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Traditional space-time adaptive processing (STAP) usually needs many independent and identically distributed (i.i.d)
training datasets for estimating clutter covariance matrix (CCM). But this requirement is hardly satisfied in the
heterogeneous clutter environments, which lead to an inaccurate estimation of CCM and accordingly degrade
the performance of STAP significantly. To improve the performance of STAP in heterogeneous environments,
a novel deterministic-aided (DA) single dataset STAP method based on sparse recovery technique (SR) is proposed in
this paper. This presented algorithm exploits the property that the clutter components of side-looking airborne or
spaceborne radar are distributed along the clutter ridge to estimate the CCM of the cell under test (CUT) without any
secondary training data. The new method only uses a single CUT data to acquire a high-resolution angle-Doppler
power spectrum using sparse recovery (SR) approach and then employs a new adaptive deterministic-aided
generalized inner product (GIP) algorithm to recognize and select the clutter components in the CUT angle-Doppler
power spectrum automatically. Subsequently, the CCM, which is used to construct the weights of STAP filter, can be
effectively estimated by the selected clutter components to fulfill the final STAP filter processing. Simulation results
verify the effectiveness of the proposed detection method.
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1 Introduction

Space-time adaptive processing (STAP), a two-
dimensional space-time adaptive filtering operation, is
an effective and important technique which is widely
used in airborne or spaceborne radar for detecting mov-
ing target in strong clutter background [1-4]. And in
most STAP applications, the training data in the neigh-
borhood of the range cell of interest are employed to es-
timate the clutter covariance matrix (CCM) which is
used to compute the filter’s weights adaptively [5, 6].
Thus, to guarantee the accuracy of the estimation of
CCM, two major conditions should be satisfied. One is
the training data from adjacent range cells should be
target-free and contain clutters with the same statistic
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characteristics as the cell under test (CUT), which is re-
ferred to as independent and identically distributed (i.i.
d) condition [4]. The other, according to RMB rule [4],
is the number of training data snapshots should be lar-
ger than twice the number of system degrees of freedom
(DOFs) to achieve the output signal-to-interference-
plus-noise ratio (SINR) loss is <3 dB. Unfortunately,
most of the actual scenarios, which the airborne or
spaceborne radar faces onto, are non-stationary and in-
clude heterogeneous clutters or a high target density. In
this case, so many iid and target-free training samples
are difficult to be obtained. Therefore, it results in a false
estimation of CCM, which leads to a performance de-
crease of clutter suppression or even a self-nulling of
target signal.

So many reduced-dimension or reduced-rank methods
[7-10] have been proposed to overcome the aforemen-
tioned problem. However, the number of necessary
training samples mentioned in such approaches may still
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be large when facing a severe heterogeneous environ-
ment. Moreover, several non-homogeneity detection
(NHD) algorithms [11-15] have been applied in the het-
erogeneous environments, such as the power-selected
training (PST) algorithm [11] and the generalized inner
product (GIP) algorithm [12-15]. They all seek to select
the training sample whose CCM is similar to that of the
CUT data. However, the PST algorithm may result in
target self-nulling and the GIP algorithm would result in
an ineffective estimation of CCM if the CUT data is het-
erogeneous with most of the initial training samples. On
the other hand, since some unqualified training samples
should be removed, the GIP algorithm cannot achieve
an acceptable performance of clutter suppression when
the number of training samples is deficient. A
knowledge-aided (KA) STAP method, which introduces
the benefits of the digital terrain data into STAP applica-
tions, was proposed in [16]. Nevertheless, the reflectivity
change with grazing angles and the inaccurate register-
ing of the terrain data would degrade its performance.
Additionally, the persymmetric structure of the interfer-
ence covariance matrix and the symmetric property of
power spectral density of the clutter can also be used as
priori knowledges to improve the detection perfor-
mances in training-limited scenarios [17-20]. And some
STAP detection methods, which allow one to identify
the degree of accuracy of the prior knowledge and com-
bine the prior information with the secondary data in an
appropriate way, were proposed in [21, 22]. To further
deal with the training-limited problem, a detection
scheme using a linear combination of some available a
priori models to model the inverse covariance matrix
was reported in [23], a newly proposed detection
method using two sets of training data are not limited
by the conventional constraint on the cardinality of the
classic training dataset [24], and a geometric approach
to covariance matrix estimation can also achieve consid-
erable SINR improvement in training-starved regimes
[25]. Some other related applications to MIMO radar
can be found in [26, 27]. Recently, sparse recovery (SR)
technique has also been applied to STAP processing
[28-32]. The SR-STAP algorithm can accurately estimate
CCM or the subspace of clutter with much fewer train-
ing samples than the conventional STAP algorithms. As
all of the methods aforementioned above still need train-
ing samples or assume the training samples are target-
free, they still have some limitations to deal with the ser-
ious non-stationary radar scenarios.

