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Abstract 

This study investigates the convergence behaviors of a family of frequency-domain 
adaptive filters (FDAFs) under both exact- and under-modeling situations. The stochas-
tic analysis is conducted by transforming the frequency-domain equations into their 
time-domain counterparts. We discuss the transient and steady-state convergence 
behaviors of four FDAF versions, i.e., the constrained FDAFs with and without step-
normalization, the unconstrained FDAFs with and without step-normalization, and we 
also present the upper bounds of step size for mean stability and mean-square 
stability. Starting from the expression for the steady-state mean weight vector, this 
study investigates whether the FDAFs can converge to unknown system impulse 
responses and optimum Wiener solutions. Moreover, we provide the closed-form 
minimum mean-square error (MMSE) that each FDAF can achieve. The difference 
between the current work and our previous one is threefold. First, the presented time-
domain analysis is much easier to handle and has a more explicit physical meaning 
than that in the frequency domain. Second, we here consider an arbitrary overlap 
factor between consecutive blocks, while our previous analysis only focuses on 50% 
overlap. Third, the presented MMSE expressions and excess mean-square error (EMSE) 
approximations have not been given before. Simulations reveal high consistency 
between the experimental and theoretical results.

Keywords: Adaptive filter, Frequency domain, Mean-square error, Transient analysis, 
Convergence behavior

1 Introduction
Frequency-domain adaptive filter (FDAFs) is originally proposed as a fast but exact 
realization of the block least mean-square (BLMS) algorithm [1, 2], and thus, they 
exhibit the same convergence characteristics. Subsequently, two strategies are pre-
sented to improve the convergence or gain computational efficiency. The first method 
is known as the step-normalization or self-orthogonalization procedure, in which 
the frequency-wise step size related to the corresponding signal power is adopted 
[3]. The second strategy is to remove the constraint on the weight vector in the time 
domain, and the corresponding algorithm is called the unconstrained FDAF [4, 5]. 
Thus, four variants of the FDAF algorithm are obtained, i.e., the constrained FDAFs 
with and without step-normalization, the unconstrained FDAFs with and without 
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step-normalization, which have found applications in a wide range of areas [6–13]. 
Recently, deep neural networks have been incorporated into the estimation of the 
gradient or the key parameters of the FDAFs [14, 15].

Besides the algorithm design, it is desirable to characterize the convergence of the 
adaptive filtering algorithms [16–22, 22, 24–27]. In [18], the second-order statistics 
for the BLMS are analyzed for Gaussian inputs. In [19], the influence of the window-
ing function on the FDAF convergence is analyzed. In [20], the mean convergence 
performance of several FDAF versions is extensively analyzed via inverse transforma-
tion of frequency-domain formulas into time-domain counterparts, but the steady-
state mean-square error (MSE) expressions are provided without detailed derivations. 
In [21], the optimum Wiener solution of FDAFs is given in the frequency domain, 
and it is shown that  the unconstrained FDAFs achieve a reduced steady-state MSE 
compared to constrained algorithms under the under-modeling scenario. In [22], the 
analysis of FDAFs is conducted in the frequency domain, and the eigenvalue spread 
of the matrix that controls the mean convergence is well studied. The steady-state 
performance of constrained FDAFs is analyzed under the under-modeling scenario 
in [23], but the input is assumed to be Gaussian. In [24], a full second-order statis-
tical framework for unconstrained FDAFs is presented for noncircular Gaussian 
signals. Recently, we have conducted an extensive statistical analysis of the FDAFs 
[25–27]. We derive a unifying update equation for four versions of FDAF, which ena-
bles us to conduct the performance analysis in a unifying framework. In [28] and 
[29], we provide a detailed performance assessment of the partitioned-block FDAFs 
in the time domain. However, the analysis results cannot be applied to the FDAFs 
straightforwardly.

We comprehensively study the convergence behavior of FDAF algorithms in this 
paper. The frequency-domain formulas are transformed into time-domain ones, 
which are utilized to deduce the evolution of the weight-error vector. We then ana-
lyze the mean convergence and mean-square convergence of the FDAFs in detail. This 
study goes further than our previous work [25–27] in several aspects. First, the pre-
sented analysis is conducted completely in the time domain, while our previous work 
is in the frequency domain. We have found that compared to the frequency-domain 
analysis, the time-domain one is easier to follow, and the time-domain variables have 
an explicit physical meaning. Second, our previous work only focuses on 50% overlap, 
but we deal with an arbitrary overlap here. Third, we provide the analytical expres-
sions for the attainable minimum MSE (MMSE) of four variants of the FDAF. Also, 
we derive the excess MSE (EMSE) approximations in the time domain, and we point 
out that the EMSE of the constrained FDAF algorithms with step-normalization given 
in [20] and [22] is biased even for small step sizes. The presented stochastic model is 
built in the under-modeling scenario, but the exact modeling scenario can be treated 
as a special case. Simulations are presented to validate the theoretical results.

The contributions of this paper are as follows:

• We describe the transient and steady-state convergence behavior of a family of the 
FDAFs with an arbitrary overlap in both exact- and under-modeling scenarios.



Page 3 of 25Yang  EURASIP Journal on Advances in Signal Processing        (2024) 2024:100  

• We present a comprehensive performance comparison of the constrained and 
unconstrained FDAFs in terms of the convergence rate, the modeling ability, the 
steady-state MSE, and the attainable minimum MSE.

• We derive the approximated expressions of steady-state EMSE of four types of the 
FDAFs in exact modeling scenario, which are easier to follow than before.

2  FDAF
We begin our treatment by introducing the FDAF algorithms. Consider the linear time-
invariant model in the framework of system identification

where d(n) represents the desired response, n is the discrete-time index, T repre-
sents a transposition, x(n) = [x(n), · · · , x(n−M + 1)]T denotes the input vector, 
wopt = [w0, · · · ,wM−1]T signifies the impulse response of an unknown system with a 
length of M, and v(n) accounts for the measurement noise signal that is  independent 
with x(n). The input and noise signals are the zero-mean and stationary random pro-
cesses, respectively, with a variance of E[x2(n)] = σ 2

x  and E[v2(n)] = σ 2
v  where E[·] is 

the expectation. The linear model in (1) has been applied to various problems despite its 
simplicity.

The FDAF algorithms typically rely on a block-processing approach, i.e., the filtering 
out and the adaptive weights are calculated block by block. The weight vector remains 
the same in one block in FDAF algorithms, which is different from the sample-by-sam-
ple-based least mean-square (LMS) algorithm. In this paper, R and k denote the block 
length and the block index, respectively. We consider an adaptive transversal filter 
ŵ(k) = [ŵ0(k), · · · , ŵL−1(k)]T that tries to imitate the unknown system response wopt , 
where L is the adaptive filter’s length. The relations L = M and L < M correspond to the 
exact and under-modeling situations, respectively. In this paper, we consider the under-
modeling situation with Q = M − L denoting the length of the under-modeling filter. 
However, we treat the exact modeling situation as a special case of the under-modeling 
situation, i.e., Q = 0 , and hence, the presented analysis can cover both the exact and 
under-modeling situations.

We pad the estimated weight vector Ŵ(k) with R zeros and obtain its frequency-
domain representation

where N = L+ R represents the DFT length, F denotes the N × N  DFT matrix, 
ϒ10 = [IL 0L×R] , IL represents an identity matrix with a size of L× L , 0L×R denotes a 
zero matrix with a size of L× R , and 0R×1 stands for the all-zero vector of length R. In 
our previous work [23–25], we focused on the special case with 50% overlap, i.e., L = R , 
while we now consider a general case for an arbitrary overlap.

