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Abstract

This study investigates the convergence behaviors of a family of frequency-domain
adaptive filters (FDAFs) under both exact- and under-modeling situations. The stochas-
tic analysis is conducted by transforming the frequency-domain equations into their
time-domain counterparts. We discuss the transient and steady-state convergence
behaviors of four FDAF versions, i.e,, the constrained FDAFs with and without step-
normalization, the unconstrained FDAFs with and without step-normalization, and we
also present the upper bounds of step size for mean stability and mean-square
stability. Starting from the expression for the steady-state mean weight vector, this
study investigates whether the FDAFs can converge to unknown system impulse
responses and optimum Wiener solutions. Moreover, we provide the closed-form
minimum mean-square error (MMSE) that each FDAF can achieve. The difference
between the current work and our previous one is threefold. First, the presented time-
domain analysis is much easier to handle and has a more explicit physical meaning
than that in the frequency domain. Second, we here consider an arbitrary overlap
factor between consecutive blocks, while our previous analysis only focuses on 50%
overlap. Third, the presented MMSE expressions and excess mean-square error (EMSE)
approximations have not been given before. Simulations reveal high consistency
between the experimental and theoretical results.

Keywords: Adaptive filter, Frequency domain, Mean-square error, Transient analysis,
Convergence behavior

1 Introduction

Frequency-domain adaptive filter (FDAFs) is originally proposed as a fast but exact
realization of the block least mean-square (BLMS) algorithm [1, 2], and thus, they
exhibit the same convergence characteristics. Subsequently, two strategies are pre-
sented to improve the convergence or gain computational efficiency. The first method
is known as the step-normalization or self-orthogonalization procedure, in which
the frequency-wise step size related to the corresponding signal power is adopted
[3]. The second strategy is to remove the constraint on the weight vector in the time
domain, and the corresponding algorithm is called the unconstrained FDAF [4, 5].
Thus, four variants of the FDAF algorithm are obtained, i.e., the constrained FDAFs
with and without step-normalization, the unconstrained FDAFs with and without
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step-normalization, which have found applications in a wide range of areas [6—13].
Recently, deep neural networks have been incorporated into the estimation of the
gradient or the key parameters of the FDAFs [14, 15].

Besides the algorithm design, it is desirable to characterize the convergence of the
adaptive filtering algorithms [16-22, 22, 24—-27]. In [18], the second-order statistics
for the BLMS are analyzed for Gaussian inputs. In [19], the influence of the window-
ing function on the FDAF convergence is analyzed. In [20], the mean convergence
performance of several FDAF versions is extensively analyzed via inverse transforma-
tion of frequency-domain formulas into time-domain counterparts, but the steady-
state mean-square error (MSE) expressions are provided without detailed derivations.
In [21], the optimum Wiener solution of FDAFs is given in the frequency domain,
and it is shown that the unconstrained FDAFs achieve a reduced steady-state MSE
compared to constrained algorithms under the under-modeling scenario. In [22], the
analysis of FDAFs is conducted in the frequency domain, and the eigenvalue spread
of the matrix that controls the mean convergence is well studied. The steady-state
performance of constrained FDAFs is analyzed under the under-modeling scenario
in [23], but the input is assumed to be Gaussian. In [24], a full second-order statis-
tical framework for unconstrained FDAFs is presented for noncircular Gaussian
signals. Recently, we have conducted an extensive statistical analysis of the FDAFs
[25-27]. We derive a unifying update equation for four versions of FDAF, which ena-
bles us to conduct the performance analysis in a unifying framework. In [28] and
[29], we provide a detailed performance assessment of the partitioned-block FDAFs
in the time domain. However, the analysis results cannot be applied to the FDAFs
straightforwardly.

We comprehensively study the convergence behavior of FDAF algorithms in this
paper. The frequency-domain formulas are transformed into time-domain ones,
which are utilized to deduce the evolution of the weight-error vector. We then ana-
lyze the mean convergence and mean-square convergence of the FDAFs in detail. This
study goes further than our previous work [25-27] in several aspects. First, the pre-
sented analysis is conducted completely in the time domain, while our previous work
is in the frequency domain. We have found that compared to the frequency-domain
analysis, the time-domain one is easier to follow, and the time-domain variables have
an explicit physical meaning. Second, our previous work only focuses on 50% overlap,
but we deal with an arbitrary overlap here. Third, we provide the analytical expres-
sions for the attainable minimum MSE (MMSE) of four variants of the FDAF. Also,
we derive the excess MSE (EMSE) approximations in the time domain, and we point
out that the EMSE of the constrained FDAF algorithms with step-normalization given
in [20] and [22] is biased even for small step sizes. The presented stochastic model is
built in the under-modeling scenario, but the exact modeling scenario can be treated
as a special case. Simulations are presented to validate the theoretical results.

The contributions of this paper are as follows:

+ We describe the transient and steady-state convergence behavior of a family of the
FDAFs with an arbitrary overlap in both exact- and under-modeling scenarios.



Yang EURASIP Journal on Advances in Signal Processing ~ (2024) 2024:100 Page 3 of 25

+ We present a comprehensive performance comparison of the constrained and
unconstrained FDAFs in terms of the convergence rate, the modeling ability, the
steady-state MSE, and the attainable minimum MSE.

+ We derive the approximated expressions of steady-state EMSE of four types of the
FDAFs in exact modeling scenario, which are easier to follow than before.

2 FDAF
We begin our treatment by introducing the FDAF algorithms. Consider the linear time-
invariant model in the framework of system identification

d(n) = xT (mywopt + v(n), (1)

where d(n) represents the desired response, n is the discrete-time index, T repre-
sents a transposition, x(n) = [x(n),--- ,x(n — M + 1)]T denotes the input vector,
Wopt = [Wo, -+, war_1]7 signifies the impulse response of an unknown system with a
length of M, and v(n) accounts for the measurement noise signal that is independent
with x(n). The input and noise signals are the zero-mean and stationary random pro-
cesses, respectively, with a variance of E[x*(n)] = 6962 and E[v3(n)] = crvz where E[-]is
the expectation. The linear model in (1) has been applied to various problems despite its
simplicity.

The FDAF algorithms typically rely on a block-processing approach, i.e., the filtering
out and the adaptive weights are calculated block by block. The weight vector remains
the same in one block in FDAF algorithms, which is different from the sample-by-sam-
ple-based least mean-square (LMS) algorithm. In this paper, R and k denote the block
length and the block index, respectively. We consider an adaptive transversal filter
w(k) = [Wo k), -+, wr—1(k)]7T that tries to imitate the unknown system response Wopt,
where L is the adaptive filter’s length. The relations L = M and L < M correspond to the
exact and under-modeling situations, respectively. In this paper, we consider the under-
modeling situation with Q = M — L denoting the length of the under-modeling filter.
However, we treat the exact modeling situation as a special case of the under-modeling
situation, i.e., Q = 0, and hence, the presented analysis can cover both the exact and
under-modeling situations.

