level of the cellular hierarchy. We compute

and report the average throughput across all the groups. The results are shown in Table 3.3. In

this table, the entry corresponding to row “500” and column “SGSN,” means that we divide the

1400 users randomly into three groups of 500, 500, and 400, and “assign” them to 3 SGSNs.

We emulate requests of UEs in each group, identify cache hits/misses and compute the effective

88

Video bit rate Size

885 kbps 3744 KB

1063 kbps 4588 KB

1277 kbps 5403 KB

1385 kbps 5862 KB

DCT data 8154 KB

Table 3.2 For a single example video, we show the size of the raw data stored with an iProxy

cache entry, vs. that of different formats of the video file.

throughput observed by the clients. Each miss goes to the YouTube server, whereas a hit is served

from cache.

Our goal is not to show that one location is clearly better than the other, but rather to show

the trade-off between population density, iProxy location and performance, helping the cellular

providers make the appropriate choices. In general, our results show that when the population

density is low (e.g., 300 users per RNC, 800 or more at SGSN, and 1400 or more at GGSN),

aggregating a few number of iProxy’s at the SGSN and GGSN is reasonable. When the population

density is high (e.g., 1400 users at an RNC), deploying at the RNCs is a good choice.

QoE

The setup we use to test iProxy’s ability to support good QoE is shown in Figure 3.18. We

stream videos from a iProxy proxy located on our campus to mobile phones also located close by.

However, the transfers themselves traverse the Internet and the cellular backbone before reaching

the end device. In practice the proxy would be deployed a lot closer to clients; thus, our experi-

ments below show a lower bound on the effectiveness of iProxy in ensuring QoE.

Start Up Time

We setup an experiment to show how iProxy improves start up latency. Here, we assume a

set-up where users click on embedded links to videos, e.g., links in emails, blogs, etc.

89

Population RNC SGSN GGSN

1400 1373.55 kbps 1303.9 kbps 1271.93 kbps

800 1282.18 kbps 1259.99 kbps 1176.55 kbps

500 1244.51 kbps 1194.67 kbps 1182.06 kbps

300 1190.22 kbps 1165.02 kbps 1123.62 kbps

Table 3.3 Throughput vs. location and population.

Figure 3.18 Experimental scenario for video performance.

In Table 3.4, we stream three different videos to an Android smart phone (Samsung GALAXY

SII) with a 480×800 screen. The first video is in VGA (640×480 resolution, .flv) from Dailymo-

tion, the second one is in XGA (1024×768 resolution, .flv) from YouTube, and the third one is in

360×288 (.asf) resolution from Yahoo! Video. The first column shows the improvement in video

start up latency in seconds in the case where both iProxy and a conventional proxy observe a cache

hit for the video request. The second column shows the improvement when only iProxy observes

a cache hit.

90

Daily-motion YouTube (HD) Yahoo Video (.asf)

Both hit 0s 13s ∞

iProxy hit 2s 14s ∞

Table 3.4 Improvement in video start up latency using iProxy and a conventional proxy. ∞ means

the client cannot play the original video format, but can play re-encoded video from iProxy.

The video from Dailymotion is in a suitable format and resolution for client’s device, so when

both two proxies see a cache hit, iProxy does not offer any improvement. However, when a con-

ventional proxy does not see a cache hit, it takes two extra seconds to retrieve the video from

Dailymotion, delay start-up correspondingly.

The resolution of the second video from YouTube is much higher than the smartphone can play,

causing the phone to spend time filling its cache and pre-process the video. Furthermore, because

of the resolution mismatch, the XGA video appears pixelated on the smartphone. iProxy lowers

start up latency by 13s; it also converts the video into a more suitable resolution (VGA).

The smartphone simply cannot open and play the third (.asf) video file. iProxy converts the

video into a suitable format (.mpg), so the smartphone can still play it.

Bit Rate and Buffering

Speed: To support user video playback without lag, the time needed to dynamically encode a

video from raw data should be small, otherwise users may face stalls waiting for encoded video

data. To study this, we use modified ffmpeg to encode video into different bit rates to observe

encoding speed compared to video length in seconds. We choose a 590s video and encode it with

bit rates from 200 kbps to 1000 kbps. As shown in Table 3.5, encoding times are similar no matter

the bit rate, and are 42 times shorter than the video length. This provides evidence that dynamic

video encoding can work on-line, matching real-time video playback requirements. This is further

evidenced by our experiments below.

at a fixed rate picked based on initial measurements, a common mode of operation even for

high-end video content servers today. We also compare two alternative solutions: (1) we choose a

91

Video length 586.98 sec

200 kbps 13.34 sec

400 kbps 13.94 sec

600 kbps 14.03 sec

800 kbps 14.36 sec

1000 kbps 14.54 sec

Table 3.5 Video length and encoding time

Bandwidth Fixed-rate Startup Dynamic

400 kbps 15fps/35s 24fps/9s 30fps/0s

500 kbps 19fps/21s 29fps/1s 30fps/0s

600 kbps 21fps/15s 26fps/5s 30fps/0s

700 kbps 26fps/5s 27fps/4s 30fps/0s

Table 3.6 We measure average frame rate and total stall time (frame rate/stall time) during

streaming in three cases: (a) fixed bit rate, (b) choosing bit rate at startup time, and (c) dynamic

bit rate adapting.

bit rate at startup time based on in-context information and stick to this bit rate during streaming,

and (2) we dynamically adapt bit rate during streaming by collecting TCP feedback. We compare

three video streaming schemes that are fit rate, choose bit rate at startup time, and dynamic bit rate

adapting. The test video is encoded as 800 Mbps in bit rate, and 30 fps.

Table 3.6 shows that fixed-rate mode is dramatically affected by available bandwidth. It keeps

bit rate fixed at 700 kbps, so when available bandwidth drops, frames of the video cannot arrive at

the smartphone on time which forces frame rate to drop. It can keep 26 frames per second when

bandwidth is higher than 700 kbps. However, the frame rate drops a lot at lower bandwidth, and it

can reach only 15 frames per second with bandwidth at 400 kbps.

If we choose a bit rate at startup time based on in-context information, its bandwidth require-

ment is closer to available bandwidth, so the video streaming can keep higher frame rate and lower

stall time than fixed-rate mode. However, we still can observe some frame rate drop and stall time.

iProxy can change bit rate dynamically according to available bandwidth; thus, it still keeps

high frame rate when bandwidth drops. It can achieve more than 30 frames per second even when

bandwidth is as low as 400 kbps.

92

We also measure total buffering time, a key indicator of user engagement Table 3.6 shows

that iProxy can provide video with almost no buffering time, but fixed-rate video still suffers some

buffering even with bandwidth as high as 700 kbps. Thus, iProxy can provide stable video playback

even if bandwidth is low.

To measure the efficacy of our linear bit rate adapter in improving QoE, we experiment with

scenarios where we estimate how well iProxy functions with rapid changes in network conditions.

In each scenario we first send a video around 50 seconds long with a starting bit rate of 800 kbps

to a smartphone over 3G. Every few seconds, a bandwidth shaper kicks in at the desktop where

iProxy is running to change the available bandwidth according to a pre-defined pattern. Note that

the available bandwidth is also affected by channel diversity; this is not in our control. We measure

the average bit rate received by the smartphone and the extent of buffering, both of which impact

engagement.

We compare our linear adapter against a version of iProxy that uses the state-of-the-art MPEG

DASH scheme. Note that this scheme does not use cellular phone context. Also, it employs

k different versions of the video (Section 3.3). While using large values of k enables greater

adaptation, it also uses more storage. To strike a balance, we select k = 4, which uses nearly 2X

more storage than iProxy with the linear adapter.

