
Dissertation

submitted to the

Combined Faculty of Mathematics, Engineering and Natural Sciences

of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

M.Sc. Tobias Thommes

born in: Heidelberg

Oral examination: 11.12.2023

Interconnect technologies for very large
spiking neural networks

Referees: Dr. habil. Johannes Schemmel

Prof. Dr. Peter Fischer

Interconnect technologies for very large spiking neural networks

In the scope of this thesis, a neural event communication architecture has been developed for use in

an accelerated neuromorphic computing system and with a packet-based high performance intercon-

nection network. Existing neuromorphic computing systems mostly use highly customised intercon-

nection networks, directly routing single spike events to their destination. In contrast, the approach

of this thesis uses a general purpose packet-based interconnection network and accumulates multiple

spike events at the source node into larger network packets destined to common destinations. This

is required to optimise the payload efficiency, given relatively large packet headers as compared to

the size of neural spike events.

Theoretical considerations are made about the efficiency of different event aggregation strategies.

Thereby, important factors are the number of occurring event network-destinations and their relative

frequency, as well as the number of available accumulation buffers. Based on the concept of Markov

Chains, an analytical method is developed and used to evaluate these aggregation strategies. Addi-

tionally, some of these strategies are stochastically simulated in order to verify the analytical method

and evaluate them beyond its applicability. Based on the results of this analysis, an optimisation

strategy is proposed for the mapping of neural populations onto interconnected neuromorphic chips,

as well as the joint assignment of event network-destinations to a set of accumulation buffers.

During this thesis, such an event communication architecture has been implemented on the com-

munication FPGAs in the BrainScaleS-2 accelerated neuromorphic computing system. Thereby, its

usability can be scaled beyond single chip setups. For this, the EXTOLL network technology is used

to transport and route the aggregated neural event packets with high bandwidth and low latency. At

the FPGA, a network bandwidth of up to 12 Gbit
s is usable at a maximum payload efficiency of 94 %.

The latency has been measured in the scope of this thesis to a range between 1.6 µs and 2.3 µs across

the network between two neuron circuits on separate chips. This latency is thereby mostly domi-

nated by the path from the neuromorphic chip across the communication FPGA into the network and

back on the receiving side. As the EXTOLL network hardware itself is clocked at a much higher

frequency than the FPGAs, the latency is expected to scale in the order of only approximately 75 ns

for each additional hop through the network.

For being able to globally interpret the arrival timestamps that are transmitted with every spike event,

the system time counters on the FPGAs are synchronised across the network. For this, the global

interrupt mechanism implemented in the EXTOLL hardware is characterised and used within this

thesis. With this, a synchronisation accuracy of ±40ns could be measured.

At the end of this thesis, the successful emulation of a neural signal propagation model, distributed

across two BrainScaleS-2 chips and FPGAs is demonstrated using the implemented event commu-

nication architecture and the described synchronisation mechanism.

Verbindungstechnologien für sehr große spikende Neuronale

Netze

Im Rahmen dieser Arbeit wurde eine Kommunikationsarchitektur für neuronale Spike Events in

einem beschleunigten neuromorphen Rechnersystem unter Benutzung eines paketbasierten Verbin-

dungsnetzwerks entwickelt. Bestehende neuromorphe Computersysteme nutzen meist hoch spezia-

lisierte Verbindungsnetzwerke, bei welchen einzelne Spike Events direkt zu ihrem Ziel geroutet

werden. Dagegen verwendet der Ansatz dieser Arbeit ein allgemeines paketbasiertes Hochleistungs-

Verbindungsnetzwerk und akkumuliert dazu mehrere Events zu größeren Paketen, die dann zum ge-

meinsamen Ziel der Events gesendet werden. Dies ist notwendig, um die Daten-Nutzlast-Effizienz,

bezogen auf den relativ großen Paketheader verglichen mit einem einzelnen Event, sicherzustellen.

Es werden theoretische Überlegungen über die Effizienz verschiedener Strategien zur Akkumula-

tion von Spike Events angestellt. Wichtige Faktoren sind dabei die Anzahl von vorkommenden

Event-Netzwerkzielen und deren relative Häufigkeit, sowie die Anzahl verfügbarer Pufferspeicher

zur Akkumulation. Basierend auf dem Konzept von Markov Ketten, wird eine analytische Methode

zur Evaluation dieser Akkumulationsstrategien entwickelt. Zusätzlich werden einige dieser Strate-

gien stochastisch simuliert, um die analytische Methode zu verifizieren und diese Strategien über

die Gültigkeit der Methode hinaus zu untersuchen. Basierend auf den Ergebnissen dieser Analy-

se, wird eine Strategie zur Optimierung der Verteilung neuronaler Populationen über mehrere ver-

netzte Mikrochips hinweg, sowie der Zuordnung von Event-Netzwerkzielen zu einer Menge von

Akkumulations-Pufferspeichern, vorgeschlagen.

Während dieser Arbeit wurde eine solche Event-Kommunikationsarchitektur auf den

Kommunikations-FPGAs des beschleunigten neuromorphen Computersystems BrainScaleS-2

implementiert. Dadurch kann dessen Nutzbarkeit über die Nutzung von Einzel-Chip-Aufbauten hin-

aus skaliert werden. Hierfür wird die EXTOLL Netzwerk Technologie genutzt, um die aggregierten

neuralen Event Pakete mit hoher Bandbreite und niedriger Latenz zu übertragen. An den FPGAs

ist dadurch eine Netzwerkbandbreite von bis zu 12 Gbit
s nutzbar bei einer maximalen Effizienz der

Datennutzlast von 94 %. Die Latenz wurde im Rahmen dieser Arbeit in einem Bereich zwischen

1.6 µs und 2.3 µs über das Netzwerk zwischen zwei Neuronschaltungen auf separaten Mikrochips

gemessen. Diese Latenz ist größtenteils dominiert durch den Pfad vom neuromorphen Chip über

das Kommunikations-FPGA in das Netzwerk und zurück auf der Empfangsseite. Da die EXTOLL

Netzwerkhardware selbst mit einer viel höheren Taktrate als die FPGAs betrieben wird, ist zu

erwarten, dass die Netzwerklatenz in der Größenordnung von lediglich etwa 75 ns pro zusätzlichem

Netzwerkschritt skaliert.

Um die Ankunftszeitstempel, welche mit jedem Spike Event versendet werden, global interpretieren

zu können, werden die Systemzeitzähler der FPGAs über das Netzwerk synchronisiert. Dazu wird

im Rahmen dieser Arbeit der globale Interruptmechanismus des EXTOLL Netzwerks charakterisiert

und verwendet. Damit konnte eine Synchronisationsgenauigkeit von ±40ns gemessen werden.

Am Ende dieser Arbeit wird die erfolgreiche Emulation eines Modells zur neuronalen Signalweiter-

leitung, verteilt über zwei BrainScaleS-2 Chips und FPGAs hinweg, unter Verwendung der entwi-

ckelten und implementierten Event Kommunikationsarchitektur und des beschriebenen Synchroni-

sationsmechanismus, demonstriert.

vi

Table of Contents

Table of Contents vii

I Introduction 1

1 Motivation and Overview 3

2 Background 13

2.1 Neural Networks in Biology . 13

2.2 Neuromorphic Computing . 16

2.3 High Performance Interconnection Networks . 20

3 The BrainScaleS-2 System 33

3.1 The HICANN-X ASIC . 34

3.2 The Communication FPGA . 37

3.3 The Software Stack and Experiment Flow . 43

4 The EXTOLL Network Technology 47

4.1 The Network Partition . 48

4.2 The NIC partition . 52

4.3 The Host Interface . 54

4.4 The Software Stack . 55

II Event Communication 57

5 Event Communication Principles and Systems 59

5.1 Event Communication in General . 59

5.2 Event Communication for SNNs . 60

5.3 Quality of Service Requirements for Spike Communication 61

5.4 Methods for obtaining Spike Communication Quality of Service 64

5.5 Existing Spike Communication Architectures . 65

5.6 Event Communication in a Packet-Based Network 67

6 Formal Analysis of Event Aggregation 75

6.1 Accumulation Buckets . 76

6.2 Mathematical Analysis . 81

6.3 Results of the Mathematical Analysis . 91

6.4 Simulation Analysis . 102

vii

Table of Contents

III Implementation and Experiments 107

7 The Implemented Event Communication 109

7.1 The Event Switch . 110

7.2 Systime Synchronisation . 116

7.3 Event Transmission . 118

7.4 The NHTL Transaction Layer . 122

7.5 Event Reception . 124

7.6 Configuration and Status Interfaces . 129

7.7 Clock Domain Signal Synchronisation . 137

7.8 Design Parametrisation . 139

8 Commissioning 141

8.1 Simulation and Verification . 141

8.2 Physical FPGA implementation . 148

8.3 Network Operation Tools . 156

8.4 Software Integration . 159

8.5 Inter-Chip Latency Measurement . 166

8.6 Systime and Experiment Synchronisation . 169

8.7 The Synfire Chain Experiment . 181

9 Conclusion 189

9.1 Summary . 189

9.2 Outlook and Discussion . 194

IV Appendix 199

A Mathematics derivations 201

A.1 Derivation of the Dennard Scaling Law . 201

A.2 Poisson Distribution Statistics . 202

A.3 Proving total probability in the Markov Transition Matrix 203

B Implementation Details 205

B.1 Used Signal Interfaces . 205

B.2 Used Network Packet Types . 208

C Dynamic Bucket Concept 213

C.1 Overview . 213

C.2 Arbitration Request Pipeline . 215

C.3 Bucket Finite-State Machine . 216

D Acronyms 219

Publications 226

viii

Table of Contents

References 227

Acknowledgements - Danksagungen 242

ix

Part I

Introduction

1

1 Motivation and Overview

Ever since the first computing machines were built during the time of the second world war by

Konrad Zuse (Z3, 1941) and Alan Turing (The Letchworth-Enigma (1940) (Sale 2004), The Turing

Bombe (Davies 1999)), computers have become increasingly powerful. Starting with mechanical

constructions as the Letchworth-Enigma or Zuse’s Z1 (Wikipedia 2023d), technology rapidly tran-

sitioned to electromagnetic relays with the Z2 (Wikipedia 2023e). The first vacuum-tube based

computer was the Electronic Numerical Integrator and Computer (ENIAC) (1946), developed at

the University of Pennsylvania (Eckert et al. 1964). In 1954 the TRAnsistor Digital Computer

(TRADIC) (Irvine 2001) was the first computer to be based on discrete transistor technology.

With the invention of the first integrated circuits by Jack Kilby based on Germanium (Kilby 1964)

and Robert Noyce based on Silicon (Noyce 1961) in 1959, the development in computer technology

rapidly advanced to increasingly high transistor integration densities, while rapidly shrinking the

technological feature size of transistors. While in 1971 the smallest feature size on an integrated cir-

cuit was around 10 µm (Wikipedia 2023a), current CMOS process nodes of different manufacturing

companies such as TSMC or Samsung offer transistors feature sizes around 5 nm 2 and metal pitch

sizes of around 24 nm (IEEE 2021; Wikipedia 2023b).

The Dennard scaling law (Dennard et al. 1974) connects the scaling of the physical size d of a

MOSFET transistor to its performance characteristics like its power consumption P and switching

frequency f . The derivation starts at the fact that electric power consumption for loading a capaci-

tance is proportional to the value of that capacitance, as well as to the frequency and squared voltage

with which it is repeatedly driven. Finally, the Dennard law arrives at the statement that power

consumption is proportional to the capacitors area (for the derivation cf. Appendix A.1). Conse-

quently the power-density will stay constant while increasing the integration density and operation

frequency, i.e. the number of transistors per area. This is closely related to Moore’s law, roughly pos-

tulating an ever increasing integration density while technology advances over time (Moore 2006).

Figure 1.1 shows actual numbers of transistors on microchips from the years between 1970 and

2020, supporting the hypothesis of Moore’s law.

However, the Dennard scaling does not take into account the transistors leakage currents and quan-

tum tunnelling effects that become increasingly important when scaling towards the atomic level

of a few nanometres length. Consequently, modern technology improvements cannot only rely on

shrinking feature size to increase the frequency, but have to make further advances regarding the

shape of transistors. Examples for this trend are technologies like FinFET (Jurczak et al. 2009),

where multiple gates are placed on top, beside or surrounding the channel between source and drain,

2the width of a FinFET fin

3

1 Motivation and Overview

Figure 1.1: Data graph, showing the number of transistors on microchips in the years between 1970
and 2020. Figure taken from (Roser et al. 2020).

that is formed like fins. The latter, where the gate surrounds the transistor channel are called Gate

All Around Field Effect Transistors (GAAFETs) (Y.-C. Huang et al. 2017) and pose a further tech-

nological improvement.

Another important strategy of further scaling the performance of integrated circuits and processing

power is massive parallelisation instead of further pushing forward the performance of single pro-

cessing units. This approach makes use of more and more processing units, cooperatively solving

computing tasks.

By dividing a task into multiple sub-tasks executed in parallel, one could think that while increas-

ing the number n of execution units working in parallel, the computation time of the overall task

would scale down linearly. However, Amdahl’s Law (Amdahl 1967) states that the speed-up η , the-

oretically reachable by parallelisation is fundamentally limited by the sequential portion tS and the

parallel portion tP of the tasks computational runtime T = ts + tp. Thereby, the sequential portion

contains all the operations of the task that cannot be distributed amongst the processing units, as they

immediately depend on the results of their preceding operations:

η =
1

s+ p
n
≤ 1

s
(1.1)

4

where s = ts
T is the fraction of sequential runtime and p =

tp
T is the fraction of parallelisable runtime.

In the limit of infinitely many parallel threads n→∞, Equation (1.1) converges to a maximum speed-

up of 1
s , limited by the sequential part of the task. This limitation can be avoided by also scaling

the problem size of the task with the number of parallel processors. For this case Gustafson’s law

(Gustafson 1988) states, according to Amdahl’s law that with double the number of processors one

can compute double the amount of data in the same amount of time.

However, this analysis is still quite idealised, as Amdahl argued that with a growing number of

parallel processors, there is also a rising amount of communication and synchronisation needed

in order to cooperatively complete the task in parallel. This is taken into account by adding to

the equation the portion tc(n) = O(n) of execution time that is spent with communication (T =

ts + tp + tc).

η =
1

s+ c(n)+ p
n
≤ 1

s+ c(n)
(1.2)

Now, in the limit of infinitely many parallel threads, the speed-up no longer converges to 1
s . Instead,

the speed-up now exhibits an optimum point, depending on the communicational fraction c(n) =
tc(n)

T .

These considerations emphasise the need for efficient high-performance interconnection networks

for the massively parallel supercomputers. Important performance indicators for interconnection

networks include bandwidth, latency, message rate and availability. While bandwidth describes the

amount of data that can be transmitted per unit of time, latency describes the amount of time it

takes for messages to pass the network. The message rate on the other hand measures the number of

distinct messages that can be injected in a network per unit of time while the availability characterises

whether messages being transmitted along a specific route may block other messages that need to use

(parts of) the same route to reach another destination. Also for data transfer across the global internet,

these performance indicators are of high importance, although their particular importance largely

depends on the concrete application. A more detailed introduction on interconnection networks and

their design space will be presented in Section 2.3.

The Top500 organisation1 regularly lists the worlds largest and most powerful supercomputers since

1993. The current list of June 2023 (Top 500 List 2023) awards the pole position to the Frontier sys-

tem, located at the Oak Ridge national Laboratory in the United States. This supercomputer makes

use of 8,699,904 processing cores, thereby offering a peak computing power of 1.679 EFlop/s while

drawing a total electric power of 22.7 MW. Remarkably, it is thereby the first exascale computer ever

built. As an interconnect it uses the Hewlett Packard Enterprise (HPE) Slingshot network, which has

been developed by Cray (De Sensi et al. 2020). This high-performance interconnection network pro-

vides switching hardware with 64 ports, each offering a bandwidth of 200 Gbit
s and message rates of

up to 600 MMsg
s in both directions. Adaptive routing and an active congestion management provide

high availability rates. The switching latency is reported to be in a range between 300 ns and 400 ns.

(De Sensi et al. 2020; Hewlett Packard Enterprise 2023)

The second rank on the current Top500 list goes to the Supercomputer Fugaku at the Fujitsu RIKEN

1www.top500.org

5

www.top500.org

1 Motivation and Overview

Center for Computational Science in Japan. This machine employs 7,630,848 processing cores, of-

fering a peak computing power of 537.2 PFlop/s by drawing even more electric power of 29.9 MW.

As network it uses the Tofu Interconnect D (Ajima et al. 2018). It offers peak injection rates of up to

300 Gbit
s per link and a sustained throughput bandwidth of 50 Gbit

s . The switching latency is reported

between 490 ns and 540 ns. (Ajima et al. 2018)

As these two examples show, the continued increase in computing power comes at the cost of enor-

mous electric power consumption, although the power efficiency has made a huge step forward

between these two examples, now finally reaching the exascale of computing power (Shalf et al.

2011).

While digital computers are mainly good at processing huge amounts of numbers and data, the hu-

man brain performs extremely complex tasks like decision making and pattern recognition. It can

easily succeed in driving vehicles through crowded places and most successfully avoid harmful col-

lisions (if not hampered by strong tiredness or drugs). Not to mention creative tasks like composing

and interpreting of music, writing literature or creating beautiful paintings, and especially doing

science about the world it is living in.

While reproducing these tasks using digital computing hardware uses up huge amounts of computing

power while drawing correspondingly high amounts of electric power, all these tasks are performed

by the human brain while only drawing an approximate continuous power of about 20 W (Leonard

et al. 1994; Markram 2012). The wish to understand how this miraculously efficient and powerful

organ works, and before its role was known, the question where the human behaviour, intelligence

and feelings arise from, has at all times driven the field of neuroscience. Since about roughly more

than a century, scientists begin to understand with huge advances, the principles of how the nervous

system works. While ancient reports indicate that a rudimentary interest and understanding in the

role of the brain as the origin of human behaviour and thought has already existed in ancient egypt

and greece (Wikipedia 2023c), Luigi Galvani was the first modern scientist to recognise the electric

nature of nerves around 1790, describing them as "animal electricity" (Piccolino 1998). Notably, his

experiments with different metals contacting dissected frogs’ legs led to the invention of chemical

batteries by Alessandro Volta around 1800. Continuing the path of physiological studies, Charles

Bell first described the difference between motor- and sensor neurons in 1811 (Grzybowski et al.

2007).

The first real breakthrough in neuroscience was achieved by Camillo Golgi and Santiago Ramón

y Cajal in discovering the cellular structure of the nervous system. Cajal had used and improved

colouring methods developed by Golgi in order to investigate nerve fibres from the grey brain matter

and the fine structure of the retina (Hanser et al. 2000). Although Golgi and Cajal disagreed about the

detailed interpretation of their findings (Jones 1999), they were both awarded the 1906 Nobel prize

in Physiology and Medicine "in recognition of their work on the structure of the nervous system"

(Nobel Prize Outreach AB 2023).

Another important breakthrough was made by Alan Lloyd Hodgkin and Andrew Fielding Huxley

who, together with John Carew Eccles, received the 1963 Nobel prize "for their discoveries concern-

ing the ionic mechanisms involved in excitation and inhibition in the peripheral and central portions

6

of the nerve cell membrane" (Nobel Prize Outreach AB 2023). The Hodgkin-Huxley neuron model

(Hodgkin et al. 1952) which is named after them, quantitively describes the mechanism of how neu-

rons produce and transfer action potentials, also referred to as spike events. A rough summary of the

basic bio-physiological function of neurons and synapses will be presented in Section 2.1.

In recent years (since 2013), the neuroscientific community has collaborated in two large projects: on

the west side of the Atlantic the Brain Research Through Advancing Innovative Neurotechnologies®

Initiative (BRAIN Initiative), funded by the United States government, and on the east side the

Human Brain Project (HBP), funded by the European Union.

In the last ten years up to its end in September 2023, the HBP has succeeded in many ways to

provide a "research infrastructure that [allows] scientific and industrial researchers to advance our

knowledge in fields of neuroscience, computing, and brain-related medicine"1.

In the field of neuroscience, for example the Brain Atlas provides a computational framework for

creating a 3-dimensional map of the cellular structure of not only the human brain, but also different

animal species like e.g. mice or monkeys (Amunts et al. 2020; Silvestri et al. 2021; Stacho et al.

2020)2.

For brain-related medicine, the HBP e.g. provides a framework for creating very detailed duplicate

models of patients’ brains. These help e.g. in surgery of epileptic patients to identify the exact loca-

tion of those regions causing the epileptic seizures. Based on these models, surgeons can precisely

plan the surgical intervention for removing this and only this affected portion of the brain (Wang et

al. 2023). Besides this, neural implants have been developed for blind or paraplegic patients which

are currently in clinical trial in the form of case studies (Fernández et al. 2021; Wagner et al. 2018).

In the field of robotics, the Neuro-Robotics Platform (NRP) has been developed and provided by

the HBP3. With the help of this platform, e.g. robots have learned improved models for location

remembering and navigation (Pearson et al. 2021).

Last but not least, in the area of computing, the HBP funded the development, build-up and operation

of two large-scale neuromorphic computing systems, SpiNNaker and BrainScaleS4.

Generally, neuromorphic computing aims to build computing systems that are based on the known

aspects of how biological nervous systems work. A review on the history and landscape of neuro-

morphic computing with a focus on large-scale systems is given in (S. Furber 2016).

In principle, there are two kinds of neuromorphic computing systems. On the one hand there are

those which numerically solve the differential equations of neurons and synapses to digitally sim-

ulate a neural network. On the other hand, analogue neuromorphic systems don’t explicitly solve

these dynamic equations, but rather implement electronic circuits that adhere to the same dynamics

and thereby emulate the behaviour of neural networks. One great advantage of analogue systems is

1The principal self-description of the HBP on its website https://www.humanbrainproject.eu/
2These atlases are publicly available at https://julich-brain-atlas.de/
3The NRP is publicly available at https://neurorobotics.net/index.html
4Both systems can be accessed via the EBRAINS platform at https://www.ebrains.eu/
modelling-simulation-and-computing/computing/neuromorphic-computing/

7

https://www.humanbrainproject.eu/
https://julich-brain-atlas.de/
https://neurorobotics.net/index.html
https://www.ebrains.eu/modelling-simulation-and-computing/computing/neuromorphic-computing/
https://www.ebrains.eu/modelling-simulation-and-computing/computing/neuromorphic-computing/

1 Motivation and Overview

that they can be designed and dimensioned in a way that the neural dynamics run at high speedup

factors, as compared to biological timescales. In contrast, depending on the level of simulated detail

and available processing power, a numerical neuromorphic simulation can run in an order of 100

times slower than biology. A short introduction on the basic principles of neuromorphic computing

will be presented here in Section 2.2.

As large scale neuromorphic computing systems are a special kind of supercomputers, however with

a very specific workload, they also have the need for efficient interconnection networks to communi-

cate neuromorphic event data. As biological neurons exchange information solely based on the tim-

ing, frequency and spatial distribution of so-called action potentials or spike-events, the simulation

or emulation of such neural networks poses unique requirements to an interconnection network car-

rying the communication messages in a neuromorphic computing system. These requirements will

be explained and related to existing neuromorphic computing systems like SpiNNaker and BSS-1,

as well as its predecessor Spikey in Chapter 5.

The SpiNNaker system (S. B. Furber, Galluppi, et al. 2014), as it is specifically designed for this

workload and trades numerical precision for energy efficiency and scalability, is able to digitally

simulate 460 million neurons in biological realtime (S. Furber 2016). For this purpose it uses one

million ARM cores and a special purpose interconnection network.

The BrainScaleS system on the other hand, as developed at the Electronic Visions Group in Heidel-

berg, is a mixed signal accelerated neuromorphic computing system. As such it emulates the dy-

namics of neurons and synapses as abstracted from biological into physical models using analogue

electronic circuits. Spike events generated from these full custom integrated circuits are digitised and

communicated between units of the system. Because of the fast intrinsic timescales of the electronic

circuits, the analogue neuron and synapse dynamics are accelerated by factors between 103 (with

the current BSS-2 ASIC) and 105 (with its historical predecessor Spikey) as compared to biological

timescales.

As part of the HBP, the first generation BSS-1 (J. Schemmel et al. 2008; Johannes Schemmel,

Brüderle, et al. 2010; H. Schmidt et al. 2023) was developed as a large scale neuromorphic com-

puting platform. The BSS-1 System is based on the High Input Count Analog Neural Network

(HICANN) chip, featuring 512 analogue neuron circuits and 224 synapses each. The HICANN was

designed for neural network emulations with a speed-up factor of up to 104 times faster than biology.

This speed-up enables investigation of the dynamics of learning processes in the order of seconds

which would naturally take multiple hours.

An important feature of the BSS-1 system is its large scale design using Wafer Scale Integration

(WSI). As most modern microchips, HICANNs are produced on silicon discs, called wafers. Usu-

ally individual dies are produced by cutting the wafer after production. Due to technical reasons,

microchips can only be produced in area units of a certain maximum size. This maximum produc-

tion area is called a reticle and is iterated over the whole area of the silicon wafers. With BSS-1

one reticle contains 8 HICANN ASICs, directly edge-connected to each other. The otherwise iso-

lated reticles are interconnected by additional metal layers, added in a custom post-processing step

at the Fraunhofer IZM in Berlin (Zoschke et al. 2017). With this technique, a BSS-1 Wafer Module

8

combines 48 reticles and thereby features 196,608 neuron circuits with 44,040,192 synapses. In the

work of (Thanasoulis 2019), an interconnection network has been proposed in order to interconnect

several of these Wafer Modules.

These numbers seem quite high, but are actually still rather small when comparing them to the

approximate order of 1011 neurons and 1014 synapses in the human brain, illustrating its high com-

plexity. In order to match these numbers of a human brain, more than 50,000 of these wafer modules

would be required only for the neurons. However, to also match the vast connectivity of on aver-

age 1000 synapses per neuron, one would need approximately 200,000 of these units. To further

illustrate these numbers, one can also compare to the number of approximately 150,000 neurons in

a Drosophila fruit fly.

In parallel to the development of the wafer-scale system, the HICANN ASIC was further improved

and advanced to the next generation, now called BrainScaleS-2 (Pehle et al. 2022). In contrast

to BSS-1, which is built using a UMC 180 nm technology, the current ASIC, called High Input

Count Analog Neural Network with HAGEN Extensions (HICANN-X) is manufactured in a 65 nm

process technology by TSMC. Additionally, the HICANN-X ASIC features a lot of new circuits

and improvements of existing ones. The probably most important advancement compared to BSS-1

is the introduction of two custom embedded SIMD microprocessors that can be used to change

the extensive parametrisation of the analogue emulation circuits during their accelerated operation.

Thereby, various plasticity rules can be directly programmed to the chip to investigate learning

dynamics in the accelerated neuromorphic system. The acceleration, as compared to BSS-1 was

reduced to a factor of 1000 in order to relax the communication bandwidth requirements.

At the current stage of development, BSS-2 has not yet developed to a full large-scale system,

but offers flexible access to approximately two dozens of single chip setups. These consist of two

neuromorphic ASICs, each connected to an FPGA which offers high-speed communication, bridging

the gap to the user-space software on a conventional host-computer (cf. Chapter 3). The goal of this

thesis is to develop, implement and test a communication and synchronisation mechanism that can

be used to interconnect the BSS-2 system in a scalable manner.

Each of the existing neuromorphic computing systems reviewed in (S. Furber 2016), including

SpiNNaker and BSS-1, realised a custom network implementation, optimised for the unique con-

straints and requirements of neural event communication. However, in the scope of this thesis an-

other approach is taken, making use of an existing, packet-based general-purpose interconnection

network. The main characteristic of such packet-based networks is that they always require some

significant amount of management information to be transmitted in the header of each packet in

order to route it towards its destination. Usually, this is significantly more than is required to route

single spike events in a special purpose neuromorphic interconnect. Therefore, it is desirable to

collect multiple spike events and route them in a shared packet towards their common destination in

the network. For this purpose, multiple output packet buffers, referred to as buckets will be used.

An interconnection network, suitable for the task of neuromorphic event communication in an ac-

celerated system should offer a good combination of high transmission bandwidth, as well as high

injection rates of small packets. Additionally, the transmission latency should be as low as possible

9

1 Motivation and Overview

in order to cope with the accelerated neuromorphic computation. Chapter 5 will elaborate further on

these requirements.

For this task, the EXTOLL network is found suitable. The EXTOLL interconnection network has

been developed by the EXTOLL company, based in Mannheim1 which is a spin-off from the Com-

puter Architecture Group (CAG) at the University of Heidelberg2. The design goals were to provide

high bandwidth and message rates with low latencies for interconnecting high performance comput-

ing clusters. EXTOLL implements a direct, switch-less network, capable of connecting up to 216

nodes in a 3D-Torus or any other topology with a node-degree up to 6. Multicast communication is

supported by hardware with up to 64 multicast groups. A built-in barrier and interrupt mechanism

supports global interrupts across the network with very low skew of only a few clock cycles. This

interrupt mechanism will play an important role in this thesis in synchronising BSS-2 systems, as

described in Section 7.2. The accuracy of the interrupt operation’s synchrony will be evaluated in

Section 8.6.3. Chapter 4 will elaborate on the distinct features of the EXTOLL network ASIC.

Overall, this thesis is organised in four parts. Starting with an introduction in Part I, an overview

on the biological and technological background regarding biology, neuromorphic computing and the

characterisation and design space of high-performance interconnection networks will be given in

Chapter 2. The characteristics and features of the BrainScaleS-2 neuromorphic computing system,

as well as the EXTOLL network will be given in Chapter 3 and Chapter 4 respectively.

In Part II, Chapter 5 first elaborates on the general principles of event communication and the require-

ments and strategies that follow for the implementation of event communication in a packet-based

network in the context of existing literature. Chapter 6 will present a detailed formal analysis of

event aggregation into packets under the constraints imposed on this task by the principles of neu-

romorphic event communication. The main question addressed here, is how many events can be

expected to be accumulated in a packet until constraints require sending it. This is especially non-

trivial in the case when there are more event destinations in the neural network, than output buffers

for accumulating them. This analysis will be based on a mathematical representation of the problem

using a Markov Chain model, accompanied by a stochastic simulation of the accumulation process.

In Part III, Chapter 7 deals with the implemented event communication architecture for BSS-2 and

how multiple BSS-2 systems can be synchronised for this purpose, using the EXTOLL network.

After having described the implementation details, Chapter 8 describes the tools and methods used

for commissioning of the event communication architecture. This will include measurements of

the transmission latency between two BSS-2 neuromorphic ASICs (Section 8.6.1) as well as the

accuracy of synchronisation using the EXTOLL global interrupt mechanism (Section 8.6.3). Fi-

nally, the successful implementation of a Synfire Chain model on two BSS-2 neuromorphic ASICs,

seamlessly working together and exchanging spike events, shows the successful implementation and

integration of the described communication architecture in the existing BSS-2 system infrastructure

(Section 8.7). Chapter 9 will summarise and conclude the results of this thesis and elaborate on

future extensions and improvements of the described event communication architecture.

1www.extoll.de/
2www.ziti.uni-heidelberg.de/ziti/en/institute/research/computer-architecture-group

10

www.extoll.de/
www.ziti.uni-heidelberg.de/ziti/en/institute/research/computer-architecture-group

The Appendix in Part IV contains some mathematical derivations (Appendix A), as well as the doc-

umentation of some important implementation details (Appendix B). Appendix C finally describes

a concept for the implementation of a dynamic event aggregation architecture, which was developed

in the early time of this work, but has not been realised due to its complexity and in favour of the

more simple and static approach described in Chapter 7.

11

2 Background

2.1 Neural Networks in Biology

In Biology, almost every complex organism is controlled by some more or less sophisticated nervous

system. The main building blocks of a nervous system are excitable cells, called neurons. This

Section will give a brief summary of the biophysiological processes driving the functionality of

neurons and their interaction. A detailed and easily understandable review on this topic has already

been given in Chapter 2 of (Petrovici 2016). The reader shall be referred to this excellent work for

details and mathematical models derived from biological observations.

