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Abstract 

In the existing domain adaptation-based bearing fault diagnosis methods, the data 
difference between the source domain and the target domain is not obvious. Besides, 
parameters of target domain feature extractor gradually approach that of source 
domain feature extractor to cheat discriminator which results in similar feature distribu-
tion of source domain and target domain. These issues make it difficult for the domain 
adaptation-based bearing fault diagnosis methods to achieve satisfactory perfor-
mance. An unsupervised domain adaptive bearing fault diagnosis method based 
on maximum domain discrepancy (UDA-BFD-MDD) is proposed in this paper. In 
UDA-BFD-MDD, maximum domain discrepancy is exploited to maximize the feature 
difference between the source domain and target domain, while the output feature 
of target domain feature extractor can cheat the discriminator. The performance 
of UDA-BFD-MDD is verified through comprehensive experiments using the bearing 
dataset of Case Western Reserve University. The experimental results demonstrate 
that UDA-BFD-MDD is more stable during training process and can achieve higher 
accuracy rate.

1  Introduction
In the field of industrial production, maintaining long-term reliable operation of machin-
ery is crucial for enterprises [1]. If mechanical equipment malfunctions, it may lead to 
production stoppage and even personal injury, resulting in huge losses for enterprises. 
However, with the development of intelligent manufacturing, mechanical equipment 
is becoming increasingly complex. In addition, the working environment of mechani-
cal equipment is usually harsh or its working load is heavy, which makes the machinery 
maintenance complex and difficult [2]. Besides, according to statistics, more than half of 
the failures of mechanical equipment are caused by the failure of rotating bearing parts 
due to its heavy load and long-time high-speed rotation [3]. Therefore, it is necessary 
and important to conduct predictive monitoring and maintenance of rotating bearings 
to ensure the long-term reliable operation of bearings and mechanical equipment [4]. 
When the faults are found, bearing can be promptly inspected and repaired to avoid 
serious accidents and long-term downtime for maintenance.
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In predictive monitoring, sensors are usually installed on mechanical equipment to 
monitor and record the status of mechanical equipment [5, 6]. And the bearing fault 
diagnosis is conducted using the collected data, including vibration signals, force sig-
nals and audio signals. First, features are extracted from the collected data. Then, the 
traditional machine learning methods, e.g., support vector machine (SVM), decision 
tree (DT), artificial neural network (ANN), are exploited to classify the status of bear-
ings according to the extracted features. However, the features extraction and features 
selection for classification depend on expertise. In addition, traditional machine learning 
methods as shallow learning methods have limitations in learning ability [7].

With the development of the Internet of Things (IoT) [8] and cloud computing tech-
nology [9], a large amount of data about the operating status of machinery can be 
recorded and saved, which provides the possibility for mechanical fault diagnosis based 
on deep learning. Deep learning demonstrates powerful feature extraction ability, which 
makes it possible to explore the inherent characteristics of bearing signals and realize 
the fault diagnosis of bearings [10–12].

Although deep learning has been widely used in bearing fault diagnosis, the following 
problems still exist when it is applied in real industrial scenarios [13]: (1) When deep 
learning is exploited for bearing fault detection, the accuracy of fault diagnosis and 
model learning is positively correlated with the amount of collected monitoring data. 
However, collecting large amount of data in real industrial scenarios is difficult and 
expensive. (2) The working environment of bearings in real industrial scenarios varies 
under different working conditions. When the working environment changes, the deep 
learning model established under a certain working condition cannot be directly used to 
complete the bearing fault diagnosis task under the new working condition. Therefore, a 
new deep learning model needs to be trained using the new data collected from the new 
working environment.