We call the STAP algorithm that needs to use training
samples to estimate CCM as the two dataset STAP
(TDS-STAP) algorithm. Obviously, the clutter suppres-
sion performance of TDS-STAP is largely limited by the
number and statistic characteristics of the training sam-
ples. Furthermore, to lower the limit on the training
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sample, several single dataset STAP (SDS-STAP) algo-
rithms have been proposed [32—37]. They only use CUT
data for CCM estimation or clutter suppression. The dir-
ect data domain STAP (D3-STAP) [33-35] and the max-
imum likelihood estimation detector (MLED) algorithm
[36, 37] are two typical SDS-STAP algorithms, but their
benefits are available at the expense of system DOFs
loss. Another direct data domain STAP approach using
sparse recovery (D3SR-STAP) was proposed in [32]. It
can effectively estimate CCM based on the angle-
Doppler power spectrum got by sparse recovery tech-
nique only with CUT data. Though this method keeps
the full system DOFs, the requirement for prior know-
ledge of the signal of interest (SOI) area limits its effect-
iveness because the prior knowledge is not easy to be
got accurately.

In this paper, we propose a novel deterministic-aided
(DA) single dataset (SDS) STAP method based on sparse
recovery (SR) technique, which is abbreviated to DA-
SDS-SRSTAP, for side-looking airborne or spaceborne
radar in heterogeneous clutter environments. This
method needs neither any training data nor any prior
knowledge of SOI while suffering no loss of DOFs. We
exploit the property that the clutter components of side-
looking airborne or spaceborne radar are distributed
along the clutter ridge to fulfill the estimation of CCM
only with CUT data. We first calculate the high-
resolution angle-Doppler power spectrum of CUT data
using SR technique. Then, a new adaptive deterministic-
aided GIP (DA-GIP) algorithm is presented to recognize
and select the clutter components automatically in the
angle-Doppler power spectrum. Subsequently, the CCM,
which is employed to construct the weights of STAP fil-
ter, can be estimated by the selected clutter components
to fulfill the final STAP filter processing. Simulation re-
sults verify the effectiveness of the proposed detection
method.

The paper is organized as follows. Section 2 is devoted
to the data model of side-looking airborne or spaceborne
radar, while the detailed rationale of the new method, in-
cluding the SR model and the new DA-GIP algorithm,
are presented in Section 3. In Section 4, simulations are
given to show the effectiveness of the proposed DA-
SDS-SRSTAP method. Conclusions are finally presented
in Section 5.

2 Data model

Consider a side-looking uniform linear array (ULA)
radar platform that consists of N identical antenna ele-
ments with an inter-element spacing d = 1/2. It receives
M pulses with pulse repetition frequency (PRF) f, in a
coherent processing interval (CPI) for each range gate. 1
is the radar wavelength. The simplified coordinate for
the side-looking ULA radar platform is shown in Fig. 1.
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Fig. 1 Simplified side-looking ULA radar platform geometry

Without loss of generality, we neglect the elevation di-
mension in the coordinate [4]. The velocity of the plat-
form and the azimuth angle are v and 6, respectively. As
we only use the primary CUT data, the range gate di-
mension can be overlooked in the following discussions,
and the processing algorithm works independently in
each range gate.