2.1.1 Neurons

dendrite

cell body

axon terminal

nucleus
Schwann cell with
myelin sheath

node of
Ranvier

(a)

cytoplasm extracellular fluid

Na+
K+

K+

Na+

K+

Na+

voltage-
dependent

K+ channel

voltage-
dependent

Na+ channel

ion pump

(b)

Figure 2.1: (a) Schematic drawing of the generic neuron structure; taken from (WikimediaUser
2019). A neuron extends from the cell body in several input- and output branches called
dendrites and axon terminals respectively. Before branching out to multiple targets, an
axon may bridge a long distance. The conductivity of these wires can be improved by
a so-called myelin sheath which is produced by Schwann cells surrounding the axon.
Spots on the axon, not affected by the myelination are called nodes of Ranvier.
(b) Schematic drawing of a neurons’ cell membrane at rest; taken from Figure 2.1 (B)
(Billaudelle 2022). Charged ions in liquid solution are separated between the cytoplasm
and the extracellular fluid. Ions can move in and out the cell by diffusion through
passive- and voltage dependent channels as well as active ion pumps, implemented by
specific protein molecules in the membrane.

The overall structure of a neuron cell and its membrane is depicted in Figure 2.1. Neurons process

information in the form of electrical charges, voltages and currents in the form of charged ion con-

centrations. The most abundant but not exclusive ion types in neurons are single-charged sodium

13

2 Background

(Na+) and potassium (K+), as well as calcium (Ca++) at the synapses (cf. Section 2.1.2). The re-

spective ion concentrations inside and outside the cell are separated by the cell membrane which

exhibits special protein molecules that allow for specific ion types to cross the line by either passive

diffusion or being actively pumped in a specific direction. Passive diffusion channels are partly also

gated by voltage dependent mechanisms in the channel proteins. Under equilibrium conditions, de-

pending on the neuron type, the resting potential across the membrane lies between −100 mV and

−50 mV, typically at −70 mV for human cells (Gekle et al. 2015).

Structurally, neurons stretch out in a dendritic tree to collect input signals from neighbouring cells at

distributed locations. Output signals are conducted along an axon fibre before also branching out to

multiple axon terminals. Along the fibre, conductivity can be improved by a so-called myelin-sheath

that is produced by so-called Schwann cells.

Depolarisation Repolarisation

Membrane
potential

-70 mV

Hyperpolarisation
(Refractory period)

Time

Figure 2.2: The typical shape of an action potential as described by the Hodgkin-Huxley model
(Hodgkin et al. 1952); Figure taken from (Krol 2021). Stimulated by accumulated
charges from external input currents, the membrane potential rises to a depolarised state,
before falling via repolarisation into a hyperpolarised state, where the creation of further
action potentials is blocked for a refractory period of time.

Generally, neurons exchange information through voltage spikes called action potentials. The typ-

ical course of an action potential is shown in Figure 2.2. It is created through voltage-controlled

molecular electric processes of the involved channel proteins and usually triggered by the mem-

brane potential crossing a particular threshold value through synaptic stimulus. The most accurate

model of this process was developed by (Hodgkin et al. 1952) and is called the Hodgkin-Huxley

model. As the shape of such action potentials does not vary a lot between incidences, information is

only conveyed through the timing, frequency and spatial distribution of their occurrence.

During conduction across an axon fibre, the action potential is continuously refreshed along its path

from the local membrane. However, when the axon is myelinated, the refreshing is restrained to the

nodes of Ranvier between the Schwann cells.

More details and models on the structure and function of neurons and their membrane can be found

in Sections 2.1 and 2.2.1 of (Petrovici 2016).

14

2.1 Neural Networks in Biology

synaptic
vesicle

voltage-
gated Ca++
channel

neurotransmitters

neurotransmitter
re-uptake pump axon

terminal

neuro-
transmitter
receptors

synaptic
cleft

dendritic
spine

Figure 2.3: Schematic drawing of a chemical synapse; modified from (WikimediaUser 2006). An in-
creased sodium concentration in the axon terminal, caused by an arriving action potential
opening the respective gated diffusion channels, initiates the release of neurotransmitter
molecules from synaptic vesicles. After diffusing through the synaptic cleft, they are
detected by specific receptors at the dendritic spine of a neighbouring neuron. These
receptors, being chemically gated ion channels, cause a change in the postsynaptic po-
tential. After some time, the neurotransmitters are recycled by special pumping channels
at the axon terminal.

2.1.2 Synapses

The points, where neighbouring neurons exchange information about occurred action potentials are

generally called synapses. Mostly they are formed between an axon terminal of the presynaptic

neuron and a dendritic spine of the postsynaptic neuron. Basically, there are two types of synapses;

fast electrical ones and relatively slow chemical ones. While electrical synapses directly exchange

ions through dedicated voltage gated diffusion channels, chemical synapses exchange special neu-

rotransmitter molecules which cause an ionic current at the receiving dendrite.

Figure 2.3 shows the schematic process of a chemical synapse transmitting an action potential. Ba-

sically the increased voltage of an incoming action potential causes the neuron to emit transmitter

molecules into the synaptic cleft which are detected by receptor channels at the dendritic spine, caus-

ing the postsynaptic neuron to respectively change its own membrane potential by ion-exchange with

the surrounding liquid. Depending on the type of neurotransmitters and receptor channels, the effect

can be excitatory or inhibitory. Once the postsynaptic neuron has integrated enough charge from all

its dendritic synapses, it will create an action potential on its own.

More context on models describing the function of synapses can be found in Sections 2.1.3 and 2.2.2

of (Petrovici 2016).

15

2 Background

2.1.3 Synaptic Plasticity

The specific coupling strength of synapses, which is also often referred to as the synaptic weight,

varies significantly between individual synapses and neurons as well as over different time scales.

Therefore, it is commonly associated with learning and storage of information. The general process

of weight variation is thereby referred to as synaptic plasticity. In biology this has many different

aspects, which basically happen on three different timescales.

Short-term plasticity is the fastest form of coupling strength variation, which is related to the amount

of available neurotransmitter molecules. When the presynaptic neuron is firing faster than it can

recycle the emitted transmitter molecules, it runs out of supply and the transmission of subsequent

action potentials will be less effective. Historically, this was described by the Tsodyks-Markram

mechanism (Tsodyks et al. 1997). According to the time scale of chemical synapses this type of

plasticity happens on the order of milliseconds to seconds.

Long-term plasticity on the other hand is based on Hebb’s principle (Hebb 1949) and happens in

the order of minutes to hours. The physiological processes are not fully understood here, but the

spike-timing-dependent plasticity (STDP) model (Bi et al. 1998; Markram et al. 1997) provides a

mathematical description of the basic observation that neighbouring neurons firing in a correlated

timing pattern will adapt their interaction strength according to the timing sequence of their respec-

tive firing activity. If the presynaptic neuron fires first (causal correlation), the synaptic strength will

be increased. The other way round, if the postsynaptic neuron fires first (acausal correlation), the

synaptic strength will be decreased.

On the largest time scale, in the order of days to years, neurons can even change their physical

connection pattern which is called structural plasticity.

For more details on synaptic plasticity please refer to Section 2.2.2.2 of (Petrovici 2016).

2.2 Neuromorphic Computing

Neuromorphic computing generally aims to build computing systems that are based on the known

aspects of how biological nervous systems work, which have been briefly summarised in Section 2.1

before. A review on the history and landscape of neuromorphic computing with a focus on large-

scale systems is given in (S. Furber 2016). An extensive insight on the principles of neuromorphic

computing and engineering is given in the books of (Ben Abdallah et al. 2022) from the engineering

perspective and (Yu et al. 2017) from a more theoretical perspective.

2.2.1 Generations of Neural Network Models

For computational modelling, the biological neuron model, described in Section 2.1 is translated

into a simple mathematical abstraction.

One can generally distinguish three generations of neuromorphic computing models. Although they

all adhere to the same basic mathematical abstraction of a biological neuron, they differ in the kind

of signals they process and the activation function gating the output signal.

16

2.2 Neuromorphic Computing

2.2.1.1 Perceptron

The first generation of computational neuron models was called Perceptron and was developed in

the late 1950s and early 1960s (Block 1962; Rosenblatt 1958). The Perceptron processes binary

signals. Input signals are multiplied with real-valued weights and the activation function is a sim-

ple threshold. If the sum over the activated input weights exceeds the threshold value, the output

is also activated. The output state is always propagated to the next unit at regular time intervals.

The Perceptron model was one of the first attempts to learn how the cellular structure of the brain

is connected to its cognitive and computational function. It could be seen that already this simple

abstraction of biological neurons is able to show "interesting aspects of learning, discrimination,

generalization, and memory" (Block 1962). However it was later shown that a single basic Percep-

tron unit is incapable of processing non-linear separation problems like for example an Exclusive

OR (XOR)-gate does (Minsky et al. 1969). This can only be achieved by combining multiple of

these units in a network of several layers, where signals propagate from an input layer over one or

more hidden layers to an output layer.

2.2.1.2 Deep Learning Networks

The second generation is what is today called a conventional Artificial Neural Network (ANN). It

processes real-valued signals and gates them with activation functions having a continuous codomain.

In addition to this refinement of the neuron model itself, there was also a significant development

in the network structure towards deeper networks with more hidden layers. However, while a small

Perceptron network with a few layers can still be optimised analytically by solving a set of equations,

this method is no longer viable within the vastly increasing parameter space of deep ANNs. For this

reason, the methods of error backpropagation and stochastic gradient descent were developed since

the late 1960s (Amari 1967, 1993).

The concept of Convolutional Neural Networks (CNNs) is a regularised version of a general deep

multilayer neural network and was introduced in the 1980s (K. Fukushima 1988; K. Fukushima and

Miyake 1982; K. Fukushima, Miyake, and Ito 1983; Kunihiko Fukushima 1980). In recent years

these deep and convolutional neural network models have grown to incredible sizes, achieving great

success milestones like e.g. finding new strategies in Go, one of the most complex board games of

humanity trained by playing against another instance of itself (Silver, A. Huang, et al. 2016; Silver,

Schrittwieser, et al. 2017), or e.g. Chat GPT1 generating text in perfect human language, trained by

feeding huge amounts of text input from the publicly available internet.

2.2.1.3 Spiking Neural Networks

In contrast to to the previously described computational neuron models, Spiking Neural Networks

(SNNs) are modelled more analogueous to biology. As the name already tells, SNNs work on

spike trains as signal type. A spiking neuron unit accumulates input spikes and emits an output

spike when a threshold is exceeded. This is a substantial difference to the regular forwarding of an

output signal in the non-spiking neural network models and introduces the concept of time to the

model. Information can now either be coded in the mean spike rate or the precise timing of spikes.

1chat.openai.com/

17

chat.openai.com/

2 Background

Both coding schemes have their biological motivation as sensory input is mostly conveyed via pre-

cise temporal coding (cf. e.g. Reinagel et al. 2000 and Wehr et al. 2003) while muscle actuation is

mainly signalled by average firing rates of motor neurons (Gerstner, Kreiter, et al. 1997). By ignor-

ing the temporal structure of spike trains, rate coding is a simplification over the precise temporal

coding, however making it robust against temporal noise on the input. Section 2.2.3 will focus on

the statistical poisson properties of a rate-based coding.

2.2.2 Spiking Neuron Models

gl

El ENa

gNa(Vm(t)) gK(Vm(t))

EK

Cm IsynVm(t)

extracellular medium

cytoplasm

Figure 2.4: "Equivalent circuit of a Hodgkin-Huxley neuron, modelling the potential across the
membrane. The conductances representing the sodium and potassium ion channels ex-
hibit their own membrane-potential-dependent dynamics and modulate the respective
currents." Synaptic input or external stimuli to the neuron are modelled by a current
source onto the membrane.
Figure and caption text modified from Figure 2.3 in (Billaudelle 2022).

The most accurate spiking neuron model with respect to biological observations and data is the

Hodgkin-Huxley model (Hodgkin et al. 1952) which was already mentioned in Section 2.1.1. It

models the neuron membrane using an equivalent electric circuit (shown in Figure 2.4), charging

a central capacitance through several parallel conductances. In the model, there is one static leak

conductance and two dynamic conductance values modelling the voltage-dependent opening prob-

abilities of sodium and potassium ion-channels. (Current-based) synaptic inputs or external (i.e.

experimental) stimuli are incorporated in the model via an abstract current source to the membrane.

In total, this is described by four differential equations, one for modelling the overall membrane

dynamics and three for modelling the dynamics of three gating variables, describing the behaviour

of the two modelled ion-channel types.

As this model is quite detailed and therefore complex, computational evaluation of large networks

built from Hodgkin-Huxley neurons is very costly. The most simplified and therefore widely used

spiking neuron model is the so-called Leaky Integrate-and-Fire (LIF) neuron which is even older

than the model by Hodgkin and Huxley (Abbott 1999). The simplified equivalent circuit gets away

with the dynamic conductances for modelling a spike and replaces them with a manual spike- and

reset mechanism.

18

2.2 Neuromorphic Computing

With this model, the membrane potential is modelled with a single differential equation given by

Cm
dVm

dt
= gl(El −Vm)+ I(t) . (2.1)

Thereby τm = Cm
gl

represents the membrane time constant, quantifying the reaction speed of the

membrane to the synaptic input I(t), with Cm. When the membrane potential reaches a certain

threshold Vth, the neuron emits a spike and goes to a reset potential Vres for the refractory period τref:

neuron spikes at t = tspike ⇔Vm(tspike) =Vth (2.2)

Vm(tspike < t ≤ tspike + τref) =Vres (2.3)

In between these two models, there exist many different models, describing more complex neuron

firing patterns like e.g. bursting or oscillations in more or less detail and accuracy. One of these

models is the AdEx model (Gerstner and Brette 2009a), which has been implemented in analogue

circuits on BSS-1 (Millner 2012) and BSS-2 ASICs (Aamir et al. 2018; Billaudelle 2022).

In all these models, as mentioned in Section 2.1.1, the shape of a spike event does not carry any

information. Also the dynamics of their creation is not of relevance for the communication between

neurons and synapses. Only the timing of where and when spikes are generated is important and has

to be transmitted across an interconnect between emulated neuron circuits. This topic of spike event

communication for large scale spiking neuromorphic computing will be discussed in more detail in

Chapter 5.

2.2.3 Poisson Statistics of Spike Trains

Biological observations show a highly irregular timing of spikes in the cortex of the brain. As

described before in Section 2.2.1.3, this irregular spiking behaviour can be interpreted with strong

biological evidence as precise temporal coding of information. However sometimes a simplified

model is desired and there also exist biological cases, where the precise temporal structure is ignored

or lost due to noise, yielding a rate based coding.

The independent spike hypothesis (Dayan et al. 2001; Heeger 2000; Rieke et al. 1997) states that in

a biologically motivated rate coding, the probability for a neuron spiking some time after a given

initial spike only depends on an instantaneous firing rate r(t), derived from the stimulus input rate.

This characteristics can generally be modelled sufficiently with a poisson random process, where

subsequent events occur randomly and independently of each other. (Gerstner and Kistler 2002;

Stevens et al. 1995) even show that a poisson spike statistic can be formally derived from a LIF

model with noisy input.

The work of (Heeger 2000) mathematically summarises the description of poisson statistics and

proposes practical methods to generate such spike trains in a simulation environment. Especially,

(Heeger 2000) presents extensions to the Poisson model in order to incorporate phenomena like

the refractory period and bursting behaviour of biological neurons which turn out to violate the

independent spike hypothesis. This is done by setting the instantaneous spike time to zero for the

refractory period and interpreting the poisson spike train as an event stream and drawing a number

of burst spikes from another (poisson) random process for each event.

19

2 Background

With a constant Poisson spike rate r, the distribution of Inter Spike Intervals (ISIs) τ is described by

an exponential function

p(τ) = re−rτ . (2.4)

where p(τ) is the probability for a specific Inter Spike Interval (ISI). A derivation of this result can

be found in Appendix A.2.1, which leans on the description given in (Heeger 2000).

The poisson statistics of spike trains will be used later in Section 6.2.2.6.

2.3 High Performance Interconnection Networks

As motivated before, efficient interconnection networks are essential for high performance comput-

ing in massively parallel supercomputers, as well as for global information exchange in the internet.

Also large scale neuromorphic computing systems require efficient interconnection technologies in

order to exchange spike events between the individual neuromorphic simulation or emulation cores,

no matter whether they simulate the neural network digitally like SpiNNaker or emulate it in an

analogue or hybrid approach like BrainScaleS. This Section will introduce the working principles

and techniques on which high performance interconnection networks are based.

2.3.1 The OSI Model

Communication and Synchronisation between processing units or between distributed applications

on several computers is a very complicated task with many challenges and requirements. For ex-

ample, the communication is supposed to be efficient in terms of bandwidth and latency, and also

secure against loss of data or malicious spying attacks. There might even be variable requirements

with respect to Quality of Service (QoS), depending on the kind of transported data, meaning that

some application might be fine with more latency than others, but in turn needs more bandwidth.

For example a pre recorded video stream essentially needs bandwidth but does not care about la-

tency, while on the other hand a video conference system requires low latency, but is probably more

flexible with bandwidth, as the image quality can be dynamically scaled as feasible.

In order to enable the construction of interoperable computer networks fulfilling all possible current

and future requirements, the Open Systems Interconnection (OSI) model was developed by the In-

ternational Standardisation Organisation (ISO), starting in 1977 (Zimmermann 1980). The model

was published as an international standard by the International Telecommunication Union (ITU) and

ISO (cf. ITU 1994) and describes the communication process across different technical systems. It

introduces seven layers of abstraction in the general network architecture. Each of these layers has

its own special purpose and defines easily exchangeable protocols for the interoperation with the

adjacent layers. A layer offers a set of services to the next upper layer and works on data from the

layer below. Logically, components of each layer only communicate with other components on the

same layer.

In the following paragraphs, a short summary of each of the seven layers will be given, explaining

their purpose and the services, they offer.

L.1 Physical Layer: The lowest layer, sometimes also called Bit-Transmission Layer deals with

the encoding and transmission of elementary data symbols over a physical medium (e.g. mod-

20

2.3 High Performance Interconnection Networks

ulated electromagnetic waves in electrical or optical cables or over the air). It may offer the

maintenance of a connection across the physical medium in order to keep track of the en-

coding at the receiving side (e.g. by transmission of IDLE-characters while no actual data is

transmitted). Another function provided by the physical layer is the multiplexing of multiple

connections onto a single medium. The physical layer may also contain repeating elements in

order to (re)-amplify the signal. By adding redundancy to the physical encoding, also error-

detection or even -correction is already possible at this layer.

L.2 Data Link Layer: The purpose of the Data Link Layer is to reliably transmit data across one

or more physical connections. This involves error-detection and -correction, which is achieved

by adding redundancy checksums to the data stream, which is for this purpose divided into

frames. Frames where errors are detected, but cannot be corrected are either directly requested

for retransmission or reported to the Network Layer (L.3) for later retransmission.

L.3 Network Layer: The Network Layer provides a switching service on top of the Link Layer.

While Physical (L.1) and Link Layer (L.2) work on point-to-point connections, the Network

Layer now operates across the whole network and provides end-to-end connections and there-

fore provides network-level addresses. These connections can either be circuit switched or

packet-based. In both cases, the Network Layer determines the appropriate route for the data

towards the final destination as well as the forwarding of the data (packets) across one or more

hops on that route through the network. On that way, the data stream has to be managed in

order to avoid congested links and data loss because of resulting full buffers. For this purpose

data packets can be further fragmented into so-called flow control units (flits). The concept of

flow control will be explained later in Section 2.3.3.2.

L.4 Transport Layer: This layer is mainly an interface layer between the Network Layer (L.3)

and the upper layers beginning with the Session Layer (L.5). It provides its own type of

transport-addresses. Between a pair of transport addresses there can be more than one trans-

port connection with individual requirements to Quality of Service. Packets that have errors

either detected locally or reported up by lower layers have to be handled by this layer through

requesting and granting of retransmissions from or to the remote end of the connection respec-

tively. However, this error-handling might also be subject to quality of service requirements,

as some applications might be fine with a limited error- or loss-rate. Another purpose of

this layer is efficiently partitioning the data payload into packets for transmission across the

Network Layer.

L.5 Session Layer: The Session Layer manages the communication on the level of processes. It

implements services for the recovery of communication sessions after experiencing a broken

connection.

L.6 Presentation Layer: This Layer is responsible for converting the system specific presentation

format (e.g. ASCII or JPG) from the Application Layer (L.7) to an intermediate format. This

may also include e.g. the conversion between Big-Endian and Little-Endian byte order on dif-

ferent systems. Thereby the Presentation Layer preserves the information content throughout

21

2 Background

the transmission. It also handles compression and encryption of data in order to provide band-

width efficiency and data security as these aspects are contained in the implementation details

of the selected intermediate data format.

L.7 Application Layer: The uppermost OSI layer represents the user-applications that are using

the communication infrastructure of the lower layers in order to exchange information. As

the Presentation Layer (L.6) handles any conversions between the data representations used

by the entities in this layer, the application entities do not need to be directly compatible.

For example a chat application on a Linux system may easily communicate with another chat

application on a Windows or Mac system as long as they all implement the same Presentation

Layer protocol.

The following Sections will go into more detail on the design considerations at the Network Layer

(L.3). Section 2.3.2 summarises the classification of interconnection networks. An overview on the

switching aspect meaning the mechanisms directing the data on their route through the network is

given in Section 2.3.3. Finally, Section 2.3.4 gives an insight into the considerations of how to best

determine that route. For more details on the summarised topics the reader may refer to the book of

Duato et al. 2003 which served as a basis for this overview Section.

2.3.2 Network Classification

Interconnection networks have been realised in a multitude of possible variants, each having their

own advantages and disadvantages. Depending on the different constraints of the particular system

they are used for, some aspects may be more important than others. One of the most important

criteria to which interconnection networks are categorised is the network topology. Topology thereby

describes the structure of the network graph, connecting the nodes. Based on this criterion, one

can basically distinguish four classes of network topologies, which will be shortly described in the

following paragraphs.

2.3.2.1 Shared-Medium Networks

As the name already tells, in these networks, the communication medium is shared among all nodes

(cf. Section 1.5 in Duato et al. 2003). A great advantage of this structure is the inherent ability of

broadcast and multicast communication, where one node sends information to multiple or all other

nodes. However, at every time only one node is allowed to send data on the medium. This leads to

the necessity of an arbitration mechanism between the nodes requesting access to the interconnect.

Because of this time-multiplexed access scheme, such a network is not scalable, as the limited band-

width of the shared medium will soon become a bottleneck when the number of nodes is increased.

Figure 2.5 shows the connection scheme of a shared medium network, which is also called a bus.

Especially for the communication of multiple processors or functional units in a single system,

bus networks can be much more complex, by sharing not a single data line, but having a large

collection of different signal lines for data, address-information and separate lines for the arbitration

mechanism. For example there could be individual request and grant lines for each node on

the bus and a separate arbitration unit managing the right of access to the bus using these signals.

22

2.3 High Performance Interconnection Networks

Bus

Figure 2.5: Graph of a shared medium bus-network

2.3.2.2 Direct Networks

In a direct network or point-to-point network (cf. Section 1.6 in Duato et al. 2003), nodes are directly

connected to neighbouring nodes. Data messages are exchanged directly between the interconnected

nodes and possibly have to move multiple steps through the network in order to reach their destina-

tion. Each node thereby contains a router unit, managing the connections to neighbouring nodes and

the compute part of the local node itself. A connection thereby consists of an input channel and an

output channel respectively and is commonly referred to as a link. This direct nature of connections

leads to a good scalability of the network, as the overall bandwidth scales together with the number

of nodes.

In a direct network, the nodes can be connected using different topologies. There are four main

features that characterise a network topology. The first and probably most important one is the node
degree, counting the number of links at every node. If all nodes in the network have the same degree,

the network is said to be regular. The network diameter describes the maximum number of hops

that is needed to route a message from a source node to a destination node. Last but not least, a

network is called symmetric if it looks the same from each node. Generally, an irregular network

will never be symmetric, but an asymmetric network can indeed be regular.

(a) (b)

Figure 2.6: Topology Examples. (a) A 2D Grid, having a maximum node degree of four, is sym-
metric but not regular because of the corners (dark grey) and edges (light grey). When
connecting the edges to each other (blue links) the network is called a torus, thereby be-
coming regular. (b) A (binary) tree is neither symmetric nor regular. When the distance
between the root- (dark grey) and all leaf nodes (light grey) is the same, the tree is called
balanced. However it still remains asymmetric and irregular.

Some example topologies are shown in Figure 2.6, showcasing symmetry and regularity in direct

networks. A 2D grid, as shown in Figure 2.6a with the black connections only, is characterised by

a strictly orthogonal topology. The maximum node degree in a grid network is four, but it is only

regular and symmetric excluding the edges with a degree of three and the corners with a degree of

two. In contrast, a 2D torus network is both regular and symmetric. It can be easily made from a 2D

23

2 Background

grid through adding circular boundary connections (blue lines in Figure 2.6a). Thereby, the diameter

is halved, making the torus network generally more scalable than a corresponding grid.

Figure 2.6b shows an example of a binary tree topology, either balanced or unbalanced. A tree is

regular except for the root and leave nodes. As each node, except the root has exactly one parent,

there are no cycles in a tree topology. It can also be advantageous for implementing some special

algorithms (e.g. sorting) and synchronisation operations (e.g. a global barrier). The most important

characteristic of a tree is that there is only one unique path between any two nodes. A disadvantage

of this topology is that the bandwidth becomes a bottleneck near the root node, as all traffic destined

to another branch has to pass the (sub-) root. Notably, every topology can be virtually transformed

into a tree by removing connections.

Internally, the router unit in each node implements the services of the OSI Layers L.1 through L.3

and maybe also L.4. Especially the tasks of the Network Layer (L.3) are implemented here. The

path of a message through the network is chosen by a routing algorithm (cf. Section 2.3.4) while a

switching mechanism (cf. Section 2.3.3) rules the way in which messages are forwarded across its

route, including physical channel usage, buffering and flow control.

2.3.2.3 Indirect Networks

In an indirect network (cf. Section 1.7 in Duato et al. 2003) each node has a simple network interface

unit connecting it to an external switching device. Basically, the switching device takes the role of

the internal router unit in direct networks, while connecting to other switches and endpoint nodes.

Thereby, the computing nodes become less complex in design and are not restricted to specific

network topologies through their node degree. Generally, direct and indirect networks are very

similar with respect to their implementation. However, in the indirect case, messages have to take

an additional step into and out of the network at the endpoint nodes, respectively.

An ideal switching topology is given, when messages from all input channels can simultaneously

and asynchronously reach any free output channel. An example for such a Crossbar switch, realised

by a matrix of atomic switching units is shown in Figure 2.7.

I-1

O
-1

O
-2

O
-3

O
-4

I-2

I-3

I-4

Figure 2.7: Schematic of a crossbar switch with N = 4 inports and M = 4 outports

However, for large networks a single big crossbar switch is not feasible, as it is limited by hardware

constraints like e.g. the pin count of an integrated circuit. In direct networks, this is not a problem,

as it is naturally partitioned to multiple distributed routers. Similarly, large indirect networks are

implemented using multiple, ideally identical stages.

Multistage Interconnection Networks (MINs) are characterised by their blocking behaviour, as well

24

2.3 High Performance Interconnection Networks

as their dimensions like the number of stages and the size and number of the individual crossbar

switches in those stages. These characteristics will here be shortly explained at the example of a

6×6 Clos-network (Clos 1953; Lenfant 1978), which is shown in Figure 2.8.

In order to not be blocking, i.e. each input can be connected to every output simultaneously, a Clos-

network is defined with three stages. The input stage features r switches with n inputs and m outputs,

each connecting to m switches in the middle stage. These middle stage switches receive a connection

from each switch at the input stage and in turn connect to each switch in the output stage. Last but

not least, in the output stage again each switch receives a connection from every switch of the middle

stage.

r n×m
m r × r

r m× n

1

1

2

2

3

3

4

4

5

56

6

(a) Fully occupied Clos-network.

r n×m
m r × r

r m× n

1

2

2

3

4

5

56

3

4

1

6

(b) Rearranged Clos-network to avoid blocked
routes after swapping two outputs.

Figure 2.8: Rearrangably non-blocking Clos-network with r = 2 and n = m = 3

With this connection scheme it is possible to draw paths from each input to every output, as shown

in Figure 2.8a. However, in this fully connected state it is not possible to swap two input-output

connections without having to rearrange the other connections, as shown in Figure 2.8b. Swapping

the output-mapping of inputs 3 and 4 will block the paths of inputs 1 and 6. To repair these paths,

the remaining paths also have to be rearranged. Therefore this Clos-network is called rearrangably

non-blocking. The dashed lines in Figure 2.8b indicate former connections while the solid ones

indicate current connections.

In order to make the network completely non-blocking it needs to have at least m ≥ 2n− 1 middle

stage switches as shown in Figure 2.9. The initial connection pattern is the same as in Figure 2.8,

but now there are two additional switches in the middle stage. When again swapping the output

mapping of inputs 3 and 4, the new connections can now use one of the additional switches, leaving

the other connections intact (Figure 2.9a). When swapping input 4 again with input 2, now also the

second additional switch is used (Figure 2.9b). Another swap can now safely reuse any of the five

middle switches.

Another popular MIN is a Beneš-network (Beneš 1965; Lenfant 1978), which is completely built

out of 2×2 switches. For 2n inputs there are 2n−1 stages with n
2 switches each. An n-input Beneš-

network can be built recursively by duplicating an n
2 -input network and adding an extra input- and

output-layer connecting each input and output to both sub-networks respectively. A Beneš-network

can also be seen as a Clos-network with r = n = m = 2 and is therefore also rearrangably non-

blocking. It can be made completely non-blocking by using 4×4 switches and connecting the inputs

and outputs twice to each sub-network. This is then called a 2-multi-Beneš network (Arora et al.

25

2 Background

r n×m

m r × r

r m× n

1

1

2

2

3

4

5

56

6

3

4

(a) Non-blockingly rerouted Clos-network after
swapping two outputs.

r n×m

m r × r

r m× n

1

1

2

3

3

4

5

56

6

4

2

(b) Non-blockingly rerouted Clos-network after a
second swap of outputs.

Figure 2.9: Non-blocking Clos-network with r = 2, n = 3 and m = 5.

1990).

2.3.3 Network Switching

As stated earlier, network switching classifies the way in which messages are forwarded through the

network. The following sections describe some key concepts of packet switched networks. Switch-

ing concepts include the arbitration of requesting input messages at the output ports (Section 2.3.3.1)

as well as the location and amount of buffers on the data paths (Section 2.3.3.2). To avoid the risk

of data loss due to overflowing buffers, flow control ensures that new data is only sent if the receiv-

ing side has enough buffer space available (Section 2.3.3.2). The amount of buffer space required

in each switch or router unit for successful and efficient operation of a network, as well as the

latency characteristics of message transmission largely depends on the applied switching strategy

(Section 2.3.3.3). Depending on the switching- and buffering strategy, there can be problems like

deadlocks and head-of-line blocking (Section 2.3.3.4) which can be addressed by virtual channels

and virtual output queues (Section 2.3.3.5) respectively.

2.3.3.1 Scheduling

A crossbar switch (as depicted in Figure 2.7) receives messages on N input ports and forwards them

to one or more of its M output ports. As only one inport is allowed to access an outport at a time,

there has to be some sort of arbitration in case of conflict. Scheduling refers to this task of matching

requesting inports to free outports. Generally, the scheduling algorithm should serve all inports

equally under equal conditions and they should not influence each other. Also it should be simple

and fast to implement in hardware for high message rates (cf. Section 1.6 in Philipp 2008).

The scheduling may be implemented in a central unit or parallelly distributed across the switching

fabric. Another possibility is to implement a parallel scheduling that is distributed across the input

and output ports.

26

2.3 High Performance Interconnection Networks

A centralised scheduler needs to compute a new match between of requesting inports to free outports

at every change in the request pattern. The computation of these matches can be complex and it is

difficult to algorithmically guarantee the service requirements stated above.

In case of distributed arbitration, the requests travel horizontally on input rows in Figure 2.7 until

they reach the intersection of their target output column. The switching points, intersecting inputs

in rows and outputs in columns can basically be in one of three states (cf. Figure 1.10 in Duato et al.

