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Scalable IC Platform for Smart Cameras
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Smart cameras are among the emerging new fields of electronics. The points of interest are in the application areas, software and IC
development. In order to reduce cost, it is worthwhile to invest in a single architecture that can be scaled for the various application
areas in performance (and resulting power consumption). In this paper, we show that the combination of an SIMD (single-
instruction multiple-data) processor and a general-purpose DSP is very advantageous for the image processing tasks encountered
in smart cameras. While the SIMD processor gives the very high performance necessary by exploiting the inherent data parallelism
found in the pixel crunching part of the algorithms, the DSP offers a friendly approach to the more complex tasks. The paper
continues to motivate that SIMD processors have very convenient scaling properties in silicon, making the complete, SIMD-
DSP architecture suitable for different application areas without changing the software suite. Analysis of the changes in power
consumption due to scaling shows that for typical image processing tasks, it is beneficial to scale the SIMD processor to use the
maximum level of parallelism available in the algorithm if the IC supply voltage can be lowered. If silicon cost is of importance,
the parallelism of the processor should be scaled to just reach the desired performance given the speed of the silicon.
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second for complex decision tasks. However, we will show

Real-time video processing on (low-cost and low-power)
programmable platforms is now becoming possible thanks
to advances in integration techniques [1, 2, 3, 4]. This is
relevant to a number of applications such as mobile com-
munications, home robotics, and even industrial image pro-
cessing [5, 6]. It is important that these platforms are pro-
grammable since new applications for smart cameras emerge
every month. The complexity (and possible error-proneness)
of the algorithms and the fickleness of real-life scenes are also
strongly motivating complete programmability. Repeatedly
building application-specific ICs or weakly programmable
ICs is simply too costly and by far not sufficient for this
changing market.

It seems like a daunting task to create programmable
hardware that is able to process multimillion pixels per

in this paper that this is possible by exploiting the inherent
parallelism present in the various levels of image processing.

A desirable “silicon” property of the resulting parallel ar-
chitectures is that they are easily scaled up or down in perfor-
mance and/or power consumption whenever the application
changes. This not only lowers the need to develop new ar-
chitectures from scratch for new vision application areas, but
it also allows the design team to use the same software suite
with only some settings changed in include files. This signifi-
cantly reduces the overall cost of vision solutions as they can
be reused among the portfolio of the producer.

The two types of processors that we propose to be defi-
nitely included in smart camera architectures are the SIMD
(single instruction multiple-data) massively parallel proces-
sor and (one or more) general purpose DSPs [7]. Enough has
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FiGure 1: Algorithm classification with respect to the type of oper-
ations.

been written about general purpose DSPs, so we will mainly
focus in this paper on the merits of SIMD processors for
the computationally demanding image processing tasks. Af-
ter reading the paper, it will be clear that they have unique
and very clear merits from a silicon and algorithmic point
of view for realistic IC implementations of programmable
smart cameras.

This paper deals with hardware processor architectures
and their properties for scalable platforms. However, de-
signing an easy-to-use software environment for these scal-
able platforms with multiple processor cores is of course
an immense task. Even though all processors might be pro-
grammable in a similar language, still (automatic) decisions
have to be made to decide on which processor to run which
task, when, and how to communicate data. A recent result of
the smart camera project is a programming method where
algorithmic kernels in the shape of skeletons are used to de-
scribe the applications. Based on the available processor cores
and memory in the final (scaled) architecture, different skele-
tons are chosen, linked, and scheduled. The virtue of this de-
sign suite is that several skeletons are available for a certain
task, optimized for different processor cores. An implemen-
tation of a complete application can now survive scaling of
the hardware. For more information on this software envi-
ronment, the interested reader is kindly referred to [8].

The remainder of the paper is organized as follows. In
Section 2, we show how well-known processor architectures
map to the image processing algorithms. Section 3 deals with
some application areas and their performance demands. This
is followed by the proposed SIMD-VLIW-based vision plat-
form for smart cameras in Section 4. The scaling properties
of SIMD regarding silicon are discussed in Section 5. Finally,
conclusions are drawn in Section 6.

2. ALGORITHM CLASSIFICATION

Applications on smart cameras have typically as input im-
ages or life video from the observed scene and produce low-
rate data output in the form of decisions or identification re-
sults. Among the examples that are worked on now are per-
son and object identification, gesture control, event recogni-
tion, and data measurement. More challenging applications
are expected to come in the near future.