For the side-looking radar, N, clutter patches are as-
sumed to be independent with one another and be of
uniform distribution in each iso-range ring. Hence, the
clutter data can be modeled as the summation of these
N, independent clutter patches with different spatial and
Doppler frequencies [4]. Assuming no antenna crabbing,
the spatial frequency ¢. ; and normalized Doppler fre-
quency ¢, ; of the ith clutter patch can be, respectively,
given by

¢.; = d cosb.;/)A (1)

Wi = 2v cosOei/(Af) (2)

where 6, ; indicates the angle of the ith clutter patch.
The space-time steering vector of the ith clutter patch is
given by

Vi = V(Ver 9ei) = b(ve,) ©2(00,) (3)

where v(y, ¢) =b(y) @ a(¢) and ® denote the space-time
steering vector and the Kronecker product, respectively.
a(¢., ;) and b(y,, ;) are the spatial and temporal steering

vector of the ith clutter patch, respectively, which are
defined by
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o(0.0) = [1 exp(r0..). - exp(jv-12m0,)]
(4)

(1) = [1. exo(mw,.). . exo(ja-vmy,,)]"
(5)

where [g]” denotes the transpose operation. Then,
ignoring the range ambiguities, the total clutter return
from a given iso-range ring can be expressed by [4]

N,
c= Z OciVi (6)
i=1

where o, ; denotes the complex amplitude of the ith
clutter patch. Moreover, considering the incoherence be-
tween each clutter patch, the clutter covariance matrix
can be simplified as [4]

N,
R, = E[cc] = Z ’007i‘2viv7 (7)
=1

whereE[g], [g]”, and | g | denote expectation operation,
conjugate transpose, and the modulus of a complex,
respectively.

Similarly, the spatial frequency ¢, and normalized
Doppler frequency y, of the hypothetic target can be, re-
spectively, given by

¢, = d cosO; /A (8)
¥, = 2(vi-v) cosb/(Af,) ©)

where 6, and v, denote the angle and velocity of the tar-
get, respectively. The target signal can be expressed by

s =ov(Y, ¢,;) = 04V; (10)

where v, =v(y, ¢,) =b(y,) ® a(p;) and o, denote the
space-time steering vector and the complex amplitude
of the target, respectively.

As is well known, the optimal filter weights of STAP
can be given by

Wopt = KR;lvt (11)

where « is an arbitrary scalar which does not alter the
output SINR and R;'denotes the inverse matrix of R.. In
order to satisfy the constant false alarm rate (CFAR)
property, we usually set x = (v/ Rc"lvt)fl/ ® [4]. The filter
output power is then compared to a threshold according
to the matched filter (MF) test [2, 6]

2 |VfR;1x‘2Ho
= - < 12
VIR v, 1?117 (12)

y=|wihx

where 7 is the threshold, Hy and H; mean no target and



Wang et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:24

a target is present, respectively, and x is the test data
snapshot.

Since R, is unknown in actual scenarios, the conven-
tional STAP generally employs training samples, which
are assumed to be i.i.d and target-free, to estimate CCM.
This approach is well known as a TDS-typed algorithm.
For instance, using the classical sample matrix inverse
(SMI) algorithm [1], CCM can be estimated by

(13)

w>
o

4

S

Il

| =
(-
fal
S
]
—
=

T

~

=1

where x(/) denotes the Ith training sample snapshot and
L is the number of training samples. Subsequently, R, in
(11) and (12) can be replaced by R._sum to compute Wop
and make MF detection test in practice. Note that if the
target-like signals appear in the training samples or the
clutter characteristics of the training samples are non-
homogeneous with those of the CUT data, expression
(13) will lead to an inaccurate estimation. This would
degrade the STAP performance significantly, especially
in the case of fewer training samples. In the next section,
a novel deterministic-aided single dataset STAP method
based on sparse recovery (DA-SDS-SRSTAP) will be de-
scribed in detail, which can overcome these problems in
some extent to improve the detection performance in
the heterogeneous radar scenario.

3 DA-SDS-SRSTAP algorithm

The proposed algorithm is composed of three primary
steps. We first calculate the high-resolution angle-
Doppler power spectrum using SR technique only with
the CUT data. Then, a new adaptive deterministic-aided
GIP (DA-GIP) algorithm, based on the property that the
clutter components are distributed around the clutter
ridge, is proposed to recognize and select the clutter
components automatically in the CUT angle-Doppler
power spectrum. Subsequently, the CCM, which is
employed to form the weights of STAP filter, can be esti-
mated by the selected clutter components to implement
the final STAP filter processing. The three steps will be
detailedly discussed in the following subsections.