2003):

1. The local input row is requesting access to this output column from the left side. The local

request is granted and forwarded to the next row below. If the local input row also requests

another column, the request is replicated to the right. A simultaneously forwarded request

from the local column above is blocked.

2. A forwarded request from above is granted access to the local output below. The local input

requests another column and is forwarded to the right.

3. A forwarded request from above is granted access to the local output below. The local input

also requests this output column from the left and is blocked. However, a multicast request

from the left may still be replicated to the right.

With parallel arbitration, the matching happens in three steps (cf. Section 1.6.2 in Philipp 2008):

1. Every inport signals a request to the outports corresponding to their current message.

2. Each outport implements a grant arbiter selecting one out of all incoming requests. If an

inport requests more than one outport, it can also receive more than one grant.

3. The inport now either wants to replicate the message to all granted outputs in parallel (in case

of a multicast message) or it needs to implement an accept arbiter selecting one grant at a

time and replicating the message sequentially. However, if the message is not meant to be

replicated at all, the accept arbiter has to reject all but the selected grant and thereby free the

corresponding grant arbiter to select the next outstanding request.

The underlying problem of arbitrating a single resource can thereby be realised in different ways.

A basic arbitration algorithm, called RoundRobin selects requesting inputs with rotating priorities.

Based on this, there are many specific improvements and scheduling algorithms. One example for

a scheduling algorithm, based on RoundRobin arbitration is the iSLIP algorithm (McKeown 1999).

An extensive overview on existing arbitration and scheduling algorithms can be found in Section 1.6

of (Philipp 2008).

2.3.3.2 Buffering and flow control

In order to prevent corruption of data, each output port can only accept one input request at a time.

If (in an N ×N crossbar) there are multiple inports requesting a single outport, arbitration handles

the selection of one of them, as explained in the last Section. All requests that have not been granted

by the arbiter would be inevitably lost, unless the output port operates at a frequency that is N times

higher than that of the input ports (cf. Section 3.2.1 of B. U. Geib 2012). Alternatively, the rejected

27

2 Background

messages have to be buffered in the data path before the arbiter. In the latter case, their requests can

be repeated until they will eventually be granted.

Buffers can be placed either at the inports or at the crosspoints interconnecting them. As placing

buffers at the crosspoints needs a high number of N2 small buffers, buffers are mostly placed at the

input ports, requiring only N buffers. All incoming messages will be buffered there until they can be

forwarded to the respective outport.

If messages arrive at an inport with a higher rate than they can be consumed by the outports, the

buffers will eventually run full, again leading to data loss. To avoid this, backpressure has to be

applied to the sending unit in order to control the rate at which messages arrive at the input buffers.

This is described by the concept of flow control. For this purpose, messages are divided into flow

control units (flits) on the switching level which are in turn subdivided into physical digits (phits) on

the physical link as an atomic unit of data transfer. The capacity of all switching buffers must be an

integer multiple of the flit size.

One way to implement flow control is to have dedicated control signals on a channel between two

nodes or units. When the sender wants to transmit data to the receiver, it asserts a request signal

and holds the data signals valid until the receiver in turn asserts an acknowledgement signal. The

receiver must thereby only assert the acknowledgement if it can store the current flit into a buffer.

If the channel also transmits a clock signal, another possibility for flow control signals is to assert

a stop signal just before the buffer becomes full. However the instant of time when the stop signal

is asserted has to take the length of the channel into account with respect to transmission delay and

clock frequency. When the receiver detects an almost full buffer condition, the buffer must have

enough capacity left to store those flits that are already on the channel and will still be sent until the

sender receives the stop signal.

Another way is to implement a credit based flow control (cf. Section 3.4.5 of B. U. Geib 2012). In

this case the receiver initially notifies the sender about the number of flits it can store in its buffers.

It is now the responsibility of the sender to maintain a credit counter and to only send out flits across

the channel as long as it has credits. The receiver in turn has to restore the correct amount credits to

the sender when buffer space is freed.

2.3.3.3 Switching Strategies

There are several basic strategies about how to guide a message towards its destination across the

network. These strategies largely differ in terms of message latency and the rate at which messages

can be sent. The switching strategy also has a large influence on the mutual blocking of different

messages while traversing the network. For more details please refer to Section 2.3 of (Duato et al.

2003).

Circuit Switching first reserves a physical route through the network and afterwards streams the

data through that route. For this purpose, a routing header is sent through the network preparing the

data path towards the destination node. When the header has arrived, the destination node responds

with an acknowledgement notification. When the source node receives this acknowledgement, the

data transfer is started, finally freeing the route for other transfers. This approach requires no data

buffers but induces a high setup overhead making this approach only feasible for long messages that

occur only infrequently. Also, reserved data paths could severely block the setup of other message

28

2.3 High Performance Interconnection Networks

paths.

On the one hand, the setup latency is proportional to the distance between source and destination

in terms of hops through the network and scales with the latency of a routing decision as well as

the transfer latencies between nodes, the latter impacting twice because of the acknowledgement

notification. On the other hand, the data transmission-latency is proportional to the message length.

Packet Switching or Store-and-Forward Switching (SAF) resolves the issue of blocked paths by

dividing messages into packets. Each packet is prepended by a header section containing destination

and control information, which is used to make the routing decisions. The packets are individually

routed across the network and completely buffered at each hop, introducing large buffer require-

ments. The transmission latency scales similarly as for Circuit Switching.

Virtual Cut-Through Switching (VCT) aims to reduce the transmission latency by not necessarily

buffering the full packet before starting the routing decision and forwarding the packet. Instead, the

routing decision is made as soon as the packet header is available and data flits are only buffered

if the respective outport is blocked. Thereby packets are pipelined through the router units and

cut through the output channels. This approach does not reduce the buffer requirement, as packets

are still fully buffered in case of a blocked output port. However, it greatly improves the latency,

removing the proportionality of the payload transmission latency to the transmission distance.

Wormhole Switching (WHS) addresses the problem of having to buffer complete packets in the

routers. Now the flits of a packet will be stalled by flow control. Thereby, the packet is now buffered

across several routing units and outports in the network. As individual flits don’t contain the routing

information of their packet they must not be intersected by flits of another packet. This implies that

a blocked outport in one router can also cause passive blockage to other packets impacting the now

blocked packet on another router unit. An example of Wormhole Switching is shown in Figure 2.10.

2.3.3.4 Blocking of Messages

Messages can be blocked at different places in an interconnection network. Outports will always

block messages if multiple inports are requesting at the same time (cf. Section 2.3.3.1). Moreover,

messages will be blocked if buffers run full at any point in the routing unit (cf. Section 2.3.3.2). Gen-

erally blocking of messages will cause increased overall transport latencies and decreased channel

bandwidths. Some blocking situations are particularly bad, as messages are trapped in the network

and will never reach their destination. For more details, cf. Chapter 3 of (Duato et al. 2003).

Starvation is a kind of message blocking, where an outport never grants access to specific inports.

This is mostly due to an incorrect design or implementation of the scheduling algorithm and should

be prevented in any case.

A deadlock occurs if multiple messages have a cyclic dependency across several network nodes,

mutually blocking each other in their requests. Deadlocks can be dealt with either through preven-

tion and avoidance by design or detecting and resolving them by dropping of packets. In particular,

deadlocks can be avoided by choosing an appropriate routing algorithm and providing virtual chan-

nels (cf. Section 2.3.3.5).

A livelock situation occurs when a message is routed around the destination for ever and never

reaching it. This can be avoided by restricting the number of routing decisions offside the minimal

path towards the destination or exclusively using minimal paths.

29

2 Background

Last but not least, Head of Line Blocking (HOL) occurs when an inport buffer contains two or

more packets, where the second packet cannot advance because the first one is blocked by its out-

port. However, the second message actually wants to request another unblocked outport but cannot

overtake the first packet due to the FIFO nature of the inport buffer.

2.3.3.5 Virtual Buffering

Figure 2.10 shows an example of a wormhole switched network with an exemplary deadlock and

Head of Line Blocking. The messages A, B, C and D are cyclically blocking each other in their

respective requests for an outport, thereby forming a Deadlock condition. Message E and F are

blocked because their inport buffers are already occupied by a blocked packet. However these two

messages actually do not want to request the same outports than the ones in front of them (messages

C and E respectively). This situation is called Head of Line Blocking.

n-0-0

n-0-1

n-1-0

n-1-1

n-2-0

n-2-1

A

B

C

D

E

F

Figure 2.10: Example of a Deadlock and Head of Line Blocking in a wormhole switched network.
For simplicity the depicted queues can represent inports and outports respectively.
Darkly filled squares containing letters represent the packets’ header flits, while the
other coloured squares represent the data flits.

The impact of both blocking conditions, deadlocks and Head of Line Blocking, can be reduced by

parallelised buffering at the places where the blocking occurs. Virtual Channels (VCs) (cf. Sec-

tion 2.4 of Duato et al. 2003) multiplex the transmission of messages across a physical channel by

allocating a pair of separate flit buffers at both ends of the channel. Now messages that were blocked

by another message on the same outport can use another free VC and bypass the first message. A

drawback in the use of VCs is that each VC needs its own flow control which also increases the

traffic of acknowledgements and credits across the physical channel. Also the bandwidth of the

30

2.3 High Performance Interconnection Networks

physical channel is now shared among all virtual channels which reduces the bandwidth and thereby

increases the latency for single messages. Also the increased design complexity may have an impact

on the message latency.

HOL blocking is also reduced, but not completely resolved by the introduction of virtual channels.

To address this problem, the concept of Virtual Output Queues (VOQs) is introduced. It sorts incom-

ing packets into different queues, corresponding to the requested outport at the inports. However,

this is not quite scalable, as it requires N2 buffers for a N ×N crossbar.

2.3.4 Network Routing

An important aspect of interconnection networks is the choice of a specific routing algorithm, as

it determines the path that a message packet takes across the network. As the design space of

different routing algorithms is quite large and already covered extensively in Section 4.1 of (Duato

et al. 2003), this Section will focus on information, necessary to understand the capabilities of the

EXTOLL crossbar design, which are summarised later in Section 4.1.3.

First, a routing algorithm can be classified by the number of simultaneously addressable destinations.

If messages can only be addressed to a single destination, the routing is referred to as unicast, while

multicast messages may target multiple destinations simultaneously. This can either be implemented

by replicating messages sequentially at the source node, or distributing it to the respective directions

at intermediate steps through the network. The latter is more scalable, as it only creates additional

traffic where it becomes inevitable and the message is injected to the network only once, instead of

once per destination and thereby freeing the sending node immediately. When a message targets all

nodes in the network, it is referred to as a broadcast message.

Furthermore, a routing algorithm may be either deterministic or adaptive. Deterministic routing

algorithms on the one hand will always produce the exact same path for a given pair of source and

destination. On the other hand, adaptive routing algorithms may choose directions between several

alternatives or even without any constraints, depending on the level of congestion or blockage of

output ports. While a deterministic algorithm can be particularly designed to be deadlock free, i.e.

without cyclic dependencies, this is not so easy for adaptive algorithms, as their decision will depend

on the network state. Also, packets routed deterministically will always arrive in the same order as

they have been injected, while adaptively routed packets may overtake each other, thereby requiring

re-ordering at the destination.

Finally, routing algorithms may be implemented either using a lookup table or a Finite-State Machine

(FSM). An example for the latter method would be dimension-order routing, e.g. in a grid or torus

network, where messages are forwarded linearly in one direction until the respective coordinate

matches that of the destination node. While this is quite efficient in its implementation, it is however

mostly restricted to specific topologies and therefore not considered flexible. Alternatively, a table-

based implementation offers the full flexibility with respect to supported topologies, but comes at

the cost of extensive memory requirements. The memory footprint of table-based routing can be

reduced by a hierarchical approach where the network is partitioned into multiple sub-networks.

Messages are first routed to the destination region and finally inside that region to the particular

destination node. The partitioned lookup-tables can thereby be accessed in parallel to optimise the

time needed for the routing decision.

31

3 The BrainScaleS-2 System

(a)

(b) (c)

Figure 3.1: (a) Photograph of the BSS-1 (on the left in black) and BSS-2 (on the right in white)
systems in the experiment hall at the European Institute for Neormorphic Comput-
ing (EINC) in Heidelberg. Courtesy of Björn Kindler. (b) Photograph of a BSS-2
HICANN-X chip, wire-bonded to a carrier Printed Circuit Board (PCB). Courtesy of
Eric Müller.
(c) Photograph of multiple BSS-2 hardware setups, available for neuromorphic experi-
ment execution. Each setup hosts two independent HICANN-X ASICs, hidden under a
protection cap between the glowing red LEDs. One FPGA is used per ASIC to bridge
the communication gap towards a host-computer. Courtesy of Eric Müller.

Figure 3.1a shows a photograph of both the BSS-1 wafer-scale system as well as the BSS-2 single-

chip system. Both systems were recently moved to the new EINC2 building in Heidelberg.

This Chapter focuses on the HICANN-X ASIC design (Section 3.1) and the communication FPGA

(Section 3.2) as well as the software stack supporting the BSS-2 system operation, as they are used

and enhanced respectively in Part III of this thesis.

Figure 3.1c shows a photograph of some BSS-2 hardware setups. These setups, which are called

Cube Setups, have originally been developed for the purpose of prototyping the BSS-1 wafer mod-
2www.einc.eu

33

www.einc.eu

3 The BrainScaleS-2 System

ule and have been modified to be used with the HICANN-X chip (Güttler 2017; Kleider 2017;

Schreiber 2021). Each of these setups hosts two independent HICANN-X chips and four communi-

cation FPGAs, two of which are connected to one of the chips respectively. These FPGAs control

the realtime experiment flow and are connected to a cluster of host computers via 1 Gbit
s Ethernet

connections. A photograph of a HICANN-X ASIC with wire-bond connections to a carrier PCB is

presented in Figure 3.1b.

A report on the current state of the BSS-2 System development and tutorial applications has recently

been published in (Müller, Emmel, et al. 2023).

3.1 The HICANN-X ASIC
ev
en

t
IF neurons

sy
n
a
p
se

d
ri
v
er
s

analog parameter storage

neuron backend

synapse array

CADC

SIMD processor

analog network core
link

ev
en

t
h
a
n
d
li
n
g

co
n
fi
g
.
m
em

o
ry

co
n
tr
o
ll
er
s

BrainScaleS-2 ASIC

link
playback
executor

memory

FPGA

host
computer

Figure 3.2: Block diagram of a BSS-2 ASIC design and its interface periphery; taken from (Müller,
Arnold, et al. 2022). The analogue network core, depicted in blue represents one of two
mostly symmetric hemispheres visible in Figure 3.1b. The digital blocks, coloured in
orange encompasses one of two Plasticity Processing Units (PPUs) as well as the digital
event handling, memory controllers and the serial high-speed links connecting to the
periphery.

34

3.1 The HICANN-X ASIC

An overview block diagram of the HICANN-X design can be viewed in Figure 3.2. In this Section

the features and function of the most important building blocks on the BSS-2 HICANN-X ASIC

will be shortly summarised. The sequence of this summary orients at the overview and explanations

given in Chapter 3 of (Billaudelle 2022). For more detailed information on the various features and

circuits of the BSS-2 neuromorphic chips, the reader may refer to the work of (Billaudelle 2022) and

the original publications cited alongside the respective paragraphs.

3.1.1 The ANNCORE

The HICANN-X chip features two symmetric hemispheres, each containing 256 neuron circuits and

as many rows of synapses interfacing them. The design is based on the so-called Analog Neural

Network Core (ANNCORE), containing the analogue circuits emulating the accelerated neuron and

synapse dynamics.

Spike events are inserted into the synapse array with a 14 bit address label through synapse driver

circuits, described in (Billaudelle 2017). These will inject received events directly into the connected

row of synapses by providing precisely timed control signals and forwarding a 6 bit event address

which is compared to locally programmable address labels to the synapse circuits. Synapse drivers

themselves are addressed by a 5 bit address, also extracted from the spike label.

The synapse circuits, originally proposed by (Friedmann et al. 2017) are the central building blocks

of the BSS-2 neuromorphic ASICs. They define the topology of the emulated neural network by

interfacing the neuron circuits to input spikes from other neurons. To this purpose, they generate

input current pulses of a certain width and strength for the connected neuron circuits. The width

of these pulses is controlled by the synapse driver circuit and can be modulated to implement a

simplified version of the short-term plasticity (STP) model proposed by (Tsodyks et al. 1997). The

pulse strength on the other hand is determined by a configurable 6 bit weight value, stored in an

SRAM local to each synapse. The synapses also implement sensor circuits to measure the causal

and acausal correlations of pre- and postsynaptic spike events. This enables the implementation of

accelerated STDP learning rules (cf. Section 2.1.3) using the two on-chip Plasticity Processing Units

(PPUs) (Friedmann 2013; Friedmann et al. 2017).

The neuron circuits on the HICANN-X implement an extension of the LIF model (AdEx) and have

been described by (Aamir et al. 2018; Billaudelle 2022). In order to emulate larger neurons, either for

the purpose of more synaptic inputs or for modelling structured neurons with multiple compartments,

multiple neuron circuits can be combined using programmable conductances (Kaiser et al. 2022).

The digital neuron backend logic, described by (Kiene 2017) is responsible for creating new spike

events and deriving timing signals like the refractory period. A large parameter configuration space

allows the neurons to be tuned to various target dynamics and to be calibrated against production

mismatch between individual instantiations and chips.

All analogue circuits on the chip are highly parametrisable through local SRAM and a vast amount

of Digital to Analog Converters (DACs). Analogously, analogue signal traces (as e.g. membrane

voltage- or conductance traces) can be digitised using a high speed Membrane ADC (MADC).

Additionally there are two arrays of Column-parallel ADCs (CADCs) providing 512 channels of

parallel access to analogue values from the correlation sensors in the synapse array as well as the

neurons’ membrane voltages to the PPUs. This massively parallel readout comes at the cost of lower

35

3 The BrainScaleS-2 System

resolution and sample rates as compared to the MADC (Schreiber 2021).

An analogue readout chain allows to connect various internal voltage states directly to two output

channels (Kiene 2017). These can be either directly connected to i/o-pads of the chip or digitised

using the MADC (Billaudelle 2022).

3.1.2 The Digital Part

The PPUs have been successfully used for implementing accelerated learning (Bohnstingl et al.

2019; Wunderlich et al. 2019) and embedded cybernetics (Schreiber 2021). Both processors have

access to a small amount of private local SRAM memory. Data and instructions can also be fetched

block-wise from a larger region of shared memory, transparently provided by the communication

FPGA (Pehle 2021). Through the chip’s communication bus, the PPUs have full access to the

complete configuration and state space of all components on the chip, as well as on the FPGA.

Additionally, the PPUs feature a custom Single Instruction Multiple Data (SIMD) vector extension

(Friedmann 2013; Friedmann et al. 2017). With this, the PPUs have access to the parallel configura-

tion space of the synapse array and are connected to the Column-parallel ADCs.

0 1 2 3

synapse driver
top

0 1 2 3

synapse driver
bottom

0 1 2 3

L1 → L2

0

1

2

3

neuron output channels left
of anncore

0

1

2

3

neuron output channels
right of anncore

0

1

2

3

L2 → L1

0

1

2

3

4

5

6

7

background generators

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 3.3: Schematic connectivity matrix of the event routing crossbar in HICANN-X. Connections
marked with an ’X’ are actually implemented on the chip. This Figure was taken from
(Spilger 2021).

Finally, event communication, either recursively inside the chip, or with the outside is coordinated

through a digital event handling block. It implements a sparse and programmable crossbar matrix, a

schematic view of which can be seen in Section 3.1.2. The input channels are thereby listed on the

left side and output channels on the top respectively. Spike events originating from inside the chip

are either generated by the neuron backend or by dedicated background spike generators, offering

regular or poisson-shaped spike trains (Johannes Schemmel, Billaudelle, et al. 2022). Generally,

each input and output path has four channels, of which each can handle one event every two clock

cycles (Johannes Schemmel, Billaudelle, et al. 2022). In order to save precious hardware resources,

36

3.2 The Communication FPGA

only those connections marked with an ’X’ are implemented on the chip.

This on-chip routing fabric is generally referred to as Layer 1 (L1), while the Layer 2 (L2) con-

nections refer to the external event transport through eight high speed serial links, connecting the

HICANN-X chip with its periphery. While L1 events are always transported immediately with-

out timing information, solely based on their address label, events on the L2 are annotated with

timestamp information, which is used to counteract latency variations on their way across the serial

links. Incoming events from the L2 are delayed until their timestamp plus a programmable delay

value matches the internal system time (systime) counter before they are injected into the L1 router

(Alexander Schmidt 2017). For this to work, the systime counter has to be synchronised with the

communication FPGA (Rettig 2019a). This synchronisation mechanism will be discussed in detail

in Section 7.2.1.

The serial links not only transport realtime data like spike events or MADC samples, but also con-

figuration data and status read outs, as well as external memory accesses from both PPUs. In total,

there are 10 independent data queues traversing the links towards the HICANN-X and 12 queues

in the opposite direction. The transparent multiplexing and encoding of these independent queues

across the physical links is handled by a universal translator (UT) module, developed in (Karasenko

2020). More details on the UT will be given in Appendix B.1 and Section 7.3.3. Together, the 8

serial links offer a total bandwidth of 8 Gbit
s (cf. Karasenko 2020).

3.2 The Communication FPGA

In order to bridge the gap in latency and bandwidth required to operate neuromorphic experiments at

a speed-up factor of 103 compared to biological realtime, an FPGA acts as realtime experiment host

for the neuromorphic computing system. The host computer compiles so-called playback programs

containing all the configuration data and stimulus events, required to run a neuromorphic experiment.

This also includes instructions and data for executing programs on the PPUs. The playback programs

are then executed by the fpga down to the neuromorphic chip. Once configured and started, the

neuromorphic experiment will evolve on the chip, completely asynchronous to the fpga and host

software stack. It is however possible, to interact with the evolving neural network emulation by

collecting observation (trace) data or changing the configuration.

37

3 The BrainScaleS-2 System

������

��������	
�

����

����		
	�

����		
��

�����������������

��

�	���������������

���� ���������������

� �!���

�!���
�������

�"��!��	������

�#$���%&

���'�� �����

����

�!("�����

��
�
��!�

��
���'!(

�"�
���'!(

�)����

�
$!��������

�
�"������

�

����		

�'�+��������

��

'��
�
���

���,�

�)����*+!��"

�-�,

*-�,

�������	��

�)��������	!�(

������������

�������

����

�+!��"
���'!(

�)����

*�!��%�)����

$��'!(%.���

.�!�(�

��/#�-/

��"����&/����000 ��"����&/����000

1�-�,2

�	��������������

�
��
��'!
�'

�

�

�

�

�

�

�

�

�

�

�

�

Figure 3.4: Block schematic of the BSS-2 communication FPGA; modified from (Rettig 2019a).
Blue boxes show design blocks already present in the original HXFPGA_CORE, green
boxes show design blocks developed in the scope of this thesis and grey boxes show
design blocks adopted from (Thommes 2018).

A block schematic of the FPGA design is shown in Figure 3.4. The FPGA manages the commu-

nication with the HICANN-X chip as well as with the host computer, which is connected through

a packet-based network interface. In the original system (cf. Rettig 2019a), the HXFPGA_core

connects to an Ethernet network interface and implements an ARQ protocol (Karasenko 2014) in

order to secure the connection against corruption and loss of transmitted data. The design which is

subject to this thesis, however makes use of the EXTOLL network technology (cf. Chapter 4). With

this, a higher bandwidth and lower latency is offered, as compared to Ethernet. This enables the

low-latency communication of spike events across the network to other FPGA nodes alongside the

playback and trace traffic.

The following Subsections will describe the purpose of each module block in the FPGA design, as

depicted in Figure 3.4. The description will thereby start at the serial links from the chip at the

bottom of the Figure and walk through the design towards the network interface at the top.

38

3.2 The Communication FPGA

3.2.1 L2 Chip Communication

As already stated in Section 3.1.2 on page 37, the HICANN-X chip sends events to the outside world

on the L2 connection. The BSS-2 FPGA design splits this functional block into three distinct parts

roughly according to the OSI model (cf. Section 2.3.1).

The Physical Layer implements the sending and receiving serialiser modules necessary to drive the

links towards the chip. These are basically a 65 nm version of the low voltage differential signaling

(LVDS) serialisers, as already used in the BSS-1 chips (Scholze, Eisenreich, et al. 2011). According

to (Karasenko 2020), the links implementation offers a physical data rate of 1 Gbit
s at a serial clock-

frequency of 500 MHz.

The Link/UT Layer performs the UT operation by accepting type-labelled data words at the client

side and converting them into a continuous stream of encoded data for the physical layer. In the

opposite direction, it decodes the received data stream and re-emits the previously tunnelled typed

data from the chip. Additionally, the UT offers flow-control and data security services upon the

non-blocking and unsecured physical transmission layer (cf. Karasenko 2020).

The Transport Layer handles the efficient distribution of incoming data across the 8 high speed links

(Kanzleiter 2018) and also implements the transparent tunnelling of the FPGA’s system configu-

ration bus (Omnibus, Friedmann 2013, 2015) into the chips system bus and vice versa from the

PPUs.

Besides this, the L2 functionality also includes a mechanism to synchronise the system clock coun-

ters between the chip and the FPGA. This is required to minimise the jitter of spike event latencies

across the L2 links by delaying events with respect to their timestamp. The systime counters thereby

need to be synchronised to be able to interpret the timestamp correctly on both sides of the link.

This synchronisation mechanism has been introduced in (Rettig 2019a) and will be summarised in

Section 7.2.1.

A configuration side channel to the chip is provided with a JTAG port. This is used to initialise the

physical links at startup and for debugging purposes related to the function of the high speed links.

3.2.2 The Playback Executor

The purpose of the Playback Executor, as described in (Rettig 2019a) is to control the data transfer

between the user and the chip, by demultiplexing data transfers from the host network interface to

the different system units and multiplexing data responses from those units back onto the network

interface. An important task of the executor is also the timed execution of these data transfers

and synchronisation commands. This means that the user can exactly specify points in time, when

specified stimulus spike events, configuration data or status readout commands shall be executed,

relative to the execution of a special reset command. For this purpose, the executor receives a UT-

decoded stream of index-data pairs from the network interface, which is called a playback program.

The index thereby indicates the type of the instruction to be executed. The following instructions

are currently supported by the executor:

1. JTAG Instructions:
They control the JTAG port towards the chip and provide the data to be transmitted through

this side channel for configuration and debug purposes.

39

3 The BrainScaleS-2 System

2. Timing Instructions:
These instructions trigger timing related operations including

• Wait-until:
blocks the execution of the next instruction until a sleep counter has reached a specified

value. Alternatively there are wait instructions to wait until the JTAG or Omnibus are

idle. In the scope of this thesis, global barrier and interrupt instructions where added, for

global synchronisation in the EXTOLL network (cf. Section 7.2.2).

• Timer Reset:
resets the afore mentioned sleep counter to zero.

• Systime Init:
triggers the synchronisation of the systime counters in the ASIC and the FPGA. Thereby

the FPGA will take over the current systime value from the chip. It is currently not

possible to have the ASIC take over the systime value from the FPGA.

3. System Reset:
Resets all modules downstream of the executor and asserts the reset pin at the HICANN-X

ASIC.

4. Spike Events to L2:
These instructions insert either one, two or three spike events into the L2 link network. These

are transported as stimulus spikes to the chip and at this point only contain the 14 bit spike ad-

dress label. The executor will attach the lower bits of the current systime value as a timestamp

to each event.

5. Omnibus Instructions:
They resemble read and write commands to the system configuration bus, the Omnibus. These

instructions contain the target address for the desired access and whether it is a read- or a write-

command. In case of a write command, the payload data follows directly after the address in

another instruction word.

In order to prevent frequent stalling of the network interface each time a downstream unit blocks

the execution due to congestion or simply at every wait-until operation, playback programs received

from the host are buffered in a dedicated memory in the FPGA which is also extended by external

DRAM.

3.2.3 Spike Event Communication

In order to communicate spike events between separate BSS-2 ASIC-FPGA pairs and thereby largely

extend the emulateable model size, the main goal of this thesis is, to develop an efficient and reliable

way to transport spike events through a packet-based network. This functionality is implemented

in the SPIKE_COMM core, shown with green blocks in Figure 3.4. For more detailed information

about the implementation of the spike communication block, confer to Chapter 7.

At first the event stream from the L2 to the Executor and vice versa has to be interjected. The Event

Switch (cf. Section 7.1) implements this functionality by replicating the received event stream from

40

3.2 The Communication FPGA

the chip to the SPIKE_COMM. Spike events received from the SPIKE_COMM are forwarded to the

L2 in parallel to those from the Playback Executor and are merged by the existing transport layer

L2 switch which was introduced by (Kanzleiter 2018). This L2 Switch operates on a UT interface

(cf. Appendix B.1) and distributes transfer data items evenly from multiple input- to multiple output

interfaces. The distributing hardware design is organised as a matrix of modular shifter units, where

inputs are assigned to rows while outputs are assigned columns. New items are alternately accepted

either from the current row, or the neighbouring row above. Buffered items will alternately be

forwarded either to the neighbouring column to the right or down the current column towards an

output interface. (Kanzleiter 2018)

The SPIKE_COMM block includes a destination lookup (cf. Section 7.3.2) indexed by the source

spike label and mapping to a destination network address as well as another destination spike label.

After this lookup operation, events are aggregated to form larger packets (cf. Section 7.3.3), as they

are addressed to the same destination network node. This aggregation is necessary to minimise the

share of bandwidth required to transmit the mandatory network header of each packet compared to

the actual event payload (cf. Section 5.6.1). This introduces a trade-off between latency caused by

the aggregation process and limits the bandwidth efficiency due to the so-called header overhead

(cf. Equation (5.2)). Another point of optimisation for this trade-off is the packet-rate inserted to the

network, which is also a limiting factor.

The UT Encoder / Decoder (Karasenko 2020) in this case encodes the number of parallel events

accepted at the input of the accumulation buffer. This could in the future also encode different basic

types of data exchanged between BSS-2 systems aside of spike events.

Together with the Playback Executor (Section 3.2.2) this block forms an Application Layer in terms

of the OSI model (Section 2.3.1). However, one can argue that the network addresses provided by

the routing lookup (cf. Section 7.3.2 and Section 7.3.3) already represent a part of the Network layer.

3.2.4 The EXTOLL Interface

As motivated in Chapter 4 on page 48, the EXTOLL network technology is used in the scope of

this thesis to connect multiple BSS-2 systems and transport the host-communication, as well as the

neuromorphic spike event communication between them. The EXTOLL Network (cf. Chapter 4) is

interfaced to the BSS-2 FPGA design by basically four layers that can be roughly matched with the

according OSI layers.

The NHTL, developed in (Thommes 2018) acts as Transport Layer towards the network. It accepts

data words from the Application Layer, i.e. the Playback Executor and the SPIKE_COMM

partition. It then packs these inputs to packets with a network header according to the network layer

protocol. Data from the executor is sent to a previously configured partner host, while spike event

data is sent to the destination indicated by the data itself.

The Network- and Link Layer are provided by the EXTOLL Network-Port (NP)- and Link-Port

(LP) IP modules respectively. The Physical Layer (not shown in Figure 3.4) is implemented by

GTX transceivers, which are hard-IP blocks on the FPGA fabric, provided by the FPGA vendor (cf.

Xilinx Inc. 2018). These are specifically parameterized to be compatible with the EXTOLL network.

Notably, the LP provides a global barrier and interrupt mechanism (Burkhardt 2007, 2012), which

is used in the scope of this thesis for the purpose of synchronising the systime counter between

41

3 The BrainScaleS-2 System

multiple BSS-2 FPGAs (cf. Section 4.1.2 and Section 7.2.2).