In view of the above problems, transfer learning [14] is introduced to complete the 
bearing fault diagnosis under variable working conditions. Transfer learning takes the 
bearing fault data collected in one working condition as source domain and the data 
from another working condition as target domain. Transfer learning methods can find 
the common space of the interrelated features of the source domain data and the target 
domain data [15]. Therefore, the model using transfer learning under one working con-
dition can be transferred to complete the bearing fault diagnosis under different condi-
tions. With the development of transfer learning, domain adaptation, as an important 
transfer learning method, is widely used in bearing fault diagnosis. Li et  al. [16] pro-
posed to minimize the maximum mean discrepancy (MMD) between two domains at 
multiple layers and adapted the learned representations from the source domain to be 
applied in the target domain. Yang et al. [17] proposed a multi-layer domain adaptation 
(MLDA) method, which adopts multi-kernel maximum mean discrepancy (MK-MMD) 
and pseudo-label learning in multi-layer and considers marginal distribution and condi-
tional distribution. MLDA can simultaneously diagnose multi-scale composite failures 
and single failures. Besides, domain adaptation methods based on adversarial meth-
ods are also used in bearing fault diagnosis. Liu et al. [18] proposed a deep adversarial 
domain adaptation (DADA) model for rolling bearing fault diagnosis, which combined 
deep stacked autoencoder (DSAE) with representative feature learning for dimension 
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reduction to effectively acquire fault features. Wang [19] adopted the adversarial method 
based on Wasserstein distance to achieve data-level alignment, further minimized 
the discrepancy in the spatial distribution of class-level features through three sets of 
losses and proposed a three-group loss-guided adversarial domain adaptation method 
(TLADA) for bearing faults diagnosis.

However, adversarial domain adaptive methods have following problems that affect 
the diagnosis effect: (1) When the training of the target domain feature extractor is com-
pleted, the training is not stopped in time. In order to confuse the discriminator, the 
target domain-aligned features may map to the wrong class. (2) When the bearing fault 
data in the source domain and the target domain are indistinguishable, the weights of 
the feature extractor of target domain will gradually approach that of source domain, 
which impacts the model training effectiveness.

Aiming at the above problems, e.g., poor cross-working condition bearing fault diag-
nosis performance, difficulty in obtaining labeled data in the target domain and training 
of adversarial domain adaptive methods, this paper proposes an unsupervised domain 
adaptive bearing fault diagnosis method based on maximum domain discrepancy 
(UDA-BFD-MDD).

As shown in the left side of Fig.  1, the generator of the general domain adaptation 
methods generate features that confuse the discriminator to make the two distributions 
similar. The boundary relationship between different classification labels is not consid-
ered. UDA-BFD-MDD learns to maximize the discrepancy between the source and tar-
get domain features. On the one hand, UDA-BFD-MDD makes the features output by 
the target domain feature extractor as confusing as possible to the discriminator, making 
the distributions of the two domains similar. On the other hand, target domain extractor 
in UDA-BFD-MDD learns the difference within domain, so that the boundary between 
the source domain and target domain data in different label classifications is widened 
as shown in right part of Fig. 1, and the potential features of the source domain data are 
learned as much as possible.

The contributions of UDA-BFD-MDD are as follows: (1) In UDA-BFD-MDD, there 
is no need to label the target domain data under new working condition, which avoids 
the costs of data labeling and improves diagnostic efficiency. (2) Reversing labels is 
exploited, which has a larger gradient in back propagation algorithm, and quickly aligns 
the features of source domain and target domain. And UDA-BFD-MDD can still diag-
nose bearing fault even in the case of a small number of samples. (3) To ensure the tar-
get domain feature extractor obtains positive transfer as much as possible in training, 

Fig. 1  Comparison of with and without maximum domain discrepancy methods
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maximum domain discrepancy method is exploited. (4) The overall structure of UDA-
BFD-MDD is light, and its calculation is simple. Compared with other domain adaptive 
methods, UDA-BFD-MDD can still achieve high bearing fault diagnosis accuracy and 
be applied in real industrial scenarios. To validate the performance of UDA-BFD-MDD, 
experiments are conducted on the Case Western Reserve University (CWRU) bear-
ing dataset. The experimental results demonstrate that UDA-BFD-MDD can achieve 
stable and higher accuracy than other domain adaptive models under varied working 
conditions.

2 � Relate work
Domain adaptation is considered as a special transfer learning method [20]. In litera-
ture [21], Pan et al. pointed out that transfer learning is the transfer of knowledge from 
a source domain to a different target domain, or from a source task to a different tar-
get task. And changes in feature space and marginal probability distributions may cause 
domain changes. Besides, Pan et al. proposed a transfer component analysis (TCA) to 
learn feature representation across domains in a high-dimensional regenerated kernel 
Hilbert space, where data from different domains are close to each other. Therefore, 
using TCA the standard machine learning methods can be applied in the spanned Hil-
bert space on different domains. Inspired by the theory on domain adaptation, Yaroslav 
et al. [22] proposed domain-adversarial neural networks (DANN), which is based on the 
neural network architecture and learns features from both labeled source domain data 
and unlabeled target domain data.

