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Abstract

To mitigate the non-line-of-sight (NLOS) effect, a three-step positioning approach is proposed in this article for
target tracking. The possibility of each distance measurement under line-of-sight condition is first obtained by
applying the truncated triangular probability-possibility transformation associated with fuzzy modeling. Based on
the calculated possibilities, the measurements are utilized to obtain intermediate position estimates using the
maximum likelihood estimation (MLE), according to identified measurement condition. These intermediate position
estimates are then filtered using a linear Kalman filter (KF) to produce the final target position estimates. The target
motion information and statistical characteristics of the MLE results are employed in updating the KF parameters.
The KF position prediction is exploited for MLE parameter initialization and distance measurement selection.
Simulation results demonstrate that the proposed approach outperforms the existing algorithms in the presence of
unknown NLOS propagation conditions and achieves a performance close to that when propagation conditions are
perfectly known.
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1 Introduction
Wireless positioning has received considerable attention
in recent years [1,2]. The provision of accurate mobile
position information has become increasingly important
since regulations for emergency services and commercial
application for location-based services (LBS) were issued
by the US Federal Communications Commission (FCC)
and other government bodies. Reliable location estimation
is a critical component for a wide range of applications in-
cluding medical services, search and rescue operations,
and intelligent transport system (ITS). In order to enhance
the performance of positioning systems or networks, ef-
fective advanced position estimation techniques are re-
quired especially for scenarios where radio propagation
is complex.
In the presence of non-line-of-sight (NLOS) radio

propagation, the angle, time of arrival (TOA), and distance
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measurement error consist of a noise component and a
bias component, both of which are random [2]. NLOS
propagation also makes it difficult to model accurately
the received signal power. Thus, NLOS propagation
poses a great challenge for achieving accurate position
estimation. In the literature, a variety of methods and
techniques have been proposed to mitigate NLOS propa-
gation effect. A database of field measurements (e.g.,
received signal strength) at fixed locations in a specific
propagation environment can be utilized to improve
position accuracy [3,4]. Because the cost for database
creation and maintenance is high, it is impractical to
employ such an approach for many applications. In the
case of single-shot positioning, optimization is typic-
ally employed to minimize a cost function which in-
cludes the bias component [5-8]. When prior statistical
knowledge of the NLOS error is unknown, line-of-sight
(LOS) and NLOS identification can be used to mitigate
the distance bias error using online mean and variance
estimates. The velocity and heading angle information
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as well as the smoothed distance measurements can be
incorporated through the extended Kalman filter (KF)
to determine the mobile position [9]. However, the
NLOS identification is an exhausting process, since a
successive sequence to measurements is employed for
the identification purpose. In addition, it is not suitable
for real-time tracking because of the time delay in-
volved. In the case of known noise and bias statistics,
statistical based NLOS mitigation algorithm can be
used to achieve highly accurate position estimates
[10,11]. In order to improve the NLOS identification
performance under the worst condition, it requires add-
itional hardware utilization (antenna array) or higher com-
putational complexity (deletion diagnostics scheme) [10].
Moreover, this method can only work well in the presence
of a large number of BSs, among which only a small
number of BSs are NLOS BSs. In the event that the tar-
get is moving, geometry and motion characteristics are
usually utilized to reduce the NLOS effect such as
through Kalman filtering [12-14]. For motion informa-
tion utilization in [14], some additional hardware is re-
quired, making it difficult to implement in practice.
Based on the measurement data selection over a period
of time, an LOS-only-based approach for positioning in
NLOS environments was proposed in [15]. The mea-
surements at NLOS BSs are excluded, so the potential
accuracy gain using NLOS measurements is lost. Con-
sidering the LOS/NLOS transition as a Markov process,
a number of mobile tracking algorithms were proposed
in [16-18]. The limitation is its higher system complex-
ity, since a bank of filters (LOS and NLOS modes) is
used. Based on the accurate model of mobile motion
and information from location measurements at differ-
ent time instances, a model-based dynamic filter was
proposed to improve the location estimation in [19]. How-
ever, such a method requires the knowledge of the param-
eters of mobile terminal motion model and the control
input decision model in advance. A joint particle filter and
UKF position tracking in severe NLOS situations was pro-
posed in [20]. Because of the higher computational com-
plexity, it may be inappropriate to apply this method to
complexity-constrained scenarios.
In this paper, we focus on the maximum likelihood es-

timation (MLE)-based position estimation algorithm. Al-
though extensive investigations have been conducted for
positioning in NLOS scenarios, the unknown LOS and
NLOS conditions make it difficult directly to apply the
MLE for position determination. In addition, since MLE
makes use of nonlinear optimization in the presence of a
nonlinear likelihood function such as in radio position-
ing, parameter initialization is required, which can be a
difficult issue. Thus, the development of suitable tech-
niques is required to enable the MLE to achieve superior
position estimation performance.
Motivated by the above discussions, we propose a new
three-step approach for target tracking, which is simple
yet effective. First, we propose to use a fuzzy model to deal
with measurement condition estimation. The probability-
possibility transformation is utilized to calculate the pos-
sibility that a measurement is corrupted only by noise.
Whether or not a measurement is selected is based on
the quality of the measurement or on the value of the
possibility. Second, KF design is performed to incorpor-
ate the covariance matrix of MLE and the target motion
information. Using the position prediction from the KF,
the problem of parameter initialization for optimization
can be readily resolved.
The main contributions of the paper are summarized

as follows:

1. The aim of the fuzzy modeling proposed in [21] was
to use the sensor measurement data for derivation
and fusion; however, in this paper, the fuzzy
modeling is introduced for measurement condition
estimation. Thus, a new application scenario of
fuzzy modeling is proposed in this paper.