3.2.5 Omnibus and ODFI Registerfile

In this Section the used configuration bus technologies will be briefly introduced. As the FPGA de-

sign has to interface both the BSS-2 neuromorphic chip, as well as the EXTOLL network interface

IP, two different buses are implemented. The core parts of the FPGA design and the HICANN-X

components are configured via the Omnibus fabric, which was introduced by (Friedmann 2013,

2015). However, the EXTOLL network infrastructure and for compatibility reasons also the network

interface units integrated into the FPGA design, have their own configuration registerfile architecture

(Computer Architecture Group 2018). As the EXTOLL registerfile offers global network access to

the local configuration space, this is also used for the configurations related to the spike communi-

cation architecture (cf. Section 7.6). However, as the BrainScaleS experiment flow is based on the

Playback Executor and its Omnibus interface, some bus bridge is needed in order to integrate the

network configuration space into the experiment configuration space (cf. Section 7.6.4).

3.2.5.1 The Omnibus

The original design intent for the Omnibus was to provide a communication bus between the PPUs

and all modules on the BSS-2 ASIC for configuration of all kinds of parameters, as well as instruc-

tion and data fetching from external memory. Therefore it seems an efficient design decision, to also

incorporate the same bus architecture into the FPGA design, to make both core system parts natively

compatible to each other with no need for protocol conversion. This enables transparent master

access from playback programs directly to the chip configuration space and native cache fetching

operations from the PPUs to the external memory attached to the FPGA.

The Omnibus interface is designed in accordance to the Open Core Protocol (OCP) specification

(OCP 2009). According to (Friedmann 2013), the implementation at hand features a 32 bit address

space with 32 bit data words that can be enabled byte-wise. Both read and write accesses have to

be acknowledged to the requesting master by the respective slave. As the bus has to span long

physical ranges on the chip (in the order of multiple millimetres) and even a chip to fpga tunnel,

it is pipelined and can accept multiple requests, before the first response is acknowledged. The

order of access instructions is thereby always guaranteed to be fixed. Flowcontrol is ensured by

implementing a handshake protocol in the request- as well as the response path. The bus system

supports multiple masters with fixed priority arbitration and spans a tree through the address space

towards the connected slave units. There are interface modules for register targets, (de-)serialisers,

as well as for RAM blocks. As the coding of a complete bus tree in an HDL would be rather tedious,

the implementation uses code generation with macros defined in the M4 language (Kernighan et al.

1977; Seindal et al. 2021) which will then generate an according SystemVerilog (SystemVerilog

2004) module.

3.2.5.2 The ODFI Registerfile

Configuration and status registers in the EXTOLL network hardware and FPGA IP are generated

using the ODFI / CAG register file generator (RFG) (Computer Architecture Group 2018). The

42

3.3 The Software Stack and Experiment Flow

CAG RFG is a TCL (Ousterhout et al. 2023) based code generator. Most importantly it generates

hierarchical verilog HDL code besides an HTML documentation and a generic XML representation

of the registerfile tree structure. The resulting registerfile offers a 64 bit address space and registers

with a width of up to 64 bit. Registers are subdivided into individual fields and offer two types of

access. Software interfaces provide address-based access to whole registers, while hardware inter-

faces offer granular direct access to the registers’ fields for the attached hardware units. Independent

access rights for both interface types, such as read- and / or write access can be specified to the reg-

ister fields. It should be noted that the software interface’s handshake protocol enforces atomicity,

i.e. there can only be one pending access at a time. The resulting hardware tree is however hierar-

chically pipelined such that large distances can be bridged without exceeding the timing of single

clock cycles. The generated HDL description is also hierarchically distributed throughout a module

hierarchy, as provided by the user through the TCL registerfile definition. This allows the modular

distribution of sub-registerfiles across the design hierarchy to those places where they functionally

belong. Notably, the EXTOLL network offers direct access to the address space of this configuration

and status registerfile (cf. Giese et al. 2012; Thommes 2018).

3.3 The Software Stack and Experiment Flow

A detailed overview on the existing current BSS-2 software stack with references for further reading

can be found in (Müller, Arnold, et al. 2022). Figure 3.5 shows a block diagram of the software

stack’s layering architecture.

Generally, the BSS-2 software architecture is roughly divided into four levels. On the lowest level,

the raw transport layer communication (Host-ARQ: Müller, Schilling, et al. 2018) and connection

handling (hxcomm: Electronic Visions(s), Heidelberg University n.d.(g)) with the hardware system

is implemented. Additionally, this level contains the Co-Simulation layer (flange: Electronic Vi-

sions(s), Heidelberg University n.d.(c), cf. Section 8.1.4).

The second level contains hardware abstraction libraries such as FPGA Instructions (fisch: Electronic

Visions(s), Heidelberg University n.d.(b)), Coordinates which are the basis for hierarchical address

calculations (halco (Electronic Visions(s), Heidelberg University n.d.[e])) and Containers abstract-

ing the bit-structure of configuration and status registers in the system (haldls: Electronic Visions(s),

Heidelberg University n.d.(f)). The Hardware Database (hwdb) contains basic information about the

physical system like e.g. ip-addresses and node-ids assigned to individual systems. The Embedded

Runtime library (libnux: Electronic Visions(s), Heidelberg University 2022) abstracts the hardware

from the PPUs’ point of view. Besides this, the stadls layer implements functions for executing play-

back programs that have been defined either in the realm of fisch or haldls. In any case, playback

programs are compiled to raw FPGA instructions using fisch and transferred to the FPGA using a

selected hxcomm connection instance via the respectively selected and available transport layer.

The third level divides between the two disjunct tasks of Experiment Description (grenade: Elec-

tronic Visions(s), Heidelberg University n.d.(d); Spilger 2021) and hardware Calibration (calix:

Electronic Visions(s), Heidelberg University n.d.(a)). Thereby, the Experiment Description layer

implements a conversion between a very abstract neuroscience perspective into a concrete represen-

tation onto the constraints and capabilities of the physical hardware system. The Calibration layer on

43

3 The BrainScaleS-2 System

pyNN
pyNN.brainscales2

PyTorch
hxtorch

Network Graph
grenade

Signal-Flow Graph
grenade

Place and Route
grenade

Calib Routines
calix

Logical Container
lola

HW Containers
haldls

FPGA Instructions
fisch

Runtime Control
stadls

Embedded Runtime
libnux

Coordinates
halco

Hardware Database
hwdb

Connection
hxcomm

quiggeldy
hxcomm

Host-ARQ (HW)
sctrltp

Co-Simulation
flange

Comissioning /
Expert Experiments

Early Prototyping

Neuroscience /
Machine Learning

Modelling

Wrapper

Experiment Description Calibration

Hardware Abstraction

Communication

Applications

Figure 3.5: "Overview of the BSS-2 software architecture and its applications. Left side: Coloured
boxes in the background represent the separation of the software into different concerns.
White boxes represent individual software APIs or libraries with their specific repository
names and dependencies. Right side: Various applications concerning different system
aspects. The arrows represent dependencies in the stack, where the dependent points to
its dependencies. For embedded operation additional dependencies on libnux are needed
(dashed arrows)."
This Figure and caption text have been taken from (Müller, Arnold, et al. 2022).

the other hand aims to compensate for the effect of production variations between individual BSS-2

ASICs by applying analogue parameter calibrations.

Last but not least, the topmost level implements wrapping layers for high level neuroscientific

(PyNN, pyNN.brainscales2: Davison et al. 2009; Electronic Visions(s), Heidelberg University n.d.(j))

and machine learning (PyTorch, hxtorch: Electronic Visions(s), Heidelberg University n.d.(h); Paszke

et al. 2019) experiments.

A general PyNN experiment is defined as a number of typed neuron populations that are con-

nected through so-called projections. Roughly for BSS-2, populations can contain HXNeurons,

offering control over the analogue parameters of BSS-2 hardware neurons, or so-called

SpikeSourceArrays, defining an array of spike events to be inserted as stimulus input into the

BSS-2 chip at specific times. Projections can implement different connection types like All2All or

One2One and also define the synapse weights, including whether the connection shall be excitatory

or inhibitory. Furthermore, projections are used to define which hardware neurons shall be stimu-

44

3.3 The Software Stack and Experiment Flow

lated by the SpikeSourceArray populations. The individual neuron-instances in a population

will thereby be mapped to spike labels that will be emitted by the respective hardware neuron or the

input spike train from the FPGA. The PyNN experiment library operates on a global simulator state.

An experiment therefore always begins by initialising the simulator by a call to pynn.setup().

After this, the populations and projections are created and automatically stored in the global simu-

lator state. Having the neural network topology defined, the experiment is executed for a specified

period of simulated time by calling pynn.run() and finally the simulator state is cleared by a call

to pynn.end().

Generally the experiment execution is partitioned into a pre-realtime section, one or multiple re-

altime sections and a post-realtime section. Thereby the realtime sections encompass the main

neuromorphic experiment emulating the neural network on the BSS-2 hardware. Before that, the

hardware is configured accordingly and afterwards the configuration is cleaned up into a reset-state

where the next experiment can operate on the chip without noticing the previous configurations.

Among other things, the pynn.setup() method provides arguments for injecting configuration

playback programs at any point between these experiment phases, as well as the specification of a

particular transport layer connection.

45

4 The EXTOLL Network Technology

Network
Crossbar
Switch

NP

NP

NP

NP

LP

LP

LP

LP

LP

LP

LP

VELO

SMFU

RF

ATU

PCIe x16
Gen3

Host IF NIC Network

RMA
HTAX

Crossbar
Switch

(a) (b)

Figure 4.1: The EXTOLL Tourmalet network ASIC design and interface card.
(a) Block diagram of the EXTOLL networking hardware design; modified from (EX-
TOLL GmbH 2017a; B. U. Geib 2012). Packets are routed through the network by
the Network Crossbar Switch. While the Link-Port (LP) interfaces the crossbar to the
physical links, the Network-Port (NP) interfaces towards functional units implementing
different communication protocols like RMA, VELO and distributed shared memory
(SMFU). An Address-Translation-Unit (ATU) handles conversion between virtual and
physical addresses, while the Register File (RF) provides an interface for configuration
and status readout. The host computer is interfaced through an PCIe interface which is
connected to the functional units via the HyperTransport Advanced Crossbar (HTAX).
(b) Picture of an EXTOLL Tourmalet PCB, taken from (EXTOLL GmbH 2017b).

The EXTOLL interconnection network has been developed by the EXTOLL company, based in

Mannheim2 which is a spin-off from the Computer Architecture Group (CAG) at the University of

Heidelberg3. The design goals were to provide high bandwidth and message rates with low latencies

for interconnecting high performance computing clusters. EXTOLL implements a direct, switch-

less network, capable of connecting nodes in a 3D-Torus or any other topology with a node-degree

of up to 7. A seventh besides six regular links is supplied for additional connections to special nodes.

The global address-space supports up to 216 = 65,536 nodes. Multicast communication is supported

by hardware with up to 64 multicast groups. A built-in barrier and interrupt mechanism supports

global interrupts across the network with very low skew of only a few clock cycles. This interrupt

mechanism will play an important role in this thesis in synchronising systime counters across several

BSS-2 systems (cf. Section 7.2). The accuracy of the interrupt operation synchrony will be evaluated

2www.extoll.de/
3www.ziti.uni-heidelberg.de/ziti/en/institute/research/computer-architecture-group

47

www.extoll.de/
www.ziti.uni-heidelberg.de/ziti/en/institute/research/computer-architecture-group

4 The EXTOLL Network Technology

in Section 8.6.3.

Originally, the EXTOLL Tourmalet ASIC was announced to provide a link-bandwidth of up to

120 Gbit
s and a tiny hop-latency, i.e. the latency of one switching hop through the network, of down

to 60 ns, as well as messaging latencies below 600 ns and sustained message rates of more than 100

million messages per second, running at a clock frequency of 750 MHz. However, due to technical

reasons, the core frequency could only be realised to 630 MHz and especially the Tourmalet boards

used for this thesis run at a frequency of 600 MHz. This frequency reduction leads to slightly reduced

core performance numbers with a resulting link bandwidth of 96 Gbit
s and a hop-latency of 75 ns.

More details on the frequency scaling and other adaptions of the network to the BSS-2 system

will be elaborated in Section 8.2.2. The core performance characteristics and design principles of

the EXTOLL network have been scientifically evaluated and published in (Fröning, Nüssle, et al.

2013; H. Litz et al. 2008; Nüssle, B. Geib, et al. 2009; Nüssle, Scherer, et al. 2009). Especially

the high sustained message rate and low message latencies make the EXTOLL network suitable for

accelerated neuromorphic computing.

Figure 4.1a shows an overview, containing the major building blocks of an EXTOLL network ASIC

while Figure 4.1b shows a picture of the Tourmalet network card on which the EXTOLL chip is

mounted and can be inserted into a standard computer via a PCIe slot. Notably, the EXTOLL

network chip already contains everything necessary to build a full working interconnection network.

Especially the packet switching hardware is included internally, forming a switch-less direct network

(cf. Section 2.3.2.2). The following sections will give an overview of the main building blocks,

summarising their functionality. More details and references can be found in the work of (B. U.

Geib 2012).

4.1 The Network Partition

The network partition, shown in red on the right side of Figure 4.1a contains everything that is

necessary to form a network of nodes. It consists of multiple Link-Ports (LPs), interconnected to

multiple Network-Ports (NPs) through a crossbar switch.

4.1.1 The Link-Port

The Link-Ports (LPs) (developed by Burkhardt 2007, compare Section 4.1.7 of B. U. Geib 2012),

corresponding to the OSI Link Layer (L.2), guarantee the error free and efficient transmission of

packets through the network. Possibly erroneous packets are detected through a strong Cyclic Re-

dundancy Checksum (CRC) code that is attached to each packet before sending it over the physical

link. When an error is detected while receiving a packet, a retransmission is requested from the send-

ing side. The latency introduced by retransmission of faulty packets is minimised by implementing

the error detection and retransmission on the lowest possible level in the network, as opposed to an

end-to-end retransmission which would cause a full round-trip latency.

Each link is divided into 12 lanes that are combined to groups of four lanes, so-called quads that can

be separately activated or deactivated. Each lane is encoded using an 8b-10b code in order to protect

the physical transaction words against transmission bit-errors (cf. J. Schmitt 2017).

48

4.1 The Network Partition

4.1.2 The Barrier Unit

The EXTOLL Barrier unit provides efficient hardware support for global barrier- and interrupt oper-

ations in the network (developed by Burkhardt 2007, compare Section 3.4 of Burkhardt 2012). The

EXTOLL card provides hardware units for up to 16 barrier- and 4 interrupt operations in parallel.

The Barrier units are directly attached to the EXTOLL Link-Ports in order to avoid the additional

latency through the network crossbar. Barrier messages are also forwarded with higher priority than

normal network traffic to avoid congestion for the Barrier- and Interrupt operations.

The Barrier operation provides global synchronisation in a way that a set of N participating nodes

and processes wait until they have all reached a certain point of operation before continuing. This

does notably not provide an exact point in time where all the different units will continue, but rather

a lower bound in time tcont for continuing the operation:

tcont = t i
barr, received > t j

barr, reached ∀i ∈ N, ∀ j ∈ N (4.1)

The Global Interrupt on the other hand, synchronises the participating nodes globally to a common

point in time. This can for example be used to synchronise a globally distributed timestamp counter

to the same value.

tcont = t i
int, received = t j

int, received ∀i ∈ N, ∀ j ∈ N (4.2)

Both synchronisation paradigms make use of a virtual tree structure, imposed into the physical net-

work by configuration. Figure 4.2 schematically shows a Barrier- and an Interrupt tree.

In a Barrier operation (Figure 4.2a), each process notifies its hardware unit that it has reached the

barrier. A leaf node’s hardware unit will then send an up-message to its parent in the network tree,

when all the subscribed processes have reached the barrier. Similarly, the parent node will forward

an up-message when all its own processes and child nodes have reached the barrier. When the

up-messages have reached the root node, a down-message will be propagated along the tree. Each

node receiving a down message will immediately release its subscribed processes from the barrier.

This release of the nodes from the barrier is however, not synchronous because the down-messages

propagate through the levels of the tree and release the nodes on their way immediately. Also it does

not account for latency differences on the individual physical links between the nodes.

For the Interrupt operation (Figure 4.2b), only the down-phase of the Barrier operation is used.

The operation is directly triggered by a master process at the root-node. In order for the Interrupt

operation to yield a common point in time at every node, the messages must have a constant latency

at each hop through the network. Although Interrupt- and Barrier messages have higher priority

than normal network traffic, they might still have to wait for another packet that is already underway

through the link. In order to provide constant latency, Barrier-messages are inserted onto the link

with highest priority, only after waiting for the longest time, a normal network packet could possibly

take for transmission across the link. Thereby, any packet that is currently using the link will be

finished before the Interrupt message is inserted. Variations in latency between the individual links

and the position in the interrupt tree are compensated by a programmable wait-timer in each unit.

After all links have been measured using a special measurement mechanism built into the interrupt

units, these delay counters are programmed such that each interrupt unit will release the interrupt

notification globally at the same point in time, depending on the result of the round-trip latency

49

4 The EXTOLL Network Technology

��

���

��

���

��

���

��

���

��

�	�

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

�	�

��

�
�

��

���

��

���

��

�
�

��

���

��

���

��

���

��

���

��

���

��

���

��

(a) The Barrier tree operation. An exemplary order of visits is indicated by the numbers written to the node
circles. Each node is visited two times.

�����

�����

����� �����

�����

�����

����� ����� ����� ����� ����� �������������������� ����� ����� �����

�������������������� ����� ����� �����

(b) The Interrupt tree operation. The first number written to the node circles gives the visiting order of the
interrupt messages, the second number gives an exemplary wait-count, compensating the different arrival
times of the interrupt message at each node.

Figure 4.2: The Barrier- and Interrupt tree operations. Up-messages are displayed using open arrow-
heads while down-messages are visualised using filled arrow-heads.

measurement and the nodes position in the interrupt tree.

The EXTOLL Barrier Unit will be used for globally synchronising the systime counters of the

BrainScaleS-2 FPGAs in the later course of this thesis (cf. Section 7.2.2).

4.1.3 The Network Crossbar

The network crossbar (cf. Section 3.8 of B. U. Geib 2012) is the central component of the EXTOLL

network, as it performs the basic routing operation of packets through the network and towards their

final destination unit. Thereby it basically implements the OSI network layer (L.3) together with the

NPs (cf. Section 4.1.4).

The crossbar can execute arbitrary routing algorithms by implementing a table-based routing mecha-

nism (cf. Section 2.3.4, compare Section 3.8.1 of B. U. Geib 2012). Thereby, nodes are labelled with

a unique 16 bit node-id throughout the network. Packets are addressed using the unique node-id of

their destination node. When a packet reaches the crossbar at an input port, the destination node-id

is used as an index to the routing table, yielding the output port to which to forward the packet.

In order to reduce the required memory space while maintaining the same lookup latency and address

space size, the EXTOLL crossbar implements hierarchical routing tables. Nodes are organised in 64

network segments using the upper 6 bit of the node-id. Each segment can contain up to 1024 nodes,

50

4.1 The Network Partition

distinguished by the lower 10 bit of the node-id. The routing decision is made by two simultaneous

table lookups. If the global part of the destination address does not match the local node-id, the

global routing entry is used for forwarding the packet. Otherwise the packet has already reached its

destination segment and is now forwarded using the local routing entry. If the full address matches

the local node-id, the packet has reached its destination and will finally be forwarded to the internal

unit, requested through a field in the packets header (cf. Appendix B.2).

Deadlocks can be avoided by applied routing algorithms through the support of 2 Virtual Channels

(VCs) (cf. Section 2.3.3.5). Adaptive routing is also optionally supported by the use of a dedicated

adaptive Virtual Channel. The routing can make use of 4 so-called Traffic Classes, each providing a

different route through the network.

The EXTOLL crossbar uses the Virtual Cut-Through Switching (VCT) strategy (cf. Section 2.3.3.3).

The input buffers feature Virtual Output Queues (cf. Section 2.3.3.5) in order to avoid Head of Line Blocking

(cf. Section 2.3.3.4).

Multicast operation is also supported by the crossbar hardware through the use of a dedicated mul-

ticast routing table. For this purpose, up to 64 multicast groups can be defined. A packet which is

addressed to a multicast group is then replicated sequentially in the crossbar towards all output ports

yielded from the multicast routing lookup.

4.1.4 The Network-Port

The Network-Ports (cf. Section 4.5 of B. U. Geib 2012) establish a connection between the Func-

tional Units (FUs) in the Network Interface Controller (NIC) partition and the network crossbar. A

credit-based flow control mechanism (cf. Section 2.3.3.2, compare Section 3.8.6 of B. U. Geib 2012)

is implemented here, as the NPs form the endpoints of a connection across the EXTOLL network.

The correct framing of packets is also ensured here at the entry-point into the network.

The NP is divided into two main subunits, the NP sender and the NP receiver. The sender is

responsible for the transmission of packets towards the crossbar and into the network, while the

receiver forwards incoming packets to its respective FU. In particular, the sender appends an End

Of Packet (EOP) cell to each packet and checks that it has enough credits to its disposal in order to

send the packet back-to-back according to the EXTOLL specification. A small buffer is instantiated

here to store packets until enough credits are available.

The receiver on the other hand needs to instantiate a larger buffer, so to be able to take as much data

as it gave out credits to sending sites before. When the attached FU has read the data from the buffer,

credits are immediately returned to the sending side. For error handling, the NP offers two different

modes. In VCT mode, packets are partly forwarded to the FU as they are received. If the functional

unit however, is not able to handle signalled packet errors, the NP can be operated in a SAF mode.

In this mode, incoming packets are buffered, until they can be determined to be error-free. If an error

is detected, the buffered packet will be invalidated and dropped. However, the data will not be lost

though, as the LP will already have requested a retransmission.

As the NPs use the same uniform crossbar port interfaces as the LPs, these two units are compatible

for direct connection. This direct compatibility is made use of in the BSS-2 FPGA, where only

one link and target functional unit is present (cf. Section 3.2.4). In this case no network crossbar is

needed and the NP and LP units can be directly connected.

51

4 The EXTOLL Network Technology

4.2 The NIC partition

The Network Interface Controller (NIC) partition collects all the functional units implementing low

level protocols for communication between host computers throughout the network. The direct

implementation of these protocols in hardware plays an important role towards the low end-to-end

communication latencies achieved through the extoll network. With the help of these hardware units

a great part of the communication that would otherwise be handled by the operating system can be

offloaded from the CPU to the hardware. This greatly reduces the communication overhead that is

usually experienced in high performance computing systems.

4.2.1 The RMA Unit

The Remote Memory Access (RMA) Unit (Nüssle, Scherer, et al. 2009, compare Section 7.5 of

Nüßle 2008) is implemented to efficiently support atomic remote DMA transfers of data chunks.

For this purpose it provides an instruction set consisting of put and get operations as well as special

notification and atomic lock operations.

The put operations transfer a sized chunk of data from a specified local DMA address to a specified

remote memory address. Automatic notifications to the requesting process can be triggered upon

completion of the operation at the requesting side as well as at the completing side. Additionally,

there is an immediate put operation that transports a small amount of data directly with the command

itself, skipping the DMA access at the requesting side. Similarly, the get operations request a remote

node to write a sized chunk of data from its remote memory to the local memory of the requesting

node. Again automatic notifications can be triggered upon completion at the requesting, responding

or completing site. A special notification put instruction can be used to directly send a small amount

of data to the notification queue of a remote process. This can be useful for the implementation of

various communication protocols. The atomic lock operation performs an atomic fetch-compare-

and-add (FCAA) operation at a remote location (cf. Section 7.5.4 fo Nüßle 2008). This operation

basically compares the value of the remote location with a given value. Upon success, i.e. the value

at the memory location is less or equal to the comparison operand, the operation adds the second

operand to the retrieved value, writes back the result to the memory location. Finally, the requesting

side is notified about the result of the comparison. This special instruction can be very useful for the

efficient implementation of distributed parallel algorithms.

The microarchitecture of the Remote Memory Access (RMA) unit is divided into three sub units,

the Requester, Responder and Completer (cf. Section 7.5.4 of Nüßle 2008). The implementation of

the different parts of the operations described above is distributed across these units. The Requester

is responsible for sending request packets to the remote node with data it retrieved from the local

memory. The Completer on the other hand is responsible for receiving and interpreting the response

packets from the remote node. Finally it will write the result of a get instruction or the content

of a put command to the local memory or insert received notifications to the requesting process’s

notification queue. In between, these two units, the Responder will fetch the requested data for

get commands from the memory and send the response packet back to the requesting node. As

the Responder is responsible for receiving requests as well as sending responses, it makes use of a

whole NP interface, while Requester and Completer can share one NP interface, as they implement

52

4.2 The NIC partition

complementary responsibilities in sending and reception of packets.

Memory addresses in the transmitted commands can either be interpreted as physical addresses,

directly used to access the main memory or as virtual addresses, which are generally better suited

for user level software. In case of virtual addresses, the RMA unit makes use of the Address-

Translation-Unit (ATU), also implemented in the EXTOLL Network Interface Controller (NIC) (cf.

Chapter 5 of Nüßle 2008). This unit will then translate the provided virtual address to a physical one

that can then be used for DMA access to the local memory.

In the scope of (Thommes 2018) and this thesis, the RMA unit is used for communication of the

BrainScaleS FPGA with the controlling experiment host. For this purpose, a simplified RMA mi-

croarchitecture (called NHTL) was developed in (Thommes 2018), only supporting a basic subset

of the whole RMA instruction set (put, get responses and notifications). In the scope of this thesis,

the subset was extended by get requests for Remote Registerfile Access (RRA) master operation

(cf. Section 7.4 and Section 7.6.4). In order to further simplify the microarchitecture and make do

with a single NP as compared to two NPs in the original design, the receiving functionality of the

Responder was merged with the NHTL Completer which will now forward get requests to the NHTL

Responder. Similarly, the functionality of the Requester was merged into the NHTL Responder. This

approach is similar to the one used for the simplified RMA microarchitecture in (J. Schmitt 2017).

A reference of the RMA packet types and their headers in the scope of this thesis can be found in

Appendix B.2.

4.2.2 The VELO Unit

The Virtualised Engine for Low Overhead (VELO) Unit, as described in (H. Litz et al. 2008, Sec-

tion 4.6 of B. U. Geib 2012 and Section 7.4 of Nüßle 2008), has been developed to support small

messages with a minimal latency and overhead between software processes of different network

nodes. This is achieved by writing messages directly to the device address space from user soft-

ware at the sending side and polling a ringbuffer at the receiving side which is filled automatically

with arriving messages through DMA accesses by the hardware. On the sending side, this approach

avoids the latency introduced by a DMA access. On the receiving side, the polling strategy avoids

the latency of kernel-interrupt context switches that would occur with directly sending messages to

the receiving process. It also gets rid of the necessity to transmit remote write addresses, as those are

automatically determined by a ringbuffer controller in the receiving hardware. This Virtual Ring-

buffer Handler (VRHD) (Section 2.4 of B. U. Geib 2012) is designed to handle the mapping of a

segmented physical address space to a multitude of continuous virtual address space ringbuffers.

This same VRHD unit is also used to write RMA notifications to the host.

The VELO unit is divided into two subunits, the VELO Requester and Completer. The Requester

collects message parts from the host interface and combines them to a single network packet. While

the source process id, as well as the traffic class (cf. Section 4.1.3) are provided by the device address

to which the message is written, the destination information like the target node- and process id, as

well as the message’s length are conveyed with a status word, resembling a minimal packet header.

The VELO Completer on the other hand receives packets from the network and, after performing

some integrity and security tests, forwards them towards the host interface where they are written to

main memory. The memory target address is thereby provided by the VRHD.

53

4 The EXTOLL Network Technology

In order to avoid data loss, a flow-control mechanism has to be implemented in software on top of

the VELO unit (Prades et al. 2012). The flow-control is implemented as a protocol software library

layer as a dynamic credit-based mechanism. The dynamic feature of this flow-control mechanism is

to split the receiving buffer into dynamically sized virtual regions and assigning those to the sending

remote processes. The size of the respective buffer-regions correlates to the frequency of traffic, the

respective remote process is sending.

As this software-based flow-control is essential to the correct function of the VELO unit and reim-

plementing this exact algorithm in the BrainScaleS FPGA would have been a complex task, it was

decided to rather use the RMA unit for communication of the BrainScaleS system FPGA with the

host computers. Actually, the communication mechanism developed in (Thommes 2018) resembles

a simplified version of VELO communication, implemented using RMA packets (cf. Section 7.4

and Appendix B.2). One disadvantage of this choice is however that it introduces some additional

latency at the sending side through not making use of the direct address-space transmission scheme

of VELO. However, this latency can well be hidden, as the data transmitted from the host to the

BrainScaleS FPGA consists of precompiled playback programs, usually forming large chunks of

data that are there realtime-executed towards the actual neuromorphic hardware (cf. Section 3.2.2).

Indeed, (B. U. Geib 2012) and (H. Litz et al. 2008) stat that the latency gap between RMA and

VELO notably shrinks with increasing message size.

4.2.3 The SMFU Unit

The third functional unit in the EXTOLL NIC is the so-called Shared Memory Functional Unit

(SMFU) (Fröning and H. Litz 2010). As the name of the unit already tells, it provides a global

shared memory address space throughout the network. This is achieved by directly tunnelling load

and store instructions from the host interface bus (e.g. PCIe) into the remote node. This offers

transparent remote memory access to software, in the same way, it would use local memory. This is

especially useful for very fine grained access patterns like e.g. process synchronisation.

4.2.4 The Registerfile

The registerfile implements configuration and status registers across the whole design. These regis-

ters are made available through a software interface, as well as a hardware interface. The relevant

code for the HDL description, Linux kernel driver, HTML manual and functional verification is

generated from a common source by a custom tool-chain. This tool-chain has been under ongoing

development together with the EXTOLL hardware itself and therefore changed in the internal details

over the years (Computer Architecture Group 2018; B. U. Geib 2012; Nüßle 2008; Wenzel 2018).

The version used in the scope of this thesis is (Computer Architecture Group 2018), which is briefly

described in Section 3.2.5.2.

4.3 The Host Interface

The EXTOLL design was originally developed offering a HyperTransport (HT) interface. HT is an

open specification for a CPU interface bus mainly implemented in AMD processors. Because of its

54

4.4 The Software Stack

direct connection to the CPU, HT offered a very low latency (Slogsnat et al. 2008). In order to pro-

vide a more standard interface, also a PCIe interface was developed and integrated into the EXTOLL

chip. The design offers static switching between these two interfaces, meaning that one can either

use one or the other, but dynamical switching during operation is not supported (Section 4.1.1 of

B. U. Geib 2012). The EXTOLL Tourmalet network card now offers only the PCIe interface, as the

HT bus is not widely supported anymore in recent systems.

In order to connect the functional units, described in Section 4.2 to the single host interface se-

lected for operational use, an on-chip network crossbar called HyperTransport Advanced Crossbar

(HTAX) was developed and described in (H. H. Litz 2011). It offers a protocol-agnostic and highly

configurable network-on-chip design. As the original EXTOLL design was fully developed towards

the HT interface, all functional units operate across the HTAX on the HToC protocol, which was

especially developed for this purpose.

4.4 The Software Stack

The driver- and API software stack supporting the EXTOLL network is shown in Figure 4.3.

Figure 4.3: The EXTOLL software stack. Communication with the hardware is managed by kernel
space drivers, while user space applications are provided with API libraries and transpar-
ent middleware like e.g. Message Passing Interface (MPI) and GASNet (Fröning 2015).
This Figure is taken from (N. A. Buwen 2019)

On the lowest layer, multiple linux kernel drivers handle the physical communication with the re-

spective hardware units, described in Section 4.2, via the host computer’s PCIe bus system. On top of

55

4 The EXTOLL Network Technology

the kernel drivers, user space APIs provide access to the functionality of the RMA (cf. Section 4.2.1),

VELO (cf. Section 4.2.2) and SMFU (cf. Section 4.2.3) hardware units. So-called middleware li-

braries like e.g. MPI and GASNet (Fröning 2015) may be specifically implemented directly on top of

the EXTOLL API layers in order to transparently provide network access to existing user application

software.