Lots of pixels: 1, ..., 1000 Mbps
Similar processing per pixel

Low level

Lots of objects: 1,...,300k
objects/second

Similar processing per
objects/group

Intermediate level

Some decision tasks

High level Complex processing

FIGURE 2: Data entities with processing characteristics and possible
ways to increase performance by exploiting parallelism.

The algorithms in the application areas of smart cameras
can be grouped into three levels: low-level, intermediate-level,
and high-level tasks. Figures 1 and 2 show the task classifica-
tion and the corresponding data entities, respectively.

The low- or early-image processing level is associated
with typical kernel operations like convolutions and data-
dependent operations using a limited neighbourhood of the
current pixels. In this part, often a classification or the ini-
tial steps towards pixel classification are performed. Because
every pixel could be classified in the end as “interesting,” the
algorithms per pixel are essentially the same. So, if more per-
formance is needed in this level of image processing, with
(now!) up to a billion pixels per second, it is very fruitful
to use this inherent data parallelism by operating on more
pixels per clock cycle. The processors enabling this have an
SIMD architecture [9, 10]. In SIMD architectures, the same
instruction is issued on all data items in parallel. This low-
ers the overhead of instruction fetch, decoding, and data ac-
cess leading to economical solutions to meet the high perfor-
mance and throughput found in this task level.

Also from a power consumption point of view, SIMD
processors prove to be very good [11]. The parallel archi-
tecture namely reduces the number of memory accesses,
clock speed, and instruction decoding, thereby enabling
higher performance at lower power consumption [3, 4], see
Section 5.1.

An important silicon property of SIMD processors is the
regularity of the design. This enables cost effective scaling of
the platform for different performance regions by simply in-
creasing or reducing the number of processors in the parallel
array. The hardware design can be reused and what is even
more important is that inherently the software suite remains
the same. So, using SIMD for pixel processing lowers the de-
sign cost (and time-to-market) of rapidly changing applica-
tions.

In the intermediate level, measurements are performed on
the objects found to analyze the quality or properties of ob-
jects in order to make decisions on the image contents. It ap-
pears that SIMD type of architectures can do these tasks, but
they are not very efficient because only part of the image (or
line) contains objects and the SIMD processors are always
processing the entire image (or line). However, they can be
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FIGURE 3: Face recognition actually has two parts, the detection and
the recognition. The complete detection part is perfectly mapped to
the SIMD processor doing the low-level operations. The recognition
part is dealt with by the VLIW processor.

easily performed by a general purpose DSP in the system, if
the performance demands are met. If the performance needs
to be increased, a viable way is to use the property that similar
algorithms are performed on the various objects, which leads
to task-parallel object processing on different processors.

Finally, in the high-level part of image processing, deci-
sions are made and forwarded to the user. General-purpose
processors are ideal for these tasks because they offer the flex-
ibility to implement complex software tasks and are often ca-
pable of running an operating system and doing networking
applications.

An illustrative application where we can easily indicate
the three processing levels is face recognition and detection
(see Figure 3). Here the low-level part of the algorithm clas-
sifies each pixel as belonging to a face or not (face detection).
This is mapped on “Xetal,” an SIMD processor [4]. The in-
termediate level determines the features and identifies each
found face object. Finally, in the high-level part of the algo-
rithm, the decisions to open a door, sound an alarm, or start
a new guest program are taken. The latter two tasks are per-
formed by “TriMedia,” a VLIW (very large instruction word)
processor [12]. This example was mentioned purely because
it shows the three levels quite clearly, more information on
this application for the interested reader can be found in
[11, 13].

3. APPLICATION PROFILING

The nature of the application determines the scaling that
needs to be applied to the SIMD processor and the accom-
panying DSP in order to meet the performance. Although
the basic operations handled by the SIMD processor remain
identical, the application dictates the way the computations
are performed and the intensity. Consequently, the SIMD ar-
chitecture needs to be scaled up or down. To a varying de-
gree, all application segments look for better performance at
lower-cost and lower-power consumption.

Mobile multimedia processing

This class of applications is characterized by low cost, moder-
ate computational complexity, and low power. The applica-
tion can usually live with reduced quality of services, for ex-

ample, lower-frame rate and compressed video streams. The
objective from the point of view of product manufacturers
is cost reduction which translates to reduction in silicon area
and power-efficient computation. The latter objective can of-
ten be compromised for the former since mobile devices are
active for a short period of time compared to standby dura-
tion and the battery energy is wasted mainly in the standby
phase.