In domain adaptation methods, the task and feature space of the source and target 
domains need to be the same, while the marginal distribution of the two domains can 
be different [23]. Most domain adaptation methods are domain-invariant feature learn-
ing. If the feature representation of source domain and the target domain are consistent 
and the marginal distribution of labels is not very different, the features can be extracted 
from data through the neural network, and then, the features can be aligned to create 
an invariant domain with the same feature distribution. The invariant domain does not 
distinguish whether the data are from the source domain or the target domain as long as 
the feature representations of two domains are consistent. Therefore, the model estab-
lished by learning the invariant domain features on the source domain can also be well 
generalized to the target domain. The flow of domain-invariant feature learning is shown 
in Fig. 2.

The main difference of existing domain-invariant feature learning methods is the 
domain alignment method. One of the commonly used alignment methods is to min-
imize the distance of the distribution. For example, maximum domain discrepancy 
(MMD) is proposed in [24] to calculate the average value of the difference to judge 
whether the distribution of the two domains in Hilbert space is the same. Besides, 
MMD is also used in deep adaptation network (DAN) [25] and deep convolutional 
transfer learning network (DCTLN) [26]. Sun et al. [27] proposed CORAL (Correla-
tion Alignment), which is similar to MMD, but its value is obtained by computing 
the covariance of the source and target domain features. Another alignment approach 
is adversarial approach, whose alignment component consists of a domain discrimi-
nator. It draws on the idea of generative adversarial networks (GAN) [28], which 
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generates data through two network confrontation game. A value function in [28] is 
defined to quantify the game process of the two networks:

In the formula (1), x is the real data, pz(z) is the input noise, D(x) is the discrimi-
nator, and G(z) is the generator. The goal of the value function V(D,G) is to find the 
parameters so that the discriminator can correctly distinguish the real data x and the 
generated data G(z), and at the same time find the parameters to minimize the value 
of log(1 − D(G(z))). D(G(z)) is 0 when the discriminator correctly distinguishes the 
real input. When the discriminator treats the data generated by the generator as the 
real input, D(G(z)) is 1. Thus, the discriminator tries to learn to correctly classify the 
input as true or false, while the generator tries to trick the discriminator into thinking 
that the output it generates is real.

The adversarial alignment method in domain adaptation is modeled on the discrim-
inator used in GAN to distinguish between true and generated data, and a domain 
discriminator is proposed to distinguish whether the data belong to the source 
domain or the target domain. The feature extractor characterizes the data, and the 
domain discriminator identifies which domain the data belongs to. The two networks 
are updated alternately. When the data cannot be correctly distinguished from the 
discriminator, the effect of the feature extractor is optimal. Ajakan et al. [29] added 
a gradient inversion layer to the feature extractor and domain discriminator during 
back propagation. In [30], a novel generalized adversarial adaptation framework is 
proposed. In addition, adversarial discriminative domain adaptation (ADDA) pro-
posed by Tzeng et  al. [30] uses the label inversion method to make the features of 
the target domain close to that of source domain. Furthermore, the deep domain 
confusion method (DDC) [31] uses an adaptive domain and confusion loss to learn 
domain-invariant representations.

Existing domain adaptation-based methods focus on the feature alignment. How-
ever, the data with same label from different domain after adaptation are not distin-
guished clearly. The target domain-aligned features may result in wrong map. And 

(1)minG max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))]

Fig. 2  Flowchart of domain-invariant feature learning
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the weights of feature extractor of target domain are similar to that of source domain. 
This paper proposes an unsupervised domain adaptive bearing fault diagnosis method 
based on maximum domain discrepancy (UDA-BFD-MDD). UDA-BFD-MDD 
exploits maximum domain discrepancy to maximize the feature difference between 
the source domain and target domain. Comprehensive experiments on CWRU data-
sets confirms the performance of UDA-BFD-MDD.