The frequency-domain diagonal matrix X (k) can be attained by converting an input 
signal block into the frequency domain

(1)d(n) = xT (n)wopt + v(n),

(2)Ŵ(k) = F

[

ŵ(k)
0R×1

]

= FϒT
10ŵ(k),
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where x(k) = [x(kR− L), · · · , x(kR+ R− 1)]T is the input vector with a length of N, 
and diag{·} forms a diagonal matrix from inputs. This input vector contains R elements 
in the current block and L elements in the previous one.

The time-domain block error signal vector is expressed by [5]

where d(k) = [d(kR), · · · , d(kR+ R− 1)]T is the block desired signal vector with a 
length of R, the block filtering out vector ŷ(k) and the block error vector e(k) are defined 
similarly, and the R× N  matrix ϒ01 = [0R×L IR×R] is utilized to retain the last R terms 
of the inverse DFT of X (k)Ŵ(k) that corresponds exactly to the linear convolution. The 
time-domain error vector e(k) is initially padded with L zeros and then turned into the 
frequency-domain expression

The constrained FDAF is characterized by [22]

where superscript H means a complex-conjugate transpose, the constraining matrix 
G10 = FϒT

10ϒ10F
−1 forces the last R components of the time-domain gradient 

F−1�−1
X

H (k)E(k) to zero, and the N × N  diagonal matrix � determines how the step 
size is chosen. If we use � = IN , a common step size parameter µ is then employed for 
all the frequencies, namely, the FDAF algorithm without step-normalization. This algo-
rithm is nothing but a faithful frequency-domain representation of the BLMS algorithm. 
If we choose the diagonal matrix � = E[XH (k)X (k)] , the step size in each frequency 
bin is scaled by the power spectral density (PSD). The algorithm is referred to as the 
FDAF with step-normalization, which can greatly speed up the convergence [3–5].

The update equation of the unconstrained FDAF is [3]

Similarly, we obtain the unconstrained FDAF algorithm with or without step-normali-
zation by using � = E[XH (k)X (k)] or � = IN . Unlike constrained FDAF algorithms, 
the gradient constraint matrix G10 is dropped out from (7), and hence (2) does not hold, 
which makes (4) implement a circular convolution for the unconstrained FDAF [30]. 
However, dropping the gradient constraint may have advantages for the under-modeling 
case, as the discussion will reveal.

3  Analysis of unconstrained FDAFs
This section analyzes the time-domain convergence behavior of unconstrained FDAF 
algorithms. The frequency-domain Eqs. (4) and (7) are changed to the time-domain rep-
resentations, which are in turn used to evaluate the mean and mean-square performance 
and establish the stability bound.

(3)X (k) = diag{Fx(k)},

(4)e(k) = d(k)− ŷ(k) = d(k)− ϒ01F
−1

X (k)Ŵ(k),

(5)E(k) = F

[

0L×1

e(k)

]

= FϒT
01e(k).

(6)Ŵ(k + 1) = G10[Ŵ(k)+ µ�−1
X

H (k)E(k)],

(7)Ŵ(k + 1) = Ŵ(k)+ µ�−1
X

H (k)E(k).
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3.1  Signal model

To pave the way for the performance analysis, we present an important result of the cir-
culant matrix [4]

where Xc(k) represents a circulant matrix with a size of N × N  and the first column of 
x(k) . We can decompose Xc(k) as

where the matrices X1(k) , X2(k) , X̂1(k) , and X̂2(k) have a size of R× L , R× R , L× L , and 
R× R , respectively, and the matrices X̄(k) = [X1(k) X2(k)] and X̂(k) = [X̂1(k)X̂2(k)] 
have a dimension of R× N  and L× N  . For convenience, we define the matrix

where Rc = E[XT
c (k)Xc(k)] . Because Xc(k) is circulant, the matrices Rc and P are both 

circulant and symmetric. We then represent P in the block matrix form

where P1 , P2 and P3 are L× L , L× R , and R× R submatrices, respectively, and 
P̄ = [P1 P2] and P̂ = [ PT

2
P3 ] have a dimension of L× N  and R× N .

For the unconstrained algorithm, we define the time-domain weight vector 
ŵun(k) = F−1Ŵ(k)

�= [ŵT
un,L(k), ŵ

T
un,R(k)]T , where the subvectors ŵun,L(k) and ŵun,R(k) 

are of length L and R, respectively. Note that ŵun(k) has a length of N and the last R ele-
ments of ŵun(k) may be nonzero since the gradient constraint is removed. Using (8), we 
represent the block error vector as

Calculating the filtering out signal may require future inputs due to the existence of 
ŵun,R(k) [20], and we hence call ŵun,L(k) and ŵun,R(k) the non-causal and causal parts, 
respectively.

Pre-multiplying both sides of (7) by F−1 and considering (8) and (10), we obtain the 
recursion of ŵun(k)

The true weight vector wopt that we wish to predict can be split into two parts

where the column vectors w† and w∗ have a length of L and Q. The desired response vec-
tor d(k) can be expressed by

(8)X
H (k) = FXT

c (k)F
−1,X (k) = FXc(k)F

−1,

(9)Xc(k) =
[

X̂1(k) X̂2(k)
X1(k) X2(k)

]

=
[

X̂(k)

X̄(k)

]

,

(10)P = (F−1�F )−1 = R−1
c ,

(11)P =
[

P1 P2

PT
2 P3

]

=
[

P̄

P̂

]

,

(12)e(k) = d(k)− X̄(k)ŵun(k)

(13)ŵun(k + 1) = ŵun(k)+ µPX̄T (k)e(k).

(14)wopt =
[

w†

w∗

]

,
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where v(k) = [v(kR), · · · , v(kR+ R− 1)]T denotes the noise vector of length R, 
X3(k) = [x3(kR− L) · · · x3(kR− L+ R− 1)]T represents an R× Q input matrix with 
x3(n) = [x(n), · · · , x(n− Q + 1)]T , and w̄ = [wT

† , 01×R]T has a length of N.

3.2  Mean convergence

This section investigates initially the mean behavior of the unconstrained 
FDAF algorithms. For that, we introduce the time-domain weight-error vector 
w̃un(k) = w̄ − ŵun(k)

�= [w̃T
un,L(k), w̃

T
un,R(k)]T , where w̃un,L(k) = w† − ŵun,L(k) and 

w̃un,R(k) = −ŵun,R(k) . We subtract w̄ from both sides of (13) and derive the update 
equation of w̃un(k)

We incorporate (15) with (12) and have

We then substitute (17) into (16) and obtain

where Aun(k) = PX̄T (k)X̄(k) and Bun(k) = PX̄T (k)X3(k).
Taking the expectation of each side of (18) and invoking the independence assumption 

[4] yield

where E[Aun(k)] = PR̄ and R̄ = E[X̄T (k)X̄(k)] . The condition number of E[Aun(k)] 
has a significant influence on the convergence speed of the unconstrained FDAFs. It is 
shown in [20] that the approximation Rc ≈ N

R
R̄ holds for a large N. For unconstrained 

FDAFs with step-normalization, the matrix controlling the mean convergence is thus 
proportional to the identity matrix, E[Aun(k)] ≈ R

N
IN . It turns out that the uncon-

strained FDAF with step-normalization only has one mode of convergence thanks to the 
self-orthogonalizing method, while that without step-normalization may have a rather 
slow convergence speed, particularly for a highly correlated input.

