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Abstract

provided to support our findings.

Due to the ongoing miniaturization of digital camera sensors and the steady increase of the “number of megapixels”,
individual sensor elements of the camera become more sensitive to noise, even deteriorating the final image quality.
To go around this problem, sophisticated processing algorithms in the devices, can help to maximally exploit the
knowledge on the sensor characteristics (e.g., in terms of noise), and offer a better image reconstruction. Although a
lot of research focuses on rather simplistic noise models, such as stationary additive white Gaussian noise, only limited
attention has gone to more realistic digital camera noise models. In this article, we first present a digital camera noise
model that takes several processing steps in the camera into account, such as sensor signal amplification, clipping,
post-processing, ... We then apply this noise model to the reconstruction problem of high dynamic range (HDR)
images from a small set of low dynamic range (LDR) exposures of a static scene. In literature, HDR reconstruction is
mostly performed by computing a weighted average, in which the weights are directly related to the observer pixel
intensities of the LDR image. In this work, we derive a Bayesian probabilistic formulation of a weighting function that is
near-optimal in the MSE sense (or SNR sense) of the reconstructed HDR image, by assuming exponentially distributed
irradiance values. We define the weighting function as the probability that the observed pixel intensity is
approximately unbiased. The weighting function can be directly computed based on the noise model parameters,
which gives rise to different symmetric and asymmetric shapes when electronic noise or photon noise is dominant.
We also explain how to deal with the case that some of the noise model parameters are unknown and explain how
the camera response function can be estimated using the presented noise model. Finally, experimental results are

Introduction

The modeling of realistic camera noise is a subject that has
not extensively been investigated, compared to the over-
whelming amount of attention that the problem of sta-
tionary additive white Gaussian noise (AWGN) removal
from images receives. A white stationary Gaussian noise
assumption leads to simple and elegant denoising meth-
ods (such as wavelet shrinkage methods [1-5], total vari-
ation [6], anisotropic diffusion [7,8], NLMeans [9-11]).
However, when applied to realistic problems (e.g., the
suppression of noise from CCD/CMOS measures taken
with mobile phones or other consumer cameras), these
techniques often yield poor results [11-13]. The main
problem is the noise model mismatch, which causes the

*Correspondence: bart.goossens@telin.ugent.be

Department of Telecommunications and Information Processing
(TELIN/IPI/iMinds), Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent,
Belgium

@ Springer

techniques to either over- or underestimate the noise
level. In realistic circumstances, noise is not an additive
Gaussian process, not white nor stationary. For exam-
ple, due to quantum-mechanical aspects inherent to the
measurement of light, the sensor signals, in the form
of analog voltages, are subject to statistical fluctuations
with variances proportional to the “ideal” signal (ie.,
the one we would like to measure). This phenomenon is
known as photon noise. Subsequently, the measured ana-
log voltages are amplified and converted to digital signals,
leading to the introduction of electronic noise and quan-
tization noise. The overall noise is a signal-dependent
mix of noise from different sources, in combination
with different linear and nonlinear pre/post-processing
steps performed inside the camera. Consequently, the
noise can not be well described using a stationary
AWGN model.

© 2012 Goossens et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Goossens et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:171

http://asp.eurasipjournals.com/content/2012/1/171

In literature, it is often advocated to use so-called vari-
ance stabilizing transforms [14,15], these are transforms
that make the noise approximately “independent” and
additive with a constant variance. The simple and elegant
denoising approaches can then efficiently be applied to
the variance stabilized signal and finally the inverse sta-
bilization transform is applied. A first problem is the fact
that a signal model that works fine in a linear domain may
function poorly after variance stabilization [13]. A second
problem is that an accurate noise model is needed in order
to build such a variance stabilization transform.

Recently, a number of (simplified) CCD/CMOS noise
models and estimation techniques have been presented in
[12,16,17]. Next to this, many researchers address indi-
vidual aspects of the noise in digital camera images (such
as dealing with clipping [18], Poisson/multiplicative noise
[19,20], signal-dependent/non-stationary noise [21-23]).
Compared to these efforts, relatively little attention has
gone to the joint modeling of the many involved factors
that contribute to the noise characteristics in a digital
camera. Some notable exceptions are [17,24,25]: Liu et
al. [17] propose Bayesian estimation of the noise level
function, directly from the camera reconstructed image
itself. The set of possible noise level functions is thereby
derived by considering the processing operations in the
camera. In [24], a parametric noise model for RAW sensor
data is proposed, which is then used to estimate the opti-
mal exposure times for high dynamic range (HDR) image
acquisition. A similar approach is presented in [25] for the
photon-noise limited case.

In our opinion, image reconstruction techniques based
on joint noise modeling techniques will (in the long term)
significantly further improve the image quality, especially
when physical limits of the image sensors are reached. For
example, the minimal sensor size of a digital camera is lim-
ited by signal-to-noise considerations: if one would like
to have a higher image resolution, one would also have
to deal with a higher level of noise in the image, even up
to such a degree that further increasing the image resolu-
tion does not bring any gain in image quality. Besides this,
the dynamic range of a camera sensor is still many orders
lower than the dynamic range that the human visual sys-
tem can deal with, and improving the dynamic range will
also bring an additional image quality increase.

Nowadays, to deal with these problems, camera manu-
facturers integrate extra post-processing operations, such
as noise removal or HDR reconstruction into the cam-
era. Their noise removal schemes are, mostly because of
power consumption, hardware complexity and cost rea-
sons, often based on the simple Gaussian noise models.
Building more sophisticated and realistic noise models
bridges the gap between the more and more miniaturized
camera sensor designs and the increasing image quality
expectations of camera end users.
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Now that our goals are made clear, it is obvious that
there are a lot of aspects (e.g. image noise, resolution,
dynamic range, processing artifacts, ...) to cover in order
to build such an accurate and realistic noise model. To
limit the scope of this article, firstly we will assume a
point-wise relationship between the input and the output,
which can be described by a so-called camera (or intensity
or brightness) response function (ignoring correlations
both spatially and between different color channels). Sec-
ondly, we will limit ourselves to image artifacts that are
caused by noise: we will not deal with other artifacts com-
mon in digital camera, such as chromatic abberations,
lens deformations, lens flares etc. Multivariate extensions
of our theory and dealing with such artifacts may be a
topic of future research. Also, while building sophisticated
models, it is important to keep the models as simple as
possible, so that techniques based on these models are still
practical.

As an elegant illustration of our noise model, we will
consider the problem of the reconstruction of a HDR
image from a set of low dynamic range (LDR) images
where the intensity range of each image covers a differ-
ent part of the whole dynamic range (technically speaking,
these images are captured by using different exposure
times). This problem is illustrated in Figure 1. The applica-
tion to HDR reconstruction is a beautiful example where
many key image quality factors meet each other: first, we
have the dynamic range that is limited by the camera sen-
sor (and analog-to-digital converters), causing over- and
underexposure in the images. Second, we are dealing with
image noise, which is most apparent in images taken at
low exposure times (or dark environments). Third, the
“true” image resolution of the final HDR image is confined
by the amount of image noise in the reconstructed HDR
image. Fourth, color fidelity (i.e., whether the colors in the
HDR image correspond well to the colors in the real scene)
is an important image quality factor.

An important concept in HDR reconstruction is the
weighting function (also called certainty function), which
is introduced in [27] and subsequently used in [28-30].
The weighting function in [30] is defined as being pro-
portional to the slope of the camera response function
(CRF), indicating how quickly the output pixel intensity of
a camera varies for a given input intensity. Correspond-
ingly, certainty images are computed by applying certainty
functions to digital images, revealing which parts of the
image are the most “reliable” It is found that this is the
case for the midtones of the image. One of the issues how-
ever, is that several choices for weighting functions have
been proposed in literature and that it is not clear which
function to choose under which conditions.

In this article, we will formalize the concept of the
“certainty function” in terms of a realistic camera model,
and we will show that defining the certainty function as
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(a) LDR with At; = 1/40000s.

(¢) LDR with Ats = 1s.

Figure 1 HDR Reconstruction Example. (a)-(c) Three out of nine LDR images of a halogen lamp taken with a Nikon D90 camera at different
exposure times. (d) Synthesized HDR image (displayed with tone mapping from [26]), with details of the lamp and the background well
reconstructed. Note that the LDR image in (c) contains contrast reducing lens flares and diffraction artifacts (which fall outside the scope of this

article).

(b) LDR with Aty = 1/25s.

(d) HDR reconstruction.

the probability that the output pixel intensity is unbi-
ased, yields close to optimal HDR reconstruction results
in the mean square error sense. The characteristics of
our certainty function are similar to [30], additionally
the Bayesian probabilistic formulation of our certainty
function permits a more straightforward application to
other problems, as we will demonstrate. To arrive at
these novel certainty functions, we will develop a realis-
tic camera noise model. Our noise model will be based
on similar considerations as in [24], however the main
difference is that we explicitly compute the bias func-
tions based on an exponential prior distribution for
the irradiance values, whereas in [24], simple indica-
tor functions are used to predict whether the signal has
been clipped.

The remainder of this article is organized as follows:
in Section “Reconstruction of HDR images’, we introduce
the synthesis problem of HDR images. Our realistic cam-
era noise model is presented in Section “Camera noise
modeling” In Section “Probabilistic formulation of the
weighting function’, we use the camera model to derive
the weighting function. In Section “Estimation of the
CRF’, we use the obtained weighting function in order to
estimate the CRF for a set of LDR images. Results and a
discussion are given in Section “Results and discussion”.
Finally, Section “Conclusion” concludes this article.

Reconstruction of HDR images

Before going deep into the noise modeling for digital cam-
eras, we first give an overview of the HDR reconstruction
process and the different factors (such as SNR, the CRF
and choice of the weighting function) that influence the
reconstruction quality. First, we will introduce a number
of general concepts that will be used throughout the arti-
cle. Next, we will explain a HDR reconstruction technique
that is based on a quite general noise model. Finally, we
will investigate the “denoising” performance in the SNR
sense of such a scheme, which will give some insight in
the different factors that play a role in the quality of the
final HDR image and will give an indication on conditions
needed to obtain a certain minimal level of image quality,
in terms of SNR.