3 � UDA‑BFD‑MDD model
The UDA-BFD-MDD model consists of three parts, namely the pre-training module, 
the transfer module and the verification module. The structure of the UDA-BFD-MDD 
model is shown in Fig. 3. The pre-training module is to train source feature extractor and 
source classifier based on the labeled data from source domain. After pre-training mod-
ule, the domain adaptation module is exploited, in which adversarial thinking is used 
to alignment the feature output of source feature extractor and target feature extractor. 
After the domain adaptation module, the unlabeled target data can be extracted feature 
using target feature extractor and then classified using source classifier as shown in veri-
fication module.

3.1 � Pre‑training module

In the pre-training module, in order to build a model for a specific task, it is necessary to 
train the source domain feature extractor and the source domain classifier to correctly 
classify the source domain sample data. The structure of the source domain feature 
extractor in the module is shown in Fig. 4.

The entire feature extractor consists of three feature extraction layers and one fully 
connected layer. Each feature extraction layer includes convolutional layers, pooling 
layers and activation functions. The data are first extracted through the convolution 
layer, and then, the extracted features are filtered through the pooling layer. The pool-
ing method chosen is the max pooling method. Finally, the result is output through an 
activation function (ReLU). The structure output by the feature extractor is fed into the 
classifier to complete the data classification task on the source domain. The structure of 
the source domain classifier is shown in Fig. 5. In order to prevent over-fitting, the result 

Labeled Source Data Source Feature Extractor Source Classifier Source Class Label

(a) Pre-training Module

Labeled Source Data 
(Xs)

Source Feature Extractor 
Es(x)

Target Feature Extractor 
Et(x)

Unlabeled Target Data 
(Xt) Domain Classifier C(x)

Es(Xs)

Optimizer

Es(Xt)

Et(Xt)

(b) Domain Adaption Module

Unlabeled Target Data Target Feature Extractor Source Classifier Target Class Label

(c) Verification Module

Fig. 3  Structure of UDA-BFD-MDD model
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of feature extractor is input into the dropout layer before the fully connected layer, and 
a batch of neural network units is selected in the dropout layer so that it does not par-
ticipate in the next parameter update [32]. Finally, two fully connected layers are used to 
complete the bearing fault classification.

3.2 � Domain adaptation module

The model established in the source domain can be transferred to the target domain 
through the domain adaptation module to complete the bearing fault diagnosis task 
under different working conditions. The domain adaptation module consists of a 
source domain feature extractor, a target domain feature extractor, an optimizer and a 
domain discriminator. The source domain feature extractor is in the pre-train module, 
which has been trained with the source domain data, and can extract the basic fea-
tures of the source domain data. The structure of the target domain feature extractor 

Fig. 4  Structure of source domain feature extractor

Fig. 5  Structure of source domain classifier
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is the same as that of the source domain feature extractor, and at the beginning of the 
transfer, the weight of the target domain feature extractor is the same as the source 
domain, and then its weights are updated by the optimizer and the domain discrimi-
nator, so that the target domain features The extractor can also perform feature 
extraction tasks on the target domain data. The optimizer is aimed at the situation 
where the weights of the source and target domain feature extractors are convergent 
when some data of the two domains are highly similar, and the L1 distance is intro-
duced to measure the source domain feature extractor and the target domain extrac-
tor to extract features from the same target domain data. To ensure that when the 
target domain feature is close to the source domain feature, the weight of the tar-
get domain feature extractor will not be the same as that of the source domain. The 
domain discriminator consists of three fully connected layers and a LogSoftmax layer. 
The entire domain discriminator network is shown in Fig. 6.

The data of the feature extractor are divided into two types through the three fully 
connected layers, and then, the two types of data are subjected to the LogSoftmax 
operation. Compared with the Softmax operation, the LogSoftmax operation per-
forms a logarithmic operation on the value of Softmax. On the one hand, the logarith-
mic function will not overflow when derivation, and on the other hand, it can speed 
up the back propagation speed and improve the operation efficiency. During transfer, 
in order to retain the information learned on the source domain, the learned source 
domain feature extraction network is used as the initial network of the target domain 
feature extractor. The extracted features are distinguished from the source domain 
or the target domain by the domain discriminator. When the domain discriminator 
fails to discriminate correctly, the feature extractor of the target domain completes 
the transfer and optimization.