3.1 Getting CUT angle-Doppler power spectrum using SR
The CUT data snapshot, which includes target and clut-
ter components, can be written as

Xo=s+c+n (14)

where n is white additive noise. Note that recently devel-
oped SR algorithm, which can work on the single dataset
case, provides an effective approach for STAP applica-
tion without the performance degradation caused by
DOFs loss, as is the conventional D3-STAP method. SR
algorithm discretizes the whole angle-Doppler plane into
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N, x N; bins, whereN, =pN, N;=p,M (ps, pa>1) are
the number of the quantization of spatial and Doppler
frequency axis, respectively. Then, we reformulate the
target and clutter components in the form of sparse rep-
resentation and the received CUT data snapshot xq in
(14) can be rewritten as [28]

Xo =®Y+n (15)

where @ and y are MN x N,N, overcomplete space-time
steering dictionary and NN, x 1 angle-Doppler profile
vector, respectively, as given by

D= [V(l//lv(pl)vL7V(W17¢Ns)aLav(l//Ndv(pNs)] (16)

T
Y= {)/17)/27L7}/N5Nd:| (17)
where the symbols ¢,, (1<p<N,) and y,, (1<g<N)
denote the quantized spatial and Doppler frequencies re-
spectively. As the theory of SR-STAP [28], a nonzero
element from any angle-Doppler grid point, correspond-
ing to a nonzero entry in y, would suggest the presence
of a scatter at that particular angle and Doppler fre-
quency. Hence, a high-resolution angle-Doppler power
spectrum of the CUT data, which shows the information
of clutter and target, can be obtained by

Psz = |y|’ (18)

Considering the target and clutter are sparsely distrib-
uted in the whole angle-Doppler plane [28], finding the
solution of y can be stated as a NP-hard SR problem that
represents an interesting signal using the minimum num-
ber of vectors from an overcomplete dictionary (set of
vectors). Much research effort has been invested in finding
some feasible approaches to solve this problem [28-32].
In the following simulations of this work, we just employ,
but not limited to, a common SR algorithm named as the
focal underdetermined system solver (FOCUSS) algorithm
[32] to estimate the CUT angle-Doppler power spectrum.
For simplicity, the angle-Doppler power spectrum gained
using SR technique is referred to as SR angle-Doppler
power spectrum in the followings.

3.2 DA-GIP algorithm for CCM estimation

It is noted that, according to expression (1) and (2),
there is a linear relationship between the spatial fre-
quency and normalized Doppler frequency of the clutter,
which can be rewritten as

qu = ﬁ(pc,i’ﬂ = 2V/dfr

Theoretically, this deterministic relationship means
that all the clutter components for moving radar plat-
form should be distributed along a line that is well
known as clutter ridge in the angle-Doppler domain.

(19)
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denotes the slope of clutter ridge, which can be computed
using the prior knowledge of platform velocity, the inter-
element spacing value of antenna array, and the PRF. In
other words, once these system parameters are fixed, the
clutter ridge will be deterministic. Without loss of general-
ity and to avoid Doppler aliasing, 3 is equivalent to 1 in the
following discussions. This deterministic angle-Doppler
structure of clutter is illustrated in Fig. 2. It can be observed
that the clutter ridge is the diagonal of angle-Doppler plane.
Ideally, the nonzero elements located in the clutter ridge
can be regarded as clutter components to estimate CCM.
However, in practice, because of the impact of inner clutter
motion (ICM) or the inaccuracy of prior knowledge, the
clutter components will extend to the area adjacent to the
ideal clutter ridge, as is shown in the shadow region in Fig.
2. In this case, if we still use the clutter components just lo-
cated in the ideal clutter ridge to estimate CCM and apply
the result for STAP filter, the clutters cannot be suppressed
completely and the residual will further deteriorate the
STAP performance severely. Even more unfortunately, the
extension, which may be variable for different range bins in
the heterogeneous radar scenario, is hard to be predicted in
the single dataset condition. Consequently, to cope with the
uncertain clutter spread only with the CUT data, we
propose a novel DA-GIP algorithm, based on the determin-
istic property that the clutter components are mainly dis-
tributed around the clutter ridge, to recognize and select
the whole clutter components in the SR angle-Doppler
power spectrum for effective CCM estimation.