2. The measurement data selection in [15] relies on the
measurement record over a significant long period
of time, and the predefined number of the LOS
measurement is also difficult to set for different
environments, so this kind of method is unrealistic
for many real-time application scenarios. Meanwhile,
because only the LOS measurements were selected
for final position estimation, some performance gain
from using the NLOS measurements will be lost.
However, in this paper, the measurement selection
only requires the current distance measurement.
Therefore, the proposed measurement selection
approach has some advantages in time cost and
system complexity for diverse channel environments.
In addition, the NLOS measurements are also
utilized for final position estimation, and the
proposed algorithm performs better than the
method in [15].

3. Although the author of [11] proposed the MLE for
mobile location estimation, it is not suitable for
practical application because of the need of complex
LOS/NLOS identification. In the proposed MLE,
owing to the Kalman position prediction feedback
and fuzzy modeling, it is easier to realize the LOS/
NLOS identification, making it a more practicable
approach.

4. In this paper, different from the KF technique for
mobile location estimation in [9], a KF is utilized to
refine the position estimation after the MLE. Also,
the KF prediction is used for fuzzy modeling
construction and can help the NLOS identification.
Thus, the utilization of KF is more effective.
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The remainder of this paper is organized as follows. The
distance measurement model in LOS and NLOS condi-
tions and the distribution of the measurement noise and
bias error are given in Section 2. The proposed three-step
approach is described in detail in Section 3. Simulation
and results are reported in Section 4. Finally, Section 5
draws our conclusion.

2 Measurement model
Consider mobile tracking by use of distance measure-
ments in a cellular network or a wireless sensor network.
Let (xk, yk) and xBSi ; yBSi

� �
denote the two-dimensional

positions of the mobile and the ith base station (BS) at
time instant k, respectively. Then, the Euclidian distance
between them is given by

di;k ¼Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk−xBSið Þ2 þ yk−yBSi

� �2q
ð1Þ

where i ∈ {1, 2,…N} and N is the BS population. In LOS
condition, di,k is only corrupted by measurement noise
ni,k, which can be modeled as a zero-mean white Gauss-
ian variable N 0; σ2i

� �
. However, in NLOS condition, di,k

is corrupted by both measurement noise ni,k and NLOS
bias error ei,k. The measurement equations can be sim-
ply written as follows:

LOS condition; zi;k ¼ di;k þ ni;k ð2aÞ

NLOS condition; zi;k ¼ di;k þ ni;k þ ei;k ð2bÞ

In the literature, the bias error is modeled as a random
variable which has an exponential or Gaussian distribu-
tion. In this paper, the bias error is assumed to have either
a Gaussian distribution N μ; σ2NLOS

� �
[22,23] or an expo-

nential distribution e(λ) (mean = λ and variance = λ2) [5].
Given the distance measurements and the knowledge of
the noise and bias error statistics, the question is how to
reliably and accurately track the target position through
mitigating the NLOS effect. In the next section, a new ap-
proach is proposed to achieve the goal.
Figure 1 Block diagram of the proposed three-step positioning and t
3 Proposed approach
The block diagram of the proposed three-step approach
is illustrated in Figure 1, which contains three main
steps: (1) fuzzy modeling of each measurement data, (2)
MLE-based single-shot position determination, and (3)
KF-based position filtering. First, the possibility that a
measurement is only corrupted by noise is calculated
according to the probability-possibility transformation
model. The measurements with high possibility and low
possibility are considered as the LOS and NLOS mea-
surements for MLE-based position calculation, respect-
ively. Second, the intermediate single-shot position
estimates are obtained using the MLE. At last, KF is uti-
lized to produce the smoothed position estimates. In
this step, target motion information and statistical char-
acteristics of MLE are employed for performance im-
provement. The details of the three main steps are
described in Figure 1.

3.1 Fuzzy modeling for measurement selection
The proposed fuzzy modeling for measurement condi-
tion estimation contains three steps as shown in Figure 2:
(1) fuzzy model parameter preparation, (2) probability-
possibility transformation, and (3) measurement condi-
tion estimation. Probability theory and possibility theory
are the two main methods to describe the measurement
uncertainty. In the probability theory, the measurement
uncertainty is described by a probability distribution
based on the available statistics. But such a method has
a higher computational complexity. In order to perform
effectively in the scenarios with limited computation
capabilities, possibility theory prefers to adopt. In this
paper, the basic possibility theory for fuzzy modeling
of measurement data originally developed in [21] is
adopted. This method avoids the complex associated
computations and the further treatment of the propa-
gation of information is easier to realize, especially
because of the simple parameterized shape of possi-
bility distribution. In this theory, a truncated triangu-
lar probability-possibility transformation is utilized to
racking algorithm.