Basic concepts

We have a set of j = 1,...,P LDR digital photographs
of a static scene at our disposal. The photographs are all
taken from a fixed position, for example, using a tripod.
We assume that lighting changes can be ignored, such that
the incident scene radiance is constant during the expo-
sure. For every photograph we use a different exposure
time At;, which will let us recover the dynamic range of
the scene. Let z;; denote the pixel intensity of photograph
j at position i, where we use a one-dimensional index to
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denote the spatial position (as in raster scanning). The
goal of HDR reconstruction is to recover the irradiance
map of the scene E;, based on the pixel intensities z;; of the
digital photographs.

In a deterministic (noise-free) world, the image irradi-
ance can be related to the pixel intensity of each photo-
graph by the introduction of a CRE, as follows:

zij = v (At JaE;) (1)
where the point-wise function y () is the CRF and with
/% a gain factor (the squareroot is used here, for nota-
tional convenience later). The CRF models several digital
post-processing operations performed in the camera after
A/D conversion, such as: white balance, color corrections,
demosaicing, gamma correction, edge/contrast enhance-
ment, ... In Figure 2, an example of the CRF is given for
a Nikon D90 camera. In this example, the CRF was esti-
mated from the set of LDR images from Figure 1. This
estimation technique will be discussed in more detail in
Section “Estimation of the CRF” In practice, the CRF
varies from camera to camera and even depends on (some
of) the settings of a particular camera. The function is
assumed to be point-wise (ignoring spatial information
from the local neighborhood), mainly to keep the camera
modeling and estimation simple. This has the drawback
that some post-processing operations (such as demosaic-
ing, sharpening, compression, color corrections, which
can not be expressed in terms of a point-wise function),
can not be included in the CRE. For the forthcoming
analysis, we will first assume that the LDR images are
saved in a RAW image format (which is possible for most
high-end camera models). Thereby, the noise modeling
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not need to be taken into account. Later on, we will
show the robustness of our approach, despite this assump-
tion, on JPEG compressed LDR images where standard
post-processing operations have been applied (see Section
“HDR reconstruction from JPEG compressed LDR digi-
tal photographs”). Additionally, we assume that the CRF
is monotonically increasing and hence invertible. This
reflects the simple fact that relative positive changes in
image irradiance at a certain position (e.g., due to illu-
mination) should result in a positive change in the pixel
intensity at the same position.

In real-life, there is not a one-to-one mapping of E; to
zjj, because E; is the ideal noise-free image irradiance,
while z;; is subject to noise. In this case, the CRF is the
function that maps the measured image irradiance E; onto
the pixel intensity z;, or mathematically speaking, z; =
y (Atj\/Ol_jEi).

The concept of the CRF function is quite general: the
techniques based on the CRF can also be used when all
post-processing operations are switched off, for example
for processing RAW sensor data. Because most camera
manufacturers do not publicly share the internal pro-
cessing steps of their cameras, together with their used
parameter values, the CRF is usually estimated from the
photographs themselves [28,30]. Two photographs with
different exposure times are sufficient for this task.

According to (1), the image irradiance can be recov-
ered by applying the inverse CRF to the pixel intensity and
subsequently by dividing by the expose time. In the loga-
rithmic domain, this can be expressed as (see [28], Eq. 2):

becomes significantly easier, since post-processing oper- 1
i X i . logE; = g (z;5) — log Atj — = loga;, (2)
ations, which severely affect the noise characteristics, do 2
Camera response function o
250+
200 15+
NZE’
2 150+
g
E
E 100F Camera response function
7 - LDRimage with A=1/1's
50r / - LDR image with A=1/25 s
/ LDR image with Ax=1/4000 S
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Scene irradiance Ei E
(@) (b)
Figure 2 Camera response function and irradiance probability density function. (a) lllustration of a CRF recovered from three LDR images
taken with different exposure times. As indicated by the colors, each LDR image covers a different region of the dynamic range, (b) exponential
probability density function f¢(E), fitted to the irradiance histograms of three HDR images.
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with g(z) = log(y~!(z)), the logarithm of the inverse
CRE. Working in the logarithmic domain offers a number
of practical advantages, such as the fact that estimates are
linear in this domain. For example, writing (2) for several
values of j gives a linear system of equations (in log E; and
log At)). To reconstruct a HDR image from a set of LDR
images, the pixel intensities in two different LDR images
can be related to each other as follows:

At 1 aj
¢(e) ~g o) =log o+ o log s £ @)

As an illustration, we depicted the intensities g (z;j) as a
function of the image irradiance E; in Figure 3a, for three
real LDR images taken with increasing exposure times At;
and equal gains a;. Due to (2) and the different exposure
times, there are three lines with different offsets. The dif-
ference in offsets can be computed using (3). Recovering
an image with an extended dynamic range basically comes
down to setting the offsets to zero (Figure 3b).

Noise model-based HDR reconstruction

In practice, the image irradiance measurements E; are
subject to statistical fluctuations called quantum or pho-
ton noise, caused by uncertainty associated by “counting”
light energy quanta. Let E,At,- denote an energy mea-
surement after an exposure of At; secs. The final pixel
intensity of the LDR image j at position i is then given by
Zij =y (Ei \/ﬁjAtj) Because of the statistical nature of E;,
z;j will be a random variable as well. The probability den-
sity function of z; is a complicated function in general,
because:

e The measurement £; is affected by several (both
additive and multiplicative) sources of noise, as we
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will discuss in more detail in Section “Camera noise
modeling”.

e A priori, little is known about the CRF y () (except
for the assumption of monotonicity).

Our solution to these problems is to firstly character-
ize the distribution of EiAt/ (or equivalently g (z), if we
exploit the fact that the CRF y (+) is invertible, see Section
“Basic concepts”). Secondly, we compute the distribution
of z; through a change of variables. In Section “Camera
noise modeling” we will explain that, under quite general
circumstances, g (z;), conditioned on the log-irradiance,
is well represented by the Gaussian distribution:

g (z;) log E; ~ N (log ,/ajAt;

(4)
+ IOgEl' +v (El', Atj) ,0'2 (E,‘, Atj)) ,

with v(E;, Atj) a bias term and with o2 (E,-, Atj) an irra-
diance and exposure time dependent variance (also see
Figure 4). In Figure 5a, a probability density plot of
g(zij) |logE; is given. The point clouds correspond to
histograms obtained after Monte-Carlo simulation, while
the solid line is the approximated PDF in (4). Here, the
asymmetry of the point cloud is mostly caused by taking
the logarithm of the sum of a Poissonian and Gaussian
distributed random variables. The asymmetry cannot be
modeled well using the Gaussian distribution, however, in
this work only the first two statistical moments (mean and
variance) are of most importance.

The conditional Gaussianity of the PDF allows us to
make a number of considerations, as we will show next.
The HDR image can directly be reconstructed using the
maximum likelihood method® for estimating the mean

g(zij)
(o))
\
\

I I )
2 3 4 5

10 10
Image irradiance (E)

(@)

Figure 3 lllustration of the recovery of irradiance values from a set of LDR images. (a) Inverse CRF compensated pixel intensities g (Z,'j) asa
function of the image irradiance £, for three LDR photographs taken with different exposure times. (b) Recovering an image with a HDR by

subtracting the offsets log (AIJ-/Az‘/) (here,j = 2).
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modeling” that, for z;; in the middle of the camera’s expo-
sure range (e.g., z;; = 128 for 8-bit data), the bias is negligi-
bly small compared to the image irradiance (‘ v(E;, At)) | <
log At; + log E;) and hence can be ignored. A simple but
different way to deal with the bias problem is to omit
the term v (E;, Atj) and to introduce a weighting function
wij = w(z;) as in [27-30]:

lo/gf‘ = arg min 3 Yy
= L
log E; st o2 (Ei, Atj) (6)

lg (z) — log JajAL + logEi|2 .

A solution to this weighted least squares problem (6) is
then given by:

’

i1 wijo ~2 (Ei Aty)
(7)

which we will call the main HDR reconstruction for-
mula. The estimated log-irradiance is a weighted average
of g (z;j) — log Atj, where each term can be interpreted
as an estimate of the log-irradiance for each individual
LDR image. A schematic overview of this reconstruction
method is given in Figure 6.

Let us now turn to the choice of the weighting func-
tion, which is crucial for the correct operation of the HDR
algorithm, since the weighting function determines the
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trade-off between dynamic range and SNR. In literature,
several functions have been proposed:

e Debevec and Malik [28] propose a triangular function
to emphasize the middle of the exposure range,
mainly for its simplicity:

Z — Zmin Z = Zmid
Zmax — Z Z > Zmid

wy(2) = { ®)

with zpig = % (Zmin + Zmax)- We will see in Section
“Dealing with unknown camera model parameters”
that this weighting function is a good choice when

little information is known about the camera noise

characteristics.

e Mann and Picard [27,30] select a weight related to
the slope of the CRF y, which indicates how quickly
the pixel intensity z;; varies with the input, in order to
assign lower weights to coarser quantized pixel
intensities. It is argued that for noisy input images,
influences of quantization noise are minimal in the
middle of the camera’s exposure range. Using our
notations, the weighting function is defined as
follows ([30], Eq. 11):

dz

dy
dloggj(z) d

wij(z) = = 4@, (27(2) )
where gj(z) = Yy (z)/ (Atj m) is an estimate for
the image irradiance, based on exposure j. For an
identity CRF, the weights are approximately
proportional to the image irradiance.