At steady state, (19) leads to

where R̄3 = E[X̄T (k)X3(k)] . We now investigate whether the unconstrained FDAFs con-
verge to the Wiener solution using (20). Considering (17) and replacing w̃un(k) with a 
time-invariant vector, the Wiener solution is given by minimizing the MSE E[

∥

∥e(k)
∥

∥

2]

In the exact modeling situation, it has E[w̃un(∞)] = w̃un,opt = 0N×1 , and hence, the 
unconstrained FDAF algorithm converges to the optimum Wiener solution that is also 

(15)d(k) = X̄(k)w̄ + X3(k)w∗ + v(k),

(16)w̃un(k + 1) = w̃un(k)− µPX̄T (k)e(k).

(17)e(k) = X̄(k)w̃un(k)+ X3(k)w∗ + v(k).

(18)w̃un(k + 1) =
(

IN − µAun(k)
)

w̃un(k)− µBun(k)w∗ − µPX̄T (k)v(k).

(19)E[w̃un(k + 1)] =
(

IN − µE[Aun(k)]
)

E[w̃un(k)] − µE[Bun(k)]w∗,

(20)E[w̃un(∞)] = −R̄−1R̄3w∗

(21)w̃un,opt = −R̄−1R̄3w∗.
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the true system impulse response. The non-causal part can converge to zero in mean, 
i.e., E[w̃un,R(∞)] = 0R×1 , and hence, (4) implements an (approximate) linear convolu-
tion for sufficiently small step sizes.

In the under-modeling situation, it is observed from (20) and (21) that the uncon-
strained FDAF converges to the optimum Wiener solution in the mean sense regard-
less of input signal characteristics. In this case, it has R̄3 �= 0N×Q for any inputs, and 
hence E[ŵun(k)] = w̄ − E[w̃un(∞)] = w̄ + R̄−1R̄3w∗ �= w̄ , which indicates that the 
unconstrained FDAF algorithm approaches a biased estimate of the first L elements of 
the unknown impulse response. However, we will immediately show that we can indeed 
obtain more information about the coefficients of the unknown system from uncon-
strained FDAFs, which is not revealed in previous publications.

To proceed, we define R̄−1R̄3 = [βT
1 βT

2 ]T , where the matrices β1 and β2 are of size 
L× Q and R× Q , respectively. We then rewrite (20) as

We define β2 = [β3 β4] , where the matrices β3 and β4 are of size R× R and R× (Q − R) . 
We then split w∗ into two parts w∗ = [wT

∗1 w
T
∗2]T , where lengths of the column vectors 

w∗1 and w∗2 are R and Q − R , respectively.
For white noise as input, we have β1 = 0L×Q , β4 = 0R×(Q−R) , and 

β3 = 1
R
diag{[R,R− 1, · · · , 1]T } . Using (22), it has

From (23) and (24), we observe that ŵun,L(k) can converge to the first L elements of the 
unknown plant in mean, and the first element of ŵun,R(k) is equal to wL . The other R− 1 
components cannot approach to any part of the unknown plant. That is, the first L+ 1 
coefficients of E[ŵun(k)] converge to the first L+ 1 coefficients of the unknown plant. As 
a consequence, the unconstrained FDAF algorithm cannot directly model an unknown 
system having more than L+ 1 coefficients.1 However, we can calculate w∗1 using (24), 
and hence, a total of L+ R coefficients of the unknown system can be restored from the 
steady-state vector E[ŵun(∞)] of the unconstrained FDAF. This result holds without any 
restriction on the length of the system impulse response.

For correlated inputs, we have β1  = 0L×Q , and hence E[ŵun,L(∞)] �= w† , which 
indicates that the causal part of ŵun(k) cannot converge to the first L coefficients of the 
unknown system in mean. When Q > R , we should solve β2w∗ = E[ŵun,R(∞)] to obtain 
w∗ , which is however an underdetermined linear system of equations and a precise solution 

(22)E[w̃un(∞)] = −
[

β1w∗
β2w∗

]

=
[

w† − E[ŵun,L(∞)]
−E[ŵun,R(∞)]

]

.

(23)w† = E[ŵun,L(∞)],

(24)w∗1 = β−1
3 E[ŵun,R(∞)].

1 Only several papers have discussed the modeling capability of the unconstrained FDAF algorithm with a white noise 
input. In [20], it is observed from experiment that the first L weights of the unconstrained and constrained FDAFs are 
about the same in under-modeling case. In [30], it is pointed out that the unconstrained FDAF algorithm cannot accu-
rately model an unknown system with greater than L coefficients. In our previous work [26], it is shown that the first L 
elements of E[ŵun(∞)] equal those of the true system response, but we did not point out that the L+ 1-th element of 
E[ŵun(∞)] is equal to that of true weight vector. The aforementioned discussion is limited to the case N = L+ R . It is 
easy to verify that the unconstrained FDAF algorithm can directly model an unknown plant with N − R + 1 coefficients 
for any N ≥ L+ R − 1 for white noise input and more coefficients can be recovered using (22).
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is not available. For Q ≤ R , we can obtain w∗ by solving the (over)-determined equation 
β2w∗ = E[ŵun,R(∞)] and then, we estimate the modeling part w† as

Hence, all the coefficients of unknown plant can be recovered in this case.
Also, notice that the Wiener solution in the under-modeling case is not the first L coef-

ficients of the system impulse response. In echo cancelation, we aim at canceling the echo 
signal and hence, we expect that the filter converges to the Wiener solution and an accu-
rate estimation of the echo path is not the main concern. In applications of room impulse 
response identification, on the contrary, a precise estimation of the room impulse response 
is the objective. We can thus choose the proper variant of FDAFs according to the task at 
hand.

3.3  Mean‑square convergence

This section studies the second-order convergence of the unconstrained FDAF. Using (17), 
we formulate the instantaneous MSE as

where R3 = E[XT
3 (k)X3(k)] , Jun,min = σ 2

v  is the MMSE which can be achieved only 
in the exact modeling case, i.e., M = L , and Jun,ex(k) =

1
R

{

tr(E[w̃un(k)w̃
T
un(k)]R̄)

+2E[w̃T
un(k)]R̄3w∗ + w

T
∗ R3w∗

}

 is the EMSE. Note that in the under-modeling case, the 
MMSE is not Jun,min = σ 2

v  given a fixed L as will be shown later. However, we still use the 
provided EMSE expression for convenience, which is reasonable if we treat the adaptive 
filter length as an independent variable.

Note that the calculation of the MSE Jun(k) requires evaluating E[w̃un(k)] and 
E[w̃un(k)w̃

T
un(k)] . Since the former has been presented in (19), we now examine the evo-

lution of E[w̃un(k)w̃
T
un(k)] . By post-multiplying (18) by its transpose and calculating its 

expectation, it holds that

(25)w† = E[ŵun,L(∞)] − β1w∗.