The main idea of the DA-GIP algorithm is to find a
set of candidate CCM estimation {IA{C,k, k=1,2,L}
based on the deterministic knowledge of clutter ridge
and then determine which one is the best approximation
to the real CCM according to the new defined DA-GIP
formulation. Recall that the conventional GIP algorithm,

-0.5

Clutter ridge

Clutter |y
extension

o
A

Normalized Doppler frequency

N

— 0.5
0.5 Angle frequency

Fig. 2 Angle-Doppler structure of clutter for moving radar platform (8= 1)
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which is used for training sample selection, has the fol-
lowing quadratic form [12, 13].

Q) = x()"Rx(1) = [Rx()[* (20)
where x(/) and R, denote the /th training sample snap-
shot and the true CCM, respectively. Actually, (19) mea-
sures the power of training sample whitened by Rc’l/ 2,
Inspired by the original GIP thought, the DA-GIP for-
mulation for the CUT data is defined by

L _1/2 ‘2

1
Qu(k) = xOHRC,kxo = R,/ X0

(21)

where IA{C,/( denotes the kth candidate CCM estimation.
The value of Quy(k), which is referred to as DA-GIP
value, will be used to judge whether its corresponding
ﬁc_k is the closest approximation to the real CCM.

Assuming the number of the quantization of spatial fre-
quency axis equals to that of the Doppler frequency axis, i.
e., Ny = N, the whole procedure can be done as follows.

Step 1: find out some particular nonzero elements of
the angle-Doppler profile vector y, whose corresponding
points in the angle-Doppler plane should satisfy the con-
dition that

p=q=x(k-1),(1<p<N;, 1<g<Ny) (22)
where p and ¢ denote the indices of the discretized
spatial and Doppler frequency axis, respectively, and & is
the iterative time that starts from k = 1. Then, the indices
of these nonzero elements in y are recorded as a set I';.
Note that this step is to seek out those clutter compo-
nents in the clutter ridge at the first iterative time, which
can be interpreted in Fig. 3. Those points at the diagonal
of the discretized angle-Doppler plane are considered
from the beginning.

Step 2: form a new set Q={I;, LI}, which is
regarded as the kth candidate set of clutter components,
and calculate the kth candidate CCM estimation f{c,k
using the SR expression given by [31].

Rx = Zk: V(@) (Dea,p) (Pea,p)”  (23)
=

where Hy is an integer and denotes the number of ele-
ments in set { and eq, () is a column vector of all zeros
except for a one in the position of index (%), which
can be expressed as

T
e, () = [01,L, 00, (-1, Loy (s Ocse () +1, L On,N, |
(24)

Step 3: first calculate the DA-GIP value Q(k), which is
rewritten as
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Fig. 3 lllustration of the strategy for clutter component selection
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Q(k) = XOHRc,kx0~

Then, if k=1, set k=k+ 1 and return to step 1; other-
wise, continue to step 4.

Step 4: first calculate the error value between Qq(k)
and Qo(k — 1), which is given by

Qo(k—1)>
Ay =10 x lo 10( k> 1.
Q) )

If Ay>& set k=k+1 and return to step 1; otherwise,
stop the iteration. £ is a very small positive real number,
which is referred to as error threshold. Denoting K as the
last iterative time, then the final available CCM estimation

(25)

(26)

R._pa-gip can be given by

R, pa-gir = Re g (27)

The whole procedure can be summarized in Fig. 4.
Though the nonzero elements at the clutter ridge can be
regarded as valid clutter components with no doubt at
the beginning, the set {); may not include all of the clut-
ter components and f{c_l may not be a good estimation
of CCM because the clutter components always spread
out of the clutter ridge due to the effect of ICM and
knowledge error. Consequently, we should extend the
searching area to the outside of the clutter ridge grad-
ually, until the clutter components have been completely
selected out. Then, one more grid point on both sides of

the clutter ridge in the discretized angle-Doppler plane
can be added into the searching areas at each new itera-
tive time, which can be interpreted in Fig. 3. Every ex-
tended searching process will give an extra set of clutter
components and a new CCM estimation, respectively, as
is described in step 2. On the other hand, the DA-GIP
value Qq(k) in step 3 is used to measure the accuracy of
those candidate CCM estimations. According to expres-
sion (21), the DA-GIP value is actually the power of the