(a)

log Jai Aty w;y - y;::;;:;/l;s:lnaga and Nayar
. Deneve et al.
lel — ICRF — — — Proposed (photon noise dominant)
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Figure 6 (a) Overview of the HDR reconstruction algorithm, (b) weighting functions used for HDR reconstruction (for the proposed
method, the variance-dependent weight o2 (Ei, Ati) is included in this comparison).
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e Mitsunaga and Nayar [29] relate the weights to the
SNR of the LDR image (which is assumed to be linear
to the image irradiance). Thereby, the authors
assume that the measurement noise is both
stationary and independent of the underlying signal.
This results in the following equation:

wij(2) = qj(2)/ —— q’( 2 (2) = q,(Z) (q,(Z)) (10)
where the rule for the derivative of the inverse was
applied. The weighting function proposed by
Mitsunaga and Nayar is the same as the weighting
function of Mann.

e In previous work [31], we proposed an exponential
power function as a trade-off between noise

suppression and clipping:

(z — Zmid))

11
b (zmia)” (1)

wij(z) = exp <—

where a and b are constants which were determined
experimentally. This function also emphasizes the
middle of the exposure range, but in such a way that
the low and high intensities are still assigned a large
weight, close to 1.

e Other weighting functions are proposed by Reinhard
et al. [32], Tsin et al. [33], Kirk and Andersen [34].

We remark that in many of the above works, the authors
assume AWGN that is independent of the image irradi-
ance and image index j, which leads to a special case of
(6) in which o2 (Ei, Atj) is constant (consequently this
factor can be dropped in (7)). In general, because of the
dependency of the weighting factor o =2 (E;, Atj) on the

unknown image irradiance E;, lo/gfi needs to be estimated
as in an iteratively re-weighted least squares approach.
During this iterative process, in the right handed side
of (7), the image irradiance estimate E; of the previous
iteration is used. The image irradiance is then estimated
using the currently best available estimate of the weight
wljo’2 (E,', Atj). Once a better estimate E; becomes avail-
able, the combined weights wijo_z (Ei, At/) are updated.

Such an iterative updating scheme can be avoided
(which is advantageous from a computational point of
view), even without assuming AWGN: if o2 (E;, At)) is
proportional to (E;)?, the factors (E;)?, which are inde-
pendent of the summing variable j, in the numerator
and denominator of (7) cancel each other. In the next
section, we will perform a thorough modeling of the cam-
era noise characteristics, to obtain explicit formulas for
o2 (E;, Atj). Surprisingly, our result in Section “Cam-
era noise modeling” indicates that an approximation such
as 072 (E;, Atj) o« (A4E;)? with ¢ = 1 or 2 are quite
adequate for a digital camera noise model.
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Denoising performance of the HDR reconstruction formula
As we explained before, the final reconstructed HDR
image is a weighted average of the different LDR images,
with a correction term to compensate the different expo-
sure times. Because of the averaging (which increases the
SNR), denoising is intrinsically part of HDR reconstruc-
tion. To gain some insight in the different factors that
determine the quality of the reconstructed HDR image, it
is useful to investigate the “denoising performance” of the
main HDR reconstruction formula (7). To start, we will
perform our following analysis for a constant weighting
function w;; = 1,j = 1 ..., P. Based on (7), we can write

the variance of Io/gfi as:
P
Z,'=1 o
P
j=1
ZU

Exploiting the fact that the SNR is defined in terms of
the ratio of the signal energy ((logE,-)z) and the noise

* (Ei Afy) Var [¢ ()]

2 (E, At, ]

Var [lo/gEi] =
(12)

(Ei, A)

energy (Var [l&g\Ei]), the signal-to-noise ratio of the

reconstructed HDR image can be expressed in an elegant
formula:

SNRupr = 10log,, ((log.;]i,')2 /Var [lggfi])
= 20log;, logE»
+ 10log, Z(r (Ei, At) [dB]. (13)
j=1
We will later see, that, under some conditions

(more specifically, when photon noise is dominant),

072 (E;, Atj) ~ E;Atj, which allows us to approximate the
SNR as:
P
SNRypr ~ 20logy, (E;log E;) + 10logy > At; [dB].
j=1

(14)

such that each extra LDR image increases the SNR by
maximally® 10log;, At; dB (see Figure 7). For this model,
three factors can increase the SNR: (1) increasing the
light incidence of the scene (for example by example
by turning on an additional light source), (2) increas-
ing the exposure Az; and (3) increasing the exposures P.
Obviously, some of these measures come at a cost: for
example, when increasing the exposure or the number
of exposures, the scene stationary assumption may not
hold any longer due to object motion. However, the for-
mula SNRypr > 0dB expresses necessary (although not
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Figure 7 Maximal theoretical contribution of each LDR image in the overall SNR of the reconstructed HDR image and the influence of the

sufficient) conditions required for practical HDR recon-
struction. HDR reconstruction is not appropriate if the
SNR reaches zero (SNRypr < 0 dB, or equivalently
211;1 At < (E; IogEi)Z). In this case, the so-called Wyck-
off signal-noise criterion [30] is violated: the exposure is
not high enough to overcome the sensor noise.

In case the weighting function is non-constant, the
variance becomes:

211;1 o~ (E;, At) Wi2j

2
[Z,’;l o2 (E, At)) Wi/]
-1

Var [l&g\Ei] =
(15)

P
> Z o2 (Ei, Atj)
j=1

In other words, non-constant weighting function, such as
the weighting functions proposed in literature, lead to a
reduced SNRypRr. Figure 7 also illustrates how the SNR of
the reconstructed HDR image is affected by using different

weighting functions. We will go deeper into this topic in
Section “Probabilistic formulation of the weighting func-
tion”.

Camera noise modeling
In Section “Noise model-based HDR reconstruction” we
have put forward a Gaussian model for the inversely
compensated pixel intensity g (z;). This Gaussian model
comprises next to the mean log (AtjEi), a bias function
v (Ei, Atj) and a noise variance function o2 (Ei, Atj). For
accurate HDR reconstruction, expressions for these func-
tions are indispensable. These expressions through cam-
era noise modeling. Our noise modeling and the way in
which we deal with clipping is similar to the Poissonian—
Gaussian modeling of [18,35], with the main difference
that our analysis covers the more general case in which the
CREF is nonlinear (see Appendix 1). But before building a
camera noise model, we first need a better understanding
of the processing inside a digital camera.

In Figure 8, a simplified block scheme is given of the
processing pipeline of a digital camera. First, the inci-
dent light of the scene enters the camera sensor through

Analog components

________________________________________________

Digital processing

___________________________

Photon Fixed
noise pattern
noise

Figure 8 Simplified block scheme of a digital camera.

Electronic
(readout)

| Digital
- R Camera response ;
Scene HEEp| Lens | HEE) fﬂ‘? (Dt ‘ Sensors ? Amplifiers | HE) | A/D ‘ function (CRF) y(.) |17 LDRimage
I : e -
Scene Scene e T . Y Y S Y}
radiance irradiance (E) g(z; j)

Quantization
noise
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the lens. Because the image irradiance E; is constant dur-
ing the expose of length Az, the energy registered by the
sensor will then roughly be the product of the image irra-
diance and the exposure time. As already mentioned, the
measured energy is subject to photon noise. The photon
noise is mostly noticeable in the image when taking pho-
tographs in dark environments or at low exposure times.
A commonly used probability density model for the sensor
noise is the Poisson distribution:

xj ~ P (ALE)) (16)

where x;; is the measured intensity by the photo-detector
at position i. We will model the photon noise using
a Gaussian distribution with the same first and sec-
ond order moments as the Poisson distribution, i.e.
xj ~ N (AtjEi, AtjE,-), which is a good approximation if
AtE; > 0. This is the case for consumer digital cam-
eras [13] and also considerably simplifies the modeling
task.d In the next step, x; is amplified and quantized
by the analog-to-digital converter (A/D) to B bits. More
precisely, the analog voltages x; measured by the photo-
detectors are subjected to the following operations:

1. Amplification, which introduces electronic noise.
This electronic noise is well characterized by a
Gaussian distribution N (0,02). We will denote by
/@ the amplification gain for image j, resulting in a
signal with expected value , /@;AE;. The
amplification gain is usually determined by the ISO
sensitivity of the camera.

2. The measured signal x;; is affected by non-uniform
heating of the sensor, and becomes non-uniform,
even when the scene radiance is constant. The
resulting fluctuations are called fixed-pattern noise
(FPN), also known as dark current non-uniformity.
EPN has a variance that is quadratic in the image
irradiance (mainly caused by variations by variations
in the gain factor «;, see [36]), but also contributes
to the overall noise that is independent of the image
irradiance (as an offset term). We will call these two
noise components respectively gain FPN and offset
FPN.

3. A/D conversion, which involves clipping of the
dynamic range to the range 0-28 — 1 and
quantization. The camera sensor can only map
irradiance values that are within certain minimum
and maximum bounds (these bounds determine the
tonal range of the sensor) and values that are
outside this range are clipped. Because the tonal
range of the sensor often cannot cover the whole
dynamic range of the scene, some regions in the
image will be over- or underexposed. In the
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following f(x) = max(0, min(28 — 1,x)) will denote
this clipping function.

4. For ideal A/D converters, the quantization noise is
uniformly distributed in the range [ —1/2,1/2]. In
this work, we will treat quantization noise similarly
to electronic noise and offset FPN. This is possible
since quantization is performed directly after
amplification. Therefore, the offset noise variance
a(i ; signifies the summed contributions of of the
variances of the electronic noise, offset FPN and
quantization noise.

5. Finally, the quantized signal is subjected to several
post-processing steps in the digital domain.
Examples are: gamma correction, brightness and
contrast adjustment, color corrections, white
balance, compression/expansion etc. As we
mentioned before, these operations are modeled
using the CRF.

The different processing steps outlined above signif-
icantly alter the statistical properties of the measured
intensities in Equation (16). In this work we separate
linear effects from nonlinear effects and model them sep-
arately. For example, while amplification (linearly) mag-
nifies the intensity by a factor ,/@;, the variance of the
intensity is multiplied by a factor «;. Similarly, adding
offset noise (a linear additive process), increases the vari-
ance by 03,].. The clipping function and the CRF are both
nonlinear functions. Because of the order of the steps 1-
5, the nonlinear functions are positioned at the back of
the chain, which simplifies the modeling task. y;; the sig-
nal after applying steps 1-4, then we have the statistical
dependency x;; — y; — z;. Using the Gaussian approx-
imation of x;, the PDF of y; can readily be found (see
Figure 4):

2
¥i ~ N (VGAGE, 0% + 4 AGE: + By (AGE))
(17)

where B is a gain of FPN whose variance increases as a
quadratic function of E; (see step 2). To check the normal-
ity of y;;, a normal probability plot is provided in Figure 5b.
It can be noted that the Gaussian approximation is quite
accurate, even for small irradiance values (e.g., ALE; <
100). Next, the measured pixel intensities z;; are related to
¥ij by the nonlinear relationship:

zij =y (f 7)) -

Now, the noise variance o2 (E,', Atj) and bias v (Ei, Atj)
can be computed from the statistical moments of log f (y;;)
using the definitions of mathematical expectation and
variance, as shown in (19).