We pad the estimated weight vector W (k) with R zeros and obtain its frequency-
domain representation

W (k) =F [B";’Xﬂ = FYLw(k), )

where N =L + R represents the DFT length, F denotes the N x N DFT matrix,
Y10 = [I1 Or«r], I1 represents an identity matrix with a size of L x L, Opxr denotes a
zero matrix with a size of L x R, and Ogrx stands for the all-zero vector of length R. In
our previous work [23-25], we focused on the special case with 50% overlap, i.e., L = R,
while we now consider a general case for an arbitrary overlap.

The frequency-domain diagonal matrix X (k) can be attained by converting an input
signal block into the frequency domain
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X (k) = diag{Fx(k)}, (3)

where x(k) = [x(kR — L), - -- ,x(kR + R — 1)]T is the input vector with a length of N,
and diag{-} forms a diagonal matrix from inputs. This input vector contains R elements
in the current block and L elements in the previous one.

The time-domain block error signal vector is expressed by [5]

e(k) = d(k) — y(k) = d(k) — Yo F X ()W (k), (4)

where d(k) = [d(kR),--- ,d(kR + R — 1)]T is the block desired signal vector with a
length of R, the block filtering out vector y (k) and the block error vector e(k) are defined
similarly, and the R x N matrix Yo1 = [Orxz Irxr] is utilized to retain the last R terms
of the inverse DFT of X (k)W(k) that corresponds exactly to the linear convolution. The
time-domain error vector e(k) is initially padded with L zeros and then turned into the
frequency-domain expression

E(k) = F[?f(;;] — FY e (k). (5)

The constrained FDAF is characterized by [22]
Wk +1) = Gio[W (k) + p A7 AT (OEK)], (6)

where superscript H means a complex-conjugate transpose, the constraining matrix
G = FTITOTH)F_I forces the last R components of the time-domain gradient
F AT XH (k)E(k) to zero, and the N x N diagonal matrix A determines how the step
size is chosen. If we use A = Iy, a common step size parameter u is then employed for
all the frequencies, namely, the FDAF algorithm without step-normalization. This algo-
rithm is nothing but a faithful frequency-domain representation of the BLMS algorithm.
If we choose the diagonal matrix A = E [XH (k)X (k)], the step size in each frequency
bin is scaled by the power spectral density (PSD). The algorithm is referred to as the
FDAF with step-normalization, which can greatly speed up the convergence [3-5].
The update equation of the unconstrained FDAF is [3]

Wk +1) = Wk) + uA~ X7 (OE®K). (7)

Similarly, we obtain the unconstrained FDAF algorithm with or without step-normali-
zation by using A = E[X H (k)& (k)] or A = Iy. Unlike constrained FDAF algorithms,
the gradient constraint matrix Gy is dropped out from (7), and hence (2) does not hold,
which makes (4) implement a circular convolution for the unconstrained FDAF [30].
However, dropping the gradient constraint may have advantages for the under-modeling
case, as the discussion will reveal.

3 Analysis of unconstrained FDAFs

This section analyzes the time-domain convergence behavior of unconstrained FDAF
algorithms. The frequency-domain Egs. (4) and (7) are changed to the time-domain rep-
resentations, which are in turn used to evaluate the mean and mean-square performance
and establish the stability bound.
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3.1 Signal model
To pave the way for the performance analysis, we present an important result of the cir-
culant matrix [4]

XH (k) = EXT (k) F1, X (k) = FX (K F 7Y, (8)

where X, (k) represents a circulant matrix with a size of N x N and the first column of
x(k). We can decompose X (k) as

X (k) = {ka) Xz(/o] _ {M)], ©)

Xy (k) Xo(k) | [ X (k)
where the matrices Xj (k), X2 (k), X; (k), and X5 (k) have a size of R x L, R x R, L x L, and
R x R, respectively, and the matrices X (k) = [X; (k) X2(k)] and X (k) = [X1 (k)Xo (k)]
have a dimension of R x N and L x N. For convenience, we define the matrix

P=(F!AF)' =R}, (10)

where R, = E [XCT (kK)Xc(k)]. Because X (k) is circulant, the matrices R. and P are both
circulant and symmetric. We then represent P in the block matrix form

P, Py P
= leh ] = |7 ‘1”
where Pj, Py and P3 are L x L, L x R , and R x R submatrices, respectively, and
P = [P; Py] and P = [P%w P5 1 have a dimension of L x N and R x N.
For the unconstrained algorithm, we define the time-domain weight vector
Wan (k) = FIW (k) 2 [WE (k), W 5(K)]7, where the subvectors Wun,., (k) and Wyn g (k)
are of length L and R, respectively. Note that wyy (k) has a length of N and the last R ele-

ments of wyy (k) may be nonzero since the gradient constraint is removed. Using (8), we
represent the block error vector as

e(k) = d(k) — X(k)Wyn (k) (12)

Calculating the filtering out signal may require future inputs due to the existence of
Wun, (k) [20], and we hence call wy,, 1 (k) and Wy, z(k) the non-causal and causal parts,
respectively.

Pre-multiplying both sides of (7) by F~! and considering (8) and (10), we obtain the
recursion of wyp, (k)

Wun (k + 1) = Wyn (k) + uPXT (k)e(k). (13)

The true weight vector wop: that we wish to predict can be split into two parts

Wopt = |:“:l :| ’ (14)

where the column vectors wy and w, have a length of L and Q. The desired response vec-
tor d(k) can be expressed by
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d(k) = X(k)W + X3(k)w, + v(k), (15)

where v(k) = [v(kR),---,v(kR+ R —1)]T denotes the noise vector of length R,
X3(k) = [xs(kR —L)---x3(kR— L + R — 1)]7 represents an R X Q input matrix with
x3(n) = [x(n),- -+ ,x(n — Q + 1)]T, and w = [w], 01z]” has a length of N.