CUT data whitened by f{_l/zc,k. Remarkably, the CUT
data that is whitened with more clutter components
should have lower power than that whitened with fewer
clutter components. In other words, the DA-GIP value
Qo(k) ought to decrease with the increasing of iterative
time k, until the Kth iterative time when Qg contains all
of the clutter components distributed around the clutter
ridge in the SR angle-Doppler power spectrum. Thus,
the corresponding CCM estimation R.x can be taken as
the closest approximation to the real CCM. Therefore,
when the error of the DA-GIP values A, between two
adjacent iterative times becomes very little, it is reason-
able to break the iteration and confirm that the CCM
has been correctly estimated with full clutter com-
ponents in the discretized SR angle-Doppler power
spectrum, as is described in the step 4.

Actually, on the assumption that clutter power is usu-
ally much larger than noise power, we can set the error
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@ Yes

No

Calculate the error value

A, = 10*loglOEMj
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Stop the iteration.
The final set of clutter components is
The final CCM estimation is R_

Fig. 4 Flow chart of the DA-GIP algorithm for CCM estimation

threshold in step 4 depending on noise power. We think
that if the whole clutter components have not been
included in the data set Q; and not been completely
whitened, there are still some clutter residuals in the
DA-GIP value Qy(k). Moreover, Qq(k — 1) should contain
more clutter residuals than Qy(k). Therefore, in this case,
the error value Ay between Qu(k) and Qu(k - 1) should
also contain the residual clutter components and should
be larger than noise power. On the other hand, once all
the clutter components have been found out and been
completely whitened, the residuals in the DA-GIP value
are just noise and target components. After that, consid-
ering the target components consisted in the two adja-
cent DA-GIP values can be mutually canceled out, only
the noise component is left in the error value between
the two adjacent iterative times. Consequently, it is rea-
sonable to set the error threshold ¢ depending on noise
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power. In practice, it is well known that the noise power
can be measured in advance.

Furthermore, the convergence of the comparison in
step 4 also depends on the error threshold. According to
the analysis above, when the error threshold is equal to
or larger than the noise power, the comparison should
be convergent. However, if the error threshold is set to
be much larger than the noise power, the iteration will
stop when the whole clutter components have not been
selected out to estimate the CCM, which will result in
an inaccurate CCM estimation. Contrarily, when the
error threshold is lower than the noise power, the
comparison may be not convergent. It is because that
although the error value Ay may be less than the noise
power, it may be still larger than the error threshold
which is set to be smaller than the noise power. Conse-
quently, we suggest that the error threshold is best to be
equivalent to or slightly larger than the noise power.

3.3 STAP filter strategy

Substituting R._pa_gip for R, in expression (11) and (12),
we can implement the final filter processing. Note that
the nonzero elements of the SR angle-Doppler power
spectrum indicate the angle-Doppler information of the
clutter and target, and the whole clutter components
have been marked out by the DA-GIP algorithm. There-
fore, we just need to test the other nonzero elements,
except for those selected clutter ones, for target detec-
tion. We denote the spatial and normalized Doppler fre-
quency pairs of those non-selected nonzero elements as
{(¢%v}).j=1,2,L}. The filter output corresponding to
the jth frequency pair can be given by

H. 1
/ /
V(¢/7l//;) R cpa-GirXo

Y= (28)

v (‘f’/j’ l//’]) Hf{‘lc_DA_GJPV (¢;7 l//’l) .

Then, we can compare y; with the threshold # to per-
form the final target detection.

4 Simulation results and discussion

In the simulations, the main parameters are as follows: the
number of array elements is N =6, the number of pulses
in a CPI is M = 6. The carrier frequency is 10GHz, and the
PRF is f, = 600Hz. There are 180 clutter patches uniformly
distributed in the forward area of antenna array. The noise
power is normalized to 0 dB, and the clutter-to-noise ratio
(CNR) is 40 dB. It is assumed that a target is located at
angle 16.5°, and its normalized Doppler frequency is - 0.
27. The power of the target is assumed to 10 dB. The reso-
lution scales of the angle-Doppler plane are set as p; =10
and p, =10 to achieve a high-resolution power spectrum.
Note that the noise power is set to 0 dB in the simulations.
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Fig. 5 SR angle-Doppler power spectrum of CUT data without the
effect of ICM and knowledge error (dB)

Without loss of generality, the error threshold for the ex-
periment is then set to {=0.1 which is slightly larger than
the noise power.