Fig. 6  Domain discriminator network
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3.3 � Verification module

The verification module consists of a target domain feature extractor and a source domain 
classifier. After the domain adaptation module, the source domain feature extractor and 
target domain feature extractor have been alignment. Then, the data of the target domain 
are input into the target domain feature extraction, whose result is input into the source 
domain classifier trained by the data from source domain. Although the target domain data 
have no label and there is no new model is trained for the target domain data, the source 
domain classifier can classify the target domain data based on the feature alignment of 
source and target feature extractors. The detailed training steps are discussed in Sect. 3.4.

3.4 � Training and optimization of UDA‑BFD‑MDD

The training part of UDA-BFD-MDD is divided into five parts, namely source domain 
feature extractor, source domain classifier, target domain feature extractor, optimizer and 
domain discriminator. The optimization process is divided into 4 steps as follows.

Step 1 Train source domain feature extractor and source domain classifier. The source 
domain data XS is first input into the source domain feature extractor ES, then the result of 
source domain feature extractor is input into the source domain classifier CS, and the bear-
ing faults are classified according to the label YS of the source domain data. Step 1 uses a 
standard loss function for training and optimization. The loss function is as follows:

Step 2 Train the target domain feature extractor and optimizer. The target domain data XT 
is input into the target domain feature extractor ET for feature extraction. In order to make 
the features output by the target domain feature extractor similar to the source domain, the 
extracted features are input into the domain discriminator and trick the domain discrimi-
nator to misidentify the features as extracted from the source domain. This is used to meas-
ure and narrow the feature difference between the target domain and the source domain. At 
the same time, in order to ensure that the fault diagnosis task can continue to be completed 
even when the data in the source and target domains are similar, an optimizer is used to 
measure the difference loss of the two feature extractors. Combining the two, the overall 
loss function of step (2) can be obtained as follows:

Step 3 Train the domain discriminator. When the target domain feature extractor cheats 
the domain discriminator in order to narrow the difference between the input features and 
the source domain, the domain discriminator also needs to be continuously optimized to 
distinguish as much as possible whether the features are extracted from the source domain 
or the target domain. In the continuous confrontation between the feature extractor and 

(2)min
Es ,Cs

Lcls(XS ,YS) = E(xS ,yS)∼(XS ,YS) −

K∑

k=1

1[k=ys] logCS(ES(XS))

(3)

min
ET

max
Opt

V (D,ET ) = min
ET

max
Opt

LET (Xt)+ Lopt(Xs,Xt)

= −Ext∼Xt [logD(Et(xt))]

+ E(xs ,xt )∼(Xs ,Xt )

�

n

n

n=1

|Et(xsn)− Et(xtn)|
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the domain discriminator, the feature extractor is continuously optimized. The loss func-
tion of the domain discriminator is as follows:

Step 4 Combine the optimized target domain feature extractor with the source domain 
classifier to complete the fault diagnosis task. After several iterations of optimization in 
steps (2) and (3), the features of the target domain data extracted by the target domain 
feature extractor are as similar as possible to those of the source domain. These features 
are then input into the source domain classifier to complete the fault diagnosis of the 
new working condition.

3.5 � Theoretical analysis of UDA‑BFD‑MDD

In the training and optimization process of UDA-BFD-MDD, the key step is the Step 
(2) which trains the target domain feature extractor and optimizer. The result of Step 
(2) will be a good target domain feature extractor and a good discriminator which make 
the discriminator misidentify the feature from the source domain or the target domain. 
Therefore, the result of Step (2) influences the performance of UDA-BFD-MDD directly. 
To facilitate understanding of the key Step (2), the theoretical analysis is presented in 
this section.

Given any target domain feature extractor ET, the training for discriminator D is to 
minimize the quantity V(D,ET).

The training objective for D can be interpreted as maximizing the log-likelihood for 
estimating the conditional probability P(Y = y|x), where Y indicates whether x comes 
from Et or Es. When the feature output of source and target feature extractor, i.e., ET(XSn) 
is equal to ET(XTn), the formula (5) can be reformulated as:

4 � Performance evaluation
In order to verify the performance of UDA-BFD-MDD on bearing fault diagnosis under 
different working conditions, comprehensive experiments are conducted using the roll-
ing bearing data set of Case Western Reserve University (CWRU).

To obtain the bearing data of CWRU data set, EDM was used to implant faults ranging 
from 0.007 inches to 0.04 inches in diameter in various locations on the motor’s bear-
ings. Then, these faulty bearings were reinstalled into the motor. And the vibration data 
of the bearing were recorded when the motor works under different working conditions, 
which constituted the CWRU data set.