3.2 Mean convergence

This section investigates initially the mean behavior of the unconstrained
FDAF algorithms. For that, we introduce the time-domain weight-error vector
Wun (k) = W — Wy (k) 2 [WuTn,L(k)» Wun,R(k)]T: where Wyn,z (k) = wy — Wun,L(k) and
Wun,R(k) = —Wyn,r(k). We subtract w from both sides of (13) and derive the update
equation of wyp (k)

Wun (K + 1) = Wun (k) — uPXT (e (k). (16)
We incorporate (15) with (12) and have

e(k) = X(k)Wun (k) + X3(k)ws + v (k). (17)
We then substitute (17) into (16) and obtain

Wan(k + 1) = (Iy — 1tAun(0)) Wan () — 1Bun ()W, — uPXT (k) (k). (18)

where Ay (k) = PXT (k)X (k) and Byy (k) = PXT (k) X3 (k).
Taking the expectation of each side of (18) and invoking the independence assumption
[4] yield

E[Wu(k+ 1] = (IN - ,U-E[Aun(k)])E[‘x’un(k)] — RE[Bun (k) Iwy, (19)

where E[Ayn(k)] = PR and R = E[XT (k)X (k)]. The condition number of E[Ayn (k)]
has a significant influence on the convergence speed of the unconstrained FDAFs. It is
shown in [20] that the approximation R, ~ %I_{ holds for a large N. For unconstrained
FDAFs with step-normalization, the matrix controlling the mean convergence is thus
proportional to the identity matrix, E[Ay, (k)] & %IN. It turns out that the uncon-
strained FDAF with step-normalization only has one mode of convergence thanks to the
self-orthogonalizing method, while that without step-normalization may have a rather
slow convergence speed, particularly for a highly correlated input.
At steady state, (19) leads to

E[Wyn(00)] = —R™'R3w (20)

where R3 = E[XT (k)X3(k)]. We now investigate whether the unconstrained FDAFs con-
verge to the Wiener solution using (20). Considering (17) and replacing wyy (k) with a
time-invariant vector, the Wiener solution is given by minimizing the MSE E [He(k) Hz]

Wun,opt = _Rill_{?:w*« (21)

In the exact modeling situation, it has E[Wyun(00)] = Wun,opt = Onx1, and hence, the
unconstrained FDAF algorithm converges to the optimum Wiener solution that is also
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the true system impulse response. The non-causal part can converge to zero in mean,
i.e., E[Wun,r(00)] = Orx1, and hence, (4) implements an (approximate) linear convolu-
tion for sufficiently small step sizes.

In the under-modeling situation, it is observed from (20) and (21) that the uncon-
strained FDAF converges to the optimum Wiener solution in the mean sense regard-
less of input signal characteristics. In this case, it has R; # Onxq for any inputs, and
hence E[Wyn (k)] = W — E[Wyn(00)] = W + R™1R3w, # w, which indicates that the
unconstrained FDAF algorithm approaches a biased estimate of the first L elements of
the unknown impulse response. However, we will immediately show that we can indeed
obtain more information about the coefficients of the unknown system from uncon-
strained FDAFs, which is not revealed in previous publications.

To proceed, we define R™IR3 = [ﬂlT ﬁZT 17, where the matrices 8; and B, are of size
L x Qand R x Q, respectively. We then rewrite (20) as

~ * _E Aun
E[wyn(00)] = — [g;x*] = |:W:E[‘3’[::’1,R6Lo(oo)c]>)] . (22)

We define 8, = [B3 B4], where the matrices f3and 8, are of size R x Rand R x (Q — R).
We then split w, into two parts w, = [W*T1 W*TZ]T, where lengths of the column vectors
wy1 and wyo are R and Q — R, respectively.

For white noise as input, we have B; =010 B4s=0rxQ-r , and

B3 = xdiag{[R,R — 1,---,1]7}. Using (22), it has

wi = E[Wyn,(00)], (23)

Wi1 = B3 E[Wun,r(00)]. (24)

From (23) and (24), we observe that Wyy 1 (k) can converge to the first L elements of the
unknown plant in mean, and the first element of wyy g (k) is equal to wy. The other R — 1
components cannot approach to any part of the unknown plant. That is, the first L 4 1
coefficients of E[Wyy (k)] converge to the first L + 1 coefficients of the unknown plant. As
a consequence, the unconstrained FDAF algorithm cannot directly model an unknown
system having more than L + 1 coefficients.! However, we can calculate wy; using (24),
and hence, a total of L + R coefficients of the unknown system can be restored from the
steady-state vector E[Wyy (00)] of the unconstrained FDAF. This result holds without any
restriction on the length of the system impulse response.

For correlated inputs, we have B; # 0., and hence E[Wun,z(00)] # wy, which
indicates that the causal part of wyn (k) cannot converge to the first L coefficients of the
unknown system in mean. When Q > R, we should solve ,w, = E[Wyn,z(00)] to obtain
w,, which is however an underdetermined linear system of equations and a precise solution

! Only several papers have discussed the modeling capability of the unconstrained FDAF algorithm with a white noise
input. In [20], it is observed from experiment that the first L weights of the unconstrained and constrained FDAFs are
about the same in under-modeling case. In [30], it is pointed out that the unconstrained FDAF algorithm cannot accu-
rately model an unknown system with greater than L coefficients. In our previous work [26], it is shown that the first L
elements of £[W,(00)] equal those of the true system response, but we did not point out that the L + I-th element of
E[Wyn(00)] is equal to that of true weight vector. The aforementioned discussion is limited to the case N = L+ R. It is
easy to verify that the unconstrained FDAF algorithm can directly model an unknown plant with N — R + 1 coefficients
for any N > [ 4 R — 1for white noise input and more coefficients can be recovered using (22).
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is not available. For Q < R, we can obtain w, by solving the (over)-determined equation
Boyw, = E[Wyn,r(00)]and then, we estimate the modeling part wy as

Wi = E["A\’un,L(Oo)] — B1ws. (25)

Hence, all the coefficients of unknown plant can be recovered in this case.

Also, notice that the Wiener solution in the under-modeling case is not the first L coef-
ficients of the system impulse response. In echo cancelation, we aim at canceling the echo
signal and hence, we expect that the filter converges to the Wiener solution and an accu-
rate estimation of the echo path is not the main concern. In applications of room impulse
response identification, on the contrary, a precise estimation of the room impulse response
is the objective. We can thus choose the proper variant of FDAFs according to the task at
hand.

3.3 Mean-square convergence
This section studies the second-order convergence of the unconstrained FDAF. Using (17),

we formulate the instantaneous MSE as

1
Jun(k) = ZEle” (K)e(k)]
(26)
= %{tr(lz[wun(k)wlfn(k)m) + 2E[W,, () IR3wy + W] Raw, } + 07,

where R3 = E [Xg (k) X3(k)], Junmin = 02 is the MMSE which can be achieved only
in the exact modeling case, i.e., M =1L, and Jynex(k) = %{tr(E[Wun (k)ﬁfuTr1 (k)]R)
+2E [WuTn(k)]I_{gw* + w*T ng*} is the EMSE. Note that in the under-modeling case, the
MMSE is not Jynmin = 0.2 given a fixed L as will be shown later. However, we still use the
provided EMSE expression for convenience, which is reasonable if we treat the adaptive
filter length as an independent variable.