The Extoll Management Program (EMP) has been developed by Tobias Groschup at the EXTOLL

company and is provided for bringing up a physical network after adding nodes or changing the

topology. This tool mainly performs three steps to configure the Tourmalet nodes and start network

operation. First, it will do a discovery run to find the physically connected network topology like for

example a grid or torus topology (cf. Figure 2.6). This is done, by reading the status Registerfiles of

the all connected LPs and retrieving the Global Unique Identifiers (GUIDs) and building an internal

representation of the found physical topology. For this task, the tool assigns temporary routes and

Node IDs in a depth-first-search. Second, the tool will calculate a possible routing configuration or

check, whether a given routing configuration from a source file will apply to the physical topology,

found in the first step. Finally, the third step is to write the calculated routing configuration to the

Registerfiles of all the crossbar link ports, i.e. to write the routing tables on the involved nodes. The

EMP tool also enumerates the configured nodes to the driver and can be used to print out status

information about the network and the contained nodes.

56

Part II

Event Communication

57

5 Event Communication Principles and
Systems

As motivated in Chapter 1, large scale neuromorphic computing systems are special purpose super-

computers, based on novel computing paradigms which lean on the knowledge obtained about the

computing principles of nervous systems in biology. As such, they exhibit very special requirements

to Quality of Service which shall be derived and motivated from literature in Sections 5.1 to 5.3.

Following this introduction, Section 5.4 will briefly describe methods to obtain these requirements

for Quality of Service (QoS) for neuromorphic spike event communication.

Besides that, this Chapter also gives a short overview on some existing large scale neuromorphic sys-

tems and their respective approach to neural event communication (cf. Section 5.5). Finally unique

requirements of neuromorphic event communication in packet-based interconnection networks are

explained while giving a first overview on the event communication architecture, developed and

implemented for the BSS-2 system in this thesis (cf. Section 5.6).

5.1 Event Communication in General

Event communication is an important paradigm in modern large scale surveillance and control sys-

tems. Real world applications like e.g. weather or water level observation and forecast, operation of

power grids, driven by the real time electrical demand, or home automation systems represent sys-

tems that gather measurement data in order to perform overall evaluating computations. Collecting

high resolution data streams from a high number of measurement sites would however impose high

demands on communication bandwidth and computation frequency for evaluation at a central site.

Therefore the evaluation is spread across the whole system to compress the data streams and only im-

portant signal changes are communicated as events towards a central evaluation site. This paradigm

is also referred to as ubiquitous computing (Rodrigues et al. 2010; Albrecht Schmidt 2002).

Another application of event communication for compression of data streams are event-based or

neuromorphic cameras (Li et al. 2017; Lichtsteiner et al. 2008; Liu et al. 2017). These cameras take

inspiration from biological vision systems. Instead of streaming a brightness trace for every pixel in

sequential readout order, the pixels in these cameras independently and asynchronously report only

changes in their respective brightness. This has the great advantage of directly depicting movements

as opposed to a sequence of static images.

In addition to event based sensing, biological systems also perform event based computation, as

described before in Section 2.1. Neuromorphic Computing (Section 2.2.1.3), aiming to imitate the

biological event based computation, takes event communication to a whole new level. When scaling

neuromorphic computing systems to implement large neural network models, spike events have to

be communicated between the different parts of that system.

59

5 Event Communication Principles and Systems

As the goal of this thesis is to propose and implement an event communication mechanism for

the BrainScaleS-2 neuromorphic computing system (cf. Chapter 3), the next Section will focus on

the particular aspects of event communication in neuromorphic computing systems in the form of

Spiking Neural Networks (SNNs).

5.2 Event Communication for SNNs

In SNNs, as described in Section 2.2.1.3, neurons exchange information by emitting spike events to

the synapses of connected neurons. The presynaptic neurons emit such spike events when their mem-

brane potential exceeds a threshold value. The postsynaptic neurons, receiving these events react to

them by changing their membrane potential according to the received synaptic input. Electronic

emulations of SNNs have to detect the presynaptic spikes and communicate them to the receiving

synapses.

In biology, each synaptic connection is directly and physically routed from the axon of a presynaptic

neuron to the dendrite of a postsynaptic neuron. This vast connectivity is possible as biological neu-

ronal networks grow as a three-dimensional tissue, dynamically evolving over time and using free

intercellular space for real three-dimensional routing. With the current state of the art for VLSI In-

tegrated Circuits (ICs) however, technical implementations of connection networks are constrained

to a two-dimensional space that is at most extended by a few layers, stacked vertically above each

other (Deng et al. 2005; J. Kim et al. 2020; Najmaei et al. 2022; Takawadekar et al. 2021). Impor-

tantly, inter-chip networks are even more constrained as every synaptic connection, crossing the chip

boundary, has to be mapped to a pin or pad either on the chip’s one-dimensional border (in case of

wire-bonding) or on the two-dimensional area of its top layer (in case of flip-chip bonding or wafer-

scale integration). Therefore physical connections in a technical implementation are strictly limited

in their number. However, the bandwidth of serial data transmission across these connections can be

much higher than required for the realisation of a single neural connection. It is therefore feasible

to bundle and compress the information stream of multiple synaptic connections and transport them

between the technical neuron instances using a shared communication infrastructure.

Figure 5.1: Schematic of the Address Event Representation coding; taken from (Culurciello et al.
2003).

As stated in Section 2.1.1, the temporal shape of action potentials (aka. spike events) does not carry

significant information. Instead information is conveyed through the spatial and temporal distribu-

tion of the spikes. The Address Event Representation (AER) (Culurciello et al. 2003; Mahowald

1992; Sivilotti 1991) encoding therefore represents spike events by a unique label corresponding to

60

5.3 Quality of Service Requirements for Spike Communication

the address of the emitting source neuron. If the interconnect latency is not constant and has vari-

ations, comparable in magnitude to the time-intervals between subsequent events, a timestamp has

to be added to compensate for this jitter at the destination (cf. Section 5.3.2 and Section 5.4). This

timestamp will then represent either the time when the source neuron has fired or the time when

the event shall arrive at the target synapse. This label- and timestamp representation can then be

communicated across the shared interconnect infrastructure. Figure 5.1 schematically depicts this

principle of AER coding without timestamps. The interconnect is hereby approximated as a simple

data bus (cf. Figure 2.5) and spike times are encoded in the signal edges.

5.3 Quality of Service Requirements for Spike Communication

In general, the term Quality of Service (QoS) refers to required and offered characteristics of trans-

mission across an interconnect for a specified type of transmitted data. This includes reliability with

respect to correctness and completeness of transmitted data, bandwidth, as well as bounds on the

transmission delay (latency) and its variation (jitter).

The following subsections will respectively discuss the requirements, imposed on a technical imple-

mentation of spike event communication between neurons.

5.3.1 Spike Latency

The axonal delay is defined as the time, an action potential takes to travel from a source neuron’s

soma to the receiving neurons’ synapses. In (Swadlow et al. 2012) an extensive review is presented

on biological findings about the axonal conduction delays. The reviewed empirical studies report a

large biological variety in the spike latency between different neural populations as well as inside

populations. Other studies show that exactly this spatial variation of delays has a large effect on

the dynamics of Spiking Neural Networks (Brunel 2000; Hornung 2020). In biology, these delays

largely depend on the functional purpose of the connecting neurons in the respective nervous system

as well as the species, age, health and environmental circumstances of the individual organism under

investigation (Swadlow et al. 2012).

The delay itself depends on the distance in terms of physical connection length between the neurons.

Besides that, the transmission speed of the action potentials also depends on the physiology of

the respective axon. Basically, the conduction velocity of the axons rises with increasing axon

diameter. Besides this basic effect, axons can also be surrounded by a myelin sheath that acts as an

electrical insulator with high resistance and low capacitance. This largely increases the conduction

speed across myelinated axons relative to non-myelinated ones with the same diameter. In biology,

myelination is harnessed mainly for thick axons above diameters of approximately 0.3 µm (Waxman

et al. 1976) to further improve their conduction speed over longe range distances.

(Swadlow et al. 2012) also reports numbers for the axonal delays from many different empirical

studies. The delay is reported to be widely varying across different neural connections in different

species. Short range connections internal to a rats cortical microcircuit (Potjans et al. 2012) are

reported to be around 1.1 ms while long range connections between different brain regions are mostly

reported to be in a range between 1 ms and 50 ms. Of course this range is not exclusive, so there are

61

5 Event Communication Principles and Systems

also connections having delays below 1 ms or even up to 130 ms. For reference compare Table 1 in

(Swadlow et al. 2012).

With the BSS-2 acceleration factor of 103 and its continuous time operation (cf. Chapter 3), these

numbers lead to a hardware latency requirement in a range of 1 µs to 100 µs.

This large range of biologically observed transmission delays is, according to the review of (Swad-

low et al. 2012), generally believed to serve the purpose of synchronising presynaptic activity from

different locations in the nervous system onto different postsynaptic receptors, leading to different

postsynaptic reactions depending on the precise timing of distributed presynaptic activity. Addition-

ally, in recurrently connected networks, the delay of the recurrent connections limits the timescale,

on which incoming spike signals can be functionally correlated with the recurrent spike signals.

5.3.2 Spike Jitter

Another important aspect for neural information processing is the temporal variation (jitter) of ax-

onal delays. As described in Section 2.1.3, one aspect of learning in biology is based on the temporal

correlation of pre- and postsynaptic spike times, which is also referred to as STDP. Thereby, connec-

tions are potentiated in case of causal correlation and depressed in case of acausal correlation. The

magnitude of potentiation or depression is scaled by an exponential decay. The time constants of

this decay typically reside in the range of the neuronal membrane time constant (Abbott and Nelson

2000). The technical implementation on the HICANN-X supports STDP time constants in a range

of 11.36 µs to 336.6 µs for causal correlations and 12.31 µs to 228.73 µs for acausal correlations

(Friedmann et al. 2017). Membrane time constants are calibratable in a range of 0.5 µs to 100 µs and

synapse time constants in a range of approximately 0.5 µs to 11 µs according to (Leibfried 2021).

Together, these numbers give an approximate constraint to the tolerable jitter of the spike latency.

While the lowest possible STDP time constants of slightly above 10 µs correspond to 2500 4 ns clock

periods, the lowest membrane- and synapse time constants correspond to 125 4 ns clock cycles. So

a latency variation in the order of a few hundreds of clock cycles could generally be estimated

acceptable from a model point of view with regard to the STDP time constant and some tens of

clock cycles with regard to membrane and synapse time constants. It can be summarised that the

jitter should be as low as possible in terms of clock-cycles and that with larger membrane-, synaptic-

and STDP time constants also a higher spike jitter can be tolerated.

The spike event communication implementation, described later in Chapter 7, together with the

existing spike event communication across the serial link between BSS-2 ASIC and FPGA (cf. Sec-

tion 3.1.2 on page 37 and Section 3.2.1) is constructed to ideally guarantee jitter to be eliminated to a

few clock cycles. This claim can however only be so precise as the precision of the synchronisation

of the system time counters on FPGAs and ASICs. For the event transport between the FPGA and

ASIC, (Rettig 2019a) claims negligible precision influence with respect to the neuron time constants.

For the external spike communication, the precision of systime synchronisation is measured in this

thesis (cf. Equation (8.11) in Section 8.6.3) to be in the order of ±5clk in the FPGA domain (8 ns
clk),

corresponding to ±10clk in the ASIC domain (4 ns
clk).

62

5.3 Quality of Service Requirements for Spike Communication

5.3.3 Transport Bandwidth

As spike events are technically transported using AER coding, their size in terms of transmitted

information is constant and depends on the size of the neuron address space and the size of the

transmitted timestamps. The overall momentary data rate then depends on the number of neurons

and the individual rates at which they fire. Ideally, the interconnect network should offer enough

bandwidth to transport any rate of spike events that might be generated by the neuromorphic source

device. Practically however, this might not be possible as any physical network implementation will

have an upper bandwidth limit.

An exemplary estimation might assume a mean biological firing rate of 2.45 Hz to 33.9 Hz, reported

by (Baddeley et al. 1997). The maximum biologically plausible spike rate can be estimated by the

absolute refractory period, which is reviewed by (Boërio et al. 2004) to be in a range of approxi-

mately 0.6 ms to 4.5 ms. This minimum refractory period results in a maximum spike frequency of

1.67 kHz. With a speed-up factor of 103 and 512 neurons on the HICANN-X neuromorphic chip,

this would result in a total average event rate of 853 MHz. On BSS-2, with a 14 bit spike label (cf.

Chapter 3), a 15 bit external timestamp (cf. Section 7.1.3) and ideal encoding of the events onto the

physical bitstream of the interconnect, this gives a required bandwidth estimation of approximately

24.7 Gbit
s . This maximum required bandwidth arises from all neurons on a chip hypothetically firing

at a maximum rate of 1.67 kHz. However, one must also take into account neurons firing at signifi-

cantly higher rates in a bursting or high activity regime, leading to a higher bandwidth requirement

for short periods of time. Still, it is hardly realistic that all neurons on the chip are in a bursting state

at once, so the previous estimation for maximal regular spiking is still good. Furthermore, it also a

good assumption that not all neurons are connected off-chip and therefore a high amount of the total

activity stays internal to the chip, not contributing to the required transport bandwidth.

A technical upper bound on the required interconnect bandwidth for external spike event communi-

cation can be obtained from the HICANN-X specification (cf. Chapter 3). According to (Johannes

Schemmel, Billaudelle, et al. 2022), the L1 links in the HICANN-X can provide one event at every

250 MHz clock cycle. Four of these links are connected to eight high speed serial links towards the

outside world. Due to serialisation overhead, and the limited serial bandwidth of 8 Gbit
s , (Karasenko

2020) reports a maximum event throughput of 250 MHz between the BSS-2 ASIC and an FPGA.

With the above mentioned external event size of 29 bit (address label plus timestamp), this results in

a required external interconnect bandwidth of 7.25 Gbit
s , assuming an optimal transmission encoding.

The EXTOLL network, used for the communication implementation in this thesis offers a total

bandwidth of 12 Gbit
s (cf. Equation (8.6) in Section 8.2.2) at the FPGA’s link to the network.

5.3.4 Transport Reliability

In biology, synaptic transmission is observed to be quite unreliable and up to 50 % of the arriving

presynaptic pulses fail to evoke a postsynaptic response (Allen et al. 1994; Hessler et al. 1993).

(Allen et al. 1994) argues that the reason for this lies in the probabilistic nature of neurotransmitter

release at synapses. However, the overall neural network seems to cope well with this unreliability.

It can therefore be reasoned that it is not so important to transmit every spike event reliably to a target

neuromorphic synapse circuit, given that the reliability of that circuit is significantly higher than its

63

5 Event Communication Principles and Systems

biological counterpart. However, this holds only true when biological networks are modelled. In the

case of artificial SNN models, every single spike can be quite important and carry significant infor-

mation Datta et al. 2021. In any case, it must be ensured that the dropping of events only happens

stochastically and not systematically for a particular group of source- or destination neurons. Addi-

tionally, the overall drop rate of events should not become too large, such that the overall function

of the modelled neural network would become disturbed.

While reliability towards the completeness of event transmission can be considered less important,

reliability with respect to correctness should however be guaranteed in any case. Incorrect transmis-

sion of events could easily lead to wrong timing, resulting in large latency jitter and increased drop

rates. Furthermore, incorrectly transmitted events could end up at wrong target neuron populations,

disturbing the functional connectivity pattern of the modelled neural network. Therefore, reliable

and correct transmission of spike events is essential to the function of a neuromorphic computing

system.

According to (Karasenko 2020), the event transport between the BSS-2 ASIC and FPGA is not

secured for data integrity, as the bit error rates are found to be reasonably low. For external event

communication, the EXTOLL network ensures reliable transport of all data packets by strong CRC

protection (cf. Section 4.1.1).

5.4 Methods for obtaining Spike Communication Quality of Service

In Section 5.3 the main aspects of Quality of Service in spike event communication were sum-

marised and explained. This Section now presents general methods of how to reach these require-

ments, while in Section 5.5 some examples of existing implementations employing these methods

in different ways are shortly presented.

As stated in Section 5.3.1, the transmission latency of individual spike events might have strongly

model-dependent optimal values. Therefore, the final axonal delay of individual spike events should

be decoupled from the actual transmission of the AER data. As long as the transmission delay

through the interconnect is low enough, any axonal delay can in principle be implemented by de-

laying the final emission of the transported spike events to the target synapse. However, the delays

are exposed to an upper limit by the physical buffer capacities at the receiving network node, as the

buffer requirements will rise linearly with the implemented delay as well as the incoming aggregated

event rate.

The latency constraint always has to be fulfilled together with the more important jitter constraint.

As explained in Section 5.3.2, any jitter on these delays will have a direct impact on the precision

of STDP learning results and general input integration of the neurons with respect to the neurons’

time constants. Generally, both constraints are solved by modifying the timestamp of events at the

source by adding the required axonal delay and ensuring that this delay is larger than the maximum

transmission latency across the interconnection network between the source- and target neuromor-

phic device. Thereby, any jitter in the transmission latency can be settled out by the final buffer stage

at the destination node:

ta = te +d (5.1)

with ta being the resulting arrival timestamp, computed by the emission timestamp te at the source

64

5.5 Existing Spike Communication Architectures

and the axonal delay d. In case, one presynaptic neuron is connected to several postsynaptic neurons

with different delays, this would have to be applied multiple times accordingly.

The transport bandwidth in the interconnection network is strictly limited by the technical imple-

mentation and characteristics of the interconnect. Therefore, the available physical bandwidth has

to be efficiently used to guarantee as much spike event traffic with as minimal jitter as possible. In

other words, spike event traffic must always have priority over timing uncritical management and

configuration traffic.

As strict completeness of received events is not required by the unreliable nature of biological synap-

tic event reception, events that would arrive late at the target node, can and should be dropped.

However, as described in Section 5.3.4, it must be ensured that those events that arrive in time are

content-wise correct. This can in general be ensured by securing the network traffic at the OSI Link

Layer (L.2) by means of error detection and correction mechanisms like CRC codes.

5.5 Existing Spike Communication Architectures

For transporting spike events through a digital network, there are different possible architectural de-

sign and routing strategies, regarding the addressing scheme as well as the implementation of the

Quality of Service measures explained in Section 5.3 and Section 5.4. An overview on the high per-

formance network design space has been given in Section 2.3. Some examples of network implemen-

tations for neuromorphic spike event communication from the historical context of the BrainScaleS

development and the competing neuromorphic hardware system in the HBP, SpiNNaker, shall be

summarised in the following subsections.

For example, (Grübl 2007; Philipp 2008) (cf. Section 5.5.1) route events according to their destina-

tion address, on a network providing time devision multiplexed circuit switching (cf. Section 2.3.3.3).

In contrast, (Plana et al. 2020) (cf. Section 5.5.2) selects outgoing links based on the source address.

A different approach is however proposed by (Thanasoulis 2019) (cf. Section 5.5.3), who introduces

the concept of link tags. These are re-assigned to a spike message at each hop through the network.

Thereby the routing becomes independent from the system-size.

5.5.1 Spikey and the Nathan Network

One of the first predecessors of the current HICANN-X BSS-2 ASIC was the Spikey Chip. It im-

plemented a total of 384 Leaky Integrate-and-Fire (LIF) neurons and 98,304 synapses. It was driven

by a 400 MHz system clock and operated at speed-up factors between 104 and 105. The Spikey

chip was mainly developed and described in (Grübl 2007). The Spikey ASIC was mounted on a

so-called Nathan module PCB together with an FPGA and local memory. 16 of these modules had

been interconnected through a 2D torus network implemented on a backplane PCB (Fieres et al.

2004).

A multi-class gigabit network architecture has been developed for this platform in (Philipp 2008).

That network architecture distinguished traffic in two different priority classes. A first traffic class

was handled as priority traffic and transported through asynchronous channels with guaranteed band-

width reservation. On the other hand, low priority traffic like for example configuration data and

memory accesses were transported in a packet-based best-effort manner. This was achieved through

65

5 Event Communication Principles and Systems

a Time Devision Multiplexing (TDM) approach, where the available physical link bandwidth was

divided into time slots of a fixed length. Priority traffic was transported on connection-wise pre-

allocated routes with reserved time slots. Best-effort traffic however, was transported within the

unused timeslots, including unreserved ones as well as those reserved slots that were currently not

used by priority traffic. The priority traffic connections were provided as isochronous in the terms

of guaranteed throughput and minimised latency jitter.

On top of this multi-class network architecture, (Grübl 2007) developed a Neural Event Processor,

handling the transmission and reception of spike events in the communication FPGA. Source events

from the connected neuromorphic ASIC or the playback memory (for the concept of playback com-

pare Section 3.2.2) are received by the event processor and converted into one or more destination

events that are addressed towards a synapse row on the target chip. The creation timestamp of each

source event is modified by adding the fixed delay of the respective axonal connection to obtain a

release timestamp for the destination events. In order to simplify the sorting of events from dif-

ferent sources at a single destination, they were already delayed at the source before sending them

shortly before the latest possible moment according to the expected transmission latency. This ex-

pected transmission delay was calculated dynamically based on the current network state, such that

dropping of events was possible already at the sending side of a connection. This early dropping ap-

proach prevents wasting precious bandwidth for events that would arrive too late at their destination

and thereby also delaying events that otherwise would have arrived on time.

In this communication approach, events are routed towards their destination, using the destination

synapse driver address.

5.5.2 The SpiNNaker Network

SpiNNaker (S. B. Furber, Lester, et al. 2013; Mayr et al. 2019) is a million-core neuromorphic

computing system, designed to numerically solve the dynamics of up to a billion neurons in real time.

It is designed as a Globally-Asynchronous, Locally-Synchronous (GALS) system, meaning that the

cores, operating on individually synchronous clocks, are interconnected through an asynchronous,

clock-less network. Each SpiNNaker chip contains 18 cores, asynchronously connected to a central

router unit in a star-like topology (Wu et al. 2009). Through this router unit, 48 chips are, again

asynchronously, interconnected on a SpiNNaker PCB using a 2D hexagonal mesh topology. On the

next level, multiple boards can be interconnected through FPGA-based high-speed serial links, called

SpiNNLink (Plana et al. 2020). These links tunnel the mesh connections between the SpiNNaker

boards.

Because SpiNNaker operates without a speed-up factor compared to biological realtime, (S. B.

Furber, Lester, et al. 2013) argues that the electrical transmission- and switching delays, as well

as any latency jitter can easily be tolerated, as they are tiny compared to the biological synaptic

time constants. Therefore, events are transmitted with a pure AER code without the addition of

timestamps. Large axonal delays are modelled at the destination side, while ignoring the previous

physical transmission delay through the network.

As described in (Wu et al. 2009), events are transported in small packets of 40 bit to 72 bit size.

Each packet contains an 8 bit management header followed by a single 32 bit event and optionally

an additional 32 bit payload. Table-based routing algorithms for the SpiNNaker network are solely

66

5.6 Event Communication in a Packet-Based Network

based on the source neuron address. The router units can therefore support multicast communication

using a Content Addressable Memory (CAM) routing table. Reliability of event transmission is

ensured by error-detection and retransmission of packets. If retransmission also fails (e.g. due to

congested links), packets are routed on an alternative path and ultimately dropped or stored for

re-injection by a house-keeping processor core at the current position in the network.

5.5.3 BSS-1 Wafer Scale Communication

For the BrainScaleS-1 wafer-scale neuromorphic computing system, (Thanasoulis 2019) developed

a dedicated event-based network. This network directly interconnects the FPGA boards that also

manage the host-side communication with the neuromorphic ASIC substrate. Spike events are

routed across several hops through this FPGA network. In contrast to the approach summarised

in Section 5.5.1, there are no pre-reserved connections. Instead, events are routed flexibly using a

packet-based approach. A new addressing scheme is proposed in the work of (Thanasoulis 2019)

with respect to the routing algorithm, which is called axonal link tags. In this approach, events are

not routed according to their complete destination synapse address, as this would scale with the total

system size and thereby present a non-fixed header overhead, especially for small packets. Instead,

each hop assigns link tags in its routing table, independent of the link tags at all other hops. These

link tags can be kept much smaller than the whole destination address and most importantly, in-

dependent of the system size. The latter aspect is due to the fact that a neural network is mostly

not all-to-all connected, meaning that populations of neurons usually do not connect to all other

populations, but only a small subset.

The events’ timestamps are again modified by adding axonal delays. However, in contrast to Sec-

tion 5.5.1, delays can be configured for each hop individually. As hereby, the total delay of an

event is no longer predictable at the source, buffering until the timestamp becomes imminent, has to

happen at the destination.

5.6 Event Communication in a Packet-Based Network

Each of the system examples, summarised in Section 5.5 has proposed and realised a custom network

implementation, optimised for the unique constraints and requirements of neural event communica-

tion stated in Section 5.3. However, in the scope of this thesis another approach is taken, making

use of an existing, general-purpose network infrastructure in order to interconnect BSS-2 systems.

The EXTOLL network (cf. Chapter 4) is found to be suitable for this task, as it offers a combination

of high transmission bandwidth, high sustainable message rates and very low transmission latencies

(cf. Chapter 4 on page 48).

In a packet-based network all information is transported in packets with a given size and destina-

tion address. The network infrastructure is responsible for the routing of packets from their source

to their destination. Flow control ensures that transmitted data does not overflow the buffering ca-

pacities in the nodes on the path through the network. To route a packet to its target node, some

management information has to be transported together with the payload. This header information

contains at least the destination node address, as well as the size of the packet. The address is used

to determine the next step on the route towards the destination from a routing table, while the size

67

5 Event Communication Principles and Systems

is used for flow control purposes. While the special-purpose networks mentioned previously, keep

packets quite minimal (typically a single event which acts both as header and payload at the same

time), general-purpose high performance networks usually transport a lot more management infor-

mation, like e.g. process identifiers, security information and intra-node addressing for DMAs. To

compensate for this large amount of header-information and keep the overhead low, the amount of

payload transported within a packet is usually also much larger.

Figure 5.2: Schematic depiction of the packet-based BSS-2 event communication. The colour code
exemplarily shows the target- and source nodes of packets and events. On the left, ASIC
A and ASIC C produce events for both ASIC B and ASIC D where they excite target
neurons to emit spikes. Consequently, both ASICs on the right side receive events from
both ASICs on the left. The greyed out merge-sort blocks are not yet implemented (cf.
Section 9.2 on page 194). Times are given in hardware units with a speedup factor of
103. This Figure is slightly modified from (Thommes, Bordukat, et al. 2022).

The main goal of this thesis is, to develop an event communication mechanism that can cope with the

afore mentioned features of general purpose high performance interconnection networks. Figure 5.2

shows a schematic representation of this event communication architecture. It exemplarily shows

four BSS-2 ASICs emitting spike events that are transported through the packet-based EXTOLL

interconnection network. The neuromorphic nodes consist of one BSS-2 ASIC and an FPGA node

(cf. Chapter 3) that is directly connected to the EXTOLL network (cf. Chapter 4). For a large network

installation the favoured topology for the EXTOLL network is a 3D Torus where the FPGA nodes

are connected to concentrator nodes, which are attached to the torus nodes on the respective 7th link

of each EXTOLL Tourmalet ASIC node. A schematic visualisation of the envisioned large-scale

network topology is shown in Figure 5.3.

As the EXTOLL routing is based upon the 16 bit destination node address in the packet header and

the choice of the routing key is not customisable, spike events are aggregated into packets heading

for the same target node (cf. Section 5.6.1). On the receiving side, the incoming events are first

unpacked and the resulting event streams from different source nodes will be merge-sorted to form

a single event stream. The individual events are then delayed until their timestamp matches the

synchronised systime and transmitted down to the connected BSS-2 ASIC (cf. Section 5.6.2). As

the merge-sort stage is not yet included in the implemented design, up to now only events from one

source node can be received (cf. Section 9.2 on page 194). A connection scheme, where neurons

from one source node connect to neurons on several destination nodes, is also possible through

multicast messages in the EXTOLL network. However, these would exhibit a unique axonal delay

for all receiving nodes of the multicast operation. In order to compensate for the network jitter, this

68

5.6 Event Communication in a Packet-Based Network

EXTOLL EXTOLL

Kintex
FPGA

BSS-2

ASIC

Kintex

FPGA EXTOLL

ASIC

Kintex

FPGA

Kintex

FPGA

Kintex

FPGA

Kintex

FPGA

8 x

1 Gbps

Kintex

FPGA

3D-Torus Network

EXTOLL

ASIC

EXTOLL EXTOLL

x4 links

6 x

16.8 Gbps

x12 link
100.8 Gbit/s

EXTOLL

ASIC

EXTOLL EXTOLL

EXTOLL EXTOLL

EXTOLL

ASIC

EXTOLL

ASIC

BSS-2
ASIC

BSS-2

ASIC

BSS-2

ASIC

BSS-2

ASIC

BSS-2

ASIC

BSS-2
ASIC

Figure 5.3: Schematic depiction of the envisioned large-scale BrainScaleS EXTOLL network. The
topology will be realised in a 3D-Torus with concentrator nodes, connecting to 6 FPGA
nodes. Figure modified from (Thommes 2018)

delay has to be set to the maximal distance from the source node to the destination nodes.

5.6.1 Event Aggregation

Spike events from SNNs usually carry only a small amount of information, as described in Sec-

tion 5.2. Generally the size of a spike event can be expected to be much smaller than the header of

the network packet transporting the event to its destination node. This poses an issue to the trans-

mittable payload bandwidth, as a large portion of the overall network link bandwidth will be used

by header information instead of actual payload data. Fortunately spike events from neuromorphic

chips implementing a large SNN will often share the same target node address. Aggregating those

events with a common destination would significantly increase the bandwidth efficiency. However,

statistically the events sharing the same destination will not be subsequent in the event stream from

a source chip. Therefore, simply transmitting consecutive events together in an aggregated packet is

not a general solution to this problem. Instead, one has to sort the event stream by destinations.

Employing a traditional sorting algorithm for this task is not feasible, as it would require the pre-

buffering of a large chunk of n events that would then have to be sorted with a best case algorithmic

complexity of O
(︁
n2
)︁

read- and write accesses. Traditional sorting is also not applicable to the

problem, as the destinations do not exhibit an ordering; it is not important in which sequence packets

are sent to the different destinations, apart of the events’ required arrival time. Instead, the sorting

operation can and has to modify the event stream on-the-fly, i.e. in O (n) complexity. This is possible

by providing a number of send-buffers, each accumulating events for a specific destination. In

69

5 Event Communication Principles and Systems

the following sections and chapters of this thesis these buffers will be referred to as accumulation

buckets. This naming refers to the similarity of this approach to the Bucket Sort algorithm (cf.

Section 5.6.1.1). The event accumulation concept is also similar to the method of packet aggregation

that is e.g. commonly applied for efficient transport of data across the internet (cf. Section 5.6.1.2).

The assignment of buckets to a particular destination can either be statically predetermined by con-

figuration or dynamically derived during operation. If there are more possible destinations in the

output event stream, than buckets provided by the implementation, the bucket buffers have to be

reused for aggregating more than one destination. This implies that a static assignment is not longer

viable and the buckets will experience context switches, occurring, when the event stream presents a

destination address that is not currently accumulating and there is no idle accumulation bucket avail-

able to start accumulating it. The dynamic assignment of buckets can be compared to the process

of register renaming in computer architecture where hardware registers are dynamically assigned to

computing instructions (cf. Section 5.6.1.3).

The time available for accumulating events into a packet depends on the modelled axonal delays of

events accumulated into the respective packet. On the other hand, there should be enough time to

accumulate a reasonable amount of events in order to significantly reduce the header overhead Oh

which is defined as the ratio of header size sh to the total packet size spkt, including the payload size

spl:

Oh =
sh

spkt
=

sh

sh + spl
(5.2)

Analogously, the payload efficiency Epl is defined as

Epl =
spl

spkt
=

spl

sh + spl

= 1−Oh

(5.3)

Consequently, the axonal delay is constrained by the model requirements as well as the required time

to accumulate events and transmit the packet across the network. The axonal delay d should in any

case be large enough to counteract the latency jitter, introduced by the accumulation, transmission

and sorting (cf. Equation (5.1)). The delay must therefore be larger than the maximum value of the

total transmission latency max(ltot):

d ≥ max(ltot)

= max(llink + lacc + ltrans + lsort) .
(5.4)

Thereby llink is the transmission latency between the creation of the timestamp at the L2 interface

on the HICANN-X and the accumulation buffer on the FPGA. This has to be added only once, as

in the opposite direction, from the FPGA to the HICANN-X chip it is already taken care of by the

receiving L2 interface on the chip. Furthermore, lacc is the time spent to accumulate events towards

a common destination, ltrans is the pure transmission latency across the network between source- and

destination node, and lsort is the time required to merge-sort different event streams at the destination

(cf. Section 5.6.2).