Figure 2 Block diagram of fuzzy modeling for measurement selection.
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describe the possibility of a specific type of measure-
ment from a physical sensor. Applying this theory,
fuzzy modeling of measurements associated with each
BS is established to calculate the possibility that the
corresponding measurement is taken under LOS propa-
gation. To perform such a transformation, some prior in-
formation is required and it can be considered as an
approximation of the optimal transformation.
The relationship between the probability and possibility

is established through a probability-possibility transform-
ation. As shown in Figure 3, the truncated triangular
probability-possibility transformation is described by the
following:

π xð Þ ¼
1− 1−εð Þ x−xcj j= xε−xcð Þ if x−xcj j≤ xε−xcð Þ

ε if xε−xcð Þ≤ x−xcj j≤ xn−xcð Þ
0 if x−xcj j≥ xn−xcð Þ

8<:
ð3Þ

The determination of the parameters such as xc, xn,
xε, and ε can be found in Table 1 for different measure-
ment noise law [21]. xm and σ represent the mean and
the standard deviation of the measurement data, re-
spectively. In this paper, the measurement noise follows
the Gaussian law, thus, xc equals to xm. Moreover, the
acquirement of the mean is realized using the Kalman
Figure 3 Probability-possibility transformation.
position prediction. For a given BS, the mean for the
transformation can be calculated by

xm ¼ m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk=k−1−xBSi
� �2 þ yk=k−1−yBSi

� �2r
ð4Þ

After the probability-possibility transformation, each
measurement is assigned with a specific possibility asso-
ciated with the LOS propagation. A measurement with
a high possibility is likely a measurement under LOS
condition. Furthermore, a measurement with a low pos-
sibility is likely a measurement under NLOS condition.
In this paper, we investigate two different methods for
determining the number of LOS measurements selected
for position determination. One is that the number is
predefined and fixed, whereas the other is that any meas-
urement whose probability is greater than a predefined
value is selected. Clearly, the number in the second case
is variable.
Note that there are two probabilities associated with

fuzzy modeling. One is the false alarm probability PFA
which considers the measurement in LOS scenario as
NLOS measurement, while the other is the detection
probability PD which considers the measurement in
NLOS scenario as NLOS measurement.
Assuming NLOS error with a Gaussian distribution

N μ; σ2NLOS

� �
, for a given BS, let us denote the error-free

TOA measurement as m. Then, the two probability
functions under LOS and NLOS conditions are shown
in Figure 4. Taking Neyman-Pearson (NP) detection
theory as a parameter selection criterion, in which the
minimum PFA is chosen as the given false alarm prob-
ability, we can obtain that the left endpoint and right
endpoint of the given false alarm probability are m −
2.58σi and m + 2.58σi, respectively, and the predefined
Table 1 The parameters of the probability-possibility
transformation

xc xn xε ε

Gaussian law xm xm + 2.58σ xm + 1.54σ 0.12

Exponent law xm xm + 3.2σ xm + 1.46σ 0.13

Triangular law xm xm + 2.45σ xm + 1.63σ 0.11

Uniform law xm xm + 1.73σ xm + 1.73σ 0
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Figure 4 Calculation of loss probability and error probability.
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possibility parameter ε = 0.12 (see Appendix for more
details).
Since the distribution of the measurement assumed in

LOS condition can be described as N m; σ2i
� �

, the false
alarm probability PFA is obtained by

PFA ¼ Φ
m−2:58σ i−m

σ i

� �
þ 1−Φ

mþ 2:58σ i−m
σ i

� �� �
¼ 2 1−Φ 2:58ð Þð Þ ¼ 2 1−0:995ð Þ ¼ 0:01

ð5Þ
where

Φ λð Þ ¼ 1ffiffiffiffiffiffi
2π

p
Z λ

−∞
e
−x2
2 dx

Similarly, the distribution of the measurement as-
sumed in NLOS condition can be defined as N

mþ μ; σ2i þ σ2NLOS

� �
. According to the description in

Figure 4, the NLOS detection probability will occur
in the regions [−∞, m − 2.58σi] and [m + 2.58σi, +∞].
Hence, PD can be described as follows:

PD ¼ Φ
m−2:58σ i−m−μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2i þ σ2
NLOS

p !
þ 1−Φ

mþ 2:58σ i−m−μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
i þ σ2NLOS

p !" #
ð6Þ

Utilizing the simulated parameter value of measurement
noise and NLOS distribution (see Section 4), PD can be
calculated as 0.64.
Note that the two probabilities PFA and PD are corre-

lated with the predefined threshold parameters. In the
above-given parameters, PD seems small. The reason is
that the above predefined threshold parameters are
based on the given minimum false alarm probability. If
the given false alarm probability increases, the PD will
also increase.

3.2 Maximum likelihood estimator
Using each BS and the corresponding measurement con-
dition, the joint probability density function of all the
distance measurements at time instant k can be readily
obtained. After ignoring the constant, the log likelihood
function of all the distance measurements can be written
as [15]

f xk ; yk
� � ¼XN

i¼1

zi;k− di;k þ ~μ
� �� �2
~σ 2
i

ð7Þ

where it is assumed that the measurement noise and
bias errors are mutually independent and

~μ ¼
( 0 LOS
μ NLOS Gaussianð Þ
λ NLOS Exponentialð Þ

~σ 2
i ¼

( σ2i LOS
σ2i þ σ2NLOS NLOS Gaussianð Þ
σ2i þ λ2 NLOS Exponentialð Þ

ð8Þ

Note that (1) NLOS statistics are assumed known in
advance; (2) the sum of a Gaussian measurement noise
and an exponentially distributed NLOS error may be
approximated to have a Gaussian distribution with the
mean equal to λ and variance being σ2i þ λ2 for the
scenarios where the NLOS bias is not the dominant
error [5].
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Applying the MLE produces the mobile position esti-
mate as follows:

x̂k ; ŷk
� �

MLE ¼ argmin
xk ;yk

f xk ; yk
� � ð9Þ

Clearly, without distinguishing between the LOS and
NLOS propagation, the MLE would be very sensitive to
the NLOS effect to produce poor position estimation
performance. Since the NLOS corrupted measurements
can be identified with a large possibility by the possi-
bility calculation, the NLOS effect can be significantly
mitigated.