Note that the calculation of the MSE Jun(k) requires evaluating E[wy,(k)] and
E[Wun (k)‘i'uTn (k)]. Since the former has been presented in (19), we now examine the evo-
lution of E [ﬁrun(k)ﬁruTn (k)]. By post-multiplying (18) by its transpose and calculating its
expectation, it holds that

E[Wun(k + DWL (k + 1))
= E[Wun ()WL, (5]

— RE[Wun ()W, (AL (0]
— UE[Agn (K)Won (K) W, (6)]
+ 1PE[Aun ()W (WL AL ()]
— UE[Wun (W] BL (k)] (27)
— UE[Bun (K)wi Wi (k)]
+ W2 E[Bun (wawl (OAL (0]
+ WE[Bun()w,w, Bl (6)]
+ WP E[Aun () Wyn ()W, BL, (6)]
+ u?82PRP.
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We introduce the vector z,, (k) = vec{E[Wu, (k)WL (k)1} of length N2, where vec({-} obtains
column vectors by stacking all columns of the matrix argument [31]. Applying vectoriza-
tion to (27), we set up a difference equation for zy;, (k)

Zun(k + 1) = HunZun (k) + Oun(k), (28)
where

Hy, = INZ — uCyn + leun¢
Cun = E[Aun(0)] @ In + Iy ® E[Aun(K)], (29)
Iun = E[Aun(k) ® Aun(k)]y

Oun(k) = 11*8)vec(PRP) — w(E[Bun (k)] ® In)vec(E[Wun (k)W)
+ 12 (E[Bun (k)] ® Ayn (k))vec(E[Wyn (k) IW)
— w(Iy ® E[Bun (k) ])vec(w,E[W], (5)]) (30)
+ U2 (E[Aun ()] ® Byn (k) vec(w,E[WL (K)])
+ U2 (E[Bun (k)] ® Bun (k) vec(wiw?).

The mean-square convergence behavior of the unconstrained FDAF is governed by the
eigenvalues of Hyy. It should be mentioned that (28) does not resort to the Gaussian
input assumption, and hence, the analysis in this paper is valid for arbitrary data distri-
butions. We will use the same procedure to analyze the constrained FDAFs in the next
section. In [32], the energy-conservation approach is used to derive the time evolution of
the MSD and EMSE. Indeed, we can use the energy-conservation approach for analysis
of the FDAFs and can obtain the same results. However, the method used here is easier
to follow and understand than the energy-conservation approach.

The state-space model (30) depicts the mean-square behavior of the unconstrained
FDAF. The learning curve can be evaluated by iterating recursion (30). The mean-square
deviation (MSD), i.e., the system distance, is commonly used to measure the Euclidean
distance between the estimated and true values. The instantaneous MSD of the uncon-
strained FDAFs is calculated by 8y, (k) = E (H\Tvun (k) ||2) = tr(vec 1 (zyn (k))). Notice that
only the first L weights are involved in the MSD evaluation of the unknown system. At
steady state, (28) leads to zy, (00) = (INz — Hun) 71®un(oo), and hence, the steady-state
MSD can be expressed by yn (k) = E(|[Wyn(00)]1?) = tr(vec ! (zyn(00))). The steady-
state EMSE then follows

1 - T = - T o T
Junex(00) = & {tr(E[Wun (00) W, (00)IR) 4 2E[W, (00)IRswy + W/ Rzw,. }.  (31)

At this point, we would like to identify the factors that influence the steady-state MSE
of the deficient-length unconstrained FDAF, where we have assumed that M and L are
fixed. For that, we define the difference between E[wy,(c0)] and the optimum Wiener
solution as A = Wyn,opt — E[Wun(00)]. We then write the difference between Wy, (k) and
its mean steady-state value E[Wy; (00)] as

Qun (k) = Wy (k) — E[Wyn(00)] = E[Wyn(00)] — Wyn (k) = Wun,opt — A —wyn (k).
(32)



Yang EURASIP Journal on Advances in Signal Processing ~ (2024) 2024:100 Page 10 of 25

Substituting (32) into (26), we may represent the steady-state MSE in terms of qyun (k)

1 _
Jun(00) = Etr(E[qun(oo)anwo)]R)

un,opt

1 _ . _ -
+ E{tr(EAATR) — 2tr (AW, o R) + 2ATRsw, } (33)
1. . 5 _ 5 _
+ ? {tf(Wun,opthTn,optR) + 2qun,0ptR3w* +wl ng*} + 01,2.

The first term on the right-hand side of (33) is directly related to qun(c0), i.e., the fluc-
tuations of wyn(00) around its mean E[wyn(00)], and the second term is introduced by
the bias A between E[wy,(00)] and its optimal solution Wyy,opt. Because the two kinds
of unconstrained FDAFs can converge to the optimal Wiener solution, i.e.,, A = Oxx1,
the MMSE of the unconstrained FDAFs with and without step-normalization can be
expressed by

1 ~ ~T D ~ T D T 2
Jmin,1 = Jmin2 = E {tr(wun,optwun,optk) + 2wun,0ptR3w* +w, RSW*} + 81/' (34)

3.4 Stability bound

We investigate the stability condition for the unconstrained FDAFs. Note that (19)
is convergent if all eigenvalues of Iy — wE[Aun(k)] are within the unit circle, i.e.,
p(In — nE[Aun(k)]) < 1 with p(-) denoting the spectral radius. The matrices P and R
are positive definite, so the eigenvalues of E[Ayn (k)] = PR are positive and real [31].
The condition p(In — nE[Aun(k)]) < 1that guarantees the unconstrained FDAF’s mean
convergence is then equivalent to

2

H S max EAm(K)])

(35)
where Amax (+) represents the maximum eigenvalue of the input matrix.

In light of (28), one observes that for the unconstrained FDAF, the mean-square con-
vergence holds if and only if p(Hyn) < 1 holds. Because Cy, may not be positive defi-
nite particularly in the step-normalization version, the method in [32] cannot be directly
applicable to solve this inequality. We resort to the approach in [33] to deal with this
problem. We decompose P as P = QSQ7, where the diagonal matrix S consists of the
eigenvalues of P and the column vectors of the orthogonal matrix Q are the correspond-
ing eigenvectors. We introduce a matrix o = QS%QT. Pre- and post-multiplying (29) by
(¢ ® @) 1and ¢ ® &, we arrive at

I:Iun =Iy2 — ﬂéun + szunr (36)

where Hy = (@ ® @) THyy (o @ ), Cun = (@Ra) @ Iy + Iy ® (@Ra), and
Jun = E[(@XT ()X (k) @ (@XT (k)X (k)a)]. The matrices Hy, and Hy, have the same
eigenvalues, which means that we can solve p(Hyn) < 1instead. We can easily infer that
Cun is positive definite and Jy, is non-negative definite. As a consequence, the condition
on 1 to guarantee p(Hy,) < 1 can be given by [32]
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1 1
Jmax ((_Z;nljun) "max (A(f],) € RY)

¢ 17
where i, = < jli‘;“ 02]3;‘" )

0 < i < min

4 Analysis of constrained FDAFs

We are now ready to study the statistical behavior of constrained FDAFs. The time-
domain approach used above is adopted for the performance evaluation. However, as
will be shown, the constrained algorithm exhibits some different convergence properties.