We tried out several different scenarios, each with a different way in which bandwidth gets

shaped. We shows results for two randomly picked scenarios below.

Note that FFmpeg reports video bit rate of encoded video every two seconds.

Figure 3.19(a)shows the change in video bit rate in Scenario 1. In the beginning, the available

bandwidth out of the desktop is 1000 kbps and video bit rate used by our linear adapter (Figure a)

varies between 700 kbps to 1400 kbps. The variation is caused by uncontrolled background traffic.

Twenty seconds later, when the bandwidth is shaped to 500 kbps, our linear adapter can detect the

change and reduce the bit rate to around 400Kbps to avoid frame loss; our linear adapter keeps bit

rate at 400 kbps. Note that, despite the use of EWMA, our linear adapter adjusts bit rate almost

immediately after TCP detects packet loss. However, because of the use of a buffer in clients,

these bursts in bit rate do not cause any perceptible impact to the user. When available bandwidth

93

drops further to 300 kbps, it is detected by our linear adapter based on the smaller average CWND,

causing the linear adapter to continue to decrease the bit rate. Because TCP CWND can reach

available bandwidth more quickly when bandwidth is low, the bit rate used by the linear adapter

can more closely match the available bandwidth. On the whole, the average bit rate used by our

linear adapter is 490Kbps.

Figure 3.19(b) shows the bit rate used by MPEG DASH. While DASH can also adapt, we see

that its bit rate is often significantly lower than the available bandwidth, due to the discrete choices

available (e.g., between 40s and 60s). The average bit rate of DASH is about 430Kbps; our linear

adapter’s bit rate was 16% higher on average. Between 40s and 60s, our linear adapter’s bit rate

was twice as high as DASH (200Kbps vs 100Kbps).

Figures 3.20(a) and (b) show the results for a second scenario where the shaper causes oscilla-

tions in the bandwidth. For the linear adapter, we observe that the bit rate gradually falls between

0 and 20s, perhaps because of poor channel conditions which cause the true available bandwidth

to be much lower than the 1000Kbps limit set by our traffic shaper. Our scheme starts by using

an statically picked initial rate of 1000Kbps; however, if the intial rate were set based on an ac-

curate available bandwidth measure such as that inferrable from the latency spread observed for

TCP ACKs, we would have picked a better initial bit rate. In general, relying on direct available

bandwidth estimates in this fashion could help our bit rate adapter pick better rates even during the

course of streaming, compared to our current scheme of using CWND/RTT; we plan to extend our

adapter to work in this fashion in the future.

At around 20s, the bit rate settles to around 400Kbps. After 40s, the traffic shaper sets the

bandwidth to 500Kbps, and our linear adapter immediately adapts its bit rate to around 450Kbps. In

contrast, MPEG DASH generally uses lower bit rate than our linear adapter (410Kbps, on average),

especially in the 20-60s time period where it is nearly 40% lower.

In both cases, our scheme suffered from no buffering events. In contrast, MPEG DASH saw

up to 1s of buffering. While this may seem insignificant, prior studies [68] show that this lowers

engagement to levels that start to matter to content providers.

94

iProxy MPEG DASH

Scenario 1 552.45 Kbps 458.17 Kbps

Scenario 2 565.97 Kbps 451.53 Kbps

Table 3.7 We repeat the experiment 100 times for each scenario, and iProxy provides higher

average bit rate in both scenario.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

B
it

R
at

e(
K

bi
ts

/s
ec

)

Time (sec)

(a) Linear adapter

Bandwidth
Video Bit Rate

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

B
it

R
at

e(
K

bi
ts

/s
ec

)

Time (sec)

(b) MPEG DASH

Bandwidth
Video Bit Rate

Figure 3.19 Scenario 1: the available bandwidth set by the shaper falls over time. The left figure

is for iProxy using the linear adapter, the right is using MPEG DASH.

We repeat the experiment 100 times for each experiments for each scenario, and calculate

average video bit rate for each instance. Then, Table 3.7 shows the average video bit rate of all

instances for the two scenarios. We observe that iProxy works better than MPEG DASH in both

scenarios, and the improvement is 21 % and 25 %, respectively. Therefore, iProxy provides videos

with higher quality in terms of video bit rate.

Sensitivity Because iProxy estimates available bandwidth using simple passive measurements,

there is a possibility of error especially when the available bandwidth drops suddenly. To under-

stand how this impacts QoE, we use the same setup as above, but shape bandwidth such that it

drops suddenly from 2000 kbps to 400 kbps roughly 11s into the video (total length of 40s). We

observe that the video stream suffers from around 1s of buffering in all. While this is not conclu-

sive, it indicates that iProxy’s adaptation scheme is reasonably robust against sudden variations.

95

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

B
it

R
at

e(
K

bi
ts

/s
ec

)

Time (sec)

(a) Linear adapter

Bandwidth
Video Bit Rate

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

B
it

R
at

e(
K

bi
ts

/s
ec

)

Time (sec)

(b) MPEG DASH

Bandwidth
Video Bit Rate

Figure 3.20 Scenario 2: the available bandwidth set by the shaper oscillates. The left figure is for

iProxy using the linear adapter, the right is using MPEG DASH.

For completeness, we also study a more tradition quality metric, namely Peak signal-to-noise

ratio (PSNR). PSNR is calculated by comparing the difference in quality between raw videos and

compressed videos. Higher PSNR means higher quality. There are two aspects that affect PSNR:

(a) frame loss: if some frames are dropped, a lot of information in the video will be lost, and (b)

the bit rate: lower bit rate means we lose more information. We use an emulation-based study that

also models cache deployment alternatives.

For the test video we used above, the video is compressed with 30.9dB in PSNR and 2.53Mbps

in bit rate; thus, these are the maximal PSNR and bit rate we can achieve with iProxy’s dynamic

encoding module. We emulate three scenarios representing situations where proxies are located at

the RNC, SGSN, or GGSN. We assume network bandwidth is 1.5Mbps. The average delay from

the RNC to a mobile device is 90ms, from SGSN to a mobile device is 101ms, and from GGSN to

a mobile device is 114ms. We measure the PSNR of the received video at the mobile device. We

assume that the video player in the mobile device can buffer 10 seconds worth of video and drop

any frames that pass the assigned deadline.

Figure 3.21 shows PSNR when different approaches are used to send the test video for each

of the three deployment options. The first bar shows the original compressed video. The second

96

 0

 5

 10

 15

 20

 25

 30

 35

Located at
RNC

Located at
SGSN

Located at
GGSN

P
S

N
R

 (
dB

)

Original Video
iProxy

Low Quality Video from Conventional Proxy
Original Video from Conventional Proxy

Video from original source

Figure 3.21 Video quality evaluation

bar is the PSNR of a video sent by iProxy. iProxy decreases video bit rate when available network

capacity is lower. Thus, it suffers no frame loss and its PSNR is only slightly lower than the

original video. In the RNC case, its PSNR is 11% lower, and in the GGSN case it is 15% lower,

showing that iProxy’s performance suffers with network delay.

The third bar in Figure 3.21 shows the case where we keep the video bit rate as low as possible

instead of adapting bit rate; this options can also prevent frame loss. However, lower video bit rate

means lower quality video and lower PSNR; and even though there is available network capacity

it is left unused. Since this approach suffers no frame loss and uses fixed bit rate, the PSNR is the

same in the three scenarios but it is inferior to iProxy in all three cases, Furthermore, compared to

iProxy, this schemes leave 20% bandwidth unused in the RNC case, 18% bandwidth unused in the

SGSN case, and 15% bandwidth unused in GGSN case.

The fourth bar shows a conventional proxy sending high quality video directly to mobile device.