Thus, to cut costs, the SIMD has to be scaled down from
the power-optimal massively parallel architecture. However,
as technology shrinks, cost-per-unit area decreases and scal-
ing down becomes less interesting since the tendency in mo-
bile video applications are increased frame sized and rates,
and more complex applications.

The computational complexity for this class of applica-
tions varies from 300 MOPs for basic camera preprocess-
ing (VGA at 30 fps : 640 *x 480 x 30 pix/s * 30 OPs/pix =
277 MOPs) to 1.5 GOPs for more complex preprocessing in-
cluding auto white balance, exposure time control (about 150
operations per pixel).

Intelligent home interfaces and home robotics

This class of applications corresponds to emerging house
robots with vision features. Typical examples include in-
telligent devices with gesture and face recognition [13],
autonomous video guidance for robots, and smart home
surveillance cameras. These devices cover the medium-cost
range. From a user point of view, the response times and
accuracies of the intelligent devices are of high importance
and imply faster burst performance. They need to operate
in uncontrolled environments (lighting conditions, etc.), and
smarter (complex) algorithms are needed to achieve the de-
sired performance. The power aspect remains an issue espe-
cially in standalone modules such as battery powered surveil-
lance robots.

Because of the extra intelligence needed in this class of
applications, the number of operations per pixel is in the or-
der of 300 or more. This translates to more than 3 GOPs for
a 30-frame-per-second VGA size video stream. Even though
the devices can exhibit long idle times until they are excited
by an event, for example, an intruder in a scene, in their ac-
tive duration, the same degree of performance is required to
guarantee real-time behaviour.

Industrial vision

Unlike the previous two cases, applications in this segment
are cost-tolerant and more emphasis is given in achieving
top performance sometimes at a given power budget. The
emergence of smart cameras has made it possible for various
industrial applications to replace large expensive PC-based
vision systems with compact and light modules having dif-
ferent vision functionalities. The massively parallel SIMD is
very suited for this class of applications from cost, perfor-
mance, and power consumption points of view.

The scaling here is mainly in accordance with the incom-
ing video format, one can expect a corresponding increase
in the SIMD array with increase in the resolution of image
Sensors.
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FIGURE 4: Proposed smart camera architecture.

In this class of applications, a number of basic pixel-level
operations such as edge detection, enhancement, morphol-
ogy, and so forth, need to be performed. Because of the high
video rates often in excess of 500 fps, the computational com-
plexity is easily more than 4 GOPs.

4. THE SIMD-VLIW VISION PLATFORM

The platform discussion in this section is based on the ap-
plication profiling and algorithm classification discussed in
the previous sections. The different aspects of the algorith-
mic levels have made us choose for a dual processor approach
where the low-level image processing and part of the inter-
mediate level are (as in Figure 3) mapped on a massively par-
allel SIMD processor “Xetal” [3]. The high-level image pro-
cessing part and the remaining intermediate-level parts are
mapped on a high-performance DSP core “TriMedia” [12].
This DSP has a VLIW architecture where instruction fetch,
data fetch, and processing are performed in a pipelined fash-
ion. For most applications, the two processors can be simply
connected in series as shown in Figure 4.

The first part of the smart camera architecture is a CMOS
image sensor, it can take up to 100 frames per second with a
resolution of 1280 x 960 pixels. The Xetal processor contains
320 pixel-level processors organized as a linear processor ar-
ray. The array processes an entire image line in 1 to 4 instruc-
tions depending on the line width, when each pixel processor
is responsible for 1 to 4 columns. Around 1600 instructions
can be handled by each processor per line time, depending
on the clock setting. It has 16 line memories to save informa-
tion and a control processor with the program memory to
host the programs [3]. Figure 5 shows the architecture of the
Xetal processor in more detail.

The TriMedia functions as the high-level DSP in the ar-
chitecture. It exploits limited instruction-level parallelism
and can handle up to 5 operations in parallel.

5. PERFORMANCE-DRIVEN SIMD SCALING

The discussion on application profiling indicates that the
performance requirements vary by orders of magnitude from
300 MOPs to more than 4 GOPs. In this section, we ad-
dress the scaling of a massively parallel SIMD architecture to
match the computational complexity of a given application.