4.1 Mean convergence

We start by examining the mean convergence in the constrained case. For that, we define
the time-domain weight vector as Wep (k) = TloF_1W(k) of length L, where Y extracts
the first L components of the inverse DFT of W (k). Using (4), we obtain the error vector

e(k) = d(k) — Xy (k)Wen (k). (38)
Pre-multiply (6) by T1oF 1, we obtain the time-domain update equation

Wen(k + 1) = Wen (k) + uPXT (K)e(k). (39)
Subtracting wy from (39) yields

Wen(k + 1) = Wen (k) — uPXT (K)e(k), (40)

where Wen (k) = wi — We (k) denotes the weight-error vector of the constrained FDAF.
We rewrite d(k) in terms of w; as

d(k) = X1 (ywy + X3 (yws + v(k). (41)
Substituting (41) into (38) leads to

e(k) = X1 (k)Wen (k) + X3(k)wy + v(k). (42)
Inserting (42) into (40), we obtain the recursion

Wen(k + 1) = Wen (k) — ptAen (K)Wen (k) — uBen (K)wy — uPXT (k)v(k), (43)

where A¢, (k) = PXT (k)X (k) and B, (k) = PXT (k) X3 (k).
Taking the mathematical expectation of (43) and using the independence assumption

E[Wen(k + 1] = (I — RE[Acn (K)]) E[Wen (k)] — HE[Ben (k) Wi (44)

This recursion describes the time evolution of E[w¢y, (k)]. The last term in (44) disappears
in the exact modeling case. It is shown in [20] that for the constrained FDAF with step-
normalization, we have the approximation E[A¢, (k)] =~ %IL when N is large enough,
and hence the algorithm only has a single convergence mode. However, the convergence
speed of the constrained FDAF without step-normalization is linked to the eigenvalue
spread of E[Acy (k)] = E[XIT (k)X1(k)] = Ry, which may be significantly higher than
that of the step-normalization version.
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Using (9) and (11), the matrix governing the mean convergence of unconstrained
FDAFs is represented as

PiRi; + P3Ry PiRY + PRy,

E[Aun(k)] = '
[Aun (K)] PgRll + P3Ry; P2TR2T1 + P3Ry

(45)
where Ry; = E [XZT (k)X1(k)]. It is then observed that the matrix that controls the mean
convergence of the constrained version E[Ac, (k)] = PE[XT (k)X1(k)] = P1Ry; + PoRyy
is a submatrix of E[Ay,(k)]. For the FDAF without step-normalization, it has been
shown in [22] that

Amax (E[Aun (K)]) _ Zmax (E[Acn (K)])
;Lmin (E [Aun (k)]) - /lmin (E [Acn (k)]) '

(46)

Eq. (46) states that eigenvalue spread of E[Ay, (k)] is always larger or equal to that of
E[Acn(k)], and hence, the constrained FDAF may converge faster than the uncon-
strained version. However, it is very challenging to verify if the relation (46) holds for the
FDAF algorithms with step-normalization, which remains an open problem.

At steady state, the constrained FDAF converges to

E[Wen(00)] = —(E[Acn (K)]) _lE[Bcn (k) Iw

_ (47)
= —(P1Ry1 + PoRy1) 1 (P1Ry3 + PaRo3)wy,

where Ry3 = E[XT (k)X5(k)], Ro1 = E[XT (k)X1(k)]and Rys = E[XT (k)X3(k)].

Let us investigate whether the constrained FDAF converges to the optimum Wiener
solution. We present the optimum Wiener solution by minimizing the quadratic cost
function E[He(k) ||2] in (38)

ch,opt = _Rl_ll Rizw.. (48)

The optimum Wiener solution of the unconstrained FDAF in (21) utilizes the future
information, and hence, it is non-causal. However, the optimum Wiener solution of the
constrained FDAF in (48) only requires the past inputs, which is causal. Also, Eq. (21)
is an unconstrained solution since we do not impose any constraint on wy, (k). How-
ever, Eq. (48) is a constrained solution since the last R components of the inverse DFT
of W (k) are always forced to be zero. Due to the additional constraint, the MMSE from
(48) is larger than that from (21), which is already pointed out in [21] but the explicit
MMSE expression is not given in [21].

In the exact modeling scenario, the optimum Wiener solution (48) is the true system
impulse response, and hence, the constrained FDAF converges to the optimum Wiener
solution, i.e., the true plant.

We now pay our attention to the under-modeling scenario.

« For constrained FDAFs without step-normalization, we have P; = Iy, Py = Or«x and
obtain the relation E[Wcn(00)] = Wen (k) = —Rl_llngw*. The constrained FDAF
without step-normalization converges to the causal Wiener solution. For the white
noise input, i.e.,, Ri3 = 0 xq, we have E[W¢n(00)] = 0r 1, which means that the con-
strained FDAF without step-normalization converges to the first L coefficients of the



Yang EURASIP Journal on Advances in Signal Processing ~ (2024) 2024:100 Page 13 of 25

system impulse response. When correlated signals are used as input, however, it has
Ri3 # 01x@, and then E[Wen(00)] # Orx1, which means that the constrained FDAF
algorithm without step-normalization cannot converge to the first L coefficients of the
system impulse response.

+ For constrained FDAFs with step-normalization, we have
P, = NaxZIL,PZ =0.xr Ri3=0rxqo for white noise input, and then
E[Wcn(00)] = Wen,opt = Orx1, which means that it can converge to the causal Wie-
ner solution and the first L coefficients of the system impulse response. When
correlated signals are used as input, we can verify that E[Wcn(00)] 7 Wen,opt and
E[Wen(00)] # 0rx1, which means that it cannot converge to the causal Wiener solu-

tion or the first L coefficients of the system impulse response.

4.2 Mean-square convergence
Next, we perform a detailed second-order analysis of the constrained FDAFs. Using (42),
we obtain the instantaneous MSE of the constrained FDAFs

Jen k) = ~Efe? (ke (k)]
R (49)
= %{tr(Eva (ywl ()IR11) + 2wl (K)Ri3wy + w,Rsw! } + o2,

where  Jonmin = ov2 is the MMSE that can be realized only when the
adaptive  coefficients converge to the system impulse response, and
Jenex (k) = g {tr(E[Wen ()WL () IR11) + 2WZ, (k)R13wy + wyRsw] } is the EMSE.