It results very high frame loss rate, and consequently has poor PSNR. In addition, the video quality

is affected much more drastically by network delay compared to iProxy. For example, PSNR drops

55%, if we move the proxy from RNC to GGSN.

The last bar shows video quality when we stream the video directly from the video source.

Without any help from proxy systems, the quality of video streaming is not acceptable with very

low PSNR (i.e. 4.75dB). High delay and frame loss on the long path between video sources and

97

mobile devices hurt PSNR a lot.

Summary

In sum, our evaluation shows the following:

• iProxy can improve cache hit rates by 20% to up to 1.6X for the two traces we studied,

compared to conventional proxies using state-of-the-art cache replacement schemes. Using

information-aware schemes is crucial. iProxy uses 2.4X less storage than a naive cache

design.

• iProxy improves start up delays by 2-14s compared to a proxy that is not intelligent in se-

lecting the right video version to serve to a client when a URL is requested. In some cases,

iProxy can play video that a conventional design simply cannot play.

• iProxy’s linear adapter improves bit rate by 16% compared to state-of-the-art MPEG DASH

scheme. Our adaption scheme gracefully changes bit rate in response to changing network

conditions. Buffering is minimized, if not virtually eliminated.

98

Chapter 4

Related Works

There are many researches working on optimizing traffic and improve service performance. In

this section, we discuss some previous works.

4.1 Finer-grained RE

To optimize transmission, many studies remove unnecessary content from traffic called redun-

dancy elimination (RE). The basic idea is to scan the payloads of packets and compare them with

previous traffic. Matched content is replaced by small shims in packets that reduces the size of the

packets. Finally the payloads is cached for future use.

EndRE: it deploy RE in end systems as a service [9]. The advantage is that it can work with

end-to-end encrypted, but it cannot benefit inter-path traffic that reduces the change to remove

redundancy. EndRE discusses how to match payloads in packets in detail. It cuts payloads into

smaller chunks and tries to match these chunks with the chunks in previous traffic. Three chunking

schemes including MODP, MAXP, FIXED, SAMPLEBYTE are presented in EndRE and their

performance in terms of bandwidth saving is evaluated. Thus, EndRE gives the overview of how

to do chunk match in an RE system.

SmartRE: Instead of deploying RE in end systems, SmartRE [10] applies RE in routers. Re-

dundancy is removed by upstream routers (encoders) and recovered by downstream routers (de-

coders). SmartRE further optimizes this approach by spreading decoding responsibility into multi-

ple hops. It also takes intra-path traffic into account which means SmartRE can remove redundancy

appearing between different paths to capture more chance to shorten packets. SmartRE relies on

99

a central controller to arrange decoding responsibility according to available resources (CPU and

memory) in routers and traffic features.

Asymmetric Caching: Because of the roaming of mobile devices, the upstream cache for RE

may be different at different time. It results that the upstream cache is likely to be aware of only

part of a downstream cache in a mobile device and limits the amount of bytes we can reduce. To

solve this problem, [69] deploys larger cache in mobile devices that can carry more content that

go through different upstream caches. They shows that their solution can improve RE performance

by 100%. However, the resources in mobile devices are more limited. It is not practical to use

larger cache in mobile devices.

However, both of EndRE and SmartRE are designed for wired networks. They cannot take

mobile and wireless features such as overhearing nature into account. Although asymmetric cache

is designed for mobile devices, it do not consider the overhearing nature, ether. Thus, they lose

some opportunity to cache more useful content in channels.

4.2 Solutions Relying on Wireless Overhearing Nature

Wireless transmission broadcast bytes into channel, so nearby devices have opportunity to

overhear these bytes. This overhearing nature can be used to optimize transmission.

RTS-ID [11]: Before transmitting a packet to a receiver, a sender piggybacks its packet ID into

an RTS message. RTS is sent before packet transmission. The receiver can check if this packet

is already in its cache. If it is, the receiver send back a CTS-ACK and the sender won’t send this

packet. Thus, RTS-ID can save some transmission, if some packets have been already cached.

MORE [28]: It applies network coding into mesh networks. A sender broadcasts packets

into channels. Some nodes that are far away from the sender still have chance to overhear some

packets. Instead of forwarding all packets, a relay combines packets by network coding, and the

receiver can decode the encoded packets by the packets it has overheard. MORE also reduces some

transmission, if a receive can overhear some traffic.

ExOR [12]: It is also a solution for mesh networks. A sender broadcasts a packet into a

channel. Multiple relays may overhear and receive this packet. The system will choose one of

100

them that is closer to the final destination to forward the packet. It can reduce the number of hops

to reach the final destination. ExOR uses estimated transmission (ETX) to estimate the distance.

MIXIT [70]: As ExOR, a sender broadcasts packets, and the relays who receive the packets

combine them by network coding and forward them, even if the received packets are partially cor-

rect. Relays use SoftPHY to recognize which chunks are received correctly and provide hints.Then,

receivers can decode packets based on encoded packets with different network coding combination

from relays.

DITTO [14]: It cuts objects into multiple chunks. When a client requests an object, Data-

Oriented Transfer (DOT) service provides it what chunks are needed. Then, requested chunks are

forwarded between relays, and can be overheard and cached by nearby relays. If a requested chunk

has been already in the cache of a relay, we can save the transmission from a sender to this relay.

DITTO leverages wireless overhearing nature and benefits inter-flow traffic.

MicroCast [71]: They propose a video streaming system that uses multiple interface to down-

load videos. A video is cut into several segments, and the segments are send to different clients

who request this video through cellular links. Then, the clients request missing segments from

other clients by using WiFi. Clients also overhear the requests between other clients. Their goal

is to reduce the load of cellular networks and avoid unnecessary transmission by overhearing on

WiFi. They match the overheard data as large as several packets.

These approaches use wireless overhearing nature well, but there are two major drawbacks.

First, they are not finer-grained enough to match redundancy content. RTS-ID, MORE, ExOR,

and MIXIT match content in packet level; DITTO and MicroCast match and cache data as large

as 8-32 KB. The second drawback is that they excepting RTS-ID can only apply to mesh networks

and cannot benefit other scenarios such as infrastructure mode.

4.3 Video proxy

With growing mobile multimedia traffic, we want to improve video watch experience in wire-

less environment. Previous studies put one or more middle boxes as proxies to reduce the traffic

from remote video providers.

101

MiddleMan [24] gives an idea that putting videos closer to clients can reduce start-up delay and

the chance that video quality is disrupted by network condition. To increase scalability, MiddleMan

deploys local proxy in each client and some standalone proxies. Each proxy responds to cache

different videos, so storage can be use efficiently. When a client requests a video, it asks its

local proxy first, and then ask others. To coordinate proxies and locate videos, MiddleMan uses a

coordinator.

MiddleMan reduces start-up time and gives more smooth video playback. However, our work

called iProxy can further reduce redundancy cache by applying IBR to identify videos which is

evaluated to provide better cache hit rate. In addition, MiddleMan needs to modify client side,

because they communicate with a coordinator to figure out what to cache. It makes deployment

difficult.

As a general proxy, MiddleMan identifies videos by URLs. Thus, videos with the same content

will be recognized as different videos and is put into cache. In addition, MiddleMan cannot adapt

videos according to client diversity and channel diversity, so QoE cannot be guaranteed.

4.4 New Video Encoding Schemes

Some existing approaches improve video streaming by changing video encoding schemes to

protect important video frames.

SoftCast [15]: The authors argue that whole video encoding process from DCT to 16-QAM

encoding should be linear. SoftCast replaces non-linear entropy coding by scaling up important

DCT components to provide error protection in wireless networks. Wireless channel quality varies

with different time and location and different clients encouter different channel quality; SoftCast

broadcasts videos to the clients, and the clients can decode videos even if some bytes are lost.