(18)
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v (EnAG) = E [logfmj)iﬂ] — logf (/@ ALE)
_ fu)du
= Cﬁ<X> gf(At,E) ex

_1 (@Atjlfj —u)
“\T27 sagE)
= Var [logf (yi,) |Ei]

+0o0

= C/ (logf(u))2 du exp

—00

1 (JHGALE; — u)*
x 2 S(ALE;)

+00

-C /logf(u)duexp

—00

1 (\/(TjAtjEl' — Lt)2 2
“\ 727 e
(19)

o? (E;, At)

where s(x) = o 1—|—a1x+,BI,x and C = (ZnS(At,E )) 1/2

Although the functions in (19) Can be calculated numer-
ically, it is not directly clear how o2 (E;, A)) is related to
the parameters ‘73,/" aj, Bij and At;. Thereby it becomes
very difficult to, e.g., devise techniques to estimate these
parameters from the data z;;.

In Appendix 1, we describe a technique that allows us
to approximate the statistical moments of a general non-
linear function of y;;, resulting in far simpler expressions.
The premise is that the technique cannot be used when
the nonlinear function is not differentiable. This is the
case for the clipping function near its clipping points. If
we disregard the clipping function (we will explain in a
few moments how to deal with clipping), using Appendix
1, the statistical moments are well approximated by:

1 a it o AGE; ﬂl]

Sy and
2 ()[]At] Ei 20{1

v (Ei, Atj)

(20)
a —|— o AGE; /3t1

(21)
Ol]AtlE O{j

o? (B, Af) ~

Interestingly, the gain FPN appears as an extra bias term
in (20). Since FPN does not change from one image to
another, a FPN template can be constructed for each
ISO setting. Gain FPN removal then simply consists of
subtracting the template — f;;/2c; from log f (y;), the loga-
rithm of the clipped digitized signal. This bias subtraction
approach is quite common in digital cameras.
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Let us now analyze the noise variance (21). In case the
photon noise is dominant, i.e. o;ALE; > Uozj and o; >
AtE;Bjj, inversely proportional to AtE;. On the other
hand, if the gain FPN is dominant, the noise variance is

inversely proportional to AthEiz:

L (photon noise limited region)

AGE;
2
2 ~ ] Do STy ,
o (Ei At ~ oACE? (offset noise limited region)
Bij . . .
;; (gain FPN limited region)

(22)

such that o~2(E; At) can be approximated by a
monomial in E;. From Equation (22), the SNR of
each image can easily be computed as SNR =
20log,, log (/@ ALE;) /o (Ei, Atj). The SNR for the dom-
inant photon and offset noise cases are equal for E; =
aoz,j/ (ajAtj), the SNR breaking point. In Figure 9, a plot
of the SNR is given as a function of the image irradi-
ance. While the “exact” SNR is a complicated nonlinear
function in general (see (19)), the function can be well
approximated by a piecewise linear function (in a loga-
rithmic scale on both the horizontal and vertical axes). As
explained at the end of Section “Noise model-based HDR
reconstruction’, this finding allows us to develop efficient
and practical HDR reconstruction algorithms based on a
real camera noise model.

One of our main issues at this stage is that the approx-
imations (20) and (21) only hold for differentiable CRFs,
hence clipping of the dynamic range is not incorporated
in our model. To resolve this issue, in Appendix 2, we
derive bounds for A4E;, /&; for which the approxima-
tions (20) and (21) are accurate (up to an arbitrary pre-
cision). If we denote the minimal and maximal intensity
values (after applying the clipping function) as, respec-
tively ¥min and ymax, we have shown that the results
hold (up to an arbitrary precision) in a “clipping-free”
region y, . < ALE; /& < yp.., where typically y . <
(Ymin + Ymax) /2 < Ymax (with ¥, . and y/,. as in
Appendix 2). An illustration is given in Figure 10, for At =
Is,¢ = land o}, = 0.0

Even though complicated processing by several nonlin-
ear functions is involved, we can well describe the first and
second statistical moments of the variables g (z;) using a
convenient formula that holds with great accuracy within
certain bounds. This finding will turn out to be very use-
ful for applications that depend on this noise model. In
the next sections, we will take these bounds into account
in the HDR reconstruction, in particular for designing an
appropriate weighting function.

Probabilistic formulation of the weighting function
The camera noise model from previous section can rela-
tively easily be applied in many practical applications. The
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Figure 9 The SNR of a HDR image in presence of both offset noise and photon noise. In this example, At = 55, = 1 and (rj/ = 100.
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main ingredients of this model are the approximations of
the noise variance function and the bias function, together
with the ranges [y, ., Ymax] On which these approxima-
tions are accurate.

From the explanation in Section “Denoising perfor-
mance of the HDR reconstruction formula’, the reader
may expect that an optimal weighting function is one that
is constant everywhere in the clipping-free regions (w;; =
1 —I(zj <0) — I(zj = 28 — 1), with I(-) the indicator
function). However, such weighting function does not give
maximal SNR because of bias effects: for example, an ini-
tially very large intensity y;; may become less than 28 1
with a certain probability, due to addition of offset noise
or FPN, but without being affected by the clipping opera-
tion. On average, several of these initially large intensities
cause a biased HDR image estimate, when the weighting
function is not properly chosen. In this section, we will

show how the camera noise model can be used to compute
a near optimal weighting (or certainty) function in terms
of SNR to be used in combination with the reconstruction
formula (7).

MMSE-based estimation of the weighting function

Before deriving the weighting function, we make two
observations on the requirements for the weighting func-
tion. As already mentioned, we would like to have an HDR
reconstructed image that is unbiased: E [lgg-fi] = logE;.
Practically speaking, this condition means that the recon-
structed log-irradiance is a true estimate of the “ideal”
image log-irradiance. Because the brightness perception
of the human eye is approximately logarithmic in the irra-
diance values (this is known as the Weber—Fechner law),
we use the logarithm of the image irradiance. Using (7)

min max

G2(E,At)

— — — Approximation

Exact

Ato?E

(a) Variance o2 (E;, At;)

IV(E, A

— — — Approximation

Exact
5 L 1 1

10° 10' 10 10
Atotw2 E

(b) Bias magnitude |v (E;, At;)|

Figure 10 Exact biases and variances, numerically computed using (19), their approximations obtained through (20) and (21) and the
computed bounds [y . ,¥...] for which these approximations are accurate.
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and (4), the condition of unbiased estimates is equivalent
to:

Z]I;I WL'/'O'_2 (Ei, Atj) v (EL', At]’)

Zf:l wio =2 (Ei, AL)
(23)

E [@E] — logE; +

Here we simply computed the mathematical expectation
of both sides of (7). Note that a sufficient condition for an
unbiased estimate is given by v (E;, Afj) # 0 = w;; = 0.
Our approximation theory (Appendix 2) then states that
the latter condition is the case if y i\ < ALE; /& < Yy

Next to having unbiased estimates, the SNR of lo/g\Ei is
an important factor, indicating the quality of the recon-
structed HDR image. To take both effects into account,
we will derive the Bayesian minimum mean square error
(MMSE) estimator for our problem. We will minimize the
MSE between the estimated log-irradiance and its true
value, which is defined by:

MSE = E [(@E - logE,»)z]

= Var [@E] " (E [@E g Ei])z (24)

variance term squared bias term

where we split up the MSE into two terms: the first term
is closely related to the SNR of the reconstructed HDR
image (see Equation (13)), the second term is the expected
squared bias error. Next, we want to minimize the MSE
with respect to the values of the weighting function:
minWi}. MSE. The weighting function wy; is positive w;; > 0,
and additionally we add the constraint max; w; = 1 to get
rid of the scaling ambiguity.® For the HDR reconstruction
formula from Equation (7), the different terms of the MSE
can be written as follows:
P -2 (F. A
Var[logE] = =T AV
[Z/I';l wijo =2 (E;, Atf)]

(25)

211;1 W,'jO'_2 (El', Atj) v (E,‘, At})
le')zl Wl'jO'_2 (EL', At]’) '

E [lggfi - logEi] =

(26)

Note that both the variance and squared bias term have
the same denominator, which will allow us to find an
explicit linear solution to this minimization problem, as
we will explain next. However, because taking the square
of the bias term (26) results in several cross-terms w;w;,
which eventually leads to a linear system of equations with
a non-diagonal system matrix, we will look for a solution
in which these cross terms do not appear. This will have
as a practical benefit that the weighting function for each
LDR image can be calculated solely based on the model
parameters of the particular image, which permits offline
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computation of the weighting function. To achieve this
mathematically, we will minimize an upper bound for the
MSE. This upper bound should be selected carefully, close
to the true MSE, such that the corresponding solution can
be considered to be a good approximation to the solution
of the original problem (Equation (24)). Using the inequal-
ity of Cauchy-Schwartz,f such an upper bound can easily
be found:

S [wio 2 (Eo M) (0% (B Afy) + Pv? (s, Ary)

MSE < J
<Z,I'):1 wijo =% (E;, Ati))

(27)

In Appendix 3 the general solution for the minimiza-

tion problem of (27) is derived. Using this result, we can

write the optimal weighting function (minimizing (27)

and relying on o2 (Ei, At)) + Pv? (Ei, Atj) > 0)8 as:
o2 (E,', Atj)

A 28
o2 (E;, Atj) + Pv? (E;, Aty) 29

Wij =
with A=[max; o ¥E;, Aty) /(0% (Ei, Aty)+Pv2(E;, Agy))] ™!
a normalization factor. According to (28), the optimal
weights minimizing (27), can be found by computing the
proportion of the noise variance o2 (El', Atj) compared
to the whole o2 (Ei, At,») + Pv? (EL', Atj). We remark that
when the bias v (E;, Atj) = 0, the corresponding weight
is equal to one. When the bias increases, the weight
becomes smaller. Readers familiar with Wiener filters will
note that (28) resembles the classical scalar Wiener filter
weight formula, however (28) is not related to the Wiener
filter because Pv? (Ei» At)) is not a signal energy measure
but a measure for the signal bias.