(26)
Jun(k) =

1

R
E[eT (k)e(k)]

= 1

R

{

tr(E[w̃un(k)w̃
T
un(k)]R̄)+ 2E[w̃T

un(k)]R̄3w∗ + wT
∗ R3w∗

}

+ σ 2
v ,

(27)

E[w̃un(k + 1)w̃T
un(k + 1)]

= E[w̃un(k)w̃
T
un(k)]

− µE[w̃un(k)w̃
T
un(k)A

T
un(k)]

− µE[Aun(k)w̃un(k)w̃
T
un(k)]

+ µ2E[Aun(k)w̃un(k)w̃
T
unA

T
un(k)]

− µE[w̃un(k)w
T
∗ B

T
un(k)]

− µE[Bun(k)w∗w̃
T
un(k)]

+ µ2E[Bun(k)w∗w̃
T
un(k)A

T
un(k)]

+ µ2E[Bun(k)w∗w
T
∗ B

T
un(k)]

+ µ2E[Aun(k)w̃un(k)w
T
∗ B

T
un(k)]

+ µ2δ2vPR̄P.
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We introduce the vector zun(k) = vec
{

E[w̃un(k)w̃T
un(k)]

} of length N 2 , where vec{·} obtains 
column vectors by stacking all columns of the matrix argument [31]. Applying vectoriza-
tion to (27), we set up a difference equation for zun(k)

where

The mean-square convergence behavior of the unconstrained FDAF is governed by the 
eigenvalues of Hun . It should be mentioned that (28) does not resort to the Gaussian 
input assumption, and hence, the analysis in this paper is valid for arbitrary data distri-
butions. We will use the same procedure to analyze the constrained FDAFs in the next 
section. In [32], the energy-conservation approach is used to derive the time evolution of 
the MSD and EMSE. Indeed, we can use the energy-conservation approach for analysis 
of the FDAFs and can obtain the same results. However, the method used here is easier 
to follow and understand than the energy-conservation approach.

The state-space model (30) depicts the mean-square behavior of the unconstrained 
FDAF. The learning curve can be evaluated by iterating recursion (30). The mean-square 
deviation (MSD), i.e., the system distance, is commonly used to measure the Euclidean 
distance between the estimated and true values. The instantaneous MSD of the uncon-
strained FDAFs is calculated by δun(k) = E(

∥

∥w̃un(k)
∥

∥

2
) = tr(vec−1(zun(k))). Notice that 

only the first L weights are involved in the MSD evaluation of the unknown system. At 
steady state, (28) leads to zun(∞) =

(

IN 2 −Hun

)−1
�un(∞) , and hence, the steady-state 

MSD can be expressed by δun(k) = E(�w̃un(∞)�2) = tr(vec−1(zun(∞))) . The steady-
state EMSE then follows

At this point, we would like to identify the factors that influence the steady-state MSE 
of the deficient-length unconstrained FDAF, where we have assumed that M and L are 
fixed. For that, we define the difference between E[w̃un(∞)] and the optimum Wiener 
solution as � = w̃un,opt − E[w̃un(∞)] . We then write the difference between ŵun(k) and 
its mean steady-state value E[ŵun(∞)] as

(28)zun(k + 1) = Hunzun(k)+�un(k),

(29)
Hun = IN 2 − µCun + µ2Jun,
Cun = E[Aun(k)] ⊗ IN + IN ⊗ E[Aun(k)],
Jun = E[Aun(k)⊗ Aun(k)],

(30)

�un(k) = µ2δ2vvec
(

PR̄P
)

− µ(E[Bun(k)] ⊗ IN )vec(E[w̃un(k)]wT
∗ )

+ µ2(E[Bun(k)] ⊗ Aun(k))vec(E[w̃un(k)]wT
∗ )

− µ(IN ⊗ E[Bun(k)])vec(w∗E[w̃T
un(k)])

+ µ2(E[Aun(k)] ⊗ Bun(k))vec(w∗E[w̃T
un(k)])

+ µ2(E[Bun(k)] ⊗ Bun(k))vec(w∗w
T
∗ ).

(31)Jun,ex(∞) = 1

R

{

tr(E[w̃un(∞)w̃T
un(∞)]R̄)+ 2E[w̃T

un(∞)]R̄3w∗ + wT
∗ R3w∗

}

.

(32)
qun(k) = ŵun(k)− E[ŵun(∞)] = E[w̃un(∞)] − w̃un(k) = w̃un,opt −�− w̃un(k).
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Substituting (32) into (26), we may represent the steady-state MSE in terms of qun(k)

The first term on the right-hand side of (33) is directly related to qun(∞) , i.e., the fluc-
tuations of w̃un(∞) around its mean E[w̃un(∞)] , and the second term is introduced by 
the bias � between E[w̃un(∞)] and its optimal solution w̃un,opt . Because the two kinds 
of unconstrained FDAFs can converge to the optimal Wiener solution, i.e., � = 0N×1 , 
the MMSE of the unconstrained FDAFs with and without step-normalization can be 
expressed by

3.4  Stability bound

We investigate the stability condition for the unconstrained FDAFs. Note that (19) 
is convergent if all eigenvalues of IN − µE[Aun(k)] are within the unit circle, i.e., 
ρ(IN − µE[Aun(k)]) < 1 with ρ(·) denoting the spectral radius. The matrices P and R̄ 
are positive definite, so the eigenvalues of E[Aun(k)] = PR̄ are positive and real [31]. 
The condition ρ(IN − µE[Aun(k)]) < 1 that guarantees the unconstrained FDAF’s mean 
convergence is then equivalent to

where �max(·) represents the maximum eigenvalue of the input matrix.
In light of (28), one observes that for the unconstrained FDAF, the mean-square con-

vergence holds if and only if ρ(Hun) < 1 holds. Because Cun may not be positive defi-
nite particularly in the step-normalization version, the method in [32] cannot be directly 
applicable to solve this inequality. We resort to the approach in [33] to deal with this 
problem. We decompose P as P = QSQT , where the diagonal matrix S consists of the 
eigenvalues of P and the column vectors of the orthogonal matrix Q are the correspond-
ing eigenvectors. We introduce a matrix α = QS

1
2QT . Pre- and post-multiplying (29) by 

(α ⊗ α)−1 and α ⊗ α , we arrive at

where H̄un = (α ⊗ α)−1Hun(α ⊗ α) , C̄un = (αR̄α)⊗ IN + IN ⊗ (αR̄α) , and 
J̄un = E[(αX̄T (k)X̄(k)α)⊗ (αX̄T (k)X̄(k)α)] . The matrices Hun and H̄un have the same 
eigenvalues, which means that we can solve ρ(H̄un) < 1 instead. We can easily infer that 
C̄un is positive definite and J̄un is non-negative definite. As a consequence, the condition 
on µ to guarantee ρ(H̄un) < 1 can be given by [32]

(33)

Jun(∞) = 1

R
tr(E[qun(∞)qTun(∞)]R̄)

+ 1

R

{

tr(E��T R̄)− 2tr(�w̃
T
un,optR̄)+ 2�T R̄3w∗

}

+ 1

R

{

tr(w̃un,optw̃
T
un,optR̄)+ 2w̃T

un,optR̄3w∗ + wT
∗ R3w∗

}

+ σ 2
v .

(34)Jmin,1 = Jmin,2 =
1

R

{

tr(w̃un,optw̃
T
un,optR̄)+ 2w̃T

un,optR̄3w∗ + wT
∗ R3w∗

}

+ δ2v .

(35)µ <
2

�max(E[Aun(k)])
,

(36)H̄un = IN 2 − µC̄un + µ2J̄un,
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where η̄un =
(

1
2 C̄un − 1

2 J̄un
IN 2 0N 2

)

.