FlexCast [72]: It encodes a video by grouping equally important bits of a video using distor-

tion grouping. Then, they modify Raptor codes [73] to do rateless video coding to protect more

important groups. Thus, they reduce the chance to loss important bits, and keep video quality even

in unstable wireless channels.

102

The new video encoding schemes above can successfully protect videos from unstable channels

and provide good video quality. However, they need to modify physical layer that introduce the

difficulty of deployment on existing infrastructures.

4.5 Video Adaption

To achieve better QoE in unstable wireless channels, many studies adapt video bit rate to avoid

using out available bandwidth.

Scalable Video Coding (SVC): It considers network conditions to send suitable versions

of videos encoded using H.264/SVC [74] in a P2P VOD system. Their work can use network

resources efficiently by choosing the appropriate bit rate.

Smooth Streaming: It is similar to MPEG DASH (they can be thought of as vendor-specific

realizations of DASH). It pre-encodes different versions of videos, and according to the feedback

from a client, Smooth Streaming sends a suitable version to the client.

SVC and Smooth Streaming can change bit rate dynamically, but they cannot provide linear bit

rate adaption. Instead, they only choose one of pre-encoded versions when available bandwidth

change is detected. The non-linear bit rate adaption cause performance cliff problem as mentioned

in Section 3.3.

Vantrix [75]: It transcodes and adapts videos based on user devices and available bandwidth

in real time. It results in efficient bandwidth usage and better user experience. Vantrix also pro-

vides a smart caching to store popular videos and save the bandwidth in Internet backhaul. How-

ever, Vantrix still uses URLs to identify videos and may cache redundant videos. In addition, it

transcodes videos from original format instead of from frequency domain data; it leads to consume

more computational power to do DCT process for every streaming.

4.6 Video Traffic Optimization

Some other studies optimize traffic specifically for video traffic.

103

MuVi [76]: It keeps monitoring channel qualify from channel state information (CSI) that is

reported by mobile devices. Based on the channel quality, they determine what modulation and

coding scheme (MCS) is robust. Higher MCS provides more bandwidth, but results in higher bit

error rate (BER). In addition, B-frames are the last important data in video stream, so MuVi uses

higher MCS to transmit them and then we can complete B-frame transmission quickly. I-frames

and and P-frames use most robust MCS that protects them from random loss.

AVIS [77]: It proposes a framework to schedule traffic for adaptive bit rate videos such as

MPEG DASH. MPEG DASH can change video bit rate based on channel quality. However, the

bandwidth estimation may fail because of co-existing flows. It results in unfair resource allocation

among video flows. Thus, AVIS solves this problem by modeling a traffic schedule algorithm

on wireless links. They can achieve fairness, and high bandwidth utilization. By enforcing the

bandwidth allocation, MPEG DASH adapts to a suitable bit rate.

RSVP Related: In [78, 79], they provide a framework to deal with QoS problem in wireless

networks. When a mobile device handovers to another AP, it is difficult to keep QoS guarantee

by using Resource Reservation Protocol (RSVP) [80], because of the delay of mobile IP [81]

registration. [78] puts a QoS proxy behind each access point (AP), the proxy in neighbor APs

pre-reserves resources for a mobile device. When this mobile device handovers to another AP, the

resources can be used quickly to reduce the delay caused by handover.

Scheduling and admission control: [82] proposes a framework for transmission scheduling

and admission control. They introduce two types of devices: helper and user. helper contains

video files cut into multiple chunks and encoded as different versions as MPEG DASH. helper

determines which client can download the chunk it requests based on rate limit. Moreover, user

decides which version of chunks to download according to video performance. The final goal of

their work is to maximize sum transmission rate and network utilization. They implement this

framework on the top of Android smartphones [83].

Whitespace: To get more available bandwidth, [84] uses the bandwidth of whitespace that is

the unused frequency for a broadcast service. They provide video streaming service on buses. The

buses are installed two kinds of interfaces. Cellular cards are used for uplink to send video requests

104

to servers. Then, servers stream videos back to the buses through whitespace channel. Thus, they

efficiently use the channel to achieve higher performance.

105

Chapter 5

Conclusion and Future Works

In this thesis, we propose a system to optimize network traffic by looking into the content of

traffic at byte and information levels; we also improve goodput and quality of experience, espe-

cially for mobile video traffic, which comprises more than 50% of total global traffic [85]. Mobile

and wireless environments suffer higher random loss and broadcast data in the air, which is quite

different from wired environments. In addition, the requirements of multimedia traffic are highly

unique. For example, multimedia traffic prefers stable bandwidth rather than high average band-

width. We have focused on four aspects in this thesis: (a) redundancy in traffic, (b) improving

video viewing experience, (c) channel features in wireless environments, and (d) using resources

efficiently.

Summarized below are the contributions of this thesis.

5.1 Contributions

Removing Redundant Content: We provide an RE solution designed for mobile and wireless

environments that removes redundancy at the chunk level, which overs finer granularity than at the

packet level; shorter packets result in essentially lower packet error rates, which in turn reduces

mac-layer re-transmission. This solution eliminates more potential redundancy and further im-

prove goodput, which provides better channel efficiency. Our novel video proxy system proposes

an intelligent way to avoid the need to cache redundant videos so that significantly fewer duplicate

videos will be stored; IBR is applied as a signature to identify videos.

106

Quality of Experience (QoE): We propose a video proxy system that improves QoE. A better

cache design increases the cache hit rate, so clients don’t need to wait for a long period to receive

requested videos. It also results in successful reduction of video start-up latency and releases

the load of 3G/4G core networks. In our system, we take channel diversity and client diversity

into account to provide the most appropriate videos for clients, instead of merely forwarding the

original video’s formats; clients can enjoy smooth videos with less video re-buffering events and

shorter start-up latency. In addition, REfactor removes redundant bytes in wireless links, so higher

goodput results in higher network capacity, which can be used to provide higher quality videos.

Better Resource Usage: In iProxy, cache storage usage is optimized. Better video identifica-

tion helps the cache to store more useful content. At the client side, resources such as CPU power

and memory space are quite limited in mobile devices. REfactor provides a lightweight caching

scheme for RE that uses less resources. In addition, iProxy retrieves user device information that

determines available resources in mobile devices. Thus, our system can adapt to traffic according

to this information and avoid sending unsuitably high bit rate video, which wastes CPU power in

mobile devices.

Optimization for Mobile and Wireless: To provide high quality videos and fully employ

available bandwidth, a linear bit rate adapter has been applied to iProxy. By dynamically chang-

ing the video bit rate, the adapter can make better use of the available bandwidth.Thus, wireless

channels can be used more efficiently. In addition, wireless traffic is broadcast to channels, so all

devices connecting to the channel can overhear the traffic. REfactor leverages this feature to cache

more useful data for RE.

Robustness: In wireless channels, REfactor proposes a model-driven RE to determine which

redundant chunks can be removed. However, even if the model-driven RE removes redundant

chunks incorrectly, receivers can still re-request the missing chunks from an AP, so our mobile RE

solution has no correctness issues. In iProxy, the linear bit rate adapter works fast enough to satisfy

video requests according to our evaluation. Moreover, the scalability can be further improved by

deploying additional distributed dynamic video encoders that share the same video cache.

107

5.2 Future Research

Content-aware communication gives networks the opportunity to optimize traffic. I provide

several solutions to eliminate redundancy at both byte and information levels in mobile and wire-

less networks. However, some aspects still need work. In this section, I will discuss these aspects.