Although Equation (28) minimizes (27), the major issue
is that the image irradiance E; is unknown in practice.
Therefore we wish to express the weighting function in
terms of the observed z;;, and not in terms of the unknown
E;. The pixel intensity z; (which is a random variable)
statistically depends on the image irradiance E;, through
(4). Hence, we can rewrite the weighting function as:

BN CO N Ac? (E,', Atj) .
ij o2 (Ei, At;) + P2 (Eb At,») ij
+00
Ao (E; At)
= E: |z .
-0/ o2 (Ei, Aty)+ Pv? (E;, Atj)fﬂz (Ei |z5) dE;

(29)

where the conditional PDF fg, (El' |zi,') can be computed
through Bayes’ rule. This requires the specification of two
other probability density functions:

1. The prior PDF of the image irradiance fg (E;), for
which we use a prior distribution of maximal
entropy since little information about the image



Goossens et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:171

http://asp.eurasipjournals.com/content/2012/1/171

irradiance is known: the exponential distribution.
The parameter of the exponential distribution (i.e.,
the average image irradiance) is assumed to be prior
knowledge. To verify whether the exponential
distribution is representative for real world images,
we performed a simple experiment using three HDR
images (in particular, the images from Figures 1d,
11a, and 12a). The obtained histogram and the fitted
exponential distribution are shown in Figure 2b. It
can be noted that there is a relatively good
correspondence (i.e., the distribution well captures
the high positive skew). Alternatively, the gamma
distribution or even mixtures of gamma
distributions may be used as in [25] (note in this
respect that the exponential distribution arises as a
special case).

2. The conditional PDF f ¢ (zij |E; ), which can be
computed exactly from (4) through the change of
variables method. More specifically, we have:

2 (zy) |Ei ~N (log (VagAGE:) +v (Ei Aty) o (Ei AY)),
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such that the PDF f;i£ (z; |E; ) is given by:

faE (2 |Ei) = ¢ (g (2) , log (/o ALE;)
30
v (En A5) 02 (En At) ‘j—i (30

’

with ¢ (x, i, o) the Gaussian PDF.

Remark that the weighting function (29) depends on the
parameters Atj, o), Bij, o(ij and the CRF y(x). We will
explain in Section “Dealing with unknown camera model
parameters” how to deal with the scenario in which some

of these parameters are also unknown.

Approximate direct formula

The optimal weighting function found in the previ-
ous section, depends on the functions o (E;, At;) and
2 (Ei, Atj) and its practical computation requires a
(numerical) integration over the image irradiance vari-
able E;. We therefore investigated if it is possible to find
a good approximation to (29), that is somewhat easier to
compute.

(a) HDR from densely sampled LDR images.

(c) De Neve (Est. SNR=13.71dB)

(b) Debevec (Est. SNR=13.73dB)

(d) Proposed (Est. SNR=14.75dB)

Figure 11 Desk still life: HDR reconstruction results for RAW data, after exposure compensation, while balancing and tone mapping.
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(a)

(c) De Neve (Est. SNR=22.74dB)

the dark regions of the color chart on the left.

Figure 12 TELIN Lab: HDR reconstruction results for LDR images stored in JPEG format, after tone mapping. The difference can be noted in

(d) Proposed (Est. SNR=22.59dB)

First, we note that, because the integration range is
larger than the region y. . < A4E, /@ < yp,.. the
approximations (20) and (21) can not be used to simplify
(29). However, within the range y; . < AHE; /&) < Ypax
we have that v (E,', Atj) ~ 0, such that also A ~ 1. Let
us denote Emin(i,)) = ¥, (i))/ (AL @) and Enax(i,/) =
Yenax @)/ (Atj JOT,) (assuming Emax > Emin), then weight-
ing function (29) can be simplified to:

Emin(i»j)
W / Bl L
’ o2 (Ei M) + PV2 (B, Agy o2 T
0
+o0 2(
o Ei,Atj)
Eilzy)dE;
" / o? (Ei,Atj)+Pv2(Ei,A,5j)fE|z( if i) dE;
Emax (i)
Emax (i)
+ f Jer2 (Ei |zi1')dEi (31)
Emin(i:j)

where the approximation error can be controlled by k.
(2)
i

ngl) /A that does not contain any terms in o' (E,', Atj) and

We can now define a new weighting function w;” <

2 (Ei, Atj) and is hence easier to compute. This leads to
our probabilistic formula for the weighting function:

Emax (i)
feiz (Ei|zi) dE;
Emin (i)
= Pr|Emin(i)) < Ei < Emax(ir))| 2]

which is the probability that the image irradiance is within
the bounds [ Epin(i, /), Emax(i,/)], given the the observed
pixel intensity z;;. Generally, (32) has a higher cost in terms
of MSE (because we disregard two terms of (32)), however
the squared bias term of (24) will be approximately zero. If
E; €[ Enin(i,)), Emax(i,j)] then the bias v (Ei, Atj) ~ 0, so
weighting function (32) can be interpreted as “the proba-
bility that the inversely compensated pixel intensity g (zi/)
is approximately bias-free”. 1t is clear that HDR recon-
struction using (32) will also be approximately bias-free:
the bias error E [|lo/gf,- —logE; ]

In Figure 13, an illustration of the weighting function
is depicted, for two CRFs and for different choices of
the parameters. It can be noted that increasing the off-
set noise level (resulting in biases with larger magnitudes

(2)
Wi

(32)

~ 0.
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(c) (d)
Figure 13 lllustration of the weighting function w(z) computed using (32) for two different CRFs. (a), (c) Influence of the offset noise level
ogf (b), (d), influence of the exposure time At.

|v (Ei, At))|) inherently decreases the average weight. The
same situation occurs for the large intensities (e.g., z;; >
128) when decreasing the exposure time. According to the
formulas, the asymmetry can be attributed to the Poisson
characteristics of the photon noise.

In Appendix 4, a direct formula for (32) was derived:

@ (y;nin(i’j)) - (y;nax(i’i))
o0) -1

lngg) _ with ® (x)
¥yl (z) + Aa},_l/zAtjfls (r~" (25))

s(r~" (zy))

erf

(33)

The merit of this approximation is that it is somewhat
easier to implement and compute in practice. In case we
can ignore the quadratic fixed pattern noise (see Section
“Camera noise modeling”), Equation (33) only depends on
the variables z and j. This allows offline computation and
the use of a lookup table.

In Figure 14, our three different weighting functions
(respectively Equations (28), (32) and (33) are compared

to each other. It can be noted that, generally Equation
(28) assigns the largest weight of the three weighting
functions. This is because of the approximate relation-
ship wff) < wl(.jl) JA. Weighting functions (32) and
(33) are more conservative in assigning large weights to
pixel intensities.

Dealing with unknown camera model parameters

In the previous sections, we explained how to determine
a parametric weighting function that mediates a trade-off
between the SNR of the reconstructed HDR image on the
one hand and the squared bias error on the other hand.
The function depends on the parameters Az, o, By, 002’/
and the CRF y (x), hence beforehand, we assumed that the
CRF was known.

In practice, the exposure time can always be assumed to
be available." The CRE, however, is not publicly disclosed
by camera manufacturers, but can be obtained through
calibration procedures (e.g., using a color chart), or esti-
mated from a set of LDR images. We will explain this in
more detail in Section “Estimation of the CRF”.
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Figure 14 Comparison of three different weighting functions. We used the Fuji F400 Green CRF from [37] with At = 1s, @ = 1 and k = 3.
(Optimal) solution to (27), (Probabilistic rule) equation (32), (Approximated direct formula) equation (33).

If the CRF is available, the camera noise parameters
o, Bijs 002,1» can be estimated directly using a (robust) lin-
ear regression on the the inversely compensated pixel
intensities y ! (zij), relying on (17).

One of the main difficulties in estimating the CRF in
a noise-robust way is that it is required that the weight-
ing function is known. As we explained, to determine the
weighting function, we need the CRF, leading to a chicken-
and-egg problem. To resolve this issue, we will now make
use of our probabilistic formulation of the weighting func-
tion. In Figure 15, it can be seen that range [y, ., Viax]
becomes smaller (i.e. y; , increases, y,,, decreases) when
(1) the offset noise variance a(i . increases, (2) the gain
factor o decreases or (3) the gain fixed pattern noise
factor B increases. It can be shown that these obser-
vations also hold for Enin(i,)) = ¥ ())/ (Atha—j)
and Emax(i,/) = Ynax(i))/ (At /). Since weighting
function (32) is computed as the conditional probability
that Enin(i,j) < E; < Emax(i, /), and because probabilities
are always positive, the overall effect is that the weights

wl@ decrease under the aforementioned conditions. This
behavior of the weighting function can also be noted in
Figure 13a,c: curves corresponding to increasing ‘73,1' are
positioned under each other.