The impact of scaling is studied with respect to the different
SIMD building blocks and quantified in terms of silicon area
and power dissipation. The silicon area directly relates to the
cost while the power dissipation dictates the applicability of
the device in a system with maximum power constraint.

5.1. SIMD performance and power scaling

In mobile applications, both battery life and packaging are
important issues. For a given performance requirement, scal-
ing the number of processors in the SIMD machine has direct
impact on the power consumption. Power dissipation deter-
mines the complexity and cost of packaging and cooling of
the devices.

In this section, we look at the performance-power trade-
off when scaling SIMD processors. The analysis is based on
the assumption that dynamic power dissipation is the dom-
inant component and uses the well-known CMOS dynamic
power dissipation formula: Power oc CV?f, where C is the
switched capacitance, V is the supply voltage, and f the
switching frequency.

Energy consumption of an SIMD machine is decom-
posed into the following components: computation modules
(Ecomp)> communication network (Ecomm), memory blocks
(Emem), and control and address generation units (Ecaddr)-
This decomposition helps to identify where most of the
power is spent. Equations (1)—(5) give the intrinsic energy
model of the components as a function of the convolution fil-
ter width (W), number of processing elements (P), number
of pixels per image line (N), and the size of the working line
memory (N(W — 1)). The model parameters have been de-
rived based on a high-level power estimation Petrol [14, 15]
and were later calibrated with measurement results of the Xe-
tal chip. The basis for choosing a convolution algorithm in
our investigation is the fact that convolution involves all the
four components (computation, memory, communication,
and control) that contribute to energy consumption. In the
formulae, it is assumed that the different SIMD configura-
tions operate at the same supply voltage:

Ecornp = a1 Wz: (1)
N N
Ecomm = OQW(E +2> +0(2W<F +2)

[Wr2]
P N|k-1 N N
X |:2 k:gl (fleJ+k Odp+):|

~(5+w)
Emem p
X

(Bi+ BN+ B3(W — 1) + fuN(W — 1)) (3)
<2Mﬂ

(2)

)(ﬁl +ﬁ2P+/335 +ﬁ4N),
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@

Eior = Ecomp + Ecomm + Emem + Ecaddr. (5)

w
Ecaddr = (T +
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FIGURE 6: SIMD energy consumption for different filter kernels.

The computation energy (Ecomp) is a quadratic function
of the filter width (W) and does not depend on the number
of processing elements as the same number of arithmetic op-
erations needs to be done for all configurations. On the other
hand, the other energy components depend on all three di-
mensions (W, P, N) and have been modelled by a first-order
approximation. In essence, scaling the SIMD architecture af-
fects the number of accesses to the working line memories.
With each access, a certain amount of energy is consumed by
the communication channel, the control, address, and gener-
ator, and the memory block. As the number of processors in-
creases, the number of accesses to memory decreases thereby
reducing the total energy dissipation. In general, the fol-
lowing relationship holds between the energy components:
Emem > Ecomp > Ecaddr > Ecomm-

Figure 6 shows curves of the total energy for N = 640
(the number of pixels in a VGA image line) with filter width
as parameter. The curves in Figure 6 show that beyond a
certain degree of parallelism the saving in energy is very

marginal. While the trend is the same, larger filter kernels
benefit from increased number of PEs.

It should be noted that configurations with more pro-
cessing elements (PEs) can handle increased throughput for
the same algorithmic complexity. The increase is propor-
tional to P since P < N and the filter kernels can be fully par-
allelised over the pixels in an image line. The minimum num-
ber of processing elements needed to meet the real-time con-
straint is given by Pmin = [ Calg X fpixel/ fmax |, Where Cyg is the
algorithmic complexity in number of instructions, fpil the
pixel rate, and fiax the maximum clock frequency of the pro-
cessing elements (PEs). The clock frequency of the PEs can
be increased further by optimisation and pipelining. While
optimisation for speed leads to larger PE sizes and increases
computation energy dissipation, the impact of pipelining on
the SIMD scaling needs to be investigated further.

When throughput comes in the picture, power dissipa-
tion becomes a more convenient metric for comparison [16].
Figure 7 shows the power dissipation versus the number of
PEs with performance (Per f = Nops X fpixel) as parameter.
The curves start with P, computed for PEs designed to run
at fmax = 50MHz. Increasing parallelism beyond P, in-
creases the chip cost (area) which has been traded for lower
power dissipation through supply voltage and frequency scal-
ing [17].