3.3 Kalman filtering
Once the intermediate position estimates are available,
they can be filtered to produce better position estimates
by a KF. The target motion state at time instant k is
defined as

x kð Þ ¼ x kð Þ; y kð Þ; _x kð Þ; _y kð Þ½ �T ð10Þ

where [x(k), y(k)] represents the position state of target
and _x kð Þ; _y kð Þ½ � denotes the corresponding velocity
state. The target state with random acceleration can be
modeled as [22,24]

x kð Þ ¼ Ax k−1ð Þ þ w k−1ð Þ ð11Þ

where the state transition matrix A ¼ I2 ΔtI2
0 I2

	 

where

I2 is the 2 × 2 identity matrix and Δt is the discrete time
sampling interval. The random process w(k − 1) is a
zero-mean white Gaussian noise vector with covariance
matrix

Q ¼
Δt4

4
B

Δt3

2
B

Δt3

2
B Δt2B

264
375; B ¼ σ2x 0

0 σ2
y

	 

ð12Þ

where σ2x and σ2y are the variances of the x-coordinate and
y-coordinate acceleration noise component, respectively.
After applying the MLE, we can obtain the intermedi-

ate target position estimate �z kð Þ ¼ �x kð Þ;�y kð Þ½ �T and the
estimation covariance matrix. The intermediate pos-
ition estimate can be described as a linear equation of
the target state:

�z kð Þ ¼ Hx kð Þ þ v kð Þ; H ¼ 1 0 0 0
0 1 0 0

	 

ð13Þ
According to the Lemma 3.2 described in [11], the
noise v(k) is white Gaussian with zero mean and covari-
ance matrix R(k) given by

R kð Þ ¼
∂2f x; yð Þ

∂x2
∂2f x; yð Þ
∂x∂y

∂2f x; yð Þ
∂y∂x

∂2f x; yð Þ
∂y2

2664
3775
−1

x¼�xk ;y¼�yk

ð14Þ

Thus, the prediction and update of the state and the co-
variance in implementing the standard KF are performed
according to the following:

x̂ k=k−1ð Þ ¼ Ax̂ k−1=k−1ð Þ ð15Þ
P k=k−1ð Þ ¼ AP k−1=k−1ð ÞAT þQ k−1ð Þ ð16Þ

K kð Þ ¼ P k=k−1ð ÞHT R kð Þ þHP k=k−1ð ÞHT
� �−1

ð17Þ
x̂ k=kð Þ ¼ x̂ k=k−1ð Þ þ K kð Þ �z kð Þ−Hx̂ k=k−1ð Þ½ � ð18Þ
P k=kð Þ ¼ I−K kð ÞH½ �P k=k−1ð Þ ð19Þ

where K(k) is the Kalman gain, x̂ k=kð Þ is the state
update including the desired position estimate at
time instant k, and P(k/k − 1) and P(k/k) are the state
covariance prediction and the state covariance update,
respectively.

3.4 Summary
The proposed approach can be described by the flow chart
shown in Figure 5, consisting of the following steps.

1. Obtain the measurement prediction of each BS
using Kalman position prediction, then apply the
truncated triangular probability-possibility
transformation to calculate the possibility of each
measurement.

2. Select Ns measurements which have the high
possibilities as LOS measurements and the other
(N-Ns) measurements which have the low
possibilities as NLOS measurements for single-shot
position determination, according to the predefined
numbers of LOS measurement or the predefined
possibility threshold.

3. Use the Kalman position prediction as the initial
position estimate and then estimate the target
position with MLE; meanwhile, initialize the
covariance matrix for Kalman filtering.

4. Use the standard KF to filter the MLE-based
single-shot position estimates to produce the final
position estimates of the target; meanwhile, feedback
Kalman position prediction to MLE and make
measurement prediction for fuzzy modeling.



Figure 5 Software flow chart of the proposed tracking approach.
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4 Simulation results
In this section, simulation results are provided to assess
the performance of the proposed three-step tracking ap-
proach. It is assumed that the target can communicate
with seven BSs, whose position coordinates (in meters)
are set at (6,000, 0), (3,000, −6,000), (−3,000, −5,000),
(−6,000, −1,000), (−4,000, 6,000), (0, 5,000) and (4,000,
6,000) respectively. The noise ni,k and the bias error ei,k
are assumed Gaussian with σi = 150m (for i = 1,…7),
σNLOS = 409m and μ = 513m. These parameters are
−6000 −4000 −2000
−6000

−4000

−2000

0

2000

4000

6000

BS3

BS4

BS5

B

Mob

Figure 6 Trajectory of mobile and BS configuration for simulation.
similar to those selected in [7,15]. In random NLOS
conditions, the channel propagation alternates between
LOS and NLOS in a random pattern. Three different
NLOS occurrence rates are considered, which are 10%,
30%, and 50%, respectively. Meanwhile, in the fixed
NLOS condition, only the measurements at the BS2 and
BS5 contain the NLOS error all the time, whereas the
measurements of other BSs are assumed under LOS
condition. For simplicity, the trajectory of the mobile
for simulation is shown in Figure 6. The mobile travels
0 2000 4000 6000

BS1

BS2

BS7

S6

ile trajectory
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from point (50 m, 100 m) at a velocity of vx = 5 m/s,
vy = 10 m/s. The random acceleration variances σ2x and
σ2y are both chosen to be 0.5 (m/s2).