By expressing the payload size through the size of a single event sev and the rate rd⋆

ev at which events

70

5.6 Event Communication in a Packet-Based Network

are heading towards a respective destination d⋆

sh = sev · rd⋆

ev · lacc (5.5)

the accumulation time required to reduce the header overhead below a threshold oh can thereby be

derived as

Oh ≤ oh

⇔ lacc ≥
sh

sev · rd⋆

ev
· 1−oh

oh
.

(5.6)

Analogously, the same derivation can be done for the payload efficiency Epl being larger than a

threshold epl:

Epl ≥ epl

⇔ lacc ≥
sh

sev · rd⋆

ev
· epl

1− epl
.

(5.7)

A more in-detail formal analysis of the event aggregation process can be found in Chapter 6.

5.6.1.1 Bucket Sort

The basic Bucket Sort algorithm is described in (Cormen et al. 2009). It takes an Array of n real

numbers and sorts them in expected linear time. To achieve this, it first scatters them into k = c · n
intervals, called buckets, where c is a constant factor. The n numbers are thereby assigned to the

respective interval bucket by value. These buckets are then individually sorted, e.g. by insertion

sort, before they are concatenated to form a list of now sorted numbers. The Bucket Sort algorithm

completes in expected time O (n), if the intervals are chosen, such that the n numbers distribute

statistically equally across them. In that case the individual sorting of the buckets will on average be

a constant operation with O (1) complexity, as every bucket will on average only contain c numbers.

There exist several variants of the Bucket Sort algorithm optimising different aspects of the original

algorithm (Corwin et al. 2004). For example, Counting Sort (Cormen et al. 2009) first counts the

number of elements of each key and then sorts them by direct exchange to the correct position in

the output. In contrast to the original Bucket Sort, this requires less memory or a less complex data

structure holding the data. Another variant example is Postman’s Sort (Black 2011) where elements

are scattered to the buckets by the use of hierarchical features of the element keys. This is for

example used in post offices where letters are first sorted by region, then by city and lastly by street

and house number.

5.6.1.2 Packet Aggregation

Packet aggregation generally describes the concept of combining individual packets to larger ones

containing the data and (part of) the header information of each sub-packet. This is beneficial, if the

smaller sub-packets share a common path on their routes or even the same destination. Thereby, the

network routers on the shared path only need to process one packet instead of multiple ones which

increases the total amount of (sub-) packets that can be transported through the network. Another

71

5 Event Communication Principles and Systems

advantage is that the headers of the sub-packets can probably be combined, leading to less overall

header overhead.

There are several patents claiming inventions in this area. For example (Ketcham 2004) presents a

general "method and apparatus for packet aggregation in packet-based network[s]", while (Rajku-

mar et al. 2008) presents "packet aggregation for real time services on packet data networks". The

latter patent especially applies to the case of timing-critical information like e.g. Voice over Internet

Protocol (VoIP) or video conference applications. In an aggregated packet with time-delay intolerant

data that part with the most strict timing constraints will dictate the timing constraint on the whole

aggregated packet. Especially in wireless networks, the concept of packet aggregation is widely used

to improve the performance of small packet transfers across multiple hops (K. Kim et al. 2006).

However, in contrast to these packet aggregation approaches, the event aggregation, as described in

this thesis cannot make use of the full potential of merging packets only on common parts of their

otherwise different routes. This is because the EXTOLL network does internally not support the

aggregation and de-aggregation of packets. Therefore, events can only be aggregated to packets at

the source node if they are heading for the exact same destination node.

5.6.1.3 Register Renaming

Register renaming is a common technique in processor design, used to improve the performance

regarding instructions per cycle in the presence of false instruction dependencies like Write After

Read (WAR) or Write After Write (WAW) respectively. For example if an instructions i1 computes

something, based on the value of a register r1 and a second instruction i2 computes something

different and wants to store its result in r1, i2 would have to wait until i1 has finished reading

from r1 to not mangle r1’s result. However, this dependency is called false, as the result of r2

does not at all depend on the result of r1. This kind of dependency can be resolved by writing the

result of i2 to another register (e.g. r10), i.e. renaming r1 in the scope of i2. The actually used

result registers are thereby dynamically assigned to the issued instructions. Following instructions,

truly depending on the result of a previous one that has been subject to register renaming thereby

also have to be informed about the new name of that register. (Sima 2000) gives a comprehensive

review on "the design space of register renaming techniques". The main design space dimensions

are specified to be the following.

• The scope on which the renaming of registers is applied, i.e. which type of registers are subject

to renaming and dynamic assignment.

• The layout of the renaming buffers with respect to their type, their number and the number of

read- and write ports to access them.

• The method of mapping registers to entries in the renaming buffers.

• The rate at which renamed registers can be assigned to issued instructions.

For each of these dimensions there exist several approaches, which are summarised and referenced

to existing implementations by (Sima 2000).

72

5.6 Event Communication in a Packet-Based Network

5.6.2 Event Reception

When the spike event packets arrive at their destination, they have to be unpacked and forwarded

to the neuromorphic chip. In order to ensure the correct timing of events with respect to the axonal

delays and counteract any jitter, introduced by transmission or accumulation, every event has to be

delayed, until its timestamp is recent with respect to the systime counter. However, as the timestamp

was created and modified with respect to the source node’s systime and is interpreted with respect

to the target node’s systime, both time counters have to be synchronised to represent a global time

measure. Otherwise, the interpretation of the timestamp for event playback at the target neuromor-

phic node will depend on the systime offset between source- and target node. This offset will always

depend on the individual startup latency and the order of system startup, and is thereby more or less

random. Additionally, an asynchronous start of stimulus playback programs on different nodes of

the system would introduce similar offsets in the overall spiking operation. It is therefore crucial to

have a mechanism for synchronisation of a global systime counter as well as a globally synchronous

experiment start. A method for this synchronisation of systimes is presented in Section 7.2 and

evaluated in Section 8.6.3.

If the modelled axonal delays would be set for each neural connection individually, between source

neuron and target synapse, events from incoming packets would inevitably have to be sorted at the

target node before they are delayed and forwarded to the neuromorphic chip. Otherwise, events

scheduled for a later point in time would block the forwarding of events that were generated later,

but should arrive earlier due to a shorter requested delay. Possible implementations for this sorting

problem will be concisely reviewed in Section 9.2 on page 194. However, this sorting operation can

be a quite complex task with respect to execution time, as the magnitude of disorder on the event

stream can be quite large and principally undefined or unknown. The said magnitude of disorder

Md is defined as the maximum backwards distance between two timestamps ti and t j arriving in the

event stream S
Md = max

i< j∈S
[ti − t j] . (5.8)

The sorting latency (lsort in Equation (5.4)) will at least be as large as the magnitude of disorder. This

is because an incoming event has to be buffered until it is certain that no event with earlier scheduled

arrival time can arrive anymore. Alternatively one could just define a sorting delay period and drop

any event that arrives after this period and cannot be sorted into the stream anymore.

lsort ≥ Md (5.9)

However, if the delay is the same for all events between a source- and a target node, and the events

are transported in order from the neuromorphic chip towards the communication interface and across

the network, the event stream will also arrive in order at the target node. In this case, the sorting

operation would not be strictly necessary.

However, there will generally still be several distinct event streams arriving in packets from different

source nodes. These have to be merged in the correct order to form a single event stream down to

the neuromorphic chip. The latency required for this merging operation again depends on the length

of the incoming event packets and the magnitude of disorder Md between the event timestamps from

all the packets. The merging can notable be done with the same algorithm than the sorting operation,

73

5 Event Communication Principles and Systems

as described in Section 9.2.

When having the incoming event stream sorted, the events have to be forwarded at just the right time

with respect to their axonal delay and timestamp. For this, the events are stored in a FIFO buffer,

from where they are extracted and forwarded down to the neuromorphic chip when their timestamp

is greater or equal to the global systime. The required size of this delay buffer can be estimated

by how far the events may lie in the future after the sorting operation at the destination node. By

assuming, to just have received an event that lies maximally in the future, the buffer should still be

able to receive a new input event at every following clock cycle until the first event can be released.

Thereby, the required buffer space Sdbuf evaluates to the minimum total transmission latency across

the network min(ltot) (in units of clock cycles) subtracted from the configured axonal delay d at the

sending side (cf. Equation (5.4))

Sdbuf ≥ d −min(ltot)

= d −min(llink + lacc + ltrans + lsort) .
(5.10)

74

6 Formal Analysis of Event Aggregation

As described in Section 5.6, it is necessary to accumulate events to larger packets per destination

to mitigate the transmission overhead induced by the packet header in a general purpose network.

This accumulation can be done by so-called bucket buffers. These are individually assigned to a

particular network destination and collect all events from the incoming event stream heading to this

particular destination.

In this Chapter, the focus lies on the question of how performant this accumulation process can be,

depending on statistical properties of the incoming event stream. The key performance indicators

are thereby defined by the following questions:

• How many events can on average be accumulated in a packet, until it can (or has to) be sent

across the network?

• How long does it on average take to accumulate events to a packet until it has to be sent across

the network?

A generic example for a partitioned neural network, distributed across several system units is de-

picted in Figure 6.1. A system unit thereby consists of a neuromorphic chip and a communication

FPGA (cf. Figure 5.2). Each neuromorphic chip implements a part of the overall neural network

model, each containing several populations of neurons. Populations on source units are thereby

connected to populations on other destination units. It should be noted that the mapping of where

a population is placed in the system is a degree of freedom and can be leveraged for optimisation.

Based on the average firing frequency (cf. Section 2.2.3) of the individual populations, some destina-

tion units are more likely being addressed than others, which is indicated in the Figure by exemplary

numbers.

The same model example is depicted in Figure 6.2, but now from the event communication per-

spective, showing the bucket buffers. The probability numbers now represent the time share of the

particular destinations on the accumulation process of each bucket. Every time, a bucket’s input

event stream presents a destination not matching the current accumulation, a context switch is nec-

essary, defining a destination conflict (cf. C.3 in Section 6.1.1). It should again be noted that the

mapping of which bucket is to accumulate a specific destination is another degree of freedom in

the process, open for different assignment strategies which are explained in Section 6.1.2. This can

be leveraged for optimisation, which is explained in Sections 6.3.5 to 6.3.6. The contents of this

Chapter have been presented on a poster at the 7th HBP Student Conference in January 2023 (cf.

Thommes, Grübl, et al. 2023).

75

6 Formal Analysis of Event Aggregation

�

� ��

�

→ 0 (7.5%), 2 (2.5%), 3 (90%)

��

�

�

�

�

→ 1 (85%), 2 (5%), 3 (10%)

�

�

�

→ 0 (10%), 3 (90%)

�

��

�

�

→ (0,1) (60%), 1 (20%), 2 (20%)

Figure 6.1: Generic example of a partitioned neural network model, distributed over four neuromor-
phic system units 0 to 3, from the chip-perspective. Circles represent (populations of)
neurons, the blue numbers within give exemplary firing frequencies in arbitrary units.
Red arrows depict axonal inter-chip connections. (Percentage numbers) are given for
the share of outgoing events to the respective target-chip (multicast) from the respec-
tive chip’s perspective. Multicast connections are indicated by several arrows leaving
the same source neuron (population) and (combined, target, ids).

6.1 Accumulation Buckets

The characteristics of the accumulation process shall now be formally defined, in order to specify

the design space of a bucket buffer.

6.1.1 Packet Completion Criteria

Any buffering in the data path to the network will inevitably introduce more latency to the trans-

mission. Therefore it is desirable to only accumulate events as long as necessary until sending them

across the network. This creates a trade-off condition between the utilisation of the available packet-

space which is directly connected to the header overhead, and the induced latency by buffering and

accumulating the events. In order to avoid large latencies, the bucket should then immediately be

marked as free and request permission to transmit its accumulated contents. During the time until

sending permission is granted, the bucket should be able to already accumulate new contents for the

next packet. There are three conditions under which an accumulated packet is eligible for sending

76

6.1 Accumulation Buckets

��

�

���

����

0,0,0,0,0,0,0,0 →

3,3,3,3,3,3,3,3 →

���������������

��������

��������

�

���	
����

����
�
���

��������

���

����

������↯���↯ 1,1,1 →

3,3,3,3,3,3,3,3 →

�

�

���

����

← 3,3,3,↯���↯������

← 0,0,0,0,0,0,0,0

����
����

���
�
���

��������

�

�

���

����

← 2,2,2,2,2,2,2,2

����	���

��������	��

��������

← (0,1),↯���↯������������

Figure 6.2: Generic example of a partitioned neural network model, distributed over four neuromor-
phic system units 0 to 3, from the FPGA-perspective. Events emitted by the SNN parts
are accumulated in buckets. The percentage numbers give the share of the particular
bucket, accumulating events for the respective destination. Exemplary sequences of
destinations are given at the bucket inputs, marking context switches (destination con-
flicts) with � symbols.

to the network, which are listed below:

C.1 Packet Full: Network packets are always limited in their size to a certain Maximum Trans-

mission Unit (MTU) given by the implementation of the network infrastructure. When the

amount of accumulated events k reaches the maximum number fitting in the packet K, it is

considered full and has to be sent.

k = K (6.1)

C.2 Event Timeout: As described in Section 5.2, each spike event e carries a timestamp tc stating

the time of creation at the source neuron. This creation timestamp is converted to an arrival

timestamp ta, by adding the modelled axonal delay td (cf. Equation (5.4)). The resulting

timestamp now states the required time of arrival at the destination neuron.

ta = tc + td (6.2)

This conversion allows to minimise the transmission latency-jitter, as required in Section 5.3.

With a worst-case estimation of the network latency between the source- and destination-node

(including the time required to unpack and merge-sort events at the destination), there is now

a constraint to the latest point t in time to transmit an event to the network for it to arrive just

77

6 Formal Analysis of Event Aggregation

in time at its destination neuron. When the most critical event, accumulated in the current

bucket b reaches this threshold time tth (including a safety margin for the network arbitration),

the packet has to be sent.

t ≥ min
e∈b

ta(e) − tth (6.3)

This condition can be simplified by defining a timeout period laho that the bucket can use for

accumulating events and calculating the delay td accordingly (cf. Equation (5.4)).

C.3 Destination Conflict: When there are more possible destinations than buckets, the individual

buckets have to be reused for more than one destination. Every time there is an event e with

destination de at the input, requesting assignment to a bucket b that is already accumulating

events for another destination db, the bucket has to be flushed and relabelled in order to now

accumulate events for the new destination de.

de ̸= db (6.4)

This is also depicted in Figure 6.2.

6.1.2 Strategies for Destination Assignment

The assignment of destinations to the buckets can be permanent in the case when there are enough

buckets for all occurring destinations. Otherwise, when there are more destinations than buckets,

the assignments become ambiguous, i.e. more than one destination will be assigned to the individual

buckets. This ambiguous assignment can be created dynamically or statically.

A static strategy has a fixed assignment pattern available for any events at the input. Buckets are

then requested and interrupted as necessary, according to that existing assignment pattern. In general,

the static assignment of an event e to a bucket b will depend only on the event itself, particularly on

its source neuron address.

b = f (e) (6.5)

Thereby, each event is uniquely assigned to a single bucket.

In contrast, a dynamic strategy at first attempts to select a free bucket if an arriving event’s address

is not yet assigned to a bucket. If there is no free bucket, one has to be interrupted with a destination

conflict (cf. condition Equation (6.4)). In general, the dynamic assignment of an event e to a bucket

b will depend on the overall state of the bucket system SB.

b = f (SB) (6.6)

Unlike with static strategies, the selection of the conflicted bucket is not fixed, but rather dynamic

such that any bucket could be eligible. Also, as this decision depends on the state of the bucket

system, it will generally lead to a different result each time brought about.

78

6.1 Accumulation Buckets

6.1.2.1 Static Assignment Strategies

AS.1 Modulo Operation: Assign the event with destination d to the bucket

b = d mod B (6.7)

where B is the total number of available buckets. Hereby every bucket b is dedicated to a fixed

number Db of destinations

Db =

⎧⎨⎩
⌈︁D

B

⌉︁
if b ≤ D mod B⌊︁D

B

⌋︁
else

(6.8)

where D is the total number of occurring destinations.

AS.2 Lookup Table: Assign the event with destination d to the bucket b retrieved from a lookup

table L

b = L(d) (6.9)

Hereby the number of destinations Db, a bucket is dedicated to, can be determined by counting

the occurrences of the particular bucket id in the lookup table:

Db = ∑
d∈L

1{L(d)=b} (6.10)

6.1.2.2 Dynamic Assignment Strategies

AS.3 Round Robin Arbitration: Keep a pointer bi−1 to the last reassigned bucket. Assign the new

event with destination de to the bucket

bi =

⎧⎨⎩b1 if bi−1 = bB

bi−1 +1 else
(6.11)

if there is no bucket already accumulating the destination db = de. Thereby bB is the last

bucket available, i.e. the first case implements a wrap-around condition. Hereby every bucket

is relabelled in strict rotation and fairness is ensured amongst all buckets.

AS.4 Random Assignment: Assign the new event to the a randomly (with uniform distribution)

chosen bucket. Hereby fairness amongst all buckets is ensured on average.

AS.5 Fullest Bucket First: Assign the new event to the bucket which is closest to condition C.1:

b =
{︁

b ∈ SB
⃓⃓
∀b′ ∈ SB kb′ < kb

}︁
(6.12)

Hereby, those buckets are selected that would be flushed soon anyway due to their individual

filling level.

AS.6 Next Event Timeout First: Assign the new event to the bucket which is closest to condi-

79

6 Formal Analysis of Event Aggregation

tion C.2:

b =

{︃
b ∈ SB

⃓⃓⃓⃓
∀b′ ∈ SB min

e∈b′
(ta − tth)> min

e∈b
(ta − tth)

}︃
(6.13)

Hereby, those buckets are selected that would be flushed soon anyway due to their individual

event timeout.

6.1.2.3 Comparison of Assignment Strategies

Both strategies AS.5 and AS.6 aim to optimise the utilisation of buckets before they are relabelled.

However, there are cases, where this optimisation will not be of much gain. This will be the case,

when the viewed selection criterion does not differ much across the buckets, i.e. when all buckets

are similarly full or similarly near their timeout. In particular, this might happen if the distribution of

events exhibits lots of different destinations (considerably more destinations than available buckets)

with relatively similar probabilities of occurrence and modelled delays, respectively. In that case

those strategies will converge towards Round Robin (AS.3), as the first bucket assigned will also

have had the most chances to accumulate an event or the longest delay respectively.

Static strategies can be reckoned to be generally better suited for optimising the bucket usage than

dynamic strategies. This is because with static strategies only events, preassigned to a bucket can

trigger the conflict condition C.3 for that particular bucket. In contrast, with dynamic strategies any

event can potentially trigger a conflict condition for every particular bucket. This will of course

only make a difference, when the distribution of destination addresses is not uniform, i.e. some

destinations are more likely to occur than others (cf. Section 6.3.1). With a static strategy, the more

frequent destinations will only disturb the accumulation process in a subset of buckets, while with

a dynamic strategy they will eventually disturb every bucket. Among the static strategies AS.1 to

AS.2 the Lookup Table strategy (AS.2) is the most flexible one, as it can be directly adjusted by

the user to the modelled distribution of destinations. An example for such a static assignment was

already presented in Figures 6.1 to 6.2 on pages 76–77.

However, there might be cases, where the probability distribution of destinations is not known to

the user, as the activity of the individual neuron populations might be unknown, making a static

assignment impossible to optimise. In this case, a dynamic assignment strategy might be more

helpful by doing the optimisation on-the-fly.

To make a more quantitative analysis on the eligibility of the described assignment strategies and

to develop practically useful constraints for design parameters as e.g. the implemented number of

buckets, the following sections follow two major approaches. Section 6.2 looks at a mathematical

description of the accumulation problem featuring a Markov chain model, while in Section 6.4 the

accumulation process is directly simulated, regarding the different constraints.

Both approaches will assume infinite accumulation buffer space and no time limit for delivery of

the buffered events, so to derive the wanted design constraints. The conditions C.1 and C.2 can

therefore be neglected in the first approach. The effect of these conditions can then be implied from

the analysis result.

80

6.2 Mathematical Analysis

6.2 Mathematical Analysis

The question of interest is about the number of events that are expected to be accumulated in a bucket

until it is relabelled by a conflicting event. This corresponds to the degree to which the accumulation

will be limited by condition C.1. Additionally the corresponding expected accumulation time is of

interest, as the events also have to be delivered to their destination in time, corresponding to the

degree of limitation by condition C.2. Of course the latter also depends on the modelled delay.

However the delay itself is not completely free to the modeller, as it has to be large enough to

compensate the network-, accumulation-, and merging jitter (cf. Section 5.3 and Section 5.6).

The following sections will discuss, how these expectation values for accumulation length and time,

as well as their related distributions can be mathematically derived.

6.2.1 Accumulation as Markov Chain

The process of event accumulation in a particular bucket can be modelled as a Discrete-Time Markov

chain. A Markov chain is defined as a process, where the future state only depends on the present

state and explicitly not on the past states (Markov Property, cf. Privault 2018).

k++

0start

k

k̂

Pacc,0

Pother,0

P d⋆

relab

P d⋆

acc

PotherP d⋆

acc

P d⋆

relab

Pother

Figure 6.3: State graph of the bucket accumulation Markov chain.

The state transition graph of the accumulation process is depicted in Figure 6.3. The process starts

with an accumulation level of 0 events (state 0). From this state, the bucket will accumulate

an incoming event (state k++) if it is dedicated to its particular destination d (in case of a static

assignment strategy) or it’s the buckets turn to take the event (in case of a dynamic assignment

strategy). This will happen with a probability of Pacc,0. Otherwise the bucket will not accumulate

the event and stay in the start state 0 . When the bucket has already accumulated at least one event

(state k++ or k), the probability P d⋆

acc to accumulate another one is slightly different, as now only

those events with destination address matching the current bucket label will be accumulated. If the

event belongs to another bucket with probability Pother, it will not be handled by this bucket and

it goes to or stays in state k . Finally, there is also a probability P d⋆

relab that the event’s address is

assigned to the bucket, but the current label does not match (condition C.3). In this case the bucket

has to be relabelled and enters the absorbing state k̂ . This state ends the accumulation process and

the bucket content is flushed out to the network. Now the accumulation will start over again with the

81

6 Formal Analysis of Event Aggregation

new event’s destination at the initial state 0 .

When only evaluating the number of accumulated events and thereby the size of the network packet,

represented by the number of returns to the state k++ , the rate at which they arrive at the bucket

is not relevant. A state transition through the Markov graph in Figure 6.3 will then always occur in

that instant, when an event is presented at the input.

The second parameter of interest is the time until the bucket is flushed and the network packet is sent.

This time can be calculated by determining the number of steps through the graph until reaching the

final state k̂ . Now the input event-rate cannot be neglected anymore. One possible solution to take

the rate into account is to estimate the mean time between two events (cf. Section 2.2.3) and multiply

that to the expected number of steps through the graph. Alternatively one can change the transition

policy to having a state transition in regular intervals and include the probability for having a spike

event in that interval into the transition probabilities between the particular states. Section 6.2.2.6

will elaborate the details of these two approaches.

For this Markov chain process with the state vector

S=

[︃
0 , k++ , k , k̂

]︃
(6.14)

a transition matrix can be defined by collecting the probabilities for transitioning to state j (column

index) when starting at state i (row index) as follows:

Pi, j =

⎛⎜⎜⎜⎜⎝
Pother,0 Pacc,0 0 0

0 P d⋆

acc Pother P d⋆

relab

0 P d⋆

acc Pother P d⋆

relab

0 0 0 1

⎞⎟⎟⎟⎟⎠ (6.15)

The probability of being in a state j at some point in time can then be expressed by

P(Zn = j) = ∑
i∈S

Pi, jP(Zn−1 = i) , i ∈ S (6.16)

and depends on the probabilities to be in one of the other states before and the respective transition

probabilities from those other states. Equation (6.16) represents a matrix-vector multiplication where

the transition matrix is multiplied on the vector of occupation probabilities for the initial state.

This can be generalised to the probability of being in state j after n steps when starting in state

i which can be computed by evaluating the n’th power of the transition matrix:

[P(Zn = j | Z0 = i)]i, j∈S =
[︂
[Pn]i, j

]︂
i, j∈S

(6.17)

Again, by multiplying the vector of initial occupation probabilities one gets the resulting occupation

probability vector after n steps.

82

6.2 Mathematical Analysis

6.2.2 Derivation of Transition Probabilities

The particular transition probabilities
{︁

Pacc,0,Pother,0,P d⋆

acc,Pother,P d⋆

relab

}︁
in Equation (6.15) are de-

pending on the probability distribution and assignment strategy of the occurring destinations. In the

following, the derivation for each of them will be discussed, based on these prerequisites.

6.2.2.1 Accumulating the first event (Pacc,0)

Equation (6.18) calculates the probability Pacc,0(b) for accumulating the first event in the bucket b

through summation over all possible destinations d.

Pacc,0(b) := ∑
d

Pacc,0(d,b)

= ∑
d

P(d) ·P(d → b) (6.18)

For each destination, the probability Pacc,0(d,b) consists of the product of the probabilities P(d)

of occurrence for the particular destination d (the probabilities given in Figure 6.1) and P(d →
b) for that destination being assigned to the considered bucket b. For static assignment strategies

P(d → b) ∈ {0,1} always holds true, whereas for dynamic strategies P(d → b) ∈ [0,1] in general

and P(d → b) = 0 if d is already assigned to another bucket b′.

6.2.2.2 Not accumulating an input event (Pother)

The probability Pother(b) that the currently presented event destination is meant for another bucket

Equation (6.19) is again calculated by summation over all possible destinations d and inverting the

respective assignment probability.

Pother(b) = Pother,0(b) := ∑
d

Pother(d,b)

= ∑
d

P(d) · (1−P(d → b)) (6.19)

Pother,0(b) = 1−Pacc,0(b) (6.20)

Pother(b) = 1−P d⋆

relab(b)−P d⋆

acc(b) (6.21)

The equivalence of Pother and Pother,0 in Equation (6.19) is only given for static assignment strategies,

as explained later in Section 6.2.2.5. However, the equivalence of them both to the right part of

Equation (6.19) as well as Equation (6.20) and Equation (6.21) must always hold true as the transi-

tions leaving a particular state in Figure 6.3, i.e. rows in Equation (6.15), must sum up to 1 in order

for a transition to occur with total certainty. For a mathematical derivation that this condition holds

true with the definitions presented here, cf. Appendix A.3.1 and Appendix A.3.2.

6.2.2.3 Accumulating an input event (P d⋆

acc)

The probability P d⋆

acc(b, t) for further accumulation of an event in an already labelled bucket in Equa-

tion (6.22) generally depends on the particular address d⋆ that was assigned to the considered bucket

83

6 Formal Analysis of Event Aggregation

in the first accumulation step.

P d⋆

acc(b) := P(d⋆) ·P(d⋆ → b) (6.22)

= P(d⋆)

As this only accepts events to the already labelled destination, the calculation also only con-

tains one summand from Equation (6.18). The assignment probability for accumulation of d⋆ is

P(d⋆ → b) = 1, as to allow for event accumulation in the first place. Of course when one of the

conditions C.1 to C.3 is met, the bucket is flushed and starts over accumulating a new first event

with probability Pacc,0(b), depending on the pursued assignment strategy.

6.2.2.4 Handling a destination conflict (P d⋆

relab)

Finally, the probability P d⋆

relab(b, t) for having to relabel the considered bucket can be calculated the

same way as Pacc,0(b) but excluding the assigned destination d⋆ from the sum in Equation (6.23).

P d⋆

relab(b) := ∑
d ̸=d⋆

Pacc,0(d,b)

:= ∑
d ̸=d⋆

P(d) ·P(d → b) (6.23)

= 1−Pother(b)−P d⋆

acc(b) (6.24)

= Pacc,0(b)−P d⋆

acc(b) (6.25)

Again, from the total certainty constraint in the state-transition matrix of Equation (6.15), one can

formulate Equation (6.24). Equation (6.25) simply derives by either substituting Pother(b) in Equa-

tion (6.24) or by identifying the excluded term in Equation (6.23) with P d⋆

acc .

6.2.2.5 The effect of dynamic assignment

One must note that for dynamic assignment strategies, the assignment probability

P(d → b)≡ P(d → b, t) will generally change with every transition and also depend on the

other buckets in the system. Especially as P(d⋆ → b)≡ 1 after the initial assignment has happened,

P d⋆

acc(b) is not equal to the contribution term Pacc,0(d⋆,b) to Pacc,0(b). In order to save the validity

of the matrix Equation (6.15) under summation over its rows, Equations (6.20) and (6.21) on

the preceding page must both hold true. With dynamic assignment, this will generally lead to

Pother ̸= Pother,0, which is again encompassed in Equation (6.19) by P(d → b, t) now depending on

the state of the bucket.

Therefore Equation (6.25) is not valid for dynamic assignment. For static strategies however, this

dependency on the discrete time step is constant and the latter equations can be applied. In general,

when dynamic strategies are used, these transition probabilities change with every transition and

therefore have to be constantly re-evaluated. Because of this, Equation (6.17) is no longer applicable

and the following analysis of accumulation length and time, which is completely based on it does

not hold true for dynamic assignment. Therefore in that case, the accumulation length and time for

dynamic assignment have to be determined by simulation, as described in Section 6.4.

84

6.2 Mathematical Analysis

6.2.2.6 Modifications for accumulation time analysis

As already mentioned in Section 6.2.1 on page 82, the rate at which events are presented at the input

to the accumulation system has to be taken into account when evaluating the accumulation time later

in Section 6.2.4. When assuming an instantaneous event rate r(t) that is constant over time, the

event statistics at the input can be modelled as a homogeneous Poisson process as summarised in

Section 2.2.3. This is especially also valid for multiple independent Poisson neurons contributing

to the input event stream, as the sum of two independent Poisson processes again yields a Poisson

process with the new rate being the sum of the particular rates (cf. Appendix A.2.2 for a derivation).

From Equation (2.4), one can derive the mean time between two spike events (ISI) at the input as

⟨τ⟩=
∫︂

∞

0
τ p(τ)dτ =

1
r

(6.26)

with a variance of

σ
2
τ =

∫︂
∞

0
τ

2 p(τ)dτ −⟨τ⟩2 =
1
r2 . (6.27)

This can now simply be multiplied Inter Spike Interval with the number of steps through the Markov

graph (Figure 6.3) obtained from Section 6.2.4.

Alternatively one can derive the probability Prate for an event to occur within the regular time interval

(t0, t0 + τ) at which the state transitions through the Markov graph will then occur. This leads to the

rate probability Prate being described as

Prate(r,τ) = 1− e−rτ (6.28)

However, with a homogeneous Poisson process, there can generally be more than one event per clock

cycle τ , as the probability for a certain number of n events in the interval (t0, t0 + τ) is described by

Pn
rate(r,τ) = e−rτ (rτ)n

n!
. (6.29)

To solve this problem, every additional event exceeding one per clock cycle is discarded from the

process. With Equation (6.29) the rate probability given in Equation (6.28) can be identified as the

cumulative probability for at least one event to occur in the given interval:

Prate(r,τ) = 1−P0
rate(r,τ) (6.30)

With this event probability, the transition probabilities
{︁

Pacc,0,Pother,0,P d⋆

acc,Pother,P d⋆

relab

}︁
, defined

above can now be modified. In detail, these modifications are the following:

P⋆
acc,0 := Prate ·Pacc,0 (6.31)

P⋆
other,0 := (1−Prate)+Prate ·Pother,0 (6.32)

P⋆ d⋆

acc := Prate ·P d⋆

acc (6.33)

P⋆ d⋆

relab := Prate ·P d⋆

relab (6.34)

P⋆
other := (1−Prate)+Prate ·Pother (6.35)

85

6 Formal Analysis of Event Aggregation

Mostly, the transition probabilities are simply proportionally scaled with the rate probability. How-

ever, Pother also includes the probability that there is no event at the input, corresponding to the

inverse event-rate. A proof that these modifications do not invalidate the transition matrix Equa-

tion (6.15) can be found in Appendix A.3.3 and Appendix A.3.4.