4  Analysis of constrained FDAFs
We are now ready to study the statistical behavior of constrained FDAFs. The time-
domain approach used above is adopted for the performance evaluation. However, as 
will be shown, the constrained algorithm exhibits some different convergence properties.

4.1  Mean convergence

We start by examining the mean convergence in the constrained case. For that, we define 
the time-domain weight vector as ŵcn(k) = ϒ10F

−1Ŵ(k) of length L, where ϒ10 extracts 
the first L components of the inverse DFT of Ŵ(k) . Using (4), we obtain the error vector

Pre-multiply (6) by ϒ10F
−1 , we obtain the time-domain update equation

Subtracting w† from (39) yields

where w̃cn(k) = w† − ŵcn(k) denotes the weight-error vector of the constrained FDAF. 
We rewrite d(k) in terms of w† as

Substituting (41) into (38) leads to

Inserting (42) into (40), we obtain the recursion

where Acn(k) = P̄X̄T (k)X1(k) and Bcn(k) = P̄X̄T (k)X3(k).
Taking the mathematical expectation of (43) and using the independence assumption

This recursion describes the time evolution of E[w̃cn(k)] . The last term in (44) disappears 
in the exact modeling case. It is shown in [20] that for the constrained FDAF with step-
normalization, we have the approximation E[Acn(k)] ≈ R

N
IL when N is large enough, 

and hence the algorithm only has a single convergence mode. However, the convergence 
speed of the constrained FDAF without step-normalization is linked to the eigenvalue 
spread of E[Acn(k)] = E[XT

1 (k)X1(k)] = R11 , which may be significantly higher than 
that of the step-normalization version.

(37)0 < µ < min







1

�max

�

C̄−1
un J̄un

� ,
1

max
�

�(η̄cn) ∈ R+�







,

(38)e(k) = d(k)− X1(k)ŵcn(k).

(39)ŵcn(k + 1) = ŵcn(k)+ µP̄X̄T (k)e(k).

(40)w̃cn(k + 1) = w̃cn(k)− µP̄X̄T (k)e(k),

(41)d(k) = X1(k)w† + X3(k)w∗ + v(k).

(42)e(k) = X1(k)w̃cn(k)+ X3(k)w∗ + v(k).

(43)w̃cn(k + 1) = w̃cn(k)− µAcn(k)w̃cn(k)− µBcn(k)w∗ − µP̄X̄T (k)v(k),

(44)E[w̃cn(k + 1)] =
(

IL − µE[Acn(k)]
)

E[w̃cn(k)] − µE[Bcn(k)]w∗.
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Using (9) and (11), the matrix governing the mean convergence of unconstrained 
FDAFs is represented as

where R21 = E[XT
2 (k)X1(k)] . It is then observed that the matrix that controls the mean 

convergence of the constrained version E[Acn(k)] = P̄E[X̄T (k)X1(k)] = P1R11 + P2R21 
is a submatrix of E[Aun(k)] . For the FDAF without step-normalization, it has been 
shown in [22] that

Eq. (46) states that eigenvalue spread of E[Aun(k)] is always larger or equal to that of 
E[Acn(k)] , and hence, the constrained FDAF may converge faster than the uncon-
strained version. However, it is very challenging to verify if the relation (46) holds for the 
FDAF algorithms with step-normalization, which remains an open problem.

At steady state, the constrained FDAF converges to

where R13 = E[XT
1 (k)X3(k)] , R21 = E[XT

2 (k)X1(k)] and R23 = E[XT
2 (k)X3(k)].

Let us investigate whether the constrained FDAF converges to the optimum Wiener 
solution. We present the optimum Wiener solution by minimizing the quadratic cost 
function E[

∥

∥e(k)
∥

∥

2] in (38)

The optimum Wiener solution of the unconstrained FDAF in (21) utilizes the future 
information, and hence, it is non-causal. However, the optimum Wiener solution of the 
constrained FDAF in (48) only requires the past inputs, which is causal. Also, Eq. (21) 
is an unconstrained solution since we do not impose any constraint on w̃un(k) . How-
ever, Eq. (48) is a constrained solution since the last R components of the inverse DFT 
of Ŵ(k) are always forced to be zero. Due to the additional constraint, the MMSE from 
(48) is larger than that from (21), which is already pointed out in [21] but the explicit 
MMSE expression is not given in [21].

In the exact modeling scenario, the optimum Wiener solution (48) is the true system 
impulse response, and hence, the constrained FDAF converges to the optimum Wiener 
solution, i.e., the true plant.

We now pay our attention to the under-modeling scenario.

• For constrained FDAFs without step-normalization, we have P1 = IL,P2 = 0L×R and 
obtain the relation E[w̃cn(∞)] = w̃cn(k) = −R−1

11 R13w∗ . The constrained FDAF 
without step-normalization converges to the causal Wiener solution. For the white 
noise input, i.e., R13 = 0L×Q , we have E[w̃cn(∞)] = 0L×1 , which means that the con-
strained FDAF without step-normalization converges to the first L coefficients of the 

(45)E[Aun(k)] =
[

P1R11 + P2R21 P1R
T
21 + P2R22

PT
2 R11 + P3R21 PT

2 R
T
21 + P3R22

]

.

(46)
�max(E[Aun(k)])
�min(E[Aun(k)])

≥ �max(E[Acn(k)])
�min(E[Acn(k)])

.

(47)
E[w̃cn(∞)] = −(E[Acn(k)])−1E[Bcn(k)]w∗

= −(P1R11 + P2R21)
−1(P1R13 + P2R23)w∗,

(48)w̃cn,opt = −R−1
11 R13w∗.



Page 13 of 25Yang  EURASIP Journal on Advances in Signal Processing        (2024) 2024:100  

system impulse response. When correlated signals are used as input, however, it has 
R13  = 0L×Q , and then E[w̃cn(∞)] �= 0L×1 , which means that the constrained FDAF 
algorithm without step-normalization cannot converge to the first L coefficients of the 
system impulse response.

• For constrained FDAFs with step-normalization, we have 
P1 = Nσ 2

x IL,P2 = 0L×R,R13 = 0L×Q for white noise input, and then 
E[w̃cn(∞)] = w̃cn,opt = 0L×1 , which means that it can converge to the causal Wie-
ner solution and the first L coefficients of the system impulse response. When 
correlated signals are used as input, we can verify that E[w̃cn(∞)] �= w̃cn,opt and 
E[w̃cn(∞)] �= 0L×1 , which means that it cannot converge to the causal Wiener solu-
tion or the first L coefficients of the system impulse response.

4.2  Mean‑square convergence

Next, we perform a detailed second-order analysis of the constrained FDAFs. Using (42), 
we obtain the instantaneous MSE of the constrained FDAFs

where Jcn,min = σ 2
v  is the MMSE that can be realized only when the 

adaptive coefficients converge to the system impulse response, and 
Jcn,ex(k) = 1

R

{

tr(E[w̃cn(k)w̃
T
cn(k)]R11)+ 2w̃T

cn(k)R13w∗ + w∗R3w
T
∗
}

 is the EMSE.
We study the evaluation of the covariance E[w̃cn(k)w̃

T
cn(k)] to obtain the MSE. We post-

multiply (43) by its transpose and take the expectation

Following the same argument used in the unconstrained FDAFs, we define the L2 × 1 
vector zcn(k) = vec

{

E[w̃cn(k)w̃
T
cn(k)]

}

 . Applying the operation of vectorization to (50), 
we obtain the following difference equation

(49)
Jcn(k) =

1

R
E[eT (k)e(k)]

= 1

R
{tr(E[w̃cn(k)w̃

T
cn(k)]R11)+ 2w̃T

cn(k)R13w∗ + w∗R3w
T
∗ } + σ 2

v .