The sampling interval is Δt = 0.05 s and there are
1,500 distance measurements associated with each base
station for each simulation. A simple linear least squares
method is utilized to generate the initial position value
[25-27]. The initial velocity state is set at zero. The initial
covariance matrix is set as I4 × 4 multiplied by 1,000.
The predefined number for LOS measurement (i.e., the
number of BSs) is denoted by Ns.
Figure 7 shows the average of root mean square error

(RMSE) of the proposed approach with respect to the
number of selected BSs (Ns) in random NLOS environ-
ments. The RMSE of the position estimates is defined by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
j¼1

∧
xj k=kð Þ−x kð Þ
� �2

þ ∧
yj k=kð Þ−y kð Þ
� �2	 
vuut

where
∧
xj k=kð Þ; ∧yj k=kð Þ
h i

is the corresponding position

estimation at the kth time instant in the jth Monte Carlo
run and M is the total number of Monte Carlo test.
It can be observed that the performance can be im-

proved as the predefined number increases when the
NLOS occurrence rate is 10%. However, the outcome
is different in the scenario of 30% and 50% NLOS oc-
currence rate. This phenomenon can be associated
with the channel propagation conditions. In the case of
a large NLOS occurrence rate, as the predefined num-
ber of selected measurements increases, more NLOS-
corrupted measurements would be selected as LOS
measurements, resulting in performance degradation.
Random NLOS (10%) Random
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Figure 7 Average RMSE versus number of selected BSs and random N
Thus, for the predefined number-based approach, some
prior knowledge about the channel condition should be
known in advance if we want to obtain better location
performance. In order to overcome this shortcoming, a
method based on predefined possibility threshold is
investigated next for the measurement selection.
Figure 8 shows the performance in terms of average

RMSE with respect to different predefined possibility
threshold. It can be seen that the average RMSE is smal-
lest in all four simulation scenarios, when the threshold
is equal to 0.12. Therefore, for practical application, the
appropriate threshold should be set at 0.12. Table 2
shows the average number of selected LOS BSs used for
position determination. For instance, when the thresh-
old is selected as 0.12, in random NLOS (30%) condi-
tion, for each BS, the false alarm probability is equal to
(1 − 0.3) × 0.01 = 0.007, and the error probability which
considers the measurement as LOS measurement in
NLOS scenario can be calculated as 0.3 × (1 − 0.64) =
0.108. Hence, the average number of LOS BSs is obtained
as 7 × [(1 − 0.3) − 0.007 + 0.108] = 5.607. Compared with
the simulation result, it obviously agrees with the theory
analysis result in this environment.
According to the discussion above, predefined possibil-

ity threshold-based method is utilized for the following
simulation comparisons when the threshold equals 0.12.
Figure 9 shows the RMSE comparison between the pro-
posed BS selection and idealized cases. For idealized
cases, the LOS/NLOS state of each BS in the trajectory
is known in advance. From the figure, it can be seen that
the performance of the proposed approach is close to
that of idealized cases. These results also reflect the
 NLOS (30%) Random NLOS (50%)

LOS percentage.
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effect of the fuzzy modeling for LOS/NLOS identifica-
tion. As the NLOS occurrence rate becomes large, the
RMSE increases because it is more likely that one or
more NLOS corrupted measurements would be selected
as LOS measurement. However, the performance differ-
ence between the 10% and 30% cases is not significant.
The average of the RMSE of the idealized case at the
initial position is 25.3 and 25.8 m for the 10% and 30%
NLOS, respectively. Also, the average of the RMSE of
the proposed method at the corresponding position is
30.5 and 31.5 m for the 10% and 30% NLOS, respect-
ively. The reason may be contributed to the NLOS miti-
gation method in the proposed algorithm. Figure 10
illustrates the performance comparison between different
random acceleration variances when the NLOS occur-
rence rate is set at 30%. As expected, when the acceler-
ation variance increases, the RMSE becomes larger.
However, the performance degradation is not dramatic,
although the variance increases by 400%. Therefore, the
performance is relatively insensitive to the selection of
the acceleration noise variance.
Table 2 Average number of selected base stations