We study the evaluation of the covariance E[W¢p (/()\KICTr1 (k)] to obtain the MSE. We post-
multiply (43) by its transpose and take the expectation

E[Wen(k + DWE (k + 1)]

= E[Wen ()W, (K)]
— WE[Wen ()W (K) AL (K)]
— HE[Acn () Wen ()WL ()]
+ WP E[Acn () Wen ()WL ()AL (K)]
— UE[Wen (K)w] BL (k)] (50)
— UE[Ben (K)wy W (K)]
+ W2E[Ben (K)wy Wl AL (k)]
+ WPE[Ben (Kywsw! BL (k)]
+ W2 E[Acn (K)Wen ()W! B ()]
+ u252PRPT.

Following the same argument used in the unconstrained FDAFs, we define the L2 x 1

vector Zc, (k) = vec{E [Wen (k)ﬁlz;1 (k)]}. Applying the operation of vectorization to (50),
we obtain the following difference equation

Zen(k + 1) = HenZen (k) + Ocn (K), (51)
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where

He, = IL2 — uCen + Hzlcn
Con = E[Acn ()] ® I + 11 @ E[Acn (k)] (52)
Jon = E[Acn (k) ® Acn (k)]

Ocn (k) = pu282vec(PRPT)
— W(E[Ben (k)] ® 1) vec(E[Wen (K)w))
+ U2 (E[Ben (k)] ® Acn (k))vec(E[Wen (k)W) )
— (L ® E[Ben (k)] vec(w,E[W, (k)])
+ 1 (E[Acn (k)] @ Ben (k))vec(w, E[Wr, (K)])
+ 1 (E[Ben (k)] ® Ben (k))vec(wow?).

Note that the eigenvalue spread of H., determines the mean-square conver-
gence behavior of constrained FDAFs. Once zc(k) is recursively generated
using (51), the instantaneous MSD of the constrained FDAFs is then given by
Sen(k) = E(||[Wen(K)||*) = tr(vec ™ (zen(K))).

In the steady state, we have zc, (00) = (I;2 — Hen) ' @¢n(00) according to (51), and we
immediately obtain the steady-state MSD 8.y (00) = E (||v”vcn(oo) ||2) =tr (vec_l(zcn(oo))).
Also, the steady-state EMSE follows:

Jenex (00) = %{tr(E[ch(OO)W;(OO)]Rn) + 2E[WL (00)IR13Wy + wiRsw!).  (54)

We have derived the steady-state EMSE expressions of four variants of the FDAF algo-
rithm, which are accurate but somewhat complex. Some simplifications for the EMSE
expressions in the exact modeling case can be found in the literature. Closed-form
EMSE expressions are given in [20] without detailed derivation, and the same results are
derived in the frequency domain in [4]. In Appendix A, we adopt a different approach to
derive the approximate EMSE expressions in the time domain. As shown, our derivation
is easy to understand and also we provide a more accurate solution for the constrained
FDAF algorithm..

Next, we investigate how the MSE of the constrained FDAFs is generated and derive the
attainable MMSE for the two versions. To this end, we define A = Wen,opt — E[Wen(00)].
The difference between W, (k) and its steady-state mean value is

qen (k) = Ocn (k) — E[@cn(00)] = E[Ren(00)] — Ren (k) = Renopt — A — Ren (k).

(55)
We rewrite the steady-state MSE terms of qcp (k)
1 T
Jen(00) = Etr(E[an(OO)qcn(OO)]Rn)
1 = <T <. =T
+2 {tr(EAA Riy) — 2tr(AWY, o Riy) + 2 ngw*} (56)

1 - - -
+ R {tr(ch,optWZ;wptRu) + 2wc7;mptR13w* + W*ng*T} + 01,2



Yang EURASIP Journal on Advances in Signal Processing ~ (2024) 2024:100 Page 15 of 25

The first term in the right-hand side of (56) is related to the fluctuations of wcy(00)
around its mean E[w.,(00)], and the second term is attributed to the bias between
E[Wcn(00)] and its optimum solution Wen opt.

Because the constrained FDAF algorithm without step-normalization for any inputs
and the constrained FDAF algorithm with step-normalization for white noise input can
converge to the optimum Wiener solution, i.e., A= 0; 1, the second term in (56) then
becomes zero and the attainable MMSE is

1 - - -
Jmin,3 = E{tr(wcn,optwgl,optRu) +2W 0 oot R13Ws + WoRsw] } + 07, (57)

which is the same as the LMS [34]. When the input is correlated, the constrained
FDAF algorithm with step-normalization cannot converge to the Wiener solution, i.e.,
A # 07 1. The attainable MMSE in this case is given by

1
mmzEm@wﬂwwwﬁwmm+%memmw+wmwb+ﬁ
(58)

where E[Wen(00)] = —(P1R11 + PaRa1) 7L (P1R;3 + PaRo3)w.

We now compare the MMSE performance of four variants of FDAF algorithms. In the

2

exact modeling scenario, all the variants can achieve the same MMSE, i.e., Jmin(00) = 0.

The case is different for the under-modeling scenario. For white noise input, it has
]min,l - ]min,Z =< ]min,B - ]min,4- (59)
For correlated input, we have

Jmin,l = Jmin,2 < Jmin,3 < Jmin,4- (60)

4.3 Stability bound

We now present the condition in which the constrained FDAF algorithm can be stable. For
the constrained FDAF algorithm without step-normalization, we have P; = I, P2 = Or«p,
and hence, E[Acn (k)] = Ry is positive definite with real-valued eigenvalues. To guaran-
tee the mean stability, we should have p(Ir — wE[Acn(k)]) < 1such that all eigenvalues of
I; — wE[Acn (k)] must be less than one in magnitude, and then, the step size satisfies

2

H S max EAa (O]

(61)
According to (51), we should have p(H¢,) < 1 such that the algorithm can be mean-
square stable. We can infer that C, is positive definite and J¢, is non-negative definite,
and then, the range of step size is given by [32]

1 1
0 | | , 62
Shsme { Jmax (Cgrlllcn) max ()~(77€n) < R+) } "

1 _1
where 5., = 2Cen —5Jen .
ILZ OLZ
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For the constrained FDAF algorithm with step-normalization, E[Ac, (k)] is not a Her-
mitian matrix, and hence, the eigenvalues of E[Acy (k)] may not be real. The condition

that guarantees mean convergence is expressed as

D i=01,---,L—1, (63)

where /; is the i-th eigenvalue of E[A¢n(k)]. Similarly, the constrained FDAF is mean-
square stable, if and only if

p (12 = #Con + 1¥en) < 1. (64)

However, the matrices C, and J., are not Hermitian in this case, and hence, we cannot
use (62) to solve the inequality (64). In practice, a numerical solution may be used to
handle this problem, see [25] for more details.