(50)

E[w̃cn(k + 1)w̃T
cn(k + 1)]

= E[w̃cn(k)w̃
T
cn(k)]

− µE[w̃cn(k)w̃
T
cn(k)A

T
cn(k)]

− µE[Acn(k)w̃cn(k)w̃
T
cn(k)]

+ µ2E[Acn(k)w̃cn(k)w̃
T
cn(k)A

T
cn(k)]

− µE[w̃cn(k)w
T
∗ B

T
cn(k)]

− µE[Bcn(k)w∗w̃
T
cn(k)]

+ µ2E[Bcn(k)w∗w̃
T
cnA

T
cn(k)]

+ µ2E[Bcn(k)w∗w
T
∗ B

T
cn(k)]

+ µ2E[Acn(k)w̃cn(k)w
T
∗ B

T
cn(k)]

+ µ2δ2v P̄R̄P̄
T .

(51)zcn(k + 1) = Hcnzcn(k)+�cn(k),
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where

Note that the eigenvalue spread of Hcn determines the mean-square conver-
gence behavior of constrained FDAFs. Once zcn(k) is recursively generated 
using (51), the instantaneous MSD of the constrained FDAFs is then given by 
δcn(k) = E(

∥

∥w̃cn(k)
∥

∥

2
) = tr(vec−1(zcn(k))).

In the steady state, we have zcn(∞) = (IL2 −Hcn)
−1�cn(∞) according to (51), and we 

immediately obtain the steady-state MSD δcn(∞) = E
(

�w̃cn(∞)�2
)

= tr
(

vec−1(zcn(∞))
)

 . 
Also, the steady-state EMSE follows:

We have derived the steady-state EMSE expressions of four variants of the FDAF algo-
rithm, which are accurate but somewhat complex. Some simplifications for the EMSE 
expressions in the exact modeling case can be found in the literature. Closed-form 
EMSE expressions are given in [20] without detailed derivation, and the same results are 
derived in the frequency domain in [4]. In Appendix A, we adopt a different approach to 
derive the approximate EMSE expressions in the time domain. As shown, our derivation 
is easy to understand and also we provide a more accurate solution for the constrained 
FDAF algorithm..

Next, we investigate how the MSE of the constrained FDAFs is generated and derive the 
attainable MMSE for the two versions. To this end, we define �̄ = w̃cn,opt − E[w̃cn(∞)] . 
The difference between ŵcn(k) and its steady-state mean value is

We rewrite the steady-state MSE terms of qcn(k)

(52)
Hcn = IL2 − µCcn + µ2Jcn
Ccn = E[Acn(k)] ⊗ IL + IL ⊗ E[Acn(k)]
Jcn = E[Acn(k)⊗ Acn(k)]

(53)

�cn(k) = µ2δ2vvec(P̄R̄P̄
T )

− µ(E[Bcn(k)] ⊗ IL)vec(E[w̃cn(k)]wT
∗ )

+ µ2(E[Bcn(k)] ⊗ Acn(k))vec(E[w̃cn(k)]wT
∗ )

− µ(IL ⊗ E[Bcn(k)])vec(w∗E[w̃T
cn(k)])

+ µ2(E[Acn(k)] ⊗ Bcn(k))vec(w∗E[w̃T
cn(k)])

+ µ2(E[Bcn(k)] ⊗ Bcn(k))vec(w∗w
T
∗ ).

(54)Jcn,ex(∞) = 1

R
{tr(E[w̃cn(∞)w̃T

cn(∞)]R11)+ 2E[w̃T
cn(∞)]R13w∗ + w∗R3w

T
∗ }.

(55)
qcn(k) = Owcn(k)− E[Owcn(∞)] = E[Qwcn(∞)] −Qwcn(k) =Qwcn,opt − �̄−Qwcn(k).

(56)

Jcn(∞) = 1

R
tr(E[qcn(∞)qTcn(∞)]R11)

+ 1

R

{

tr(E�̄�̄
T
R11)− 2tr(�̄w̃T

cn,optR11)+ 2�̄
T
R13w∗

}

+ 1

R

{

tr(w̃cn,optw̃
T
cn,optR11)+ 2w̃T

cn,optR13w∗ + w∗R3w
T
∗
}

+ σ 2
v
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The first term in the right-hand side of (56) is related to the fluctuations of w̃cn(∞) 
around its mean E[w̃cn(∞)] , and the second term is attributed to the bias between 
E[w̃cn(∞)] and its optimum solution w̃cn,opt.

Because the constrained FDAF algorithm without step-normalization for any inputs 
and the constrained FDAF algorithm with step-normalization for white noise input can 
converge to the optimum Wiener solution, i.e., �̄ = 0L×1 , the second term in (56) then 
becomes zero and the attainable MMSE is

which is the same as the LMS [34]. When the input is correlated, the constrained 
FDAF algorithm with step-normalization cannot converge to the Wiener solution, i.e., 
�̄ �= 0L×1 . The attainable MMSE in this case is given by

where E[w̃cn(∞)] = −(P1R11 + P2R21)
−1(P1R13 + P2R23)w∗.

We now compare the MMSE performance of four variants of FDAF algorithms. In the 
exact modeling scenario, all the variants can achieve the same MMSE, i.e., Jmin(∞) = σ 2

v  . 
The case is different for the under-modeling scenario. For white noise input, it has

For correlated input, we have

4.3  Stability bound

We now present the condition in which the constrained FDAF algorithm can be stable. For 
the constrained FDAF algorithm without step-normalization, we have P1 = IL,P2 = 0L×R , 
and hence, E[Acn(k)] = R11 is positive definite with real-valued eigenvalues. To guaran-
tee the mean stability, we should have ρ(IL − µE[Acn(k)]) < 1 such that all eigenvalues of 
IL − µE[Acn(k)] must be less than one in magnitude, and then, the step size satisfies

According to (51), we should have ρ(Hcn) < 1 such that the algorithm can be mean-
square stable. We can infer that Ccn is positive definite and Jcn is non-negative definite, 
and then, the range of step size is given by [32]

where ηcn =
(

1
2Ccn − 1

2 Jcn
IL2 0L2

)

.

(57)Jmin,3 =
1

R
{tr(w̃cn,optw̃

T
cn,optR11)+ 2w̃T

cn,optR13w∗ + w∗R3w
T
∗ } + σ 2

v .

(58)

Jmin,4 = 1

R
{tr(E[w̃cn(∞)]E[w̃T

cn(∞)]R11)+ 2E[w̃T
cn(∞)]R13w∗ + w∗R3w

T
∗ } + σ 2

v ,

(59)Jmin,1 = Jmin,2 ≤ Jmin,3 = Jmin,4.

(60)Jmin,1 = Jmin,2 ≤ Jmin,3 < Jmin,4.

(61)µ <
2

�max(E[Acn(k)])
.

(62)0 < µ < min

{

1

�max

(

C
−1

cnJcn
) ,

1

max
(

�(ηcn) ∈ R+)

}

,
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For the constrained FDAF algorithm with step-normalization, E[Acn(k)] is not a Her-
mitian matrix, and hence, the eigenvalues of E[Acn(k)] may not be real. The condition 
that guarantees mean convergence is expressed as

where �i is the i-th eigenvalue of E[Acn(k)] . Similarly, the constrained FDAF is mean-
square stable, if and only if

However, the matrices Ccn and Jcn are not Hermitian in this case, and hence, we cannot 
use (62) to solve the inequality (64). In practice, a numerical solution may be used to 
handle this problem, see [25] for more details.