4.1 Experiment without ICM and knowledge error

Firstly, we carry out the experiments without the effect of
ICM and knowledge error to verify the effectiveness of the
proposed DA-SDS-SRSTAP method. The SR angle-Doppler
power spectrum of the CUT data without ICM and know-
ledge error is presented in Fig. 5. It is clear that the clutters
and target are all revealed in the power spectrum, and al-
most all of the clutter components are located in the clutter
ridge, as is analyzed in Section 3. By making the DA-GIP
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algorithm work on the SR angle-Doppler power spectrum,
the DA-GIP values and error values corresponding to four
iterative times are shown in Fig. 6. We can see that the DA-
GIP values have no change from the second iterative time
for the reason that the clutter components are mainly lo-
cated in the clutter ridge, which is consistent with the result
shown in Fig. 5. Hence, the iteration should stop at the third
time when the error value is lower than the threshold, and
the third candidate CCM estimation R, 3 can be applied for
the following filter processing. Furthermore, in contrast
with the real CCM, the eigenvalues of the candidate CCM
estimation of each iterative time are presented in Fig. 7. It is
observed that the three groups of eigenvalues are over-
lapped completely since iteration 2, and the number of ei-
genvalues in any of the three groups is nearly equivalent to
that of the real CCM. It further demonstrates that the se-
lected CCM estimation can be a good approximation to the
real CCM. The normalized filter output with IAKC,3 is shown
in Fig. 8. It is clear that the clutters are completely sup-
pressed and the target is highlighted.

4.2 Experiment with ICM

Next, we test the DA-SDS-SRSTAP method in the case
of ICM. The SR angle-Doppler power spectrum of the
CUT data with ICM is presented in Fig. 9. It is clear that
the clutters spread out of the clutter ridge caused by the
effect of ICM. The DA-GIP values and error values cor-
responding to seven iterative times are shown in Fig. 10.
Since the clutter extension, the number of iterative time
has risen. The iteration should stop at the sixth time
when the error value is lower than the threshold, and

a
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4
) \
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T 53 ~.
g \ X: 2 X:3
o Y:52.42 Y:52.42
[} 52.5 Nm 5
<
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52
1 1.5 2 2.5 3 3.5 4
Iterative time
b
1
S s \\
S \\
©
> \
5 o .
W X:3
Y: 1.52e-008
-0.5 :
2.2 24 2.6 2.8 3 3.2 3.4 3.6 3.8 4
Iterative time
Fig. 6 DA-GIP values and error values without the effect of ICM and knowledge error. a DA-GIP values. b Error values
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Fig. 7 Eigenvalues corresponding to different CCM estimations without the effect of ICM and knowledge error. ——— real CCM, —&—

the sixth candidate CCM estimation f{cﬁ can be applied
for the following filter processing. Moreover, the eigen-
values of those candidate CCM estimations are also pre-
sented in Fig. 11. The eigenvalues are overlapped
together since iteration 5, and the number of eigenvalues
of licﬁ is almost the same as the real CCM. Finally, the
normalized filter output in the case of ICM is shown in

Fig. 12. We can still see that the clutters are completely
suppressed and the target is detected.

4.3 Detection along range and output SINR

At last, the target detection along range cell is analyzed,
and 100 Monte Carlo simulations are carried out to get an
average performance. A number of snapshots from 100

Normalized Doppler frequency

05 0
Spatial frequency

Fig. 8 Normalized STAP filter output without the effect of ICM and knowledge error

0.5
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Normalized Doppler frequency

Fig. 9 SR angle-Doppler power spectrum of CUT data with ICM
A\

10 20 30
Spatial frequency

40 50 60

range cells are processed by D3-STAP, D3SR-STAP, and
the proposed DA-SDS-SRSTAP, respectively. The target is
assumed to be in the 50th range cell. The detection results
along range cell, the output SINR curves, and the
probability of detection (Pd) curves versus signal to clutter
ratio (SCR) are presented in Figs. 13, 14, and 15, respect-
ively. The probability of false alarm (Pfa) is set to 10™% As
shown in Fig. 13, each of the three algorithms can

effectively suppress the clutters and distinguish the target
in both non-ICM and ICM case. Nevertheless, in com-
parison with D3-STAP, D3SR-STAP and DA-SDS-
SRSTAP have a less clutter residual along the range cell
and own a better target detection performance because
they have a higher system DOFs to design the adaptive
filter. Moreover, as shown in Fig. 14, D3SR-STAP and
DA-SDS-SRSTAP can provide a higher SINR level in the
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Fig. 10 DA-GIP values and error values with ICM. a DA-GIP values. b Error values
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Fig. 11 Eigenvalues corresponding to different CCM estimations with [CM. s real CCM, == iteration 1, == iteration 2,