Given the complexity of the mathematical developments, some variables and matri-
ces used in the formulations are summarized in Appendix B to enhance the readability,
although they are explicitly defined.

5 Results and discussion

We conduct computer simulations to demonstrate and support our analysis. The
unknown system impulse response has a length of M = 16 and is with the coeffi-
cients [0.01 0.02 —0.04 —0.08 0.15 —0.3 0.45 0.6 0.6 0.45 —0.3 0.15 —0.08 —0.04 0.02
0.01]. The adaptive filter has a length of L =16 or L = 14, corresponding to the
exact- and under-modeling situations, respectively. The input x(n) is generated by
filtering the white Gaussian noise with H(z) = M/(l —az™ 1), which is white
noise for a = 0 and an AR(1) process for 0 < |a| < 1. The signal-to-noise ratio (SNR)
is defined as 10log;, (E[()(T(n)wopt)z]/E[v2 (n)]). We estimate the required statistical

moments by ensemble averaging.

Figure 1 presents the MSD and EMSE learning curves of the step-normalization FDAF
algorithm. SNR = 10 dB and SNR = oo are used in this example. We here consider an
exact modeling case, i.e.,, L = 16 and R = 16. The step size is u = 0.1. The theoretical
learning curves of the unconstrained FDAF algorithm are generated recursively using
(28) and (26), while that of the constrained version are obtained from (51) and (49). High
consistency between theory and experimental results is witnessed in Fig. 1. Also, we find
that the constrained and unconstrained FDAFs exhibit a similar initial convergence rate
in this case. This is because the eigenvalue spread of Ay, (k) is only slightly larger than
that of Ac,y(k), ie., % = 1.63 and % = 1.52. The step-normali-
zation procedure greatly reduces the eigenvalue spread of Ay, (k) and A, (k), and the
constraining matrix G further diagonalizes A, (k). The experimental MSD and EMSE
for SNR = oo both achieve a floor due to the roundoff error. We conduct simulations
in the under-modeling situation in Fig. 2, where we set L = 14 and R = 28 and other
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Fig. 1 Predicted and simulated learning curves in exact modeling situation: (@) MSD for SNR = 10 dB, (b)
EMSE for SNR = 10 dB, (¢) MSD for SNR = oo, and (d) EMSE for SNR = oc

conditions are the same as that in Fig. 1, and we observe that the presented model is
capable of predicting the EMSE and MSD learning curves well.

Figure 3 presents the steady-state mean-square performance of the step-normali-
zation FDAF algorithms for SNR = 30 dB. We here consider an exact modeling case
with L = 16 and R = 16. An AR(1) process with a = 0.9 is used as input, and u varies
from 0.01 to 1.9. The stability bounds are also illustrated in Fig. 3. Note that the simu-
lations are consistent with the theoretical predictions, i.e., Eqs. (31) and (54), even at
large step sizes. We then investigate the accuracy of several approximations shown in
Appendix A. To give a more intuitive observation, we present some theoretical and
measured results in Table 1. Our approximated EMSE solutions of the unconstrained
and constrained FDAFs, i.e., Egs. (A5) and (A11), match the experimental values well
for smaller step sizes, but the previous theory in [4] and [20] (i.e., Eq. (A12)) present
the largest prediction errors. It is apparent that all the approximated results devi-
ate from the simulations when the step size is large. Given the same step size, the
constrained FDAF algorithm has lower steady-state MSD and EMSE values than the
unconstrained algorithm.

We investigate the steady-state MSD and EMSE performance of the FDAFs in under-
modeling in Fig. 4 for SNR = 30 dB. The experimental conditions are the same as Fig. 3
except that L = 14 and R = 28 are used. It is observed in this example that the theo-
retical predictions are similar to the simulations. The constrained FDAF achieves smaller
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Fig. 3 Steady-state performance of the FDAF with step-normalization in the exact modeling situation: (a)
MSD and (b) EMSE

steady-state MSD values than the unconstrained one in under-modeling case. However,
the steady-state MSE in under-modeling case is quite different from that in the exact
modeling case. When the step size is small enough, the EMSE related to the step size
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Table 1 Measured and theoretical steady-state EMSEs of constrained FDAF with step-normalization
in exact modeling case

n Measured Predicted from (54) Predicted from (A11) Predicted
from
(A12)
0.01 — 5254 — 5249 —5249 —5333
0.05 —4542 —4541 —45.50 —46.34
0.1 —42.29 —42.27 — 4249 —43.34
0.5 —34.15 —34.16 — 3550 —36.34
1 —27.89 —29.00 — 3249 — 3333
15 — 1435 —19.51 —30.72 —31.56
20 T 1
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Fig. 4 Steady-state performance of the FDAF with step-normalization in the under-modeling situation: a
MSD and b EMSE

can be ignored. Hence, the unconstrained FDAF has a lower steady-state EMSE when
1 < 0.5 since it converges to the non-causal Wiener solution. As the step size increases,
the first term in (33) and (56) may dominate. Consequently, we found that for u > 0.5
the unconstrained FDAF algorithm has a larger EMSE compared to its constrained
counterpart.

Figure 5 displays the MMSE of four FDAF algorithms with different a. The filter has
a length of L = 14, and the block has a length of R = 14. Notice that an under-mod-
eling situation has been considered here, whereas four variants of the FDAF have the
same MMSE for a sufficient long filter length and the results are not shown. Because
the unconstrained FDAF algorithm can always converge to the non-causal Wiener solu-
tion, it has a smaller MMSE than the constrained version. An intuitive explanation is
that the unconstrained FDAF yields superior MSE performance by utilizing more data
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Fig. 5 Attainable MMSE of four FDAF algorithms as a function of the parameter a

than the constrained counterpart. This finding has already been investigated in [20] and
[21], but they did not provide the analytical MMSE expressions. Also note that with
or without step-normalization, the constrained FDAF attains similar MMSE values
for a close to zero, i.e., the input is close to white noise. However, as the parameter a
increases, the MMSE of the step-normalization FDAF turns out to be worse than that
without step-normalization. The observation is consistent with our analysis, i.e., the
constrained FDAF algorithm without step-normalization converges to the causal Wie-
ner solution for an arbitrary input, while for the constrained FDAF algorithm with step-
normalization, this can only happen for a white noise input.