Cache Policy in RE: Different traffic may encounter different redundancy patterns, so some

entries are more useful than others for future traffic. To improve the efficiency of a cache, we

need to design a cache replacement policy based on these redundancy patterns. Some observations

concerning redundancy patterns are shown in [22] :

• Protocols: The percentage of redundancy is different in different protocols. SMTP has the

highest percentage, which is 71%, while the lowest is RTSP, which is 2%.

• Inbound or outbound traffic: [22] shows that there is a slight negative correlation between

the fraction redundancy and the volume of traffic for university inbound traffic, but a slight

positive correlation for university outbound traffic.

• Enterprise or university: The range of traffic savings in enterprise traffic is 17%∼61%,

and the range in university traffic is 9%∼15%. In addition, different enterprise sites show

different percentages.

This policy ranks the contribution of each entry based on the historical record and chooses

the lowest one to be replaced when the cache is full. According to the observations above, the

replacement policy should consider some traffic properties. For example, traffic from enterprises

has a higher ranking than traffic from universities. The content from popular servers tends to be

repeatedly requested, so it is worthwhile to keep this content in the cache longer. We determine

what pattern each traffic may have by looking into some fields of packet headers such as the IP

address and port number. A good cache replacement policy can increase the hit rate in proxies and

improve traffic savings in redundancy elimination systems.

108

RE in Sensor Networks: Sensor networks are used in wide areas. For example, CarSpeak [86]

introduced a autonomous car system that uses sensor networks to exchange surrounding informa-

tion among cars. Resources such as energy is quite limited in sensors. Thus, it will be critical

to eliminate some unnecessary transmissions. To design an RE system in sensor networks, the

following criteria should be considered:

• Computational power, memory size, and energy are limited in sensors, so we need a cheaper

algorithm to realize RE.

• The sensor may be moving, as in CarSpeak, and the transmission between sensors represents

an opportunity. Thus, transmission needs to be carefully scheduled.

• Information exchanged among sensors is usually geographically related. The path each sen-

sor takes should be considered.

When we deploy several sensors in space, their sensing range will have some overlap. Different

sensors may have the same information. Thus, a sensor don’t need to send this information to oth-

ers that already have the same information. To this end, we need an algorithm to detect a sensor’s

path of movement and estimate what information each sensor may sense. With this knowledge, a

sensor can reduce redundant information exchanges, which in turn saves channel bandwidth and

power.

QoS for Video Service over Cellular Networks: To provide high quality of experience for

video service, QoS is an important issue. A better bandwidth guarantee proposes more stable

bandwidth, which reduces the video buffering rate and increases the capacity for high bit rate

videos. In addition, multiple mobile devices may access services simultaneously, and devices with

the same priority should receive consistent resources. We seek to fulfill two requirements:

• Fairness: The resources allocated for each flow should be proportional to the flow’s priority.

Network policies and traffic types determine priority. For example, network managers want

to reserve resources for video traffic to improve services.

109

• Utilization: In addition to fairness, we want to achieve higher overall network utilization.

Thus, we can provide better services for a greater number of requests.

There are some key elements that should be considered when we design our QoS scheme.

• Sub-channels: Different clients receive various channel quality by connecting to different

sub-channels as shown in [87]. How to assign flows to different sub-channels is critical.

• Multiple Cellular Towers: A single client may be able to hear a signal from different cel-

lular towers. Relying on an OpenFlow central controller, we can arrange clients to different

cellular towers to achieve higher overall network utilization.

• Video Frames: The importance of video frames is unique. In [76], different frames are ref-

erenced by different numbers of other frames, as shown in Figure 5.1. The frames referenced

by more frames are more important. If we lose an important frame, more frames cannot be

decoded. It is observed that the importance of the I-frame in different GOP locations are also

different. [76] proposes that we should use a lower rate module and coding scheme (MCS)

to protect important frames.

• Bandwidth Limiter: To provide stable bandwidth and enforce the resource location as-

signed by a resource allocator, We need an efficient way to limit the resources each flow can

use. In traditional traffic filters, switches inform traffic senders to reduce their sending rate

by dropping their packets. However, this approach causes CWND to be dropped frequently

based on TCP protocol. This in turn results in the sending rate dropping unexpectedly and

affects throughput.

To achieve better QoS support, three major components are required as shown in Figure 5.2: a

monitor, an allocator, and an enforcer.

A monitor is an OpenFlow enabled switch. When a new flow that it has never seen before,

it forwards the flow abstract to an OpenFlow controller. This controller determines the type and

priority of the flow according to flow features and administration policies.

110

Figure 5.1 The references among video frames.

Figure 5.2 An Overview of the QoS System.

In addition, the monitor also gathers network resource information, such as channel quality

and the load of each cellular tower. This is necessary information for the controller to allocate

resources.

111

The goal of an allocator is to determine network resource allocation, according to the flow

and resource information provided by monitors. An allocator schedules flows to sub-channels

and time slots according to flow priority and channel quality. For video traffic, we also consider

the importance of each video frame and assign lower rate MCS to important frames to reduce

transmission errors.

After getting resource allocation, an enforcer applies the resource locations to flows by limiting

the bandwidth they can use. We use OpenFlow enabled nodes to modify the ”window size” fields

in TCP headers, so the sender will limit its sending rate according to this window size instead of

dropping its CWND.

Advanced Video Bit Rate Control: To provide better quality of experience (QoE) [21], it is

critical to have a good video bit rate adaptation scheme, which should control the rate at a level

closer to available bandwidth. In this way, the video can achieve higher quality with a lower

volume of video buffering events.

iProxy provides a scheme to determine the video bit rate by tracing CWND size and RTT.

This design uses historical records to predict the following available bandwidth and determine a

proximate bandwidth. To provide a more precise estimation, this work will develop a novel bit rate

adaptation scheme.

Before designing the scheme, we should observe some key features of video streaming. Current

videos are encoded in a variable bit rate (VBR), so the size varies from frame to frame. This means

the video bit received rate is not equal to the video frame received rate. In addition, a video is

composed of a series of frames, and each frame corresponds to a deadline, which is when the

frame should be correctly decoded. If some frames cannot be decoded before their deadline, the

video player will hold the video to wait for the coming frames. A video buffer can reduce the

buffering events, but the buffer size is not unlimited, and the events still happen when the buffer

is out of content. Thus, it is more important to maintain a minimal frame-received rate than a

bit-received rate.

The basic idea of this work is to compare the frame-received rate with the frame-display rate

of a video. If the frame-received rate is higher, we dont fully utilize available bandwidth, and the

112

Figure 5.3 Frame-received Rate Estimation.

video buffer is filled up. It implies that we can send a video in higher quality (higher bit rate). On

the contrary, if the frame-received rate is lower, we should lower the video quality. In this way, the

buffer at the client side can be kept at a reasonable level. Thus, we wont use up the buffer, which

causes buffering events and we will retain video quality at the same time.

In iProxy, a video is dynamically encoded during streaming; we retrieve the size of all frames

from the video encoder and keep monitoring the TCP ACK from a video receiver as shown in

Figure 5.3. We then calculate the last packet of each frame and the time stamp of the TCP ACK

corresponding to the last packet. By gathering the time stamp for all video frames, we can de-

termine the frame-received rate. Moreover, the video frame-display rate is determined when we

receive the video. The frame-display rate can be 30 fps in general or 60 fps in higher quality.

To make the system workable, we face the following challenges:

• An Algorithm to Adjust Video Bit Rate: With the frame-received rate and frame-display

rate, how do we adjust the video bit rate? We should design an algorithm to guarantee the

maximal video quality without using up the video buffer. In addition, this algorithm should

be fast enough to react to channel conditions.

113

• The Latency between iProxy and Clients: We should evaluate how the latency affects the

performance of our algorithm to adjust video bit rate. The latency makes our system difficult

to cache the channel quality change. Our algorithm needs to keep the video buffer level

higher than some thresholds to prevent the video buffer from being used up. Thus, we need

to determine the threshold carefully.