(4)min
D

(Xs,Xt ,Es,Et) = −Exs∼Xs [logD(Es(xs))] − Ext∼Xt [logD(Et(xt))]

(5)

V (D,ET ) = −

∫

XT

pXT log(D(ET (XT )))dXT+

∫∫

XT ,XS

pXT pXS

�

n

N∑

n=1

|ET (XSn)− ET (XTn)|dXTdXS

(6)C(XT ) = min
XT

V (D,ET ) = −EXt∼XT (logD(ET (XT )))
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The bearing data selected for the experiments is the bearing data collected at the drive 
end using an accelerometer for a deep groove ball bearing of type 6205-2RS JEM SKF. 
According to the difference of horsepower, the data set is divided into 4 different work-
ing conditions: 0 horsepower, 1 horsepower, 2 horsepower and 3 horsepower, and the 
corresponding labels are 0, 1, 2, 3. And the sampling speed is 12,000 samples per second. 
The bearing data under each working condition are composed of bearing working sig-
nals of 9 fault states and 1 normal state, as shown in Table 1. Since the outer ring fault is 
a static fault, the relative position of the fault and bearing load has a direct impact on the 
data, and the outer ring fault position in Table 1 is the position orthogonal to the load. 
The labels in Table 1 are corresponding to different bearing faults.

4.1 � Comparison of direct transfer and domain adaptive transfer

In order to verify the effect of adaptive transfer, the results of transfer from each work-
ing condition to other working conditions are compared. The result of direct trans-
fer is obtained by directly transferring the model trained on the source domain in the 
pre-training process to the target domain, and adaptive transfer is the transfer of the 

Table 1  CWRU dataset bearing failure classification labels

Label Bearing working state Fault damage location Fault 
damage 
length

0 Fault Ball 0.007

1 Fault Ball 0.014

2 Fault Ball 0.021

3 Fault Inner ring 0.007

4 Fault Inner ring 0.014

5 Fault Inner ring 0.021

6 Fault Outer ring 0.007

7 Fault Outer ring 0.014

8 Fault Outer ring 0.021

9 Normal Normal Normal

Fig. 7  Accuracy comparison of direct transfer and domain adaptive transfer
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adaptive model after passing through the transfer module to the target domain. In the 
experiment, a number of signal data with a length of 2048 are randomly selected and 
input as samples after fast Fourier transform. The model is trained with 32 samples each 
time, and the loss function selects the cross entropy loss and uses Adam to optimize the 
model. The learning rate of Adam in the feature extractor and domain discriminator is 
set to 0.00001, and β1 and β2 are 0.5 and 0.9, respectively. The parameter of the optimizer 
is 0.1. In order to ensure that the result is not affected by randomness, final results are 
the average of 10 experimental results, and the results of the are shown in Fig. 7.

As shown in Fig. 7, the domain adaptive transfer in this paper is almost always bet-
ter than that of direct transfer. The average accuracy rate of all domain adaptive trans-
fer tasks is higher than 99%, and the average accuracy rate of 6 transfer tasks can reach 
100%. It shows that when these 6 transfer tasks are transferred, they can fully adapt to 
the bearing fault diagnosis task of the new working condition. When transferring from 
working condition 2 to 0, the average accuracy rate of domain adaptive transfer is only 
99.23. In the experiment, it is found that the highest accuracy rate of adaptive transfer 
from 2 to 0 can reach 100%, and the result fluctuates greatly, resulting in a low aver-
age accuracy rate. Overall, the final adaptive transfer results have nothing to do with the 
direct transfer results. Moreover, the results transferring from a low-horsepower condi-
tion to a high-horsepower condition are better than that of transferring from a high-
horsepower condition to a low-horsepower condition.