In Figure 8, the energy scaling factor is shown which
has been used to generate the power dissipation curves of
Figure 7. The energy scaling factor (6) has been derived from
the CMOS propagation delay model given in [18]. The scal-
ing factor starts with unity at the Ppin corresponding to a
given performance and decreases as the number of PEs in-
creases. A threshold voltage of Vi, = 0.5V and maximum
supply voltage of Vid_max = 1.8 V have been assumed in the
plotted curves. To allow for noise margin, the lowest operat-
ing voltage has been set to Vg min = Vin +0.2V:

Vib + (Pomin/P)?> (Vad_max — Vin) ]2 ©)

Eratio = [
Vdd _max
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FIGURE 7: Impact of voltage scaling on power dissipation.

5.2. SIMD area scaling
5.2.1.

Due to its regularity, the linear processor array (LPA) can be
easily scaled according to the desired performance, cost, and
power figures. Silicon area of the processor array can be given
by Aparray = P X Apg, Where Apg is area of a single processing
element. The array area scales linearly with the number of
processing elements (P).

Scaling the linear processor array

5.2.2. Scaling the line memories

The size of on-chip line memories is dictated by the algo-
rithm to be executed and is independent of the number of
PEs used in the SIMD configuration. From area point of
view, the line memories do not scale; they only change in lay-
out shape since more pixels would be allocated per PE as the
number of PEs decreases. The silicon area contribution of the
line memories becomes Aimem = NiinesAline-

5.2.3. Scaling the global controller

Like the line memories, the global controller also does not
scale with change in the number of PEs. This is to be expected
since, in the SIMD principle, the global controller is already a
shared resource by all PEs. The global controller area is sim-
PIY Agcon .

5.2.4. Scaling the program memory

The program memory scaling depends on how the impact of
loop overhead is addressed. When there are fewer PEs than
the number of pixels in a line, algorithms need to be iter-
ated over partitions of an image line. The overhead is asso-
ciated to the instructions that control the iterations and can
be considerable when the loop body is small. A straightfor-
ward way of reducing the loop overhead is to unroll the loop
by replicating the algorithm code. This results in an increase
in the program memory by an amount, that is, a function
of the length of the unrolled code and the number of repli-
cations. The area of the program memory can be given by

Number of PEs

F1GURE 8: Energy scaling factor for varying computational demand.

Apmem = NopsNunroll(1 + 9)Ainstr, Where Ajygir is the area of
a single instruction and y is the increase factor related to
address-width expansion. Instead, one can use special loop
control hardware in the global controller to avoid the cost of
replicating codes.

5.3. Scaling case study

To summarize the SIMD scaling issue, we collect the com-
ponents into one cost function described in terms of silicon
area: AsiMp = Aparray + Almem + Ageon + Apmem. Figure 9 shows
how the SIMD area scales with the scaling in the number of
PEs. The curves are offset by an amount equivalent to the
line memory and global controller areas which do not scale.
Since the size of the program memory is small relative to the
other components, the relative impact of loop unrolling is
minimal for large array sizes. For lower number of processing
elements (P < 200), the area of the nonscaling components
dominates. Under this condition, it is sensible not to scale
down the number PEs so that the performance loss in the
no loop-unrolling case can be compensated for. When com-
bined with the power scaling curves given earlier, the area
scaling curve provides a quantitative means for performance-
driven SIMD scaling.

6. CONCLUSIONS

In this paper, we have motivated the use of a scalable pro-
grammable architecture for video processing in the various
applications of smart cameras. It appears that the highly par-
allel nature of image processing algorithms allows to put the
major part of the load on an SIMD type of processors. An-
other processor in the system has to be a general-purpose mi-
crocontroller, microprocessor, or DSP.

We have also shown that the SIMD architecture scales
nicely with regard to performance, power consumption and
silicon area (cost). All this, while the so-costly program suite
remains equal. Exploiting parallelism saves energy and in-
creases performance, but the gain starts to stabilize when a
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certain number of processors is used. The SIMD area in-
crease is linear in the number of processors with an offset.
For practical low-cost applications, a design at maximum sil-
icon speed is preferred with a sufficient level of parallelism
to obtain some power savings. When voltage scaling is used,
the lowest power consumption for a given performance is
achieved at the needed number of processors at the maxi-
mum silicon speed of the IC at the lowest voltage supply.
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