With this advanced video bit rate control, iProxy can adapt the video bit rate in a more rea-

sonable way. This results in a lower buffering event with higher video quality, which improves

QoE.

114

LIST OF REFERENCES

[1] M. Afanasyev and A. C. Snoeren, “The importance of being overheard: throughput gains in

wireless mesh networks,” in Proceedings of the 9th ACM SIGCOMM conference on Internet

measurement conference, ser. IMC ’09. New York, NY, USA: ACM, 2009, p. 384396.

[Online]. Available: http://doi.acm.org/10.1145/1644893.1644940

[2] A. Gember, A. Anand, and A. Akella, “A comparative study of handheld and non-handheld

traffic in campus wi-fi networks,” in Proceedings of the 12th international conference on

Passive and active measurement, ser. PAM’11. Berlin, Heidelberg: Springer-Verlag, 2011,

p. 173183. [Online]. Available: http://dl.acm.org/citation.cfm?id=1987510.1987528

[3] J. Erman, A. Gerber, K. K. Ramadrishnan, S. Sen, and O. Spatscheck, “Over the top video:

The gorilla in cellular networks,” in Proceedings of the 2011 ACM SIGCOMM Conference

on Internet Measurement Conference, ser. IMC ’11. New York, NY, USA: ACM, 2011, pp.

127–136. [Online]. Available: http://doi.acm.org/10.1145/2068816.2068829

[4] “Cisco visual networking index: Global mobile data traffic fore-

cast update, 20132018,” http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/white paper c11-520862.html, 2014. [On-

line]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white\ paper\ c11-520862.html

[5] “Youtube advanced encoding settings,” https://support.google.com/youtube/answer/1722171?hl=en,

2014. [Online]. Available: https://support.google.com/youtube/answer/1722171?hl=en

[6] C. Lumezanu, K. Guo, N. Spring, and B. Bhattacharjee, “The effect of packet loss on

redundancy elimination in cellular wireless networks,” in Proceedings of the 10th annual

conference on Internet measurement, ser. IMC ’10. New York, NY, USA: ACM, 2010, p.

294300. [Online]. Available: http://doi.acm.org/10.1145/1879141.1879179

[7] X. Wu, A. G. Hauptmann, and C.-W. Ngo, “Practical elimination of near-duplicates from

web video search,” in Proceedings of the 15th international conference on Multimedia, ser.

MULTIMEDIA ’07. New York, NY, USA: ACM, 2007, pp. 218–227. [Online]. Available:

http://doi.acm.org/10.1145/1291233.1291280

115

[8] “Near-duplicate web video dataset.” http://vireo.cs.cityu.edu.hk/webvideo/, 2013. [Online].

Available: http://vireo.cs.cityu.edu.hk/webvideo/

[9] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis, C. Muthukrishnan,

R. Ramjee, and G. Varghese, “EndRE: an end-system redundancy elimination service for

enterprises,” in Proceedings of the 7th USENIX conference on Networked systems design

and implementation, ser. NSDI’10. Berkeley, CA, USA: USENIX Association, 2010, p.

2828. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855711.1855739

[10] A. Anand, V. Sekar, and A. Akella, “SmartRE: an architecture for coordinated network-wide

redundancy elimination,” SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, p. 8798, Aug.

2009. [Online]. Available: http://doi.acm.org/10.1145/1594977.1592580

[11] M. Afanasyev, D. G. Andersen, and A. C. Snoeren, “Efficiency through eavesdropping: link-

layer packet caching,” in Proceedings of the 5th USENIX Symposium on Networked Systems

Design and Implementation, ser. NSDI’08. Berkeley, CA, USA: USENIX Association,

2008, p. 105118. [Online]. Available: http://dl.acm.org/citation.cfm?id=1387589.1387597

[12] S. Biswas and R. Morris, “ExOR: opportunistic multi-hop routing for wireless networks,”

SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, p. 133144, Aug. 2005. [Online].

Available: http://doi.acm.org/10.1145/1090191.1080108

[13] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Mdard, and J. Crowcroft, “XORs in the air:

practical wireless network coding,” IEEE/ACM Trans. Netw., vol. 16, no. 3, p. 497510, Jun.

2008. [Online]. Available: http://dx.doi.org/10.1109/TNET.2008.923722

[14] F. R. Dogar, A. Phanishayee, H. Pucha, O. Ruwase, and D. G. Andersen, “Ditto:

a system for opportunistic caching in multi-hop wireless networks,” in Proceedings

of the 14th ACM international conference on Mobile computing and networking, ser.

MobiCom ’08. New York, NY, USA: ACM, 2008, p. 279290. [Online]. Available:

http://doi.acm.org/10.1145/1409944.1409977

[15] S. Jakubczak and D. Katabi, “A cross-layer design for scalable mobile video,” ser.

MobiCom ’11. New York, NY, USA: ACM, 2011, p. 289300. [Online]. Available:

http://doi.acm.org/10.1145/2030613.2030646

[16] “Youtube statistics,” http://www.youtube.com/yt/press/statistics.html, 2014. [Online]. Avail-

able: http://www.youtube.com/yt/press/statistics.html

[17] “Cisco visual networking index: Forecast and method-

ology, 20132018,” http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/ip-ngn-ip-next-generation-network/white paper c11-481360.html, 2014. [On-

line]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

ip-ngn-ip-next-generation-network/white\ paper\ c11-481360.html

116

[18] S. Sen, J. Yoon, J. Hare, J. Ormont, and S. Banerjee, “Can they hear me now?:

a case for a client-assisted approach to monitoring wide-area wireless networks,”

ser. IMC ’11. New York, NY, USA: ACM, 2011, p. 99116. [Online]. Available:

http://doi.acm.org/10.1145/2068816.2068827

[19] “Qualcomm snapdragon 800 vs intel core i7,” http://versus.com/en/qualcomm-snapdragon-

800-vs-intel-intel-core-i7-3920xm-extreme-edition, 2013. [Online]. Available: http://versus.

com/en/qualcomm-snapdragon-800-vs-intel-intel-core-i7-3920xm-extreme-edition

[20] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and H. Zhang,

“Understanding the impact of video quality on user engagement,” in Proceedings of the

ACM SIGCOMM 2011 conference, ser. SIGCOMM ’11. New York, NY, USA: ACM,

2011, pp. 362–373. [Online]. Available: http://doi.acm.org/10.1145/2018436.2018478

[21] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang, “Developing a

predictive model of quality of experience for internet video,” in Proceedings of the ACM

SIGCOMM 2013 conference on SIGCOMM, ser. SIGCOMM ’13. New York, NY, USA:

ACM, 2013, pp. 339–350. [Online]. Available: http://doi.acm.org/10.1145/2486001.2486025

[22] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy in network

traffic: findings and implications,” in Proceedings of the eleventh international joint

conference on Measurement and modeling of computer systems, ser. SIGMETRICS

’09. New York, NY, USA: ACM, 2009, p. 3748. [Online]. Available: http:

//doi.acm.org/10.1145/1555349.1555355

[23] S. Guha, J. Chandrashekar, N. Taft, and K. Papagiannaki, “How healthy are today’s

enterprise networks?” in Proceedings of the 8th ACM SIGCOMM conference on Internet

measurement, ser. IMC ’08. New York, NY, USA: ACM, 2008, p. 145150. [Online].

Available: http://doi.acm.org/10.1145/1452520.1452538

[24] S. Acharya and B. Smith, MiddleMan: A Video Caching Proxy Server, 2000.