4.2 � Comparison with other transfer methods

In order to verify the performance of UDA-BFD-MDD, comparative experiments of 
UDA-BFD-MDD with other transfer methods were conducted. In the experiments, 1000 
samples were randomly selected for each working condition, and the ratio of the num-
ber of training samples in the source domain and the target domain was 1:1. And 1000 

Table 2  Fault classification results of different methods on the bearing datasets of CWRU (accuracy 
%)

The bold and italicized numbers indicate that UDA-BFD-MDD (proposed method) achieved the best transfer learning 
performance in the corresponding transfer task. The non bold and italicized numbers indicate that other model achieved 
the best transfer learning performance in the corresponding transfer task

S → T TCA​ Deep
CORAL

DDC DAN DCTLN Proposed 
method

0 → 1 62.50 98.11 98.24 99.38 99.99 99.74

0 → 2 65.54 83.35 80.25 90.04 99.99 100
0 → 3 74.49 75.58 74.17 91.48 93.38 100
1 → 0 63.63 90.04 88.96 99.88 99.99 99.71

1 → 2 64.37 99.25 91.17 99.99 100 100
1 → 3 79.88 87.81 83.70 99.47 100 100
2 → 0 59.05 86.18 67.90 94.11 95.05 99.23
2 → 1 63.39 89.31 90.64 95.26 99.99 99.98

2 → 3 65.57 98.07 88.28 100 100 100
3 → 0 72.92 76.49 74.60 91.21 89.26 99.66
3 → 1 68.93 79.61 74.77 89.95 86.17 99.83
3 → 2 63.97 90.66 96.70 100 99.98 100
Avg 67.02 87.87 84.12 95.9 96.16 99.85
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samples were randomly selected in the target domain for validation. In order to reduce 
the effect of random results, the experiments repeated the training 10 times and took the 
average value. The results are shown in Table 2.

According to the comparative experimental results in Table 2, after using UDA-BFD-
MDD for transfer, the average accuracy rate of all transfer tasks is 99.85%, which is higher 
than that of other classic transfer learning algorithms. Not only that, through analysis of 
experimental results in Table 2, UDA-BFD-MDD has the following advantages:

1.	 Not only can a 100% accuracy rate be achieved in tasks that other methods can also 
achieve, but also when completing tasks such as transfer tasks 0 → 3, 2 → 0, 3 → 0, 
3 → 1 and other methods with poor transfer effects, UDA-BFD-MDD can also 
achieve a higher accuracy rate.

2.	 The diagnosis results of UDA-BFD-MDD are relatively stable. The accuracy of differ-
ent transfer tasks fluctuates within 1%, while the fluctuations of other transfer learn-
ing algorithms are about 10–20%. The accuracy of UDA-BFD-MDD is greater than 
99% in all transfer tasks, while the accuracy of other methods is less than 90% on 
some difficult transfer tasks.

3.	 Compared with other methods, the results of UDA-BFD-MDD in the transfer tasks 
0 → 1, 1 → 0, 2 → 1 are slightly worse, but when completing tasks 3 → 0, 3 → 1, the 
accuracy of UDA-BFD-MDD is about 10% higher than other methods. Therefore, the 
overall accuracy rate of UDA-BFD-MDD is higher.

4.3 � Comparative experiments with different sample sizes

In order to verify the fault diagnosis accuracy of UDA-BFD-MDD under different sample 
numbers, different target domain data volumes were selected for training in this experi-
ment, and the data volumes were taken as 10, 100, 250, 500, 750 and 1000, respectively. 
Each working condition is trained 10 times under each data amount, and the final result 
is taken as the average value. The accuracy results comparison under different sample 
sizes are shown in Fig. 8.

Fig. 8  The accuracy result comparison under different sample sizes
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From the results, we found that when the data size is 500, the accuracy rate of all tasks 
exceeds 96%, and when the data size is 750, the accuracy rate of all tasks exceeds 98%. 
Under 250 samples, there are only three tasks with 100% accuracy rate. Under 500 sam-
ples, there are 7 tasks with 100% accuracy rate. At the same time, we also tried the case 
of training with only 10 samples and found that the reason for the lower accuracy rate is 
the large fluctuation of the results in the iterations, and the results in several iterations 
are the same as the results using 1000 samples. This phenomenon indicates that the 
learning ability of the proposed algorithm improves with the increase in sample num-
ber. It can be seen from the average curve that when the amount of data increases, the 
fluctuation of the training results during iteration becomes smaller and smaller, and the 
accuracy of diagnosis also increases. In UDA-BFD-MDD, the target domain data only 
need half of the source domain data, and its average diagnosis accuracy rate can exceed 
99%. There is also an interesting phenomenon in Fig.  8 that some curves, e.g., 1 to 3, 
decrease first and then increase with the increase in sample volume. The reason behind 
the phenomenon is that when the number of samples is low, the selection of sample data 
is random which results in the accuracy fluctuation. With the increase in samples num-
ber, the accuracy grows gradually and steadily.