Given the complexity of the mathematical developments, some variables and matri-
ces used in the formulations are summarized in Appendix B to enhance the readability, 
although they are explicitly defined.

5  Results and discussion
We conduct computer simulations to demonstrate and support our analysis. The 
unknown system impulse response has a length of M = 16 and is with the coeffi-
cients [0.01 0.02 −0.04 −0.08 0.15 −0.3 0.45 0.6 0.6 0.45 −0.3 0.15 −0.08 −0.04 0.02 
0.01]. The adaptive  filter has a length of L = 16 or L = 14 , corresponding to the 
exact- and under-modeling situations, respectively. The input x(n) is generated by 
filtering the white Gaussian noise with H(z) =

√
1− a2/(1− az−1) , which is white 

noise for a = 0 and an AR(1) process for 0 < |a| < 1 . The signal-to-noise ratio (SNR) 
is defined as 10log10

(

E[(xT (n)wopt)
2]/E[v2(n)]

)

 . We estimate the required statistical 

moments by ensemble averaging.
Figure 1 presents the MSD and EMSE learning curves of the step-normalization FDAF 

algorithm. SNR = 10 dB and SNR = ∞ are used in this example. We here consider an 
exact modeling case, i.e., L = 16 and R = 16 . The step size is µ = 0.1 . The theoretical 
learning curves of the unconstrained FDAF algorithm are generated recursively using 
(28) and (26), while that of the constrained version are obtained from (51) and (49). High 
consistency between theory and experimental results is witnessed in Fig. 1. Also, we find 
that the constrained and unconstrained FDAFs exhibit a similar initial convergence rate 
in this case. This is because the eigenvalue spread of Aun(k) is only slightly larger than 
that of Acn(k) , i.e., �max(E[Aun(k)])

�min(E[Aun(k)]) = 1.63 and �max(E[Acn(k)])
�min(E[Acn(k)]) = 1.52 . The step-normali-

zation procedure greatly reduces the eigenvalue spread of Aun(k) and Acn(k) , and the 
constraining matrix G10 further diagonalizes Acn(k) . The experimental MSD and EMSE 
for SNR = ∞ both achieve a floor due to the roundoff error. We conduct simulations 
in the under-modeling situation in Fig.  2, where we set L = 14 and R = 28 and other 

(63)0 < µ <
2ℜe(�i)
|�i|2

, i = 0, 1, · · · , L− 1,

(64)ρ

(

IL2 − µCcn + µ2Jcn

)

< 1.
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conditions are the same as that in Fig.  1, and we observe that the presented model is 
capable of predicting the EMSE and MSD learning curves well.

Figure  3 presents the steady-state mean-square performance of the step-normali-
zation FDAF algorithms for SNR = 30 dB. We here consider an exact modeling case 
with L = 16 and R = 16 . An AR(1) process with a = 0.9 is used as input, and µ varies 
from 0.01 to 1.9. The stability bounds are also illustrated in Fig. 3. Note that the simu-
lations are consistent with the theoretical predictions, i.e., Eqs. (31) and (54), even at 
large step sizes. We then investigate the accuracy of several approximations shown in 
Appendix A. To give a more intuitive observation, we present some theoretical and 
measured results in Table 1. Our approximated EMSE solutions of the unconstrained 
and constrained FDAFs, i.e., Eqs. (A5) and (A11), match the experimental values well 
for smaller step sizes, but the previous theory in [4] and [20] (i.e., Eq. (A12)) present 
the largest prediction errors. It is apparent that all the approximated results devi-
ate from the simulations when the step size is large. Given the same step size, the 
constrained FDAF algorithm has lower steady-state MSD and EMSE values than the 
unconstrained algorithm.

We investigate the steady-state MSD and EMSE performance of the FDAFs in under-
modeling in Fig. 4 for SNR = 30 dB. The experimental conditions are the same as Fig. 3 
except that L = 14 and R = 28 are used. It is observed in this example that the theo-
retical predictions are similar to the simulations. The constrained FDAF achieves smaller 
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Fig. 1 Predicted and simulated learning curves in exact modeling situation: (a) MSD for SNR = 10 dB, (b) 
EMSE for SNR = 10 dB, (c) MSD for SNR = ∞ , and (d) EMSE for SNR = ∞
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steady-state MSD values than the unconstrained one in under-modeling case. However, 
the steady-state MSE in under-modeling case is quite different from that in the exact 
modeling case. When the step size is small enough, the EMSE related to the step size 
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Fig. 2 Predicted and simulated learning curves in the under-modeling situation: (a) MSD for SNR = 10 dB, (b) 
EMSE for SNR = 10 dB, (c) MSD for SNR = ∞ , and (d) EMSE for SNR = ∞
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Fig. 3 Steady-state performance of the FDAF with step-normalization in the exact modeling situation: (a) 
MSD and (b) EMSE



Page 19 of 25Yang  EURASIP Journal on Advances in Signal Processing        (2024) 2024:100  

can be ignored. Hence, the unconstrained FDAF has a lower steady-state EMSE when 
µ < 0.5 since it converges to the non-causal Wiener solution. As the step size increases, 
the first term in (33) and (56) may dominate. Consequently, we found that for µ > 0.5 
the unconstrained FDAF algorithm has a larger EMSE compared to its constrained 
counterpart.

Figure 5 displays the MMSE of four FDAF algorithms with different a. The filter has 
a length of L = 14 , and the block has a length of R = 14 . Notice that an under-mod-
eling situation has been considered here, whereas four variants of the FDAF have the 
same MMSE for a sufficient long filter length and the results are not shown. Because 
the unconstrained FDAF algorithm can always converge to the non-causal Wiener solu-
tion, it has a smaller MMSE than the constrained version. An intuitive explanation is 
that the unconstrained FDAF yields superior MSE performance by utilizing more data 

Table 1 Measured and theoretical steady-state EMSEs of constrained FDAF with step-normalization 
in exact modeling case

µ Measured Predicted from (54) Predicted from (A11) Predicted 
from 
(A12)

0.01 − 52.54 − 52.49 − 52.49 − 53.33

0.05 − 45.42 − 45.41 − 45.50 − 46.34

0.1 − 42.29 − 42.27 − 42.49 − 43.34

0.5 − 34.15 − 34.16 − 35.50 − 36.34

1 − 27.89 − 29.00 − 32.49 − 33.33

1.5 − 14.35 − 19.51 − 30.72 − 31.56
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Fig. 4 Steady-state performance of the FDAF with step-normalization in the under-modeling situation: a 
MSD and b EMSE
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than the constrained counterpart. This finding has already been investigated in [20] and 
[21], but they did not provide the analytical MMSE expressions. Also note that with 
or without step-normalization, the constrained FDAF attains similar MMSE values 
for a close to zero, i.e., the input is close to white noise. However, as the parameter a 
increases, the MMSE of the step-normalization FDAF turns out to be worse than that 
without step-normalization. The observation is consistent with our analysis, i.e., the 
constrained  FDAF algorithm without step-normalization converges to the causal Wie-
ner solution for an arbitrary input, while for the constrained FDAF algorithm with step-
normalization, this can only happen for a white noise input.