The main idea of our approach is: when little is known
about the noise model parameters o}, 8, 03, j» we can
always select reasonable upper bounds (or in case of «;,
an upper bound for the reciprocal o; ') for the values of
these parameters. The obtained weighting function will
then allow some uncertainty on the noise model param-
eters. The only restriction is that the upper bounds have
to be chosen such that Enax(i,j) > Emin(i,j), otherwise
all weights become zero (the input SNR would likely be
too low to allow proper HDR reconstruction). By using
such upper bounds, the weighting function will be more
conservative in assigning weights, but still keeping the
bias error (26) small in magnitude. In this sense, the
certainty function establishes a novel meaning to this
concept by relating to the uncertainty associated with the
noise model parameters.

y =255
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o=5

y

min -

o=2.5

> =38

min

Figure 15 Bounds of the dynamic range [y;mn,y;mx] for which (23) and (21) are accurate (up to an error erf(—k/ﬁ) +1).
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Practically speaking, we can fix an upper bound for
one parameter, then compute an upper bound for the
other parameter values, using the relationship y,.,. (i,j) —
Vin (b)) = A with A > 0 a positive number. In Figure 16,
we computed the weighting functions according to this
parameter uncertainty approach, when varying the lower
bound for & for A = 10. The gain fixed pattern term ;
was chosen to be 0 here, and an identity CRF y(x) = x
was assumed. A simple heuristic using the breaking point
from Figure 9, then allows us to determine whether the
parameter choice corresponds to the offset noise limited
or photon noise limited case. Interestingly, we find that
for the offset noise limited case, the weighting function is
symmetrical, close to the weighting function of Debevec
and Malik and almost equal to the Gaussian weighting
function used in [38] for estimating CRFs. Unsurprisingly,
the Gaussian weighting function arises as a limit for (33)
when A is infinitesimally small. On the other hand, in the
photon limited case, the weighting function tends to be
asymmetrical with a decentralized maximum.

Estimation of the CRF

In this section, we revisit another common problem in
HDR reconstruction: the estimation of the CRF. The CRF
is often not known in advance, because this requires exact
knowledge of the processing steps of the digital cameras
and their parameter values, information that is only at
hand of camera manufacturers. Therefore it is useful to
estimate the CRF in a camera-independent way. In liter-
ature, several techniques have been proposed to estimate
the CRF. Mann and Picard propose a parametric regres-
sion method based on the comparagram (which is a joint
histogram of z;; versus z; for j # j') [27,30]. Mitsunaga
and Nayar [29] perform an iterative polynomial regres-
sion, where the (assumed to be unknown) exposure time
ratio At;/ Aty is refined in each iteration. Related iterative
methods have been proposed by Tsin et al. [33]. Lin et al.
[39] use a completely different technique that estimates
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the CRF based on RGB distributions of pixels at color
edges, requiring only one exposure (P = 1). Debevec
and Malik use a non-parametric method to estimate the
inverse CRF g(z) [28], leaving a lot of degrees of free-
dom to this function. In [31], this method was improved
to incorporate all available pixel intensities in the estima-
tion (leading to more accurate estimation), while reducing
computational complexity.

The problems with the existing techniques are that they
are either not very robust to high levels of noise (for
example, the method of Debevec and Malik does not
enforce monotonicity in terms of a direct constraint to the
CRF estimation problem, often leading to CRF estimates
that are oscillating in presence of noise) or not very well
adapted to the signal-dependent noise characteristics of
the individual LDR images (e.g., due to an assumption of
stationary noise).

Let us analyze the CRF estimation problem by rely-
ing on the camera model developed in the previous
sections. Consider two distinct LDR images z; and z;.
When z; and z; are in the appropriate exposure range
Omin(G) < GALE; < yoo () and y . () <
aj AtyE; < Yo (i ])), we have E [z5|E;] ~ y (/@ ALE;)
and E [zi}v|Ei] ~ y (/o7 Aty E;) with respective variances
(see Appendix 1):

Var [zij|Ei]

2
2\ (Y
~ (G(?,i + OtjAt]'Ei + ﬂij (AtjEi) ) (8.76)
x=ALE;
Var [z,»j/ |Ei]
2
2\ [y
~ (o2 +ayAGE + By (A Ei)’) <8x>
x:Atj/Ei
(34)

When considering the estimation of the CRF as a
regression problem (as in [30]), optimal estimation is

o=1, o[e]=42.24 (offset noise limited)
— — - 0=5, o[e]=36.02 (offset noise limited)
a=10, 6[e]=28.26 (offset noise limited)
— - — 0=20, o[e]=12.56 (photon noise limited)
0=25, o[e]=4.54 (photon noise limited)
Debevec and Malik

Figure 16 Weighting functions to be used in case camera noise parameter values are not available (only reasonable estimates on their
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upper bound). The weighting functions are computed using (33), for an identity CRF y (x) = x.
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quite difficult due to the dependency of the variance on
the (unknown) image irradiance E;. If the conditional
variances Var [zij|Ei] and Var [zi,v |Ei] are constant (e.g.
Var [z,j|Ei] ~ ooz,j), the method of total least squares (TLS)
[40] is well suited to estimate the nonlinear CRF: the TLS
method performs a regression in which the orthogonal
distance error of the fitted function to the observations is
minimized. The TLS method is well suited for regression
problems in which both the x-variables and y-variables
have a known and constant variance. Unfortunately, this is
not the case here. Furthermore, the variances (34) depend
on the derivative of the CRF, which is to be estimated!

As an alternative solution, we can rely on the statistical
conditional independence of z;; and z; (given E;). Accord-
ing to (4), the difference g (z;j) — g (z;7) has the following
PDF:

O{/'At]' . '
o Ay + v (Ei, Atj)

g(zj) =g (z) ~N <1°g
—v (El', Atjf) ,0'2 (El', At])
—|—O‘2 (Ei, Atj/) ) .

In the exposure range {ajAtjE,-, ajAt}in} C
[¥imin (o)) Yinax (i»/)) ], the bias terms can safely be ignored
(provided that E; is sufficiently large):

At; o
¢(zj) —g(z) ~N (log ~,, Hlog -,0® (Ei AL)
+0? (E;, Aty) ) .
Maximum likelihood estimation of g (zij) now amounts to
the linear regression:

) 12
)g (=) —¢ (a7) ~log 7 —log 5L
o2 (Ei, A) + 0% (Ei, Aty)

e P N
g(z) = min Z Z WiiWiy

ji'=1 i=1

’

(36)

where a weighting function was introduced in analogy
to Equation (6). Recall that the LDR pixel intensities are
discrete (z;j €0,...,28 —1andzy €0,...,28—1). There-
fore, (36) can be solved by treating g (z;) and g (z;) as
unknown variables. Solving (36) then gives a linear system
of N x P equations with 28 unknowns (g(0), .. ., g(28 —1)).
In case either offset noise or photon noise is dominant,
the sum o2 (E;, Atj) 4+ o2 (E;, Aty) can be approximated
by (see (22)):

2 2
o” (Ei, M) + o (Ei, Aty)
iAt}‘-i-At/-/
E; Al‘jAt/-/
2 2
"3,;‘ Atjoj+ At oy

(photon noise dominant)

%

7 waacar-  (offset noise dominant)
i IR
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As we mentioned earlier, because of estimation in pres-
ence of noise, we need to explicitly enforce that g(z) is
monotonic. Therefore, we include the conditions g(z) >
gz—1),z=1,..., 2B _ 1 as extra constraints to the min-
imization problem from (36). Reorganizing the terms in
(36) then gives (in case photon noise is dominant in all of
the LDR images):

At/‘ aj 2
Ny 2 [ele) g (ay) —log 7 —log i
minzfzwl7wi/' At + Aty) | AL AL

i=1 ' jy=1 ( j+ /’)/ j AL
251

+2 Wgmooth (Z )
0

z=!

&g
2

d
dz

st.gz) > glz—+e, z=1,...,25-1 (37)
with A a regularization parameter to enforce smoothness
of g(z) (see [28,31]), and with € a small positive number.
In (37), the function wgpoth (2) is the weighting function,
averaged over the set of imagesj = 1, ..., P. To compute
d?g/dz?, the numerical second derivative is used. Opti-
mization problem (37) can be efficiently solved using stan-
dard quadratic program (QP) solvers [41]. We note that in
(37), the (unknown) image irradiance appears as position-
dependent weights. A straightforward solution is then to
iteratively update the CRF and the log-irradiance esti-
mate log E;, but to keep the processing technique simple,
we propose here to simply drop the position-dependent
weights 1/E;. To conclude, the proposed CRF estima-
tion technique differs from the technique in [31] in the
following aspects: (1) an image-dependent weight factor
(Atj 4+ Aty) /AtjAty that penalizes LDR images with low
exposure times (because the SNR is generally lower in
these images), (2) the use of a weight function wj; that is
adapted to the underlying camera noise model and (3) the
monotonicity constraint for g(z). Consequently, the CRF
estimation technique will be considerably more robust
against noise, with only limited increase in algorithmic
complexity (the use of a QP solver compared to a sparse
system solver).

Results and discussion

Comparison of different weighting functions

In this section, we compare the different weighting func-
tions proposed in literature to our probabilistic function
from Equation (32). We will only consider the influ-
ence of the choice of the weighting function on the
HDR reconstruction (i.e., we do not include the CRF
estimation in this experiment and all techniques use
the same HDR reconstruction formula from (7). As in
Equation (7), the effective weights are calculated using
wi,o_z (Ei,Atj). We computed the performance of the
different weighting functions, using analytical formulas
(Equations (24)—(26), for different camera gains /a €
{0.25,0.5,1,2,4} and different offset noise levels o, €
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{0.001,0.5,1,2,4,8,16}. We assumed four LDR images
with exposure times 0.1s, 0.25s, 1s, 2s and an identity

—_— 2
CRF y(2) = z. The expected MSE E |:(logE - logE) i|

is inherently averaged over a logarithmically spaced
range over the image irradiance E, covering the whole
input dynamic range. We remark that an upper bound
for the theoretical maximal gain compared to the tri-
angular weighting function of Debevec and Malik is
given by:

1.2
d
0P g
1 2 10 3
(fo zdz)

This means that, for any estimation task, no weight-
ing function will give a SNR improvement of more
than 1.25 dB, compared to the triangular weighting func-
tion. The above formula ignores the clipping of the
dynamic range and the presence of signal-dependent
noise, hence in practice, the actual improvement will be
much smaller than 1.25dB. The actual values are plot-
ted in Figure 17, it can be seen that the probabilistic
weighting function reaches a maximal improvement of
approximately 1dB (for larger values of 00% ) and out-
performs the other weighting functions in most of the
cases.

10log,, =1.25dB.