[25] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil, “An architecture for internet

data transfer,” in Proceedings of the 3rd conference on Networked Systems Design &

Implementation - Volume 3, ser. NSDI’06. Berkeley, CA, USA: USENIX Association,

2006, p. 1919. [Online]. Available: http://dl.acm.org/citation.cfm?id=1267680.1267699

[26] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure for

randomness in wireless opportunistic routing,” in Proceedings of the 2007 conference on

Applications, technologies, architectures, and protocols for computer communications, ser.

SIGCOMM ’07. New York, NY, USA: ACM, 2007, p. 169180. [Online]. Available:

http://doi.acm.org/10.1145/1282380.1282400

117

[27] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet caches

on routers: the implications of universal redundant traffic elimination,” SIGCOMM

Comput. Commun. Rev., vol. 38, no. 4, p. 219230, Aug. 2008. [Online]. Available:

http://doi.acm.org/10.1145/1402946.1402984

[28] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput path metric for

multi-hop wireless routing,” Wirel. Netw., vol. 11, no. 4, p. 419434, Jul. 2005. [Online].

Available: http://dx.doi.org/10.1007/s11276-005-1766-z

[29] J. Santos and D. Wetherall, “Increasing effective link bandwidth by suppressing replicated

data,” in Proceedings of the annual conference on USENIX Annual Technical Conference,

ser. ATEC ’98. Berkeley, CA, USA: USENIX Association, 1998, p. 1818. [Online].

Available: http://dl.acm.org/citation.cfm?id=1268256.1268274

[30] M. Rabin, “Fingerprinting by random polynomials,” no. TR-15-81, p. 1518, 1981.

[31] N. T. Spring and D. Wetherall, “A protocol-independent technique for eliminating

redundant network traffic,” in Proceedings of the conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, ser. SIGCOMM ’00. New

York, NY, USA: ACM, 2000, p. 8795. [Online]. Available: http://doi.acm.org/10.1145/

347059.347408

[32] K. Jamieson and H. Balakrishnan, “PPR: partial packet recovery for wireless networks,”

in Proceedings of the 2007 conference on Applications, technologies, architectures, and

protocols for computer communications, ser. SIGCOMM ’07. New York, NY, USA: ACM,

2007, p. 409420. [Online]. Available: http://doi.acm.org/10.1145/1282380.1282426

[33] G. Judd, X. Wang, and P. Steenkiste, “Efficient channel-aware rate adaptation in dynamic

environments,” in Proceedings of the 6th international conference on Mobile systems,

applications, and services, ser. MobiSys ’08. New York, NY, USA: ACM, 2008, p.

118131. [Online]. Available: http://doi.acm.org/10.1145/1378600.1378615

[34] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level measurements

from an 802.11b mesh network,” in Proceedings of the 2004 conference on Applications,

technologies, architectures, and protocols for computer communications, ser. SIGCOMM

’04. New York, NY, USA: ACM, 2004, p. 121132. [Online]. Available: http:

//doi.acm.org/10.1145/1015467.1015482

[35] A. Bhartia, Y.-C. Chen, S. Rallapalli, and L. Qiu, “Harnessing frequency diversity in wi-fi

networks,” in Proceedings of the 17th annual international conference on Mobile computing

and networking, ser. MobiCom ’11. New York, NY, USA: ACM, 2011, p. 253264.

[Online]. Available: http://doi.acm.org/10.1145/2030613.2030642

[36] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click modular router,”

ACM Trans. Comput. Syst., vol. 18, no. 3, p. 263297, Aug. 2000. [Online]. Available:

http://doi.acm.org/10.1145/354871.354874

118

[37] Cisco Enterprise Wireless Products, 2012. [Online]. Available: http://cisco.com/en/US/prod/

wireless/wireless for enterprise.html

[38] Linksys WRT54G Series, 2012. [Online]. Available: http://en.wikipedia.org/wiki/Linksys

WRT54G series

[39] ns-3 network simulator, 2012. [Online]. Available: http://www.nsnam.org/

[40] Click [Click], 2012. [Online]. Available: http://read.cs.ucla.edu/click/

[41] S. Woo, E. Jeong, S. Park, J. Lee, S. Ihm, and K. Park, “Comparison of

caching strategies in modern cellular backhaul networks,” in Proceeding of the 11th

Annual International Conference on Mobile Systems, Applications, and Services, ser.

MobiSys ’13. New York, NY, USA: ACM, 2013, pp. 319–332. [Online]. Available:

http://doi.acm.org/10.1145/2462456.2464442

[42] “The state of 4G: its all about congestion, not speed,”

http://ffmpeg.org/, 2013. [Online]. Available: http://arstechnica.com/tech-policy/2010/

03/faster-mobile-broadband-driven-by-congestion-not-speed/

[43] A. Anand, A. Akella, V. Sekar, and S. Seshan, “A case for information-bound referencing,”

ser. Hotnets ’10. New York, NY, USA: ACM, 2010, p. 4:14:6. [Online]. Available:

http://doi.acm.org/10.1145/1868447.1868451

[44] B. Coskun and B. Sankur, “Robust video hash extraction.” IEEE, Apr. 2004, p. 292 295.

[45] J. S. Boreczky and L. A. Rowe, “Comparison of video shot boundary detection techniques,”

vol. 2670, p. 170179, 1996. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.8.2179

[46] InfoNames: An Information-Based Naming Scheme for Mul-

timedia Content\textbar Whitepapers \textbar TechRepublic, Mar.

2012. [Online]. Available: http://www.techrepublic.com/whitepapers/

infonames-an-information-based-naming-scheme-for-multimedia-content/2883611

[47] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, “A review of audio fingerprinting,” J.

VLSI Signal Process. Syst., vol. 41, no. 3, p. 271284, Nov. 2005. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1107802.1107829

[48] A. Andoni, “Near-optimal hashing algorithms for approximate nearest neighbor in

high dimensions,” IN FOCS06, vol. 2006, p. 459468, 2006. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.8372

[49] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions via hashing,” in

Proceedings of the 25th International Conference on Very Large Data Bases, ser. VLDB ’99.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, p. 518529. [Online].

Available: http://dl.acm.org/citation.cfm?id=645925.671516

119

[50] A. Kumar, A. Balachandran, V. Sekar, A. Akella, and S. Seshan, “Infonames: An

information-based naming scheme for multimedia content,” UW-Madison, Technical Report

TR1677, Jul. 2010.

[51] T. R. G. Nair and P. Jayarekha, “A rank based replacement policy for multimedia server

cache using zipf-like law,” arXiv:1003.4062, Mar. 2010, journal of Computing, Volume 2,

Issue 3, March 2010, https://sites.google.com/site/journalofcomputing/. [Online]. Available:

http://arxiv.org/abs/1003.4062

[52] L. Rizzo and L. Vicisano, “Replacement policies for a proxy cache,” IEEE/ACM Transactions

on Networking, vol. 8, no. 2, p. 158170, Apr. 2000.

[53] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakul, “An active transcoding proxy to support

mobile web access,” in In Proceedings of the 17th IEEE Symposium on Reliable Distributed

Systems, 1998, pp. 118–123.

[54] A. Gember, A. Akella, J. Pang, A. Varshavsky, and R. Caceres, “Obtaining in-context

measurements of cellular network performance,” in Proceedings of the 2012 ACM conference

on Internet measurement conference, ser. IMC ’12. New York, NY, USA: ACM, 2012, p.

287300. [Online]. Available: http://doi.acm.org/10.1145/2398776.2398807

[55] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE Transactions on

Computers, vol. C-23, no. 1, p. 9093, Jan. 1974.