If the event rate r, in contrast to our assumption above, is not constant over time, the first approach

of simply multiplying the mean ISI breaks apart, as now there is no such mean ISI anymore. Instead

the second approach has to be used where the rate probability Prate(t) is now a function of time.

This has again the same effect, as a dynamic assignment strategy would have which is described

in Section 6.2.2.5. One can choose the time interval width to be small enough in order for the rate

to be approximately constant as also done by (Heeger 2000). Then, for each time step one has to

recompute the transition probabilities and re-evaluate the accumulation time.

However, as mentioned before, for the accumulation length in Section 6.2.3, these considerations are

not of relevance as the Markov transitions are not evaluated at a regular clock, but exactly at those

points in time, when an event is presented at the input.

6.2.2.7 Averaging over the first accumulated events

As noted before, the probability for further accumulation P d⋆

acc(b) and for relabelling the bucket

P d⋆

relab(b) depend on the particular destination d⋆ that was assigned to the bucket in the first step.

Therefore, for each destination that might be assigned to the bucket b, there is a different transition

matrix. To account for this fact, the following analysis for the accumulation length and time has

to be done separately for each of them. The resulting expectation values must then be averaged by

weighted summation with the relative probabilities of occurrence for the respective destinations

E(b) = ∑
d⋆

Pnorm(d⋆,b) ·E(b) with (6.36)

Pnorm(d⋆,b) =
P(d⋆)

∑d,P(d → b)̸=0 P(d)
. (6.37)

6.2.3 Accumulation Length

The accumulation length Nacc of a bucket is defined as the number of events accumulated to a single

network packet before sending. It will be decisively determined by one of the conditions C.1 to C.3

on page 77. Which of those will be the first one to apply and when this will happen, largely depends

on the transition probabilities between the states of the Markov chain model (Figure 6.3). In partic-

ular, when taking the conditions C.1 and C.2 into account the probabilities will not be constant, but

rather depend on the variables k of currently accumulated events and t as the current time. They also

depend on the parameters K describing the available accumulation space as well as the minimum

event timestamp ta and transmission threshold tth according to Equation (6.1) and Equation (6.3).

While C.1 just strictly limits the accumulation length as a static constraint, independent of the in-

coming events, C.2 may pose a dynamic constraint, meaning that the accumulation length now also

may depend on the content, namely the timestamp, of incoming events. The nearest static approx-

imation to this constraint would be a timeout counter starting when the first event is accumulated

86

6.2 Mathematical Analysis

and limiting the overall time that this first event is allowed to be kept in the bucket. The approxima-

tion is exact if the first event has the lowest arrival timestamp amongst the subsequent events. This

will trivially be fulfilled for chronologically sorted event streams where every successive event has

a higher timestamp than the preceding one.

As it is rather complicated to evaluate all these constraints together without a detailed simulation,

the problem will here be approached step by step. At first, only condition C.3 is considered to

evaluate the accumulation length (this Section 6.2.3) and time (Section 6.2.4) under the assumption

of infinite accumulation space (K = ∞). In reality, K will be given by the Maximum Transmission

Unit (MTU) (cf. Appendix B.2) of a network packet, as well as the size and packing of events to

be transported in those packets (cf. Section 7.3.3). Together with a given probability distribution

of the occurring event destinations, this will allow to optimise the assignment strategy of incoming

events to a number of buckets. The assignment should be chosen such that the expected number of

accumulated events before a conflict occurs is larger or near the available packet space.

6.2.3.1 Expected Accumulation Length

In Figure 6.3 the accumulation length can be identified as the number of visits in state k++ until

absorption in k̂ occurs. According to Equation 5.4.7 of (Privault 2018) the expected number of

Returns R j to state j, which is defined as

R j :=
∞

∑
n=1

1{Xn= j} (6.38)

can be computed with a geometric series as

Si j := E [R j | X0 = i] =
∞

∑
n=1

[Pn]i, j (6.39)

which is equivalent to

Si j =−1{i= j}+
[︂
(Id −P)−1

]︂
i, j

(6.40)

by using the geometric series

∞

∑
k=0

rk =
1

1− r
, −1 < r < 1 . (6.41)

Thereby the −1{i= j} in Equation (6.40) encodes the fact that for the diagonal entries the first visit

in state i is not counted as a "return". It should be noted that the matrix (Id −P) becomes sin-

gular, i.e. non-invertible if the Markov chain contains absorbing states as in Equation (6.15). The

solution to this problem, as (Sigman 2016) points out, is to only consider the transient states T in

Equation (6.40). The transition matrix including absorbing states will generally have the form

P =

(︄
PT PA

0 Id

)︄
. (6.42)

87

6 Formal Analysis of Event Aggregation

Here PT denotes the sub matrix only containing transient states and PA contains the transition prob-

abilities for entering the absorbing states. The lower right corner of P is the identity matrix for pure

absorbing states, i.e. there are no transitions between the recurrent states. This part is the reason for

(Id −P) being singular. Because the sub matrix PA does not influence the PT part under potentiation

of the complete matrix Pn, it is valid to only use (PT)
n in Equation (6.39). In the case when there is

only one absorbing state, PA resembles a column vector and Id shrinks to a scalar 1.

With this argument and baring in mind the dependency of the transition matrix of the accumulating

destination d⋆, Equation (6.40) translates to

Si j(d⋆) =−1{i= j}+
[︂
(Id −PT (d⋆))−1

]︂
i, j

(6.43)

and with Equation (6.37) one gets

Si j = ∑
d⋆,P(d⋆→b)̸=0

Pnorm(d⋆,b) ·Si j(d⋆) . (6.44)

Evaluating Si j for i = 0 and j = 1 now leads to the expectation value for the number of returns

to state k++ while starting in state 0 which equals the expected number of accumulated events

in the bucket, given the transition probabilities for the accumulation process (cf. Figure 6.3 and

Equation (6.15)).

E(Nacc) = S0,1 (6.45)

6.2.3.2 Distribution of Accumulation Lengths

The expectation value computed before, might actually not quite be the information of interest, as

it represents a weighted mean value. One could for example imagine a situation, where most of the

packets are minimally accumulated while in some rare cases very high accumulation lengths occur.

In this case the few high accumulations could middle out or even dominate the expectation value,

while the common accumulation is much worse.

An example for a game with inappropriate expectation value is the so-called St. Petersburg Para-

dox (Peterson 2022). It defines a game where a fair coin is flipped until it shows heads for the

first time. The reward is doubled with each flip, so the player will win 2nD with n being the

number of flips executed. The expectation value for this game is

∞

∑
n=1

(︃
1
2

)︃n

×2n = ∞.

So theoretically the player should pay any stake to start the game, as the expected reward is

infinitely high. But actually in most cases the player will only win a very low amount of money,

as the high rewards are so unlikely. Also one can argue that due to naturally limited resources, the

opponent can only pay the reward up to some finite limit L. When recalculating the expectation

value with a finite sum for N = log2 L

N

∑
n=1

(︃
1
2

)︃n

×2n ̸= ∞

88

6.2 Mathematical Analysis

one will conclude a quite decent expected award.

So to analyse the expected accumulation length properly, one should not only calculate the expecta-

tion value, but rather the full asymptotic distribution of possible accumulation lengths. The distribu-

tion is described as asymptotic, as of course it will be a function of the number of steps through the

Markov chain.

Let pi j denote the probability for a Markov chain to eventually return to a state j in finite time T r
j

when starting at state X0 = i.

pi j := P
(︁
T r

j < ∞
⃓⃓
X0 = i

)︁
= P(Xn = j for some n ≥ 1|X0 = i)

(6.46)

According to Proposition 5.1 in (Privault 2018) the probability distribution for the number of returns

R j to a state j when starting in the state X0 = i can then be derived as

P(R j = m
⃓⃓
X0 = i) =

⎧⎨⎩1− pi j , m = 0 ,

pi j × (p j j)
m−1 × (1− p j j) , m ≥ 1 .

(6.47)

According to the Equations 5.4.5 and 5.4.6 in (Privault 2018) the expectation value for the number

of returns can be written as

Si j = E [R j
⃓⃓
X0 = i] =

∞

∑
m=0

mP(R j = m
⃓⃓
X0 = i) (6.48)

= (1− p j j) pi j

∞

∑
m=1

m(p j j)
m−1

= (1− p j j) pi j
1

(1− p j j)
2

Si j =
pi j

1− p j j

S j j =
p j j

1− p j j

(6.49)

by using the differentiation of the geometric series Equation (6.41)

∞

∑
k=1

krk−1 =
1

(1− r)2 , −1 < r < 1 . (6.50)

By solving Equation (6.49) for the return probabilities pi j and p j j one gets

pi j =
Si j

1+S j j

p j j =
S j j

1+S j j

(6.51)

The values obtained from Equation (6.40) for Si j can now be substituted in order to obtain values

from Equation (6.51) for another substitution in Equation (6.47). This then gives the distribution

for the number of returns to state j , starting in state i . Again, the desired distribution for the

89

6 Formal Analysis of Event Aggregation

number of accumulated events is obtained when evaluating this for i = 0 at 0 and j = 1 at k++ .

6.2.4 Accumulation Time

In the previous Section, the distribution and expectation of the possible accumulation lengths have

been analysed. The focus shall now lie on the time, it takes to accumulate that number of events until

the packet is closed by a conflict. This will help to evaluate, how long the events can be buffered

in the accumulation process and whether the condition C.2 on page 77 will have a significant effect

or not. Hereby one can then define a constraint for the value of the timeout: The timeout should be

chosen such that it is slightly higher than the expected accumulation time. This way, the timeout

can limit the accumulation, in case a low event rate hinders full accumulation. Usually the timeout

should not come to significant effect, as the packet will mostly be closed by conflict rather than the

configured timeout.

In contrast to the accumulation length, the accumulation time will also depend on the input event rate

which has to be incorporated in the transition probabilities in Equation (6.18) and Equation (6.22)

of the Markov chain model.

6.2.4.1 Mean Accumulation Time

The mean accumulation time, can be identified as the expected number of steps through the graph

in Figure 6.3 until reaching the final absorbing state k̂ . In (Privault 2018) this is called the First

Hitting Time Tm for the only absorbing state m when starting in state i . It can be derived from

Equation (6.40) by adding up the expected number of returns for all other states:

E [Tm | X0 = i] = 1+ ∑
j∈S
j ̸=m

Si j , i ̸= m (6.52)

6.2.4.2 Distribution of Accumulation Times

The distribution of the absorption time in a finite discrete time Markov chain with a single absorbing

state is also referred to as discrete phase-type distribution. According to Equation 1.11 in (Nielsen

2020) the event of absorption after n steps through the chain can be partitioned into two sub events.

First, the process still has to be in a transient state after (n−1) steps and second the absorption shall

happen exactly after the n’th step. Therefore, using Equation (6.17) the probability for absorption in

state m after n steps can be written as

P [Xn = m|X0 = i] =
[︂
(PT)

n−1 PA

]︂
i

(6.53)

where PT and PA are defined through Equation (6.42). PT describes the transient states transition

matrix while PA describes the transition matrix into the absorbing states.

6.2.4.3 Accumulation Time and Accumulation Length

A possibly more simple method to get a value for the expected accumulation time is to derive it

from the previously obtained expected accumulation length (cf. Equation (5.5)). For this, one needs

90

6.3 Results of the Mathematical Analysis

to know the mean rate of events that are statically assigned to the respective bucket under analysis.

The mean ISI derived from the mean event rate at the bucket input can then simply be multiplied

to the expected accumulation length. The difference to the previous approach of modifying the

transition probabilities (cf. Section 6.2.2.6) and re-evaluating the Markov Chain is that there the

rate-probability would be determined for all events coming from the neuromorphic chip, regardless

whether they are assigned to our particular bucket or not. The assignment constraint is rather applied

later, in the Markov analysis itself through the particular transition probabilities.

By combining this approach to to accumulation time with Equation (5.6) or Equation (5.7) while

demanding, that the time until conflict shall be larger than the accumulation time required for re-

ducing the header overhead below a certain threshold, the event rate cancels out and one arrives at a

requirement constraint for the expected accumulation length:

E [Nacc]

rd⋆

ev
≥ lacc ≥

sh

sev · rd⋆

ev
· epl

oh

⇔ E [Nacc]≥
sh

sev
· epl

oh

(6.54)

6.3 Results of the Mathematical Analysis

The Markov chain analysis described above shall now be used to evaluate the number of accumulat-

able events in a bucket under the ideal condition that only destination conflicts (Condition C.3) are of

relevance. As stated in Section 6.2.2, this analysis is in general only possible for static assignments.

Therefore, the Modulo assignment strategy (AS.1) is exemplarily regarded here on top of different

example distributions of event destinations in Sections 6.3.2 to 6.3.4. The uniform, normal and tri-

angular destination distributions as defined in Section 6.3.1 will here exemplarily be examined. It

should be noted that these distributions are not claimed to be of any particular meaningfulness with

regard to real neural network models.

Finally, a linking relationship will be found between the assignment strategy and the resulting ex-

pected number of accumulated events in Section 6.3.5. This relationship will allow, to define an

optimisation strategy for a static assignment table (AS.2) in Section 6.3.6.

6.3.1 Event Destination Distributions

Before beginning with the actual analysis, first some basic exemplary distributions used to test the

behaviour of the accumulation process will be introduced. Each event presented at the input of the

accumulation system is labelled with a destination address. The probability for a particular destina-

tion to be requested with the current event (referenced as P(e) in Section 6.2.2) is distributed across

all available destinations. In the following analysis this probability distribution will be assumed to

one of the following cases:

DD.1 Uniform Distribution: Each destination has the same probability of occurrence

P(d) =
1
D

(6.55)

91

6 Formal Analysis of Event Aggregation

where D is the total number of destinations.

DD.2 Normal Distribution: This is the standard normal distribution with a normalised Gauss curve

P(d) =
1

σ
√

2π
e−

1
2(

d−µ

σ)
2

. (6.56)

with a standard deviation σ around a mean value µ . The left part of Figure 6.4a shows an

exemplary plot of a discrete normal distribution. As this analysis is dealing with discrete

distributions on a constrained interval, the distribution probabilities have to be renormalised

to sum up to 1. The effect of this renormalisation can be seen in the left plot of Figure 6.4a.

The destinations d are here distributed with a relatively broad gauss curve leading to clipping

the boundaries of the curve. Because of this, the renormalised probabilities are higher than

the pure gauss curve to compensate for the clipped boundaries. However, in the right plot in

Figure 6.4a which shows a relatively narrow gauss curve, the renormalisation does not lead to

a visible difference and both curves overlap. This is because the clipped boundaries are not

a significant loss to the overall probability sum, as already 99.8 % of the probability mass are

inside a 3 σ interval of the normal distribution.

DD.3 Triangle Distribution: This distribution has a triangular shape with a given baseline width w

around a middle value m. The probabilities rise and fall linearly before and after the centre

position. Outside the boundaries defined by the w parameter, the probabilities are clamped to

a very small value (≈ 0). They are not clamped to exactly 0, as this would lead to singular

matrices in Equation (6.44). The right plot in Figure 6.4b shows an exemplary triangular

distribution and opposes it to a normal distribution of comparable width (left plot). To have

the triangle distribution comparable in width to a normal distribution, one can assume w= 6σ ,

as the normal distributed probabilities are near 0 outside this 3 σ interval.

P(d) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

≈ 0 d < m− w
2

4
w2 (x−m)+ 2

w d ≥ m− w
2 ∧ d < m

− 4
w2 (x−m)+ 2

w d ≥ m ∧ d ≤ m+ w
2

≈ 0 d > m+ w
2

(6.57)

Of course non of these distributions is expected to resemble a real distribution occurring with a

real neural network model, but purely intended as benchmark cases for the accumulation system.

The real distribution of occurring destinations on the interconnection network, as modelled here,

depends on several factors. First of all, it clearly depends on the connectivity structure and activity

of the modelled neural network. However, it is strongly influenced by how this neural structure is

mapped onto the system, i.e. which neural populations are or are not placed together on the system

nodes (cf. Figure 5.2 and Figure 6.1). In Figure 6.1, the resulting distribution of destination nodes

is explicitly indicated at the node edges. If the neural populations were placed differently onto the

system units, other projections would become relevant, as crossing the chip boundaries. Generally,

it would seem a good strategy to place frequently communicating populations together on a common

chip and distribute these population clusters across the system, in a way such that frequent common

92

6.3 Results of the Mathematical Analysis

0 10 20 30 40 50
d

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
(d

)

σµ

gauss
normed

0 10 20 30 40 50
d

0.00

0.02

0.04

0.06

P
(d

)

σµ

gauss
normed

(a) Comparison of a discrete normal distribution of 1.5 σ radius (left) and one with 4 σ radius (right). The
orange curve shows the un-normalised discrete gauss-curve.

0 10 20 30 40 50
d

0.00

0.02

0.04

0.06

P
(d

)

σµ

normed

0 10 20 30 40 50
d

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
(d

)

w

m

normed

(b) Comparison of a discrete normal distribution (left) and a discrete triangle distribution (right).

Figure 6.4: Exemplary plots of the used discrete destination distributions. The parameters of the
distributions are annotated in the respective plots.

communication partners are gathered together.

In the following sections, the term distribution refers to one of these distributions DD.1 to DD.3,

describing the probability of a specific destination occurring with an input event.

6.3.2 Uniform distribution

By using Equation (6.44) one can compute the expected number of accumulated events E(Nacc) in

a bucket b in a collection of buckets B with events whose destinations are uniformly distributed.

The event destinations are assigned to the collection of buckets using the modulo strategy described

in AS.1 on page 79. This calculation is repeated, while sweeping the number of destinations D

in a range of [2B,48] with different values of B. The expected filling level E(Nacc) is computed

for each bucket b in the respective collection. Figure 6.5a shows the result of this analysis. The

resulting curves, each displaying the result for a different number of buckets B, show a stepped

pattern originating from the Modulo assignment strategy. As each destination d, added to the set of

destinations, is assigned to the next bucket in the collection, a particular bucket b is only assigned an

additional destination after B destinations have been added to the system. Only then, the situation

for that bucket will change, resulting in a lower expected accumulation length.

As to Equation (6.8), all buckets with IDs b < D%B will have one more assigned destination than

buckets with IDs b ≥ D%B. Therefore the expectation values on the right plot do equal the next

higher expectations on the left plot.

Figure 6.5b shows the same plots as a, but now the X-axis shows the relative number of destinations

93

6 Formal Analysis of Event Aggregation

10 20 30 40 50
D

1.0

1.2

1.4

1.6

1.8

2.0
E(
N

ac
c)

b = 0
B =

2
4
6
8

10 20 30 40 50
D

b = D%B
B =

2
4
6
8

(a) Plot over the absolute number of destinations D for different numbers of Buckets B.

5 10 15 20 25
D/B

1.0

1.2

1.4

1.6

1.8

2.0

E(
N

ac
c)

b = 0
B =

2
4
6
8

5 10 15 20 25
D/B

E(
N

ac
c)

b = D%B
B =

2
4
6
8

(b) Plot over the relative number of destinations D per number of Buckets B (D/B) for different numbers of
Buckets B.

Figure 6.5: Plots of the expected accumulation length E(Nacc) for uniform-distributed destinations
which are modulo-assigned to the available buckets b. left: Plot for the bucket with ID
b = 0. right: Plot for the bucket with ID b = D%B.

per bucket D/B. From this plot one can see that the expected accumulation length only depends on

this relative quantity, as all previously scattered curves now fall together to a single stepped line. It

also shows that with a lower number of buckets this curve is sampled on a greater interval reaching

to larger ratios and therefore lower expectations. The maximum occurring expectation equals two

for a relative number of two destinations per bucket with b < D%B or the equivalent with b ≥ D%B.

This can be explained by the fact that in this case each bucket is assigned two destinations and as

every destination is equally probable within the uniform distribution, the accumulation process is

interrupted on average at the second incoming event after the first one has been accepted.

Figure 6.6 shows the probability distribution for the resulting number of accumulated events in

a particular bucket in the collection, calculated through Equation (6.47). It can be seen that this

distribution is also independent of the number of buckets and only depends on the relative number

of destinations per bucket D/B which is encoded in the colourmap in the plot. The most probable

case is always the accumulation of a single event, as the bucket will in any case accumulate at least

one event before a conflict-condition can occur. For lower ratios D/B the distribution and expectation

94

6.3 Results of the Mathematical Analysis

0.0

0.2

0.4

0.6

0.8

1.0
B = 2, b = 0 B = 2, b = D%B

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0
B = 12, b = 0

1 2 3 4 5 6 7 8

B = 12, b = D%B

21

22

23

24

D
/B

Nacc

P(
N

ac
c)

Figure 6.6: Plots of the probability distribution P(Nacc) for the accumulation length for uniformly
distributed destinations. The relative number of destinations per bucket D/B is imprinted
on the distribution curves using a colour code. Green encodes low ratios while red en-
codes high ratios. The scale of the colourmap is chosen as base-2-logarithmic in order to
have a better contrast in the area where the most curves gather. The vertical lines show
the expectation value belonging to the distribution plotted with the same colour.

value shift right towards higher accumulation lengths. By looking closely, one can again find the

shift in expectation between the buckets b < D%B and b ≥ D%B (cf. the left plots to the right ones).

For high numbers B, there are less ratios D/B sampled by the analysis compared to low ratios, which

can be seen in the comparison of the number of curves in the plots on the upper and lower half of

Figure 6.6.

From this plot one can read that even for the best ratios plotted in dark-green, the probability for

accumulating more than 4 events is less than 10 %.

6.3.3 Normal and Triangle Distribution – Scaling the Width

Now, the accumulation process shall be analysed for events with normal and triangle distributed

destinations. The destinations are again assigned to the collection of B buckets by modulo operation

(AS.1 on page 79). For a given number of overall destinations D the σ - and w-width of the distribu-

tion is scaled in a range between
[︁1

8 B,1.5B
]︁

and the expected number of accumulated events is again

calculated for each bucket b in the collection using Equation (6.44). Figure 6.7 plots the acquired

data across the relative number of buckets per unit σ - or w-width B/σ or B/w
6 of the respective dis-

tribution. There, Subfigure a shows the results for the normal distribution while Subfigure b shows

the results for the triangle distribution.

From both Figures it can be seen that the individual curves’ slopes vary quite randomly across the

number of buckets B and destinations D, as well as for the individual bucket b (left and middle

95

6 Formal Analysis of Event Aggregation

101

103

105

107

109

1011

1013

D = 128, b = 0
B =

4
6
8
10
12
14
16

D = 128, b = 5
B =

6
8
10
12
14
16

E(
N

ac
c)

D = 128, b = mean
B =

4
6
8
10
12
14
16

1 2 3 4 5 6 7 8

101

103

105

107

109

1011

1013

D = 48, b = 0
B =

4
6
8
10
12
14
16

1 2 3 4 5 6 7 8

D = 48, b = 5
B =

6
8
10
12
14
16

1 2 3 4 5 6 7 8

E(
N

ac
c)

D = 48, b = mean
B =

4
6
8
10
12
14
16

B/σ

E(
N

ac
c)

(a) Normal Distribution.

101

103

105

107

109
D = 128, b = 0

B =
4
6
8
10
12
14
16

D = 128, b = 5
B =

6
8
10
12
14
16

E(
N

ac
c)

D = 128, b = mean
B =

4
6
8
10
12
14
16

1 2 3 4 5 6 7 8

101

103

105

107

109
D = 48, b = 0

B =
4
6
8
10
12
14
16

1 2 3 4 5 6 7 8

D = 48, b = 5
B =

6
8
10
12
14
16

1 2 3 4 5 6 7 8

E(
N

ac
c)

D = 48, b = mean
B =

4
6
8
10
12
14
16

B/w6

E(
N

ac
c)

(b) Triangle Distribution.

Figure 6.7: Plots of the expected accumulation lengths E(Nacc) for different numbers D of randomly
distributed destinations in different buckets b (left and middle). The X-axis shows the
number of buckets available per unit width of the respective distribution. The two plots
on the right show the mean expected accumulation length E(Nacc) averaged over all
available buckets in the collection.

96

6.3 Results of the Mathematical Analysis

columns). However, when averaged over all buckets b in the respective collection (right columns),

the mean expectation does much less depend on these parameters, but mostly on the ratio of buckets

per unit σ or w
6 of the respective distribution, shown on the X-axis. Only for large ratios around 8

buckets per σ a significant difference in the mean expectation value is observable between different

numbers of buckets B for the normal distributed destinations in Figure 6.7a. However, these appar-

ently still do not depend on the number of destinations D. The missing dependency on the absolute

number of destinations can be explained by the shape of the distributions, as the destinations outside

the σ or w width do not significantly contribute due to their vanishing probability. The reason for

the curves’ slopes’ random behaviour in the left and middle columns is believed to be an artifact of

the Modulo assignment strategy, as the destination ids assigned to an individual bucket change while

the overall numbers change. This is a similar effect as that observed in Figure 6.5 between the left

and the right, but now it looks more complex, as the destination distribution is not uniform anymore.

These effects are neutralised, when averaging over the different bucket instances.

The reason for the w
6 scaling on the X-axis in Figure 6.7b is explained in Section 6.3.1 and ensures

the comparability of the two distributions’ widths. From the plots, one does notice that with triangle

distributed destinations, there seem to be a phase-transition between very low expected accumulation

lengths at O(5) and very high ones at ≈ 108. In contrast, with normal distributed destinations the

expected accumulation length rises without an infliction point on the curve.

Evidence for the absence of an infliction point with normal distributed destinations (also for higher

B/σ and E(Nacc)) can be found in the comparison of the spreading shape with the different parametri-

sations of the two distributions. While in Figure 6.7b the horizontal position of the phase change

varies with the parametrisation, Figure 6.7a only varies the rising-slope of the curves manifesting in

the vertical spread of points on the right end of the X-axis.

From Figure 6.7 one can read (the red ellipses) that on average at least around 3.6 buckets per

unit σ or 3.1 buckets per unit w
6 are needed to achieve an expected accumulation of ≈ 102 events,

corresponding to a full EXTOLL packet (cf. Appendix B.2), until a conflict arises.

6.3.4 Normal and Triangle Distribution – Scaling the Destinations

In the last Section, the distribution width of a given number of destinations has been swept for each

number of buckets B. Here, the effect of sweeping the number of destinations for each number of

buckets with a given relative width of the distribution will be analysed. Figure 6.8 shows the result

of this analysis for different relative distribution widths.

Again for having the normal and the triangle distribution comparable, triangle distribution width is

scaled with a factor of 1
6 , as the normal distribution will include most of its probability mass in a 3 σ

interval, as described in DD.2 and DD.3 on page 92.

The shape of the curves in Figure 6.8 looks much like in Figure 6.7. This is expected, as the X-

axis scale is directly connected between both figures through a linear factor. Through this linear

factor, the scaled number of overall destinations also automatically scales the absolute width of the

distribution.

It should be noted that each data curve in Figure 6.8 is a cumulation of the data from the different

numbers of buckets B. This confirms the previous result that the plotted expected accumulation

length is on average independent of the number of buckets and instead mostly depends on the relative

97

6 Formal Analysis of Event Aggregation

0.1 0.2 0.3 0.4 0.5
B/D

101

103

105

107

109

E(
N

ac
c)

normal, modulo, b = mean
σ =
D/2
D/4
D/6
D/8
D/10
D/12
D/14

0.1 0.2 0.3 0.4 0.5
B/D

101

103

105

107

109

E(
N

ac
c)

triangle, modulo, b = mean
w
6 =
D/2
D/4
D/6
D/8
D/10
D/12
D/14

Figure 6.8: Plots of the mean expected accumulation length E(Nacc) cumulating data from different
numbers of buckets for different distribution widths. Left: Normal distribution with
different relative σ -widths. Right: Triangle distribution with different relative w

6 -widths.

number of buckets per distribution width.

Also, from Figure 6.8 one can now see (the red ellipses in the Figure) that having a more narrow

distribution with respect to the number of destinations generally leads to a higher expected accumu-

lation length. For example when looking at the left plot, one can read that with a σ -width of D
8 at

least 0.45 buckets per number of destinations D are needed to accumulate more than ≈ 100 events,

while with a σ -width of D
12 only 0.3 buckets per number of destinations D are required for the same

expected accumulation length.

By comparing the normal distribution on the left with the triangular distribution on the right, one can

also see that the latter reaches the goal of ≈ 100 expectedly accumulated events a little sooner than

the former. For example with the triangle distribution and a width of D
10 only 0.31 buckets per number

of destinations D are required to reach the phase transition between low and high accumulation

lengths at ≈ 108 events before conflict while with the normal distribution at least 0.36 bucket per

number of destinations D are needed to gradually exceed an expectation of ≈ 100 events before

conflict (cf. blue ellipses in the Figure).

6.3.5 Approximating the Expected Accumulation Length

Up to now, only the rather naive Modulo assignment strategy (AS.1 on page 79) has been applied to

the accumulation process. However, as stated in Section 6.1.2.3 there should be a way to optimise

the assignment for a minimum of conflicts, using a freely programmable assignment table (AS.2).

In order to arrive at such an optimised assignment strategy, first an intuitive approximation for the

expected filling level is developed. Having that, two optimisation approaches will be compared to

respect to the developed approximation measure.

Intuitively, the expected number of accumulated events in an individual bucket b corresponds to the

frequentness of conflicts with regard to the currently accumulating destination and the destination

of the current event at the input. As explained in Section 6.2, this largely depends on the individual

98

6.3 Results of the Mathematical Analysis

100 103 106 109 1012

max relation

101

103

105

107

109

1011

1013

Ex
pe

ct
at

ion
Va

lue
mod uniform
modulo normal 128
modulo normal 48
modulo triangle
modulo auto sigma

10−2 10−1 100

max relation

100

2× 100

3× 100

4× 100

6× 100

Ex
pe

ct
at

ion
Va

lue

mod uniform
modulo normal 128
modulo normal 48
modulo triangle
modulo auto sigma

Figure 6.9: Plot of the expected accumulation lengths against the ratio defined in Equation (6.58).
The data is a collection from the different previous analyses. All data points are gen-
erated with Modulo assignment, but different distributions. mod_uniform: uniform
distribution. modulo_normal_128, modulo_normal_48: normal distribution
with 128 and 48 destinations respectively. modulo_triangle: triangle distribution.
modulo_auto_sigma: a normal distribution, scaled such that all destinations fit in a
3 σ interval. Left: Full scale plot. Right: Detail zoom into the lower left part of the plot.

destinations assigned to that bucket, as well as their relative probabilities with respect to that bucket.

The can now be approximated by regarding the amount of disturbance of the most probable destina-

tion’s accumulation by all other destinations assigned to the particular bucket. This can be expressed

by the ratio of the most probable destination’s probability to the sum of all other destinations’ prob-

abilities at that bucket.

E(Nacc)≈
Pb(d)

∑d′ ̸=d,P(d′→b)̸=0 Pb(d′)
(6.58)

In order to obtain the probability of occurrence to a bucket for each destination assigned to that

bucket, one has to normalise the individual probabilities with respect to the sum of all destinations

assigned to that bucket.

Pb(d) =
P(d)

∑d′,P(d′→b)̸=0 P(d′)
(6.59)

Figure 6.2 shows these normalised probabilities with respect to the respective buckets.

To confirm this educated guess, Figure 6.9 shows a plot of the expected accumulation length against

this approximation ratio. The right side of the Figure shows a zoom-in on the lower left part of the

plot. From this plot one can read that the proposed approximation is very good for ratios down to

around five.

99

6 Formal Analysis of Event Aggregation

For lower ratios, the deviation from the linear curve slowly increases until the ratio gets down to

around three and then starts to become quite significant (cf. red ellipses in the Figure). For low ratios,

the expected accumulation length is higher than approximated. This is expected, as the accumulation

length cannot become lower than one and the expectation value will therefore converge to one for

ratios approaching zero. Intuitively this behaviour can also be explained by stating that for low

probability ratios, the other destinations assigned to the bucket become more and more important

compared to the most probable destination. Therefore the most probable destination does have a

less significant advantage over the other destinations and a higher proportion of time is spent (not)

accumulating other destinations.