6  Conclusion
We carried out the performance evaluation of a family of FDAF algorithms in the 
time domain. In particular, we have derived the recursive models for their mean and 
mean-square properties. We extensively discussed whether each variant of the FDAF 
converges to the system impulse response or the optimum Wiener solution. Closed-
form expressions that characterize the MSD and MSE performance of the FDAFs 
were derived, and accurate and approximate steady-state EMSEs were given. The 
MMSEs of the four versions of the FDAF were compared. This work is more general 
and easier to follow than our previous study [25–27], which offers a thorough insight 
into the underlying learning theory of FDAFs. Computer simulations supported the 
theoretical model.
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Appendix: A
This appendix examines the steady-state mean-square behavior of FDAFs that is easy 
to follow. Particularly, the derivations will rely on some simplifications.

For the unconstrained FDAF algorithm without step-normalization, it has 
E[Aun(k)] = R̄ . Using (27) and ignoring the terms related to µ2 , we obtain

Taking the trace of both sides of (A1), it has

Considering (31) and (A2), we then obtain the steady-state EMSE of the unconstrained 
FDAF algorithm without step-normalization

For the step-normalization version, using the relation E[Aun(k)] = R
N
IN and (27), we 

have

Using (31) and (A.4), the steady-state EMSE of the unconstrained FDAF algorithm with 
step-normalization then follows

For the constrained FDAF without step-normalization, it has E[Acn(k)] = R11 . Using 
(50) and ignoring the term related to µ2 , we get

Taking the trace of both sides of (A6) and considering the relation P̄R̄P̄T = R11 , one 
immediately obtains

Considering tr(R11) = LRδ2x , we then obtain the EMSE of the constrained FDAF algo-
rithm without step-normalization from (54)

(A1)E[w̃un(∞)w̃T
un(∞)]R̄ + R̄E[w̃un(∞)w̃T

un(∞)] = µδ2v R̄.

(A2)tr
(

E[Qwun(∞)QwT
un(∞)]NR

)

= 1

2
µδ2v tr(

NR) = 1

2
µNRδ2v δ

2
x .

(A3)Jun,ex(∞) = 1

R
tr(E[w̃un(∞)w̃T

un(∞)]R̄) = 1

2
µNδ2v δ

2
x .

(A4)E[w̃un(∞)w̃T
un(∞)] = 1

2
µδ2vP.

(A5)Jun,ex(∞) = 1

R
tr(E[w̃un(∞)w̃T

un(∞)]R̄) = 1

2R
µδ2v tr(PR̄) =

1

2
µδ2v .

(A6)E[w̃cn(∞)w̃T
cn(∞)]R11 + R11E[w̃cn(∞)w̃T

cn(∞)] = µδ2v P̄R̄P̄
T .

(A7)tr
(

E[w̃cn(∞)w̃T
cn(∞)]R11

)

= 1

2
µδ2v tr(R11).
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Note that Eqs. (A3), (A5), and (A8) agree with the results in in [4], [20], but our deriva-
tion is easier to understand.

For the constrained FDAF algorithm with step-normalization, it has an approximation 
E[Acn(k)] = R

N
IL . Using (50) and ignoring the µ2 terms, we get

Using the approximation PR̄ = R
N
IL , we get P̄R̄ = [IL 0L×R] , and hence P̄R̄P̄T ≈ R

N
P1 . 

Equation (A9) then becomes

The steady-state EMSE of the constrained FDAF algorithm with step-normalization can 
be expressed by

For white noise input, we have P2R21 = 0L , and hence P1R11 = E[Acn(k)] − P2R21 ≈ R
N
IL . 

Equation (A.11) then becomes

The approximation (A12) is the same as that in [4] and [20]. Note that (A12) has a good 
approximation when the input is white noise or close to white noise, but (A12) deviates 
from the simulated result for highly correlated inputs. However, the presented theoreti-
cal EMSE (A11) holds well for both white noise and correlated input.

It is observed that the sufficient-length FDAF algorithms with and without step-nor-
malization can achieve the same steady-state EMSE result by step size adjustments, 
while their difference lies in the convergence speed. The EMSE gap between the two 
FDAF variants is determined by a factor of L/R, which becomes significant as the block 
length R increases.

Appendix: B
In this section, we show some variables and matrices used in the formulation for the 
convenience of the reader (Table 2).

(A8)Jcn,ex(∞) = 1

R
tr(E[w̃cn(∞)w̃T

cn(∞)]R11) =
1

2
µLδ2v δ

2
x .

(A9)E[w̃cn(∞)w̃T
cn(∞)] = 1

2

N

R
µδ2v P̄R̄P̄

T .

(A10)E[w̃cn(∞)w̃T
cn(∞)] = 1

2
µδ2vP1.

(A11)Jcn,ex(∞) = 1

R
tr(E[w̃cn(∞)w̃T

cn(∞)]R11) =
1

2R
µδ2v tr(P1R11).

(A12)Jcn,ex(∞) = 1

2

L

N
µδ2v .
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Table 2 The symbol matrices and variables

Symbol Dimension Description

M 1× 1 The length of the unknown plant

L 1× 1 The length of the adaptive filter

Q 1× 1 The length of the under-modeling filter

N 1× 1 The DFT length

R 1× 1 The block length

x(n) 1× 1 The input signal

d(n) 1× 1 The desired response

x(n) M× 1 The input vector

wopt M× 1 The impulse response vector of an unknown system

w† L× 1 The column vector consisting of the first L elements of wopt

w∗ Q × 1 The column vector consisting of the last Q elements of wopt

ŵ(k) L× 1 The estimated weight vector

Ŵ(k) N × 1 The frequency-domain weight vector

F N × N The DFT matrix

X(k) N × N The frequency-domain input matrix

ŷ(k) R × 1 The block filtering out vector

d(k) R × 1 The block desired signal vector

e(k) R × 1 The block error vector

G10 N × N The constraining matrix

Xc(k) N × N A circulant matrix with the first column x(k)

Rc N × N A correlation matrix of the input signal Rc = E[XT
c (k)Xc(k)]

P N × N The inverse of Rc
ŵun(k) N × 1 The time-domain weight vector of the unconstrained FDAF

w̃un(k) N × 1 The time-domain weight-error vector of the unconstrained FDAF

E[Aun(k)] N × N The matrix than controls the mean weight convergence of the unconstrained FDAF

Hun N2 × N2 The matrix than controls the mean-square convergence of the unconstrained FDAF

δun(k) 1× 1 The instantaneous MSD of the unconstrained FDAF

Jun(k) 1× 1 The instantaneous MSE of the unconstrained FDAF

ŵcn(k) L× 1 The time-domain weight vector of the constrained FDAF

w̃cn(k) L× 1 The time-domain weight-error vector of the constrained FDAF

E[Acn(k)] L× L The matrix than controls the mean weight convergence of the constrained FDAF

Hcn L2 × L2 The matrix than controls the mean-square convergence of the constrained FDAF

δcn(k) 1× 1 The instantaneous MSD of the constrained FDAF

Jcn(k) 1× 1 The instantaneous MSE of the constrained FDAF

� N × 1 The difference between E[w̃un(∞)] and the optimum Wiener solution

qun(k) N × 1 The difference between ŵun(k) and its mean steady-state value

�̄ L× 1 The difference between E[w̃cn(∞)] and the optimum Wiener solution

qcn(k) L× 1 The difference between ŵcn(k) and its mean steady-state value
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