6 Conclusion

We carried out the performance evaluation of a family of FDAF algorithms in the
time domain. In particular, we have derived the recursive models for their mean and
mean-square properties. We extensively discussed whether each variant of the FDAF
converges to the system impulse response or the optimum Wiener solution. Closed-
form expressions that characterize the MSD and MSE performance of the FDAFs
were derived, and accurate and approximate steady-state EMSEs were given. The
MMSEs of the four versions of the FDAF were compared. This work is more general
and easier to follow than our previous study [25-27], which offers a thorough insight
into the underlying learning theory of FDAFs. Computer simulations supported the
theoretical model.
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Appendix: A
This appendix examines the steady-state mean-square behavior of FDAFs that is easy
to follow. Particularly, the derivations will rely on some simplifications.

For the unconstrained FDAF algorithm without step-normalization, it has
E[Aun (k)] = R. Using (27) and ignoring the terms related to %, we obtain

E[Wun (00) W, (00) IR + RE[Wyn (00) W1, (00)] = p87R. (A1)
Taking the trace of both sides of (A1), it has
tr (E[Qun(oo)%(oo)]li) - %M(S‘%tr(ﬁ) = % (LNR§252. (A2)

Considering (31) and (A2), we then obtain the steady-state EMSE of the unconstrained

FDAF algorithm without step-normalization
1 ~ ~T P 1 252
]un,ex (00) = Etr(E[wun (OO)Wun (00)]R) = EMNSV Bx- (AB)

For the step-normalization version, using the relation E[Ayn (k)] = %IN and (27), we
have

Elfun (00 (00)] = 2 us2P. (A%)

Using (31) and (A.4), the steady-state EMSE of the unconstrained FDAF algorithm with
step-normalization then follows

Jun,ex (00) = ltr(Er (00) Wi, (00)IR) = L 82tr(PR) = E 82 A5
un,ex =R Wun Win = 2RM by = ZM Y (A5)

For the constrained FDAF without step-normalization, it has E[Acy (k)] = Ry;. Using
(50) and ignoring the term related to w2, we get

E[Wen (00)WZ (00)IR11 4 Ry1 E[Wen (00)WL (00)] = us2PRPT. (A6)

Taking the trace of both sides of (A6) and considering the relation PRPT = Ry, one
immediately obtains

1
tr (EWen (0000, (00)R11 ) = S usZtr(Rip). (A7)

Considering tr(Ry1) = LRS2, we then obtain the EMSE of the constrained FDAF algo-

rithm without step-normalization from (54)
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1 - - T 1 242
]cn,ex(oo) = ﬁtr(E[ch(OO)ch(OO)]RH) = E/LL‘SV‘S;C' (A8)

Note that Egs. (A3), (A5), and (A8) agree with the results in in [4], [20], but our deriva-
tion is easier to understand.

For the constrained FDAF algorithm with step-normalization, it has an approximation
E[A(K)] = %IL. Using (50) and ignoring the 112 terms, we get

~ - 1N g
E[ch(oo)wcz;l(oo)] = 5}#53PRPT. (A9)

Using the approximation PR = %IL, we get PR = [I; 0;«z], and hence PRP? ~ %Pl.
Equation (A9) then becomes

1
E[Wen (00)W2 (00)] = Euafpl. (A10)

The steady-state EMSE of the constrained FDAF algorithm with step-normalization can
be expressed by

1 1
Jen,ex (00) = ﬁtr@wm(oo)w;(oo)mn) = ﬁﬂsgtr(PlRll)- (A11)

For white noise input, we have PoRy; = 07, and hence PiR;; = E[Acy (k)] — PaRyy ~ R1;.
Equation (A.11) then becomes

1L

Jen,ex(00) = iﬁ“av' (A12)
The approximation (A12) is the same as that in [4] and [20]. Note that (A12) has a good
approximation when the input is white noise or close to white noise, but (A12) deviates
from the simulated result for highly correlated inputs. However, the presented theoreti-
cal EMSE (A11) holds well for both white noise and correlated input.

It is observed that the sufficient-length FDAF algorithms with and without step-nor-
malization can achieve the same steady-state EMSE result by step size adjustments,
while their difference lies in the convergence speed. The EMSE gap between the two
FDAF variants is determined by a factor of L/R, which becomes significant as the block
length R increases.

Appendix: B
In this section, we show some variables and matrices used in the formulation for the
convenience of the reader (Table 2).
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Table 2 The symbol matrices and variables

Symbol Dimension  Description

M 1x1 The length of the unknown plant

L 1 x 1 The length of the adaptive filter

Q 1Tx1 The length of the under-modeling filter

N 1 x 1 The DFT length

R 1x1 The block length

x(n) 1x1 The input signal

d(n) 1x1 The desired response

x(n) M x 1 The input vector

Wopt Mx 1 The impulse response vector of an unknown system

Wi Lx1 The column vector consisting of the first L elements of wopt

Wy Qx1 The column vector consisting of the last Q elements of wopt

w(k) Lx1 The estimated weight vector

W(k) N x 1 The frequency-domain weight vector

F N x N The DFT matrix

X (k) N x N The frequency-domain input matrix

y(k) Rx1 The block filtering out vector

d(k) Rx1 The block desired signal vector

e(k) Rx1 The block error vector

Gio N x N The constraining matrix

Xc (k) N x N A circulant matrix with the first column x(k)

Rc N x N A correlation matrix of the input signal Re = E[X] (k)X (k)]

P N x N The inverse of R¢

Wyn (k) N x 1 The time-domain weight vector of the unconstrained FDAF

Wyn (k) N x 1 The time-domain weight-error vector of the unconstrained FDAF

E[Auin (k)]  NxN The matrix than controls the mean weight convergence of the unconstrained FDAF
Hun N2 x N2 The matrix than controls the mean-square convergence of the unconstrained FDAF
Sun (k) 1x1 The instantaneous MSD of the unconstrained FDAF

Jun (k) 1x1 The instantaneous MSE of the unconstrained FDAF

Wen (k) Lx1 The time-domain weight vector of the constrained FDAF

Wen (K) Lx1 The time-domain weight-error vector of the constrained FDAF

E[Acn(K)]  LxL The matrix than controls the mean weight convergence of the constrained FDAF
Hc 12 % [? The matrix than controls the mean-square convergence of the constrained FDAF
Scn (k) 1x1 The instantaneous MSD of the constrained FDAF

Jen (K) 1x1 The instantaneous MSE of the constrained FDAF

A N x 1 The difference between E[wyn (00)] and the optimum Wiener solution

qQun (k) N x 1 The difference between Wyn (k) and its mean steady-state value

A Lx1 The difference between E[W¢p (00)]and the optimum Wiener solution

qcn (k) Lx1 The difference between Wcn (k) and its mean steady-state value
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