Ground truth data with simulated noise

To have ground truth data, we generated a computer
rendering of a HDR scene (see Figure 18a). The scene con-
sists of a room with a textured walls with four paintings
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(all textures and paintings have a bit depth of 8). In the
middle of the room, a bright point light source is posi-
tioned, creating a dynamic range of 11 stops (i.e. the
ratio of the brightest and smallest possible pixel intensity
is about 2'!). Sensor signals were simulated and artifi-
cial noise was thereby generated, according to the pro-
cedure explained in Section “Camera noise modeling”
An example of such exposes LDR images is given in
Figure 18b—e. The light source causes parts of the wall,
floor and ceiling to be overexposed in some of the LDR
images, while the wall on the right is underexposed in
other images. Results are again generated for different
camera gains /o € {0.25,0.5,1,2,4} and different off-
set noise levels o0, € {0.001,0.5,1,2,4,8,16}, for a CRF
modeling gamma correction y(z) = z%* under (1) the
assumption that the CRF is known in advance, and (2)
by estimating the CRF from the images. For the method
of Debevec and Malik [28], the CRF was estimated from
1,000 samples, randomly sampled in the image. The reg-
ularization parameter is fixed to A = 1 for all methods.
The results are given in Figure 19. It can be seen that, in
case the CRF is known, an improvement of about 1dB is
obtained by adapting to the camera noise model. When
also CRF estimation is included in the algorithm, the SNR
further improves by 1-1.5 dB. Also notice that the weight-
ing function from Section “Dealing with unknown camera
model parameters” that includes uncertainty with respect
to the noise model parameters gives slightly worse results
than the proposed probabilistic weighting function.

A visual HDR reconstruction result is presented in
Figure 20. In the image reconstructed using the proposed
technique, the noise is significantly better suppressed.
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Figure 17 Comparison of different weighting functions in the ASNR sense (difference in SNR compared to the triangular function of
Debevec and Malik) for y (z) = z. The SNR was computed using (24) and in (a) averaged as function of the gain «, in (b) averaged as function of
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(a) Compressed HDR image

using different exposure times.

(b) LDR At=1/100s.

(d) LDR At=1s.

Figure 18 Ground truth data used for the experiments. (a) HDR image with compression from [26]. (b)-(e) LDR images generated from (a)

() LDR At=1/4s.

() LDR At=2s.
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Figure 19 HDR reconstruction results using ground truth data. (a) Average PSNR results as function of gain «, (b) average PSNR results as
function of the offset noise standard deviation o,.
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(a) Weighting function of Debevec et al.:

different CRF estimation methods.

PSNR =25 .70dB.

Figure 20 Visual comparison of HDR reconstruction using different weighting functions (¢ = 1/64, 8 = 0, aoz,j =64,j=1,...,4)and

PSNR =28 .59dB.

(b) Prob. weighting function

Although the maximal SNR improvement of the HDR
image is bounded when only using position-dependent
averaging (see Section “Denoising performance of the
HDR reconstruction formula”), further improvement can
be obtained by including spatial regularization in the
reconstruction process.

HDR reconstruction of RAW sensor data
Next, we demonstrate our method for real digital cam-
era images. In particular, we use the “desk still life” set of
17 RAW LDR images acquired by Hasinoff [24] using a
Canon EOS 1D Mark III camera (10 mega-pixel images,
with an equal ISO setting of 100).) The 17 images are used
to obtain an estimate for the ground-truth data, which is
useful for objective evaluation. The spatial resolution of
the images and the exposure time sampling is sufficiently
high, such that different parameters of the reconstruc-
tion methods have a limited impact on the reconstruction
result. Here, we use Debevec’s method[28] for creating the
HDR images.

To compare different methods, we select 3 LDR images
out of the 17 images, with exposure times 1/800, 1/200,

1/25s. These exposure times are chosen to cover a large
portion of the dynamic range of the scene, such that some
of the LDR images exhibit high levels of noise (especially
in the dark regions, see Figure 21). Although this choice is
somewhat arbitrary, similar results can be obtained using
slightly deviating exposure time values.

First, to estimate the camera noise model parameters
(see Section “Camera noise modeling”), we analyze signal-
dependent noise in a similar way as in [42], i.e., by comput-
ing the local noise standard deviation as a function of the
local intensity. We use a 7 x 7 local window to estimate the
local mean and standard deviation, where we also exclude
patches in which the signal is too strong (to find these
patches, we compare the maximum local magnitude of
the Laplacian filtered image to a fixed threshold, and we
reject patches if the maximum is too large). We repeat
this for the three color channels, and we directly fit the
parabolic noise variance model (17) to the obtained point
clouds using least squares fitting. The noise fitting results
are shown in Figure 22 for the LDR image of exposure
time 1/25s. It can be seen that there is a good corre-
spondence between the predicted noise variance and the

(@) Aty =1/800s

Figure 21 Desk still life: LDR images (after camera reconstruction).

(b) Aty = 1/200s

(0 Aty =1/25s




Goossens et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:171

http://asp.eurasipjournals.com/content/2012/1/171

° 6°=0.02 0=0.0042 =0.000002
] o
E 200 |
£ 1001
3
Z
0 1 1 1 1 1
200 400 600 800 1000
Intensity
(a) red channel
° 6°=0.06 0:=0.0026 3=0.00002
g o
= 200
=
£ 100
=]
Z
0 1 1 1 1 1
200 400 600 800 1000
Intensity
(b) green channel
° 6°=0.02 0:=0.0039 $=0.000012
S o
E 200 |
g
s
£ 1001
3
Z
0 1 1 1 1 1
200 400 600 800 1000
Intensity

(c) blue channel

Figure 22 Signal-dependent noise analysis of the raw sensor
data: local noise variance as a function of the local intensity.

estimated noise variance. Alternatively, affine fitting could
also be used here (assuming the absence of gain FPN,
Bij = 0 in (17), however, we found that in most LDR
images a quadratic model better describes the measured
noise variances.

A HDR image is then constructed from the three LDR
images, using the proposed approach or, alternatively,
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existing methods like [28,31]. Finally, some common post-
processing operations, such as white balancing, exposure
correction, color correction and HDR tone mapping need
to be applied to the constructed HDR images. For this
post-processing stage, we employ the software program
“Raw Therapee V4.0”% For our purposes, this program
allows us to create a reconstruction profile with fixed
(non automatic) parameter settings, which can then sub-
sequently be applied to the images reconstructed using
different methods. This is very useful to ease visual com-
parison. In Figure 11, the final results are shown, together
with the HDR reconstructed from densely sampled LDR
images. The signal-to-noise ratio is estimated from the
log-irradiance values obtained before post-processing, by
using this last image as a reference. It can be seen that
by using optimized weighting functions we can obtain a
significant increase in visual quality, compared to other
methods which are using more “general-purpose” weight-
ing functions.

HDR reconstruction from JPEG compressed LDR digital
photographs

As a last experiment, we test our method on a set of 15
LDR images, with increasing exposure times and a fixed
ISO setting of 100 and aperture of f3.5, captured using
a Canon Powershot S5 camera, with post-processing and
JPEG compression performed by the camera. As in the
previous experiment, we use all 15 images to obtain an
estimate for the ground-truth data, and we select a subset
of four images (with exposure times 1/100, 1/10, 1/2 and
2's, see Figure 23), for comparing the different HDR recon-
struction methods. Because camera post-processing is
applied, all methods now require CRF estimation. One of
the issues arising for our method, is that the noise model
parameter estimation (as used in the previous experiment)
is not directly applicable. Note in this respect that apply-
ing the inverse CRF is not sufficient to obtain estimates
of the RAW sensor data, because the component-wise
CRF does not take color space operations (such as color
corrections, white balancing,...) into account. Instead, we
compute the weighting functions as explained in Section

(a) At; =1/100s

Figure 23 TELIN Lab: LDR images (after camera reconstruction).

(b) Aty =1/10s

(c) Atg =1/2s
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“Dealing with unknown camera model parameters”

by defining upper bounds for oc]fl and o(i].. Here

we use the values max ((x}fl) = 0.005, max(a&j) = 0.02
and max (,Bij) =0, which are experimentally deter-

mined. In our method, the weighting functions used
for CRF estimation are based on an identity CRF
(recall the chicken-and-egg problem mentioned in
Section “Dealing with unknown camera model param-
eters”). Next, to reconstruct the HDR image, we
re-compute the weighting functions using the estimated
CRF using results of Appendices 1 and 2. Finally, tone
mapping with fixed parameters is applied using the
program “Raw Therapee V4.0” Some visual results are
depicted in Figure 12 and also estimated SNR values
(obtained by comparing to the “estimated” ground-truth
data) are reported. It can be seen that only small dif-
ferences exist in the reconstruction results and that the
proposed method performs within the same range as the
other methods (in particular, the difference can be spot-
ted in the dark regions of the color chart in Figure 12:
while Debevec’s method still leaves a lot of noise in this
region, the method of [31] and the proposed method
do a better job in suppressing the noise). The reason
that the proposed method does not outperform the other
methods in the same way as in Section “HDR reconstruc-
tion from JPEG compressed LDR digital photographs”
is most likely a combined effect of several factors: (1)
an estimate of the CRF is required to determine the
weighting functions for (32), (2) CRF estimation errors
also influence the weighting functions and (3) nonlin-
ear color space operations are not taken into account.
Although further improvements are possible, e.g., by iter-
atively refining the weighting functions and CREFs, this
experiment already shows that the proposed approach is
robust enough to work with JPEG compressed images
where standard post-processing operations have been
applied.