Channel condition Predefined possibility threshold

0.12 0.15 0.20 0.25 0.30

LOS condition 6.924 6.032 5.850 5.665 5.430

Fixed NLOS 5.682 4.723 4.564 4.393 4.214

Random NLOS (10%) 6.486 5.567 5.413 5.216 4.998

Random NLOS (30%) 5.623 4.654 4.495 4.345 4.153
Let us examine the reliability of the probability calcu-
lated based on the proposed approach. Figure 11 shows
the simulated LOS probabilities of all seven BSs in four
different propagation environments. Taking 30% NLOS
occurrence rate as an example, from the discussion in
subsection 3.1, the false alarm probability in given condi-
tion is PFA × (1 − 0.3) = 0.007 and the corresponding
error probability can be calculated as (1 − PD) × 0.3 =
0.108. Since the NLOS rate is 0.3, the LOS probability is
0.7 and thus the actual calculated LOS probability of the
proposed algorithm is 0.7 + 0.108− 0.007 = 0.801. In
addition, in the fixed NLOS condition, the false alarm
probabilities in LOS and NLOS conditions are PFA ×
(1 − 0) = 0.01 and PFA × (1 − 1) = 0, respectively. The
corresponding error probabilities can also be calculated as
(1 − PD) × 0 = 0 (for LOS condition) and (1 − PD) × 1 = 0.36
(for NLOS condition). The actual calculated LOS prob-
abilities are 1 − 0.01 + 0 = 0.99 for LOS condition and 0 −
0 + 0.36 = 0.36 for NLOS condition. From Figure 11, it can
be found that the simulation results are in good agreement
with the theoretical analysis. Hence, the calculated possi-
bility can be utilized to accurately identify the LOS/NLOS
scenarios.
Then, we compare the performance of the proposed

approach with that of the algorithms proposed in
[11,15]. In the simulation, the prior knowledge of LOS
and NLOS for each BS is known in advance for the algo-
rithm in [11]. Hence, the simulated results also can be
considered as the results obtained from the idealized
case. For the BS selection method in [15], the prede-
fined number of selected BS and the measurement
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records are 3 and 20. The step of position estimation is
the same as the proposed algorithm. Figures 12, 13, 14, 15
describe the cumulative distribution function (CDF) of
the position error of different algorithms in different
scenarios. From the simulation results, it can be seen
that on average, the proposed method significantly out-
performs the method in [15] and is close to that of the
idealized case. Because the method of [15] only selects
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Figure 10 RMSE versus the random acceleration variances.
the best TOA measurements for position estimation, it
will lose some performance gain when the NLOS mea-
surements and some LOS measurements are not uti-
lized. Meanwhile, proper parameter initialization is also
crucial to obtain better position estimation. From the
figures, it can be seen that the performance of [15] var-
ies in different environments for the given parameters.
In this sense, it also requires proper prior knowledge
40 50 60 70
(s)
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of the channel environments. On the other hand, al-
though the performance of [11] is better than that of
the proposed algorithm, it should be noted that these
acquired results require accurate prior knowledge of
the environments. For practical application, the method of
[11] should add the LOS/NLOS identification function so
that both MLE and covariance calculation can be realized.
As a consequence, the method in [11] would become
much more complicated. In the proposed approach, the
position estimation performance relies on the accuracy of
the proposed LOS/NLOS identification method. However,
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Figure 12 Algorithm comparison in fixed NLOS condition.
the proposed algorithm does not require any additional
step for position estimation and the performance is
close to that of the idealized case. Besides, the LOS/
NLOS selection results with 30% NLOS condition are
illustrated in Figure 16. For clarity, only the results
over the time interval between 800 and 900 are shown.
From Figure 16, it can be seen that most of NLOS con-
dition can be identified by the proposed algorithm.
The missed and incorrect identifications are associated
with the loss and alarm probability of the proposed
approach.
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Figure 13 Algorithm comparison in 10% NLOS occurrence rate.
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Next, some simulations are designed for the case where
the NLOS error is assumed to be an exponential variable
(λ = 300 m) and the measurement noise is Gaussian with
mean zero and STD σi = 30m [28]. Figure 17 shows the
corresponding CDF of the simulated position error.
From the simulation results, it can be seen that al-
though the NLOS error does not follow the Gaussian
distribution, the proposed algorithm also performs well.
Thus, the proposed algorithm is suited for different
NLOS distributions. Figure 18 shows the performance
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Figure 14 Algorithm comparison in 30% NLOS occurrence rate.
comparison among three different algorithms for the
case where the NLOS occurrence rate is 30% and the
NLOS error has an exponential distribution [28]. It can
be seen that the conclusions with Gaussian distribution
can also be obtained.
At last, the performance analysis of the proposed algo-

rithm is described, when the prior NLOS statistics are
incorrect. Taking the 30% NLOS occurrence rate as an
example, the mean of NLOS bias is set to be 200 m, but
it is assumed to be 513 m incorrectly. From Figure 19, it
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Figure 15 Algorithm comparison in 50% NLOS occurrence rate.
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can be seen that the performance with the incorrect NLOS
statistics is similar to that with correct statistics.

5 Conclusions
In this article, a three-step positioning algorithm is pro-
posed to mitigate NLOS propagation effect and to achieve
desirable positioning accuracy for target tracking in NLOS
propagation environments. A fuzzy modeling method is
developed to identify whether the distance measurements
are under LOS condition and the measurements are
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Figure 16 The description of actual and estimated NLOS condition.
employed for MLE-based position determination, according
to the identified measurement condition. The intermediate
position estimates are smoothed using a linear KF to pro-
duce better positioning performance. The position predic-
tion from the KF is utilized for parameter initialization in
the MLE and for fuzzy modeling-based measurement selec-
tion. In the case where there are measurements corrupted
by NLOS propagation and the LOS and NLOS conditions
are unknown, the proposed approach outperforms the
existing algorithms.
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Appendix
The parameter selection criterion is based on the NP
detection theory [29]. In this paper, the prior given false
alarm probability is chosen as minimum false alarm
probability.
First, a two-hypothesis testing is defined:

H0 : zik ¼ dik þ nik LOS
H1 : zik ¼ dik þ nik þ eik NLOS
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Figure 18 Algorithm comparison with exponential distributed NLOS.
The mean of dik is the actual distance between the ith
base station and the MS at time instant k. In this paper,
Equation 4 can be approximated to describe this actual
distance. Hence, as seen in Figure 3, the parameters for
probability-possibility transformation can be defined as
follows:

xc ¼ m; xε ¼ mþ 1:54σ i; xn ¼ mþ 2:58σ i
40 50 60
SE (m)

 

Proposed MLE
Method in [15]
Idealilzed, known state [11]



10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE (m)

C
D

F

 

 

correct statistics
incorrect statistics
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Through the fuzzy modeling processing, the test can
be described as follows:

H0 : π zikð Þ > 0 LOS
H1 : π zikð Þ ≤ 0 NLOS

⇒
H0 : zik−mj j < 2:58σ i LOS
H1 : zik−mj j ≥ 2:58σ i NLOS




ð21Þ

With the knowledge of NP detection theory, in the fol-
lowing, the prior given false alarm probability is chosen
as the minimum false alarm probability and then to calcu-
late the detection probability in this given condition. Fur-
thermore, we also judge whether the obtained detection
probability is the maximum.
First, we will describe how to obtain the parameters in

the minimum false alarm probability condition. From
(20), it can be seen that in LOS condition, zik∼N m; σ2

i

� �
.

Assume that the left and right endpoints of the prede-
fined parameters in this condition are m − A1σi and m +
A2σi, respectively. From (21), it can also be seen that
A1 ≤ 2.58, A2 ≤ 2.58. Then, the false alarm probability
PFA can be described as follows:

PFA ¼ P H1;H0ð Þ ¼ Φ
m−A1σ i−m

σ i

� �
þ 1−Φ

mþ A2σ i−m
σ i

� �� �
¼ 2−Φ A1ð Þ−Φ A2ð Þ

ð22Þ
Since Φ(x) is a monotone increasing function, in order

to make PFA minimum, A1 and A2 must be maximum.
Therefore, the predefined two endpoints to achieve
minimum PFA are m − 2.58σi and m + 2.58σi, respectively.
According to the probability-possibility transformation
described in Figure 3, we can also obtain the predefined
possibility parameter ε = 0.12.
Second, we will validate whether the detection prob-

ability is maximum with the above obtained parameters.
From (20), it can be seen that in NLOS condition, zike

N mþ μ; σ2i þ σ2NLOS

� �
. Assume that the left and right

endpoints of the predefined parameters are m −A3σi and
m +A4σi, respectively. From (21), it can also be obtained
that A3 ≥ 2.58, A4 ≥ 2.58. Then, the detection probability
PD can be described as follows:

PD ¼ Φ
m−A3σ i−m−μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
i þ σ2

NLOS

p !

þ 1−Φ
mþ A4σ i−m−μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
i þ σ2NLOS

p !" #

¼ 2−Φ
A4σ i−μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2i þ σ2NLOS

p !
−Φ

A3σ i þ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
i þ σ2NLOS

p !
ð23Þ

It can be seen that is PD a monotone decreasing func-
tion with parameters of A3, A4. Hence, in order to
make PD maximum, the parameters are also m − 2.58σi,
m + 2.58σi. Similarly, with the probability-possibility
transformation, the predefined possibility parameter is
chosen as ε = 0.12.
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From the discussion above, it can be concluded that
for a given PFA, the proposed NLOS identification test
can make PD maximum. This test agrees with NP de-
tection theory.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The work was supported by the National Natural Science Foundation of
China (Nos. 61302103,61372122, 61372123, 61174205, and 61170252) and the
Research Foundation for Advanced Talents of NJUPT (NY213012).

Author details
1College of Telecommunications and Information Engineering, Nanjing
University of Posts and Telecommunications, Nanjing 210003, China. 2School
of Geodesy and Geomatics, Wuhan University, Wuhan 430072, China. 3School
of Information Science and Engineering, Southeast University, Nanjing
210096, China.

Received: 6 December 2013 Accepted: 16 June 2014
Published: 10 July 2014

References
1. K Yu, I Sharp, YJ Guo, Ground-Based Wireless Positioning (Wiley-IEEE, Hoboken,

2009)
2. S Gezici, HV Poor, Position estimation via ultra-wide-band signals. Proc. IEEE

97(2), 386–403 (2009)
3. S Ahonen, P Eskelinen, Mobile terminal location for UMTS. IEEE Aerosp.