4.4 � Data visualization analysis

In order to verify the ability of UDA-BFD-MDD to extract and transfer features, the con-
fusion matrix heatmap and T-SNE are used to analyze the results of the transfer task 
under different working conditions. The confusion matrix heat map shows the fault 
classification results before and after the transfer, when the CWRU data set working 
condition 0, 1, 2, and 3 are, respectively, used as the source domain to transfer to other 
working conditions. The confusion matrix heatmaps are shown in Figs. 9, 10, 11 and 12, 
respectively.

Fig. 9  Confusion matrix heatmap for transfer from case 0 to others
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As shown in Fig.  9, in the transfer from working condition 0 to others, the model 
before the transfer is less effective in classifying fault 2, and the model classifies fault 2 as 
fault 4 or fault 0. In task 0 → 2, fault 8 is mainly incorrectly classified as fault 5. After the 
transfer, except for task 0 → 1, the accuracy rate of other tasks reaches 100%.

As illustrated in Fig. 10, in task 1 → 2, the model before transfer can obtain 100% accu-
racy rate, indicating that the model established in case 1 can be directly transferred to 
case 2. In tasks 1 → 0 and 1 → 3, the incorrect classification of fault 4 and fault 8 before 
transferring is solved after transferring.

As depicted in Fig. 11, in task 2 → 0 and task 2 → 3, fault 8 is main misclassification 
before transferring. After the transfer, the model transferred to working condition 3 
has better classification accuracy on fault 8, while the model transferred to working 

Fig. 10  Confusion matrix heatmap for transfer from case 1 to others

Fig. 11  Confusion matrix heatmap for transfer from case 2 to others
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Fig. 12  Confusion matrix heatmap for transfer from case 3 to others

Fig. 13  T-SNE for transfer from case 0 to others

Fig. 14  T-SNE for transfer from case 1 to others

Fig. 15  T-SNE for transfer from case 2 to others
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condition 0 has great classification accuracy improvement for fault 8, but no improve-
ment for fault 4.

As shown in Fig. 12, in tasks 3 → 1 and 3 → 2, fault 3 is incorrectly classified as fault 
2 before transfer. And in 3 → 0, the model cannot correctly classify fault 8. It is clear 
that the transfer mainly occurs on faults 4 and 8, indicating that the characteristics 
of the two faults are similar to other faults in the target domain, and they need to be 
transferred to correctly be classified. After transferring, except for fault 4, other faults 
can all reach high classification accuracy.

To intuitively observe the transfer process of UDA-BFD-MDD to the bearing fault 
features, T-SNE is used to reduce the dimension of the features. Figures 13, 14, 15 and 
16 show visualizations of the T-SNE for the transfer tasks under different conditions.

From Figs.  13, 14, 15 and 16, it can be found that after the transfer, in the transfer 
task with case 0 as the target domain, there are very few points that overlap with other 
clusters. It shows that the characteristics of some faults in the source domain are simi-
lar to that of faults in case 0. In addition, the results of fault classification tend to be 
more concentrated in the transfer from low-horsepower conditions to high-horsepower 
conditions, and the distance between classes is farther than the transfer from high-
horsepower to low-horsepower conditions. It shows that the transfer effect of high-
horsepower features is better than that of low-horsepower features.

5 � Conclusion
An unsupervised domain adaptive bearing fault diagnosis method (UDA-BFD-MDD) 
proposed in this paper uses an adversarial method to align the features of data from 
source and target domain. Then, the model constructed based on data from source 
domain can be transferred to target domain data without labels. Therefore, UDA-BFD-
MDD avoids the cost of model rebuilding and labeling on target domain data, which 
enables it to be applied in real industry scenarios. In addition, aiming at the high sim-
ilarity of some fault features in the bearing fault data, maximum domain discrepancy 
is exploited, which can find the positive transfer information as much as possible and 
improve performance of transferring. The experimental results confirm that UDA-BFD-
MDD achieves an average accuracy rate of 99.85% for transfer tasks on the CWRU data 
set, higher than other transfer learning-based methods, and can also perform correctly 
under small sample data.
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