15 20 25 30

pass-band area and a narrower clutter notch than D3-
STAP, which means a better performance of minimum de-
tectable velocity (MDV). This improvement is also owing
to their characteristics of full system DOFs. Finally, the
results shown in Fig. 15 again demonstrate that the detec-
tion performances of D3SR-STAP and DA-SDS-SRSTAP
are both better than that of D3-STAP due to the loss of
DOFs caused by the D3-STAP processing. Furthermore,
from Fig. 13 to Fig. 15, we can see that the detection

performances without ICM are obviously better than
those with ICM. Meanwhile, it is noted that the detection
performance of D3-STAP declines more seriously than the
ones of D3SR-STAP and DA-SDS-SRSTAP, respectively.
Namely, D3SR-STAP and DA-SDS-SRSTAP are more
robust to ICM case. One of the main reasons for this can
also be owing to the DOFs loss of D3-STAP. Significantly,
though D3SR-STAP and DA-SDS-SRSTAP have a similar
target detection performance, the DA-SDS-SRSTAP has

Normalized Doppler frequency

Fig. 12 Normalized STAP filter output in the case of ICM

05 0
Spatial frequency
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no use of the prior knowledge of the SOI area that is
essential for D3SR-STAP and not easy to be got exactly.
Therefore, the DA-SDS-SRSTAP method is more
potential to target detection in the non-stationary radar
scenario.

5 Conclusions

Representative target-free and homogeneous training data
are no longer available when facing a severe non-
stationary environment (heterogeneous clutter or a high
target density), and the performance of classical STAP in
this case may deteriorate rapidly. For solving this problem,
a novel deterministic-aided single dataset STAP method
based on sparse recovery technique (SR) for side-looking
airborne or spaceborne radar is proposed in this paper,
which is referred to as DA-SDS-SRSTAP. The new
method only works with the CUT data, such that its
performance is not impacted by the non-stationarity. We
exploit the property that the clutter components of side-
looking airborne or spaceborne radar are distributed along
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Normalized Doppler frequency

Fig. 14 Output SINR. a Without ICM case. b With ICM case.

—6&— D3SR-STAP, —& D3-STAP, —f— DA-SDS-SRSTAP

the clutter ridge to perform the estimation of CCM only
with the CUT data. We first calculate the high-resolution
angle-Doppler power spectrum of CUT data using SR
technique. Then, a new adaptive deterministic-aided GIP
(DA-GIP) algorithm is presented to recognize and select
the clutter components in the SR angle-Doppler power
spectrum automatically. Subsequently, the CCM, which is
employed to construct the weights of STAP filter, can be
estimated by the selected clutter components to fulfill the
final STAP filter processing. Firstly, the new method can
accomplish the object of target detection without second-
ary training samples. Secondly, in contrast with the con-
ventional D3-STAP method, the proposed approach can
avoid system DOFs loss owing to the usage of SR tech-
nique. Thirdly, though the proposed DA-SDS-SRSTAP
method and the D3SR-STAP algorithm are both based on
the SR technique, the proposed method can detect target
without any prior knowledge of the SOI area that is essen-
tial for D3SR-STAP and not easy to be got accurately.
Consequently, the proposed method has a great potential
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for target detection in the heterogeneous clutter environ-
ments. Simulation results verify the effectiveness of the
proposed detection method. Moreover, how to extend the
proposed method to front-looking airborne radar or fre-
quency diverse array (FDA) radar to deal with the range-
dependent clutter might be further studied. Though we
have just utilized the deterministic knowledge of angle-
Doppler structure of the clutter to cope with the heteroge-
neous environments with the help of SR technique, it
might be interesting to exploit some other prior knowl-
edges to incorporate with SR technique for improving the
STAP performance.
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