Electron. Syst. Mag. 18(2), 23–27 (2003)
4. M Anisetti, CA Ardagna, V Bellandi, E Damiani, Map-based location and

tracking in multipath outdoor mobile networks. IEEE Trans. Wireless
Commun. 10(3), 814–824 (2011)

5. K Yu, YJ Guo, Improved positioning algorithm for nonline-of-sight
environments. IEEE Trans. Vehicular Technol. 57(4), 2342–2353 (2008)

6. W Kim, JG Lee, G-I Jee, The interior-point method for an optimal treatment
of bias in trilateration location. IEEE Trans. Vehicular Technol.
55(4), 1291–1301 (2006)

7. H Miao, K Yu, M Juntti, Positioning for NLOS propagation: algorithm
derivations and Cramer-Rao bounds. IEEE Trans. Vehicular Technol.
56, 2568–2580 (2007)

8. X Wang, Z Wang, B ODea, A TOA-based location algorithm reducing the
errors due to non-line-of-sight (NLOS) propagation. IEEE Trans. Vehicular
Technol. 52(1), 112–116 (2003)

9. K Yu, E Dutkiewicz, NLOS identification and mitigation for mobile tracking.
IEEE Trans. Aerosp. Electron. Syst. 49(3), 1438–1452 (2013)

10. L Cong, W Zhuang, Nonline-of-sight error mitigation in mobile location. IEEE
Trans. Wireless Commun. 4, 560–573 (2005)

11. X Wang, M Fu, H Zhang, Target tracking in wireless sensor networks based
on the combination of KF and MLE using distance measurements. IEEE
Trans. Mobile Comput. 11(4), 567–576 (2012)

12. BL Le, K Ahmed, H Tsuji, Mobile location estimator with NLOS mitigation
using Kalman filtering, in Proceedings of Wireless Communications and
Networking Conference. New Orleans, 16–20 March 2003, pp. 1969–1973

13. ZR Zaidi, BL Mark, Real-time mobility tracking algorithms for cellular
networks based on Kalman filtering. IEEE Trans. Mobile Comput.
4(2), 195–208 (2005)

14. K Yu, E Dutkiewicz, Geometry and motion based positioning algorithms for
mobile tracking in NLOS environments. IEEE Trans. Mobile Comput.
11(2), 254–263 (2012)

15. S Mazuelas, FA Lago, P Fernandez, A Bahillo, J Blas, RM Lorenzo, EJ Abril,
Ranking of TOA measurements based on the estimate of the NLOS
propagation contribution in a wireless location system. Wireless Pers.
Commun. 53(1), 35–52 (2010)

16. JF Liao, BS Chen, Robust mobile location estimator with NLOS mitigation
using interacting multiple model algorithm. IEEE Trans. Wireless Commun.
5(11), 3002–3006 (2006)

17. C Morelli, M Nicoli, V Rampa, U Spagnolini, Hidden Markov models for radio
localization in mixed LOS/NLOS conditions. IEEE Trans. Signal Process.
55(4), 1525–1542 (2007)
18. U Hammes, AM Zoubir, Robust MT tracking based on M-estimation and
interacting multiple model algorithm. IEEE Trans. Signal Process.
59(7), 3398–3409 (2011)

19. M Mcguire, KN Plataniotis, Dynamic model-based filtering for mobile
terminal location estimation. IEEE Trans. Vehicular Technol. 52(4), 1012–1031
(2003)

20. JM Huerta, J Vidal, A Giremus, J-Y Tourneret, Joint particle filter and UKF
position tracking in severe non-line-of-sight situations. IEEE J. Selected
Topics Signal Process 3(5), 874–888 (2009)

21. G Mauris, V Lasserre, L Foulloy, Fuzzy modeling of measurement data
acquired from physical sensors. IEEE Trans. Instrum. Meas. 49(6), 1201–1205
(2000)

22. L Chen, S Ali-Loytty, R Piche, LN Wu, Mobile tracking in mixed line-of-sight/
non-line-of-sight conditions: algorithm and theoretical lower bound.
Wireless Pers. Commun. 65, 753–771 (2012)

23. L Chen, LN Wu, Mobile positioning in mixed LOS/NLOS conditions using
modified EKF banks and data fusion method. IEICE Trans. Commun.
E92-B(4), 1318–1325 (2009)

24. Y Bar-Shalom, XR Li, T Kirubarajan, Estimation with Applications to Tracking
and Navigation, Theory Algorithms and Software (Wiley, New York, 2001)

25. MI Silventoinen, T Rantalainen, Mobile station emergency locating in GSM,
in IEEE International Conference on Personal Wireless Communications. India,
1996, pp. 232–238

26. JJ Caffery, A new approach to the geometry of TOA location, in the 52th
IEEE Vehicular Technology Conference (VTC-Fall). Boston, MA, 24–28
September 2000, vol. 4, pp. 1943–1949

27. I Guvenc, S Gezici, F Watanabe, H Inamura, Enhancements to linear least
squares localization through reference selection and ML estimation, in IEEE
Wireless Communications and Networking Conference (WCNC). Las Vegas,
31 March to 3 April 2008, pp. 284–289

28. PC Chen, A non-line-of-sight error mitigation algorithm in location
estimation, in IEEE Wireless Communications and Networking Conference
(WCNC). New Orleans, 21–24 September 1999, vol. 1, pp. 316–320

29. SM Kay, Fundamentals of Statistical Signal Processing Volume II: Detection
Theory (Prentice Hall, New Jersey, 1998)

doi:10.1186/1687-6180-2014-105
Cite this article as: Yan et al.: Fuzzy modeling, maximum likelihood
estimation, and Kalman filtering for target tracking in NLOS scenarios.
EURASIP Journal on Advances in Signal Processing 2014 2014:105.
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	1 Introduction
	2 Measurement model
	3 Proposed approach
	3.1 Fuzzy modeling for measurement selection
	3.2 Maximum likelihood estimator
	3.3 Kalman filtering
	3.4 Summary

	4 Simulation results
	5 Conclusions
	Appendix
	Competing interests
	Acknowledgements
	Author details
	References