[56] “How i came up with the discrete cosine transform,” Mar. 2012. [Online]. Available: http:

//www.scribd.com/doc/60936785/How-I-Came-Up-With-the-Discrete-Cosine-Transform

[57] smartphone sreen resolution, Feb. 2012. [Online]. Available: http://en.wikipedia.org/wiki/

Smartphone

[58] android supported format, Feb. 2012. [Online]. Available: http://developer.android.com/

guide/appendix/media-formats.html

[59] D. Sostaric, D. Vinko, and S. Rimac-Drlje, “Power consumption of video decoding on mobile

devices.” IEEE, Sep. 2010, p. 8184.

[60] “VPlayer,” https://vplayer.net/, 2013. [Online]. Available: https://vplayer.net/

[61] pHash.org: Home of pHash, the open source perceptual hash library, Mar. 2012. [Online].

Available: http://phash.org/

[62] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions via hashing,”

ser. VLDB ’99. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, p.

518529. [Online]. Available: http://dl.acm.org/citation.cfm?id=645925.671516

[63] “FFmpeg,” http://ffmpeg.org/, 2013. [Online]. Available: http://ffmpeg.org/

120

[64] “Video streaming server for ffmpeg,” http://ffmpeg.org/ffserver.html, 2013. [Online].

Available: http://ffmpeg.org/ffserver.html

[65] “Near-duplicate web video dataset,” http://vireo.cs.cityu.edu.hk/webvideo/, 2013. [Online].

Available: http://vireo.cs.cityu.edu.hk/webvideo/

[66] P. Cao and S. Irani, “Cost-aware www proxy caching algorithms,” in USITS, 1997.

[67] C. Serrano, B. Garriga, J. Velasco, J. Urbano, S. Tenorio, and M. Sierra, “Latency in Broad-

Band mobile networks,” in VTC, 2009.

[68] S. Krishnan and R. Sitaraman, “Video Stream Quality Impacts Viewer Behavior: Inferring

Causality using Quasi-Experimental Designs,” in IMC, 2012.

[69] S. Sanadhya, R. Sivakumar, K.-H. Kim, P. Congdon, S. Lakshmanan, and J. P. Singh,

“Asymmetric caching: Improved network deduplication for mobile devices,” in Proceedings

of the 18th Annual International Conference on Mobile Computing and Networking, ser.

Mobicom ’12. New York, NY, USA: ACM, 2012, pp. 161–172. [Online]. Available:

http://doi.acm.org/10.1145/2348543.2348565

[70] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard, “Symbol-level network coding for

wireless mesh networks,” in Proceedings of the ACM SIGCOMM 2008 conference on Data

communication, ser. SIGCOMM ’08. New York, NY, USA: ACM, 2008, p. 401412.

[Online]. Available: http://doi.acm.org/10.1145/1402958.1403004

[71] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and A. Markopoulou,

“Microcast: Cooperative video streaming on smartphones,” in Proceedings of the

10th International Conference on Mobile Systems, Applications, and Services, ser.

MobiSys ’12. New York, NY, USA: ACM, 2012, pp. 57–70. [Online]. Available:

http://doi.acm.org/10.1145/2307636.2307643

[72] S. Aditya and S. Katti, “FlexCast: graceful wireless video streaming,” in Proceedings

of the 17th annual international conference on Mobile computing and networking, ser.

MobiCom ’11. New York, NY, USA: ACM, 2011, p. 277288. [Online]. Available:

http://doi.acm.org/10.1145/2030613.2030645

[73] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory, vol. 52, no. 6, p.

25512567, Jun. 2006.

[74] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of

the H.264/AVC standard,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 17, no. 9, p. 11031120, Sep. 2007.

[75] “Vantrix website,” http://www.vantrix.com/index.html, 2013. [Online]. Available: http:

//www.vantrix.com/index.html

121

[76] J. Yoon, H. Zhang, S. Banerjee, and S. Rangarajan, “Muvi: a multicast video delivery

scheme for 4g cellular networks,” in Proceedings of the 18th annual international conference

on Mobile computing and networking, ser. Mobicom ’12. New York, NY, USA: ACM,

2012, pp. 209–220. [Online]. Available: http://doi.acm.org/10.1145/2348543.2348571

[77] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and M. Chiang, “A scheduling

framework for adaptive video delivery over cellular networks,” in Proceedings of the

19th annual international conference on Mobile computing & networking, ser.

MobiCom ’13. New York, NY, USA: ACM, 2013, pp. 389–400. [Online]. Available:

http://doi.acm.org/10.1145/2500423.2500433

[78] W.-T. Chen and L.-C. Huang, “Rsvp mobility support: a signaling protocol for integrated

services internet with mobile hosts,” in INFOCOM 2000. Nineteenth Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3, 2000, pp.

1283–1292 vol.3.

[79] S.-C. Lo, G. Lee, W.-T. Chen, and J.-C. Liu, “Architecture for mobility and qos support in all-

ip wireless networks,” Selected Areas in Communications, IEEE Journal on, vol. 22, no. 4,

pp. 691–705, 2004.

[80] L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation protocol

(RSVP) – version 1 functional specification.” [Online]. Available: http://tools.ietf.org/html/

draft-ietf-rsvp-spec-13

[81] C. E. P. <charliep@iprg.nokia.com>, “Mobile IPv4 Challenge/Response extensions.”

[Online]. Available: http://tools.ietf.org/html/rfc3012

[82] D. Bethanabhotla, G. Caire, and M. Neely, “Joint transmission scheduling and congestion

control for adaptive streaming in wireless device-to-device networks,” in Signals, Systems

and Computers (ASILOMAR), 2012 Conference Record of the Forty Sixth Asilomar Confer-

ence on, 2012, pp. 1179–1183.

[83] J. Kim, F. Meng, P. Chen, H. E. Egilmez, D. Bethanabhotla, A. F. Molisch, M. J. Neely,

G. Caire, and A. Ortega, “Adaptive video streaming for device-to-device mobile platforms,”

in Proceedings of the 19th Annual International Conference on Mobile Computing &

Networking, ser. MobiCom ’13. New York, NY, USA: ACM, 2013, pp. 127–130. [Online].

Available: http://doi.acm.org/10.1145/2500423.2505292

[84] T. Zhang, S. Sen, and S. Banerjee, “Video streaming using whitespace spectrum for

vehicular applications,” in Proceeding of the 11th Annual International Conference on

Mobile Systems, Applications, and Services, ser. MobiSys ’13. New York, NY, USA: ACM,

2013, pp. 471–472. [Online]. Available: http://doi.acm.org/10.1145/2462456.2465731

122

[85] “Cisco visual networking index: Global mobile data traffic fore-

cast update, 20122017 [visual networking index (VNI)],”

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white paper c11-

520862.html, 2013. [Online]. Available: http://www.cisco.com/en/US/solutions/collateral/

ns341/ns525/ns537/ns705/ns827/white paper c11-520862.html

[86] S. Kumar, L. Shi, N. Ahmed, S. Gil, D. Katabi, and D. Rus, “Carspeak: a content-centric

network for autonomous driving,” in Proceedings of the ACM SIGCOMM 2012 conference

on Applications, technologies, architectures, and protocols for computer communication,

ser. SIGCOMM ’12. New York, NY, USA: ACM, 2012, pp. 259–270. [Online]. Available:

http://doi.acm.org/10.1145/2342356.2342403

[87] A. Bhartia, Y.-C. Chen, S. Rallapalli, and L. Qiu, “Harnessing frequency diversity in wi-fi

networks,” in Proceedings of the 17th annual international conference on Mobile computing

and networking, ser. MobiCom ’11. New York, NY, USA: ACM, 2011, pp. 253–264.

[Online]. Available: http://doi.acm.org/10.1145/2030613.2030642

	dissertation.pdf
	Contents
	List of Tables
	List of Figures
	Abstract
	Colophon