Conclusion

In this article, we presented a realistic digital cam-
era noise model that incorporates several noise sources
(such as photon noise, electronic noise, fixed pattern
noise), as well as several parts of the camera process-
ing pipeline (such as the amplifier, clipping, ...). For
this noise model, we derived both exact and approxi-
mate formulas for the bias function and the noise vari-
ance function, taking clipping of the dynamic range
into account. Next, we investigated novel HDR image
reconstruction weighting schemes relying on the realis-
tic noise model. We paid special attention to different
factors that determine the signal-to-noise ratio of the
HDR image, and we used the obtained insight to derive
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weighting functions that are optimized for the camera
noise model. This led to our probabilistic weighting func-
tion, that is defined as the probability that the considered
pixel intensity is (approximately) unbiased. Because due
to the clipping there is a strong coupling between the
noise variance and bias functions, this weighting func-
tion offers a trade-off between maximizing the SNR of
the HDR image and bias errors, its performance is close
to optimal in the MSE sense. The probabilistic reason-
ing was then extended to derive a weighting function
for the case in which (some of) the noise model param-
eters are unknown. Experimental results confirmed the
expected improvements in reconstruction quality, espe-
cially for reconstruction from RAW sensor data. Although
HDR image reconstruction is only one example of
application of sophisticated noise modeling techniques,
there is a wide range of other application areas to explore
in which similar image quality improvements can be
obtained when adapting to the noise characteristics from
the imaging devices.

Appendix

Appendix 1: approximation of the statistical moments of a
non-linear function of signal and noise

In this section, we develop a technique that gives sim-
ple expressions that relate the noise statistical moments to
the unknown parameters. First, we start from a generative
model:

u=¢(Ev) (38)

where E is the image irradiance and v is Gaussian noise
with zero mean and unit variance N(0, 1). The signal-and-
noise mixing function ¢(E, v) has the property that it is
infinitely differentiable near the working point v = 0, for
all E. In our application, the mixing function is given by:

L(Ev) =y (ﬁAtE + /s (ALE v) (39)

with s(x) = crOZJ + ax + Ba*. The conditional statistical
moments of # can be computed through the McLaurin
series expansion of ¢ (E, v). For the first order moment we
have:

+o0 g n

¢ v
EWE] ~ CEO+Y o
= o !
100 22 —n
"¢ 2
= ¢(E,0 —_— 40
CEO+Y T (40)
n=1
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where we used the statistical moments of the Gaussian
distribution. A similar expression can be given for the
second order moment:

+0o0

c2(E, 0)+Z L)

n!

Vl{Z

E[«’|E] ~

w=0
o—n
w=0 n!

+00 82;’1;2

2
¢*(E,0) + 2 T

—n

3(E,0) + 2%0 2
n!

n=1
(Z(E, O) (W v_O) * (av u_0>)

82}'171{

Jp2n—1 )
Note that Var [#|E] = E [uzlE] — (E[u|E])?. The reason
for such an expansion is the fact that in practical circum-
stances, ¢{(E,v) is a relatively smooth function, i.e., the
derivatives 0”¢/dv” evaluated at v = 0 decay exponen-
tially as a function of n. For this reason, only one term
of the series expansion is often sufficient in our applica-
tion (provided that ¢ (E,v) is differentiable near w = 0).
When only considering one term of the McLaurin series
approximation, we find:

C
E[ulE] ~ ¢(E 0+ - —
[ulE] ~ ¢(E0)+ 5 -
a1 92 o ac 2
Var [u|E] =~ %€ —f—g; %—C
owl,—g 4 0v:|,_o V|,

g Substltu—

where we used the fact that - a <<

tion of the mixing function (39) glves exphc1t expresswns
for the conditional statistical moments of u:

AtE) 9>
EWiE] ~ y(aam + 2 2L
X lx=aAtE
(41)
3 2
Var [ulE] ~ s(AtE) [ X (42)
0% |y JaAcE

where y (x) = ¢(x,0) is the CRF. For the special case of a
logarithmic transform y (x) = logx, we get:

1 s (ALE

E[ulE] ~ log(VaAtE) — Eﬁ 43)
s (AtE)

Var [u|E] ~ N (44)

These convenient formulas form the basis of our noise
model in Section “Camera noise modeling”
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Appendix 2: determining the clipping-safe region of the
dynamic range

In this section, we will determine a region of the dynamic
range where the approximations (23) and (21) hold, with
high probability. We remark that these approximations are
obtained using the technique presented in Appendix 1 and
that this technique fails for working points of the clipping
function, where this function is not differentiable. Obvi-
ously, this is near the saturation points of the dynamic
range. We will analytically determine the effect of the clip-
ping on the statistical moments of logf (y;). First, we
define the moment function as:

Mg (n) = E[(logf (J’ii))n|E]

«/2ns(AtE _/ ogf(u) P

(_; (VaALE — u) ) &

s(ALE) (45

The bias and variance functions from (19) can be
expressed in terms of Mg (n):

v(E,At) = M (E) — logf(v/aAtE)
o2 (E,At) = My (E) — (Mg (1))?

Suppose that the clipping function, in a general form, is
defined by:

Ymin Y < Ymin
f(y) =3\ Ymin = Y = Ymax

Ymax Y = Ymax

we can rewrite the moment function (45) as:

=+
o oxp (L (VEALE—u)”
M, (E) = m_f (logu) eXP( 2 s(AtE) )du
B Ymin — VAALE
5 (10gYumin)” (1 * erf( JE(AE) )>
) —Ymax + ~AALE
5 (log}’max) (1 + erf(W)) ‘

(46)

Because the first term of Mg (») is not related to the clip-
ping function, we can use the technique from Appendix 1
to approximate this term (this term represents the statis-
tical moments as if a clipping function was not present).
Because of the decay of 1 + erf(—x), the second and third
terms in (46) vanish in the following region of the dynamic
range:

Ymin + kv/S(ALE) < JAALE < Ymax — kv/S(ALE) (47)
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with k a positive constant. Next, we can exploit the fact
that s(x) = o(%j + ax + Bx?. To proceed, we use the linear
Taylor approximations:

1+2 'min AtE— min
S()’min) + %( +2hy \/;;)(J(/\/E) ] )
near /& AtE = Ymin

1+2 'max AE*max
)+ L2 )

near /o AtE = Ymax

VS(ALE) =~

The sought region of the dynamic range can then be
written as:

Vmin < VEALE <y.. with
k (O(S(ymin) - ﬂyﬁﬂn) + Ymin® (\/ s(ymin - k/2>

. = d
Ymin Ol\/m —k (J& + Zﬂymin) /2 an
K (@5 Omax) = BY2ax) Imaxt (V5Oman) +K/2)
Ymax = )

o /5Oma) + (/A +2BYmax) /2

An illustration of the bounds as a function of the offset
noise level 002, - and the amplification factor /o is given in
Figure 15. It can be seen that even at low SNRs, the region
[¥1in Ymax] Still covers a sufficiently large region near the
center of the dynamic range /o AtE = (ymin + ymax) /2.

Appendix 3: optimization problem for determining the
weighting function

In this section, we will solve the following optimization
problem:

Xje1 o}
min —————>

N (Z/I';l WJ’“/’)

such that ||w| . =1, (49)

where ||-||o is the maximum norm. To deal with the
constraint |w|,, = 1, we introduce a new constraint
211;1 wja; = C and subsequently we fix the constant C by
imposing that ||| o, = 1. Using Lagrange multipliers, the
resulting problem can be stated as follows:

P P
. 2.2 2
min wiarof + A wia;j — C 50

Taking the derivatives of the cost function with respect
to w; gives the following equations:
2 cl s
wjajoi = —1/2, withj=1,...,P.
One of the issues here is that o2 may become zero, such

that the weight w; can not be determined. In this case,
we are free to choose the weight, and for convenience
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we choose w; = 1 (such that the contribution of the
corresponding LDR in the HDR reconstruction will be
Mfzximal). Imposing the constraints Zle wja; = C and
[Wlls = 1 then leads to the following solution:

2 _
1 O'l-—O

2
oj #0

-2 -2

Uf Uj/
——/ max_2 5
aj / 7 #0 ajZ,

wj =

This solution is used in Section “Probabilistic formu-
lation of the weighting function” for computing optimal
weighting functions.

Appendix 4: derivation of a direct formula for the
weighting function

Based on the noise model from Equations (17) and (30),
the PDF fy—l(z)lE (y‘l(z) IEI') can be determined as fol-
lows:

1
J2ms' (E;) P
1 (V_l(z) - JOTJAthi)Z ‘dyl(Z)

2 s dz

Sr1@iE (r '@IE) =
(51)

with s’ = Var [y_l (2) |E; ] Using results from Appendix
1, we approximate s'(E;) as follows:

S ~s(y 7 @) = o ey @+ B (@)’ (52)

The weighting function (32) can be computed using Bayes’
rule:

Emax ”4 —_—
Lo Jemson fy-1ne (v~ @) 1E: i (EDE;
/ S22 10 (v @) | )fe (E)AE;

Using (51) and the approximation (52), this weighting
function amounts to the direct expression:

2~ © Oin@)) = @ (Vnax (i)

¢ 50 =1 with : ®(x)
f X — V_l (Zij) + }»aj_l/2At}'71s (y_l (Zij))
= er.
s (1 (z))
Endnotes

2 We remark that due to quantum-mechanical aspects,
in reality there is no such thing as an “ideal” signal, here
we define the “ideal” signal as the voltage averaged over a
“very” long exposure time.

b Remark that Bayesian estimates (such as MAP, MMSE)
are equally possible, given that prior information on E; is
available.

¢ Due to Jensen’s inequality.
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4 This is because the contribution of several noise sources
can be modeled using a Gaussian distribution, with
signal-dependent mean and variance.

¢ Equation (13) is invariant under scaling of wy; if a cer-
tain w}; minimizes MSE then any scaled version aw}; with
a > 0 is also a solution to (24). By adding an extra con-
straint to the solution, this problem is solved.

2
f More specifically, we use ‘Z/ ajbj‘ <2 ajz >, b7 with
a; = W,ja_z (E,', Atj) v (Ei, Atj) and b; = 1.
& This follows from the fact that E; > 0, At; > 0,; > 0

2
and Oy > 0.

P The exposure time is either stored in the RAW data files,
or the EXIF information of the compressed JPEG files.

I To see this, note that +/s(Atx)/(~/Ata) =

\/ 9 + AtE + gE, which increases monotonically in o2

aAt? . o
and B and decreases in «.

J Available at http://people.csail. mit.edu/hasinoff/hdrnoise/.

K http://rawtherapee.com/.
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