Given this intuitive approximation one can now also argue that a uniform distribution, as analysed

in Section 6.3.2 is the worst case distribution, as there is no distinguished most probable destination

and the ratio for any destination selected as the enumerator will be near zero. This is also directly

visible in the right plot of Figure 6.9, as the data-points belonging to the analysis in Section 6.3.2

(mod_uniform) are plotted at very low ratios as expected.

6.3.6 Optimising the Expected Accumulation Length

In the following, two custom assignment strategies for table-based assignment (AS.2 on page 79)

will be defined under the objective to optimise the number of accumulated events per bucket. Both

strategies aim to maximise the previously motivated ratio between the most probable destination’s

probability and the sum of all other destinations’ probabilities for all buckets.

OS.1 Sort-Opt: This strategy first sorts the list of available destinations with respect to decreasing

probability of occurrence. Then it does a Modulo assignment of the destinations, following

the previously sorted list. Thereby the hope is that the most probable destinations are not

assigned to the same bucket as similarly probable events.

OS.2 Diff-Opt: With this strategy, the destinations are iteratively assigned to buckets. For each

assignment, first an intermediate probability ratio is calculated for each bucket; once before the

assignment and once with the destination hypothetically assigned to the respective bucket. The

destination is then finally assigned to that bucket where the signed ratio-change is maximal,

i.e. either increases most or decreases least. As the ratios are not defined at the first assignment

step, the first round of destinations is assigned using a modulo operation.

Figure 6.10 shows a comparison between these Optimisation Strategies OS.1 to OS.2 using the anal-

ysis described in Section 6.3.4 and Figure 6.8. It can be seen that the Sort-Opt strategy does not

have any significant effect on the triangle distribution and even worsens the accumulation with the

normal distribution. However, the Sort-Opt strategy greatly improves the expected accumulation

length for all numbers of buckets, for the normal distribution, as well as for the triangle distribution.

With the triangle distribution, the improvement is even better and completely removes the previously

observed phase transition between low and high accumulation lengths. Instead, for each analysed

distribution width it unifies the expected mean accumulation length to the respective maximum ex-

pected accumulation length observed in the unoptimised analysis.

One can try to understand the poor performance of the Sort-Opt strategy when looking at the result

of the sorting operation in Figure 6.11. As the two distributions used here already follow a smooth

100

6.4 Simulation Analysis

0.1 0.2 0.3 0.4 0.5
B/D

101

103

105

107

109

E(
N

ac
c)

normal, modulo, b = mean
σ =
D/2
D/4
D/6
D/8
D/10
D/12
D/14

0.1 0.2 0.3 0.4 0.5
B/D

E(
N

ac
c)

normal, sort-opt, b = mean
σ =
D/2
D/4
D/6
D/8
D/10
D/12
D/14

0.1 0.2 0.3 0.4 0.5
B/D

E(
N

ac
c)

normal, diff-opt, b = mean
σ =
D/2
D/4
D/6
D/8
D/10
D/12
D/14

(a) Normal distribution with different relative σ -widths.

0.1 0.2 0.3 0.4 0.5
B/D

101

103

105

107

109

E(
N

ac
c)

triangle, modulo, b = mean
w =

D/2
D/4
D/6
D/8
D/10
D/12
D/14

0.1 0.2 0.3 0.4 0.5
B/D

E(
N

ac
c)

triangle, sort-opt, b = mean
w =

D/2
D/4
D/6
D/8
D/10
D/12
D/14

0.1 0.2 0.3 0.4 0.5
B/D

E(
N

ac
c)

triangle, diff-opt, b = mean

w =
D/2
D/4
D/6
D/8
D/10
D/12
D/14

(b) Triangle distribution with different relative w
6 -widths.

Figure 6.10: Plot the same analysis as in Figure 6.8, but with the two optimisation strategies in
comparison. Left: The original analysis. Middle: Optimisation using OS.1. Right:
Optimisation using OS.2.

course they partition into two sorted regions. Also, each probability value occurs twice in the respec-

tive distribution. Therefore, by sorting the distribution, the distance of different probability values,

modulo-assigned to a particular bucket, will approximately be halved. This effect corresponds to the

visible reduction in the sorted distribution slope compared to the original distribution slope.

The good performance of the Diff-Opt strategy is also quite understandable, as it follows a gradient

ascent algorithm. However, this optimisation strategy leads to a highly asymmetric assignment in

that form that apparently every bucket is assigned one further destination beyond the initial modulo

round and all other destinations are assigned to a single bucket. This effectively leads to all but

one buckets having only two destinations assigned and therefore performing quite well and a single

bucket performing horribly and being interrupted very frequently. This also explains, why the ex-

pected mean accumulation length does less depend on the number of buckets available per number

of destinations as observed in Figure 6.10. This bad-bucket effect has to be addressed for further

optimisation, as it will certainly have a negative impact on the overall performance, as it produces a

high packet rate with large overhead.

The further improvement of the optimisation algorithm is not part of this thesis and will be left for

future work.

101

6 Formal Analysis of Event Aggregation

0 10 20 30 40 50
d

0.00

0.02

0.04

0.06
P

(d
)

normed
sorted

0 10 20 30 40 50
d

0.00

0.01

0.02

0.03

0.04

0.05

P
(d

)

normed
sorted

Figure 6.11: Normal (left) and Triangle distribution (right) sorted with descending probabilities.

6.4 Simulation Analysis

Up to now only static assignment strategies have been analysed. As described in Section 6.2.2.5,

dynamic assignment strategies cannot be analysed with the Markov Chain model, as they introduce

a dependency on the current time step leading to the invalidity of Equation (6.17).

In order to yet analyse the characteristics of dynamic assignment strategies one must directly model

the accumulation system and simulate the dynamic behaviour. Of course there is no reason to not

also evaluate static assignment strategies using such a simulation. However, one should notice that

the computing time of the simulation is much higher than that of a simple numerical calculation of

the desired quantity.

In each step the simulation will create an event with a destination drawn from a constrained random

generator. The random generator is constrained to obey a specific distribution as for example a

uniform or normal distribution. The simulation then tries to insert the generated event into the

bucket of interest. Thereby it is checked, whether the assignment condition is met or whether the

event’s destination belongs to another bucket and can therefore be ignored. When a conflict occurs,

the accumulation length is recorded and the assignment condition is updated. Whether there is a

conflict or not, is determined according to the respectively modelled assignment strategy.

6.4.1 Simulating Modulo Assignment

The results of simulating the modulo-assignment will now be compared to the previously presented

results of the mathematical Markov Chain analysis of the same assignment strategy and destination

distributions.

Figure 6.12 shows the results of a simulation with uniformly distributed event destinations and Mod-

ulo assignment (AS.1). When comparing this to the results obtained from the Markov Chain analysis

in Section 6.3.2, shown in Figure 6.5, a great accordance between the two methods is found. This

verifies both the correctness of the employed mathematical model and the simulation. The only

observed difference is a slight random variation in the simulated accumulation lengths that is most

clearly visible in Figure 6.12a. This variation arises from the random number generator, used in

the simulation in contrast to the mathematical analysis that does not employ a random generator but

rather deterministically calculates the expectation values based on fixed probabilities.

Repeating this comparison between simulation and mathematical analysis for normal distributed

event destinations leads to the results shown in Figure 6.13. The result of the Markov Chain analysis

102

6.4 Simulation Analysis

10 20 30 40 50
D

1.0

1.2

1.4

1.6

1.8

2.0
E(
N

ac
c)

Modulo, uniform, b = 0
B =

2
4
6
8

10 20 30 40 50
D

E(
N

ac
c)

Modulo, uniform, b = D%B
B =

2
4
6
8

(a) Plot of the expected accumulation length over the absolute number of destinations D for different numbers
of buckets B

5 10 15 20 25
D/B

1.0

1.2

1.4

1.6

1.8

2.0

E(
N

ac
c)

Modulo, uniform, b = 0
B =

2
4
6
8

5 10 15 20 25
D/B

E(
N

ac
c)

Modulo, uniform, b = D%B
B =

2
4
6
8

(b) Plot of the expected accumulation length over the relative number of destinations per number of buckets
D/B for different numbers of buckets B

Figure 6.12: Plots of the expected accumulation length E(Nacc) as obtained by the simulation for
uniform-distributed destinations which are modulo-assigned to the available buckets b.
Left: Plot for the bucket with ID b = 0. Right: Plot for the bucket with ID b = D%B.

shown in Figure 6.13a has already been presented in the bottom left pane of Figure 6.7a and is

repeated here for means of more easy comparison. When comparing the simulation results to the

numerical results, the corresponding curves pose a good match for low ratios B/σ (B = 4, 8and12

buckets). For high values B/σ (above ≈ 5), where the expected accumulation length exceeds 105

in Figure 6.13a, the simulation result in Figure 6.13b saturates while the numerically produced

curves further diverge. The reason for this behaviour is hypothesised to be the limited number of

simulation cycles. As each simulation cycle handles a single event, the simulated accumulation

length is rigorously limited to the number of cycles executed. This hypothesis agrees with the

observation that the curves in Figure 6.13b do not exceed the number of simulation cycles, which

was 106 in the creation of this Figure. The hypothesis is also supported by the observation that the

curve created for B= 16 buckets which does not exceed this limit in Figure 6.13a is also not distorted

in Figure 6.13b.

This hypothesis is also verified by repeating the simulation with the same parameters, but now with

only 104 cycles. With this modification, the curves can be observed to be saturating below that new

103

6 Formal Analysis of Event Aggregation

2 4 6 8
B/σ

101

103

105

107

109

1011

1013
E(
N

ac
c)

D = 48, b = 0
B =

4
8
12
16

(a) Result of the Markov Chain analysis.

1 2 3 4 5 6 7 8
B/σ

101

103

105

107

109

1011

1013

E(
N

ac
c)

D = 48, b = 0
B =

4
8
12
16

(b) Result of the simulation.

Figure 6.13: Comparison of results from the mathematical analysis and the simulation with same
parameter-constraints. The plots show the accumulation of events with normal-
distributed destinations under Modulo assignment.

number of simulation cycles.

6.4.2 Simulating Round Robin Assignment

After having verified the method by simulating the Modulo assignment and comparing it to the pre-

vious numerical results, now the behaviour of RoundRobin assignment (AS.3 on page 79) shall be

simulated. The respective simulation results are presented in Figure 6.14. It shows the simulation

of uniformly distributed destinations using RoundRobin assignment. While Figure 6.14b plots the

expected accumulation length E(Nacc) against the absolute number of destinations D, Figure 6.14a

shows the same data, plotted against the relative number of destinations per bucket D/B. The di-

rect comparison to previously simulated Modulo assignment in Figure 6.14b shows very similar

behaviour for both strategies. Effectively, RoundRobin assignment performs as a lower bound to

the Modulo assignment and without the stepped course. This is expected, as the modulo strategy

only assigns another destination to a particular bucket, if in steps of ∆D = B new destinations, i.e.

if (D− b)%B = 0. Therefore with Modulo assignment, ∆D < B additional destinations perform

equally good as the original number of destinations at ∆D = 0. However, this effect does not occur

with RoundRobin assignment, leading to a continuous degradation in accumulation length perfor-

mance.

Repeating the simulation with RoundRobin assignment and normally distributed event destinations,

leads to the results shown in Figure 6.15. It can be seen that in contrast to the uniformly distributed

destinations, now also an E(Nacc) > 2 is possible. Actually, the expected accumulation length can

now reach very high numbers of more than 103, depending on the relative distribution width com-

pared to the number of buckets in the system. The reason for this is that conflicts now become

significantly less likely, once all the frequently occurring destinations are assigned to a bucket and

the remaining possible destinations are outside the 3 σ interval of the distribution. However, this is

104

6.4 Simulation Analysis

10 20 30 40 50
D

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

E(
N

ac
c)

RoundRobin, uniform, b = 0
B =

2
4
6
8

(a) Plot of the expected accumulation length
E(Nacc) over the absolute number of destina-
tions D for different numbers of buckets B.

5 10 15 20 25
D/B

1.0

1.2

1.4

1.6

1.8

2.0

E(
N

ac
c)

Modulo & RoundRobin, uniform, b = 0
AssiStr, B =

mod, all
rr, 2
rr, 4
rr, 6
rr, 8

(b) Plot of the expected accumulation length
E(Nacc) over the relative number of destinations
per number of buckets D/B for different num-
bers of buckets B. The results from the Modulo
assignment are included again for comparison.

Figure 6.14: Results of simulating the RoundRobin assignment with uniformly distributed destina-
tions.

still significantly worse than the previous result of the numerical analysis of modulo-assigning nor-

mally distributed destinations in Section 6.3.3 and Figure 6.7, where E(Nacc)> 1012 can be reached

around B/σ = 8. This is, as already hypothesised in Section 6.1.2.3, expected. With the dynamic

strategy of RoundRobin assignment, every bucket will eventually become disturbed by a frequent

destination, in contrast to the static strategy of Modulo assignment, where only some buckets will

frequently become disturbed. This leads to very high performance for some buckets and quite lousy

performance (comparable to RoundRobin assignment) for the others. However, it should be noted

that any expected accumulation length above the interconnection network’s MTU is only of theoret-

ical relevance, as in that case C.1 on page 77 will apply and limit the actual accumulation length. As

will be derived in Section 7.3.3 on page 121 a full packet will be able to transport between 62 and 124

events.

0 5 10 15 20
σ

100

101

102

103

E(
N

ac
c)

RoundRobin, normal, b = 0
B =

4
8
12
16

1 2 3 4 5 6 7 8
B/σ

E(
N

ac
c)

RoundRobin, normal, b = 0
B =

4
8
12
16

Figure 6.15: Logarithmic plot of the expected accumulation length E(Nacc) with normally distributed
destinations over the absolute distribution width (left), and the relative quantity of buck-
ets per distribution width B/σ (right).

105

Part III

Implementation and Experiments

107

7 The Implemented Event Communication

���
���
���
���
���
���
���
���
���

���������	

����
�

�

�

�

��
��
��
��
��
��
��
��
��

���������	

����
�

�����������
	

������	�	

�
�����

�����
��	���

�����������
	

������	�	

�
�����

�����������
	

������	�	

�
�����

�����������
	

������	�	

�
�����

��������	���

���
��

�� �
	��

��������	!!!

�"�
��
#���$

%&

�������	'	�
�����	!!!

������

�

�

�"�
�	����� �"�
�	�����

�����
����
	

�����
�

(�
� ��

)*& 	→ +, -

���������	

����.

���������	

����.

��"����	

�������

���
���
���
���
���
���
���
���
���

�"�
�	
�����	

�����
�

��
��
��
��
��
��
��
��
��

�"�
�	
�����	

�����
�

�����
����
	

�����
�

��������/

)+, -

��������/)+, -

←

(�
� ��)+, -

01�%

(�
� ��

)*& -

�
�

�

�

Figure 7.1: Schematic overview of the implemented event communication architecture. The parts
responsible for transmission (towards the network) of events is coloured green while
the receiving parts (events from the network) are coloured blue. The shaded modules
(Sorting and Merging) are currently not implemented. The two configuration buses are
coloured red (Omnibus) and yellow (Extoll-RF). Modules, previously existing in the
original FPGA design are coloured purple.

The event communication architecture, implemented and tested in the course of this thesis will be

described in detail in this Chapter. Figure 7.1 shows a schematic block diagram of the implemented

design. This includes the functionality, previously referred to in Section 3.2 for the green boxes

in Figure 3.4. The description of the design will start at the bottom of the Figure with the Event

Switch, as this is the central point in the FPGA where the events are distributed between the different

sources and sinks in the design. Second, the concept of how the systime is synchronised across

multiple network nodes will be addressed, as this is essential to the global interpretation of spike

event timestamps. The description will then follow the course of the events towards and across the

network, and on the receiving side back to the target FPGA’s Event Switch. As the BSS-2 chip

109

7 The Implemented Event Communication

can deliver up to two events per clock cycle on average as stated in (Karasenko 2020), the event

communication architecture must be able to process at least two events in parallel. This constraint

is honoured by the implementation of multiple parallel data paths, as indicated in Figure 7.1 by

multiple parallel instantiations of the respective units. Last but not least, the details about the status

and configuration interfaces, namely Omnibus and the EXTOLL registerfile will be described, also

including the bridging interface between these two configuration paths. Details on the parametrised

implementation of the described design with respect to the number of Accumulation Buckets and the

number of parallel data paths (Splits) will be presented in Section 7.8.

7.1 The Event Switch

����

�������

��	�
��
�

�������

��	�
�����

����

����

����

���

���

���

���

���

�������

��	�
�����

�������

��	�
��
�

�������

��	�
��
�

�������

��	�
��
�

��

���
��

�����

��		

����

�����
��

���
��

 !��"���

���
��

��

���
��

��

���
��

��

���
��

�����

��		

����

 !��"���

���
��

�����
��

���
���

��	���

����##�#$

�����

%

%

%

%

%

&�#���

'()�$

������

&�#���

'()�$

������

���

%

����

����

����

���

'()�$

������

���

'()�

������

Figure 7.2: Schematic block diagram of the Event Switch. The different data paths are colour-coded
with respect to their source or sink. Additionally, the different conversion units are
coloured with according to the respective conversion operation, they perform.

The Event Switch takes event streams from four input interfaces and distributes them to one or more

of six output interfaces, a schematic block diagram is shown in Figure 7.2.

The input interfaces collect events from the Playback Executor (cf. Section 3.2.2), the L2 (cf. Sec-

tion 3.2.1) and the external Event Communication (described in this Chapter), as well as the physical

spike-io interface, which is used in the work of Yannik Stradmann for directly providing spike output

to external (robotic) devices (Stradmann et al. 2023). For each output, the user can statically select

which input it shall listen on. An exception of this configuration space are the outputs towards

the L2, as this interface is replicated three times, to simultaneously take events from the other three

inputs. Merging of events towards the L2, i.e. towards the HICANN-X chip is implemented through

the merger-matrix introduced by (Kanzleiter 2018). The user can also decide to disconnect the out-

puts independently of each other. However, the three parallel outputs towards the L2 can only be

110

7.1 The Event Switch

switched off together.

In between these interfaces, several conversion units are placed in the data paths in order to shape

the event stream for the respective units at the other end. FIFO buffers are inserted into the data

paths in order to break the critical timing paths at the flow control backpressure signal (next) that

otherwise propagates as combinatorial logic through all the pipeline stages of the involved units. A

FIFO buffer effectively separates this signal path by providing full and empty signals that are

derived logically independent from each other.

The following Subsections will discuss the details on the respective conversion units.

The Event Switch design uses different signal-level interfaces. These include two kinds of blocking

(UT-B in Figure 7.2) and non-blocking (UT-NB in Figure 7.2) UT interfaces, as well as valid-

next (VN in Figure 7.2) interfaces and FIFO interfaces (at the FIFO blocks in Figure 7.2). These

interfaces and conversions between them will be presented in Appendix B.1.

7.1.1 Index Filtering and Manipulation

The event stream from the HICANN-X chip not only contains spike events, but also analogue sample

data from the MADC unit (cf. Section 3.1.1 on page 35 for reference). These are also transmitted in

tuples of up to three parallel samples and are distinguished from spike events through their unique

UT indices (for details on the UT cf. Section 7.3.3). As these MADC samples are only of interest

for trace collection in the Executor unit, they have to be filtered out of the event streams heading for

Spike-IO and external Event Communication.

The indices at the L2 interface (iL2) are arranged in a way such that the MADC samples are ranged

below the spike events. So filtering for spike events only (ispike), involves checking whether the index

lies above the offset-value (oMADC) of the MADC sample types and finally subtracting this offset:

ispike =

⎧⎨⎩iL2 −oMADC if iL2 ≥ oMADC

drop else
(7.1)

If the incoming index indicates MADC samples, the data should simply be dropped by holding

the valid signal low. Because of this index arrangement, the indices have to be elevated by the

said offset oMADC for events travelling towards the Executor unit and not originating from the L2

interface.

iexec = ispike +oMADC (7.2)

Although these events streams do not contain MADC samples, this conversion is still necessary, in

order that the Executor unit can correctly interpret them as spike events. Otherwise it would falsely

interpret them all as MADC samples. The units performing this filtering and fixing operation are

highlighted with yellow background in Figure 7.2.

7.1.2 Event Path Compression

In the BrainScaleS-2 event communication system there are different numbers of parallel event-

interface ports that are attached to the Event Switch unit. The internal event interfaces between

the L2, the Playback Executor and the Spike-IO are three-way parallel, i.e. they can transport up to

111

7 The Implemented Event Communication

�

�

��������	
� �
������
�

��������	
�

� �

�

�

��������	
� �
������
�

��������	
�

� �

�

�

�

��������	
�

��������	
�

�
������
�

� �

�

��������	
�

��������	
�

�
������
�

����� ����	

� ��

�����

� �

�����

� �

(a) Exemplary data flow with stall condition.

�

�

��������	
� �
������
�

��������	
�

� �

�

�

��������	
� �
������
�

��������	
�

� �

�

�

��������	
�

��������	
�

�
������
�

� �

�

�

��������	
�

��������	
�

�
������
�

����� ����	

� ��

�����

� �

�����

�

(b) Exemplary data flow without stall condition.

Figure 7.3: Data flow diagrams of the Event-Compressor unit. The Figure shows the states of the
data pipeline registers at subsequent clock cycles. The movement of data units through
the registers is shown with arrows between the current location and where the data will
be after the next clock edge.

three events per clock cycle in parallel. The actual number of valid parallel events is thereby coded

into the idx field of the respective UT interface using a binary number code. The valid events are

always aligned to the least significant position in the overall data bus, so an index value of idx =

0 means that only the zeroth position of three possible events is valid while an index value of idx

= 1 means that the first two events are valid.

On average there will be two valid events per clock cycle, transported across the serial links (cf.

Section 3.1.2 on page 37 for reference). In order to save FPGA resources and keep the design

simple, it was decided to only provide two parallel data paths for the external event communication.

Hence, the three internal data paths have to be compressed onto two external data paths. The unit

performing this compression operation is highlighted with blue background in Figure 7.2. De-

compressing the received event stream on the other side of the network transmission is however not

necessary, as it would not gain a benefit in the bandwidth usage on the serial links. It is also not wise,

as it would add additional design complexity, using up more precious FPGA recourses. Finally, it

is not even accurately possible, due to the lack of information about which double events have been

compressed triple events and which not.

A data flow diagram of the respective compressor unit as it is implemented in the design is shown

112

7.1 The Event Switch

in Figure 7.3. At each clock cycle it takes up to three alignment units (events) of data at the input

and outputs up to two previously buffered alignment units. Input data that is larger than the available

output space is partially buffered and split for output during two subsequent clock cycles. The

output- and buffer registers thereby act as a single barrel shifter that can move up to two data units

from the buffer- to the output registers and takes input in the size of up to three units to that exact

point of the overall buffer, where it fits without overwriting stored data units. In this configuration,

the unit can compress two subsequent triple input data words into three subsequent double output

data words. A stall condition will occur at the third triple input data word in a row which can not

be buffered anymore and has to wait until the buffer has been (partially) cleared through the output.

However, double and single input words can always be taken by the unit, as long as the output is not

stalled by the following unit. While double inputs will only postpone an imminent stall condition to

the occurrence of the next triple input, a single input will relax the situation such that the unit will

be able to take a triple input in the next cycle again.

By increasing the amount of buffer space, the number of triple inputs that may be taken until a stall

condition occurs can be increased. The additional buffer space however, is not required to be added

in the form of additional barrel shifting registers. Instead it is sufficient and probably more hardware-

efficient to add a FIFO memory at the input. One should however notice that increasing the buffer

space will only increase the burst capacity until the first stall occurs. From that point on the situation

is the same as with minimal buffer space, as long as the situation is not relaxed by low input traffic.

Also, the increased buffer space will not improve the overall latency for burst data as the bottleneck

is still posed by the output width. However, a larger buffer can decrease the probability of stalling

preceding units at a given average burst size.

7.1.3 Timestamp Extension

In contrast to the serial links connecting the chip with its communication FPGA, latencies across the

EXTOLL network and through the event communication architecture are expected to reach signifi-

cantly larger time-spans. Especially these latencies across the network will depend on the distance

between the communicating nodes. In case of multicast communication the highest latency between

the source- and the most distant target node will come to effect.

function st_t ts_to_st (st_t systime, ts_t timestamp);
st_t timestamp_st;
timestamp_st = systime;
timestamp_st[$high(ts_t)-1:0] = timestamp;
if (timestamp_st > systime) begin

timestamp_st -= (2**$high(ts_t));
end
return timestamp_st;

endfunction

Listing 7.1: Conversion procedure for a shortened timestamp back to the original systime-width,
based on an evolved systime.

The question of interest here is: How long may a timestamp of a certain size lie in the past, for still

being able to uniquely convert it to the larger systime width?

113

7 The Implemented Event Communication

In order to answer this question, let us take a look at the procedure of converting a shortened times-

tamp back to the wider systime in Listing 7.1. First, the current systime is simply assigned to the

timestamp conversion result where the lower bits are replaced with the actual timestamp. After this

simple replacement, it is checked whether the resulting value is larger than the current systime.

By assuming that the timestamp must have been created in the past, it is inferred that the converted

value cannot lie in the future. Consequently, the reason for the converted timestamp being in the

future is assumed to be that the systime counter has bit-overflown the width of the timestamp. Thus,

this can be corrected by subtracting the value of this overflow, being 2**$high(ts_t). Now this

is the answer to the question in the first place, as this correction only leads to a correct value if the

overflow has only occured once since the timestamp was created. Moreover, it cannot be known

whether this assumption is true, so it has to be assured by selecting the width of the timestamp large

enough that during its expected transmission latency the overflow can in any case only happen once.

In other words, the timestamp should be at least doulbe as wide as the worst expected latency.

For the BSS-2 chip to FPGA links, the timestamp was designed to be 8 bit wide, corresponding to

a maximum allowed latency of around 28·8ns
2 ≈ 1µs. For the external event communication in the

scope of this thesis, it was decided to transmit timestamps at a width of 15 bit, thus being on the safe

side for latencies of up to 215·8ns
2 ≈ 130µs, corresponding to a biological timescale of 130 ms (cf.

Section 5.3.1 on page 62). These axonal delays of course include the accumulation and transmission

latencies (cf. Equation (5.4)).

The resulting conversion of 8 bit timestamps from the BSS-2 chip to 15 bit timestamps for the exter-

nal event communication can basically be done by the procedure in Listing 7.1. As the systime is

43 bit wide, the incoming timestamps can be upscaled to that width and then only select the lower

15 bit. On the other side, the timestamps have to be re-shortened back to 8 bit for the target chip,

which however is only another bit-select operation.

The timestamp width conversion units are depicted with purple background in Figure 7.2. Together

with the 14 bit address label, the overall event format is now 29 bit wide and is summarised in

Listing 7.2.

typedef logic [13:0] event_t;
typedef logic [14:0] timestamp_t;
typedef struct packed {
event_t event_address;
timestamp_t timestamp;

} timed_event_t;

Listing 7.2: The spike event format, as used for network transmission.

7.1.4 Global Time-Base Conversion

When communicating spike events with target timestamps through a system with multiple asyn-

chronous systime clocks, these timestamps are barely interpretable at the destination systime, given

their creation in the source systime.

A time-base conversions takes place at the interfaces from and to the L2 in order to convert the

timestamps of incoming and outgoing between the local and a global systime base. This makes event

114

7.1 The Event Switch

timestamps globally interpretable in the whole interconnected system. The respective conversion

units are highlighted with green background in Figure 7.2.

The implemented method of synchronising the global systime will be presented in detail in Sec-

tion 7.2. Basically, an offset value is subtracted from the incoming events from the chip and re-

added to the events going down to the chip (cf. Figure 7.4). This offset value will be different at

each system unit (chip plus FPGA). In order to synchronise the whole system, it is important that

these offset values are determined at the same point in time at all FPGAs. Because the offset value

is stored in systime units at a width of 43 bit, the timestamps are first scaled up as in Section 7.1.3,

then the offset is applied and finally the timestamps are re-shortened to the original width of 8 bit.

However, this width-conversion is expected to be optimised away by the FPGA design compiler, as

it does not have a persistent effect due to the subsequent bit-select operation.

7.1.5 Event Replication

always_ff (@posedge clk) begin
reg_out <= reg_in;

end

always_comb begin
reg_in = reg_out;
in.next = 1'b0;
for (int i=0; i<num_ifs; i++) begin

if (out[i].next)
reg_in.valid_out[i] = 1'b0;

end
if ((reg_in.valid_out == '0) && in.valid) begin
reg_in.valid_out = '1;
for (int i=0; i<num_ifs; i++) begin
reg_in.data_out[i] = in.data;

end
in.next = 1'b1;

end
end

Listing 7.3: Pseudo-Code for replicating one Valid-Next data stream to num_ifs independent
Valid-Next data streams. The input is blocked, until all outputs have accepted the data.

As described at Section 7.1 on page 110, the working principle of the Event Switch is that the user can

select an input-port for each output-port from which to forward events to that output. Consequently,

it is possible to select the same input for more than one output. This implies the necessity to replicate

input event streams to multiple output ports. This replication is depicted in Figure 7.2 at the Single-

In-Multiple-Out (SIMO)-Blocks. The difficulty here is that the output interfaces are independent

of each other and can thus acknowledge the acceptance of valid input data at different points in

time. The valid signal at the respective outports has to be de-asserted immediately after they have

individually acknowledged the data. Otherwise, the output ports would read the same data multiple

times. However, at the input interface, a valid event datagram may only be acknowledge, when all

output interfaces have acknowledged the datagram. Otherwise, some output ports could miss a valid

datagram. A pseudo code implementation of these constraints is shown in Listing 7.3. Unfortunately

however, this leads to the behaviour that a single blocked output will block all other outputs too, as

115

7 The Implemented Event Communication

the input is blocked. This might become a problem through the prioritised sending of live-events

with respect to trace-data at the NHTL (cf. Section 7.4). Mitigation strategies for this problem will

be discussed in Section 8.2.2 on page 155.

7.2 Systime Synchronisation

�������

����������	
 ��
��

�

�

�

�

�

�

�

���������

��

����

�

�

����

�

�

�

�

�

�

�

���������

����

����������	 ��
��

�

�

�

�

�

�

�

���������

��

����

�

�

����
�

�

�

�

�

�

�

�

���������

����
�

 !����"��

Figure 7.4: Schematic block diagram of the control flow for the system-time synchronisation.

As mentioned above in Section 7.1.4, a way to synchronise multiple BSS-2 systems with respect

to their systime is needed in order to create a larger system, exchanging spikes between multiple

accelerated neuromorphic chips. The following Subsections will go into the details, of how the

systime is synchronised, first between each chip and its attached FPGA, and second between all the

FPGAs performing a multi-chip experiment. The overall synchronisation procedure is visualised in

Figure 7.4.

7.2.1 Local Systime Synchronisation

The mechanism for synchronising the systime between the BrainScaleS-2 FPGA and the attached

ASIC was originally described in (Rettig 2019a). The FPGA thereby requests the chip to reset its

systime to a configurable value and send back an acknowledgment, containing its current systime

value. The FPGA measures the round-trip latency (lrtt) of request and response and then resets its

own systime to the appropriate value (which is visualised by an open arrow-head towards the chip’s

systime block in Figure 7.4 and a filled arrow-head in the opposite direction). As the BSS-2 chip

runs at double the clock speed of the FPGA, also the ASIC systime counter advances with double

116

7.2 Systime Synchronisation

speed as compared to its FPGA counterpart. This, and the fact that the serial links have a directional

latency-offset of around 5 FPGA clock cycles (determined by simulation in (Rettig 2019a)), leads to

the following equation to determine the correct FPGA systime:

tfpga =
lrtt
2
+5+

tasic

2
(7.3)

Whether the systime is reset or just reported back is determined through a single payload bit in the

request message to the chip and the respective playback command that triggers this synchronisation

process. The reported ASIC systime, as well as the measured round-trip latency are in any case

stored at status registers, accessible through the FPGA Omnibus.

7.2.2 Global Systime Synchronisation

With the mechanism described above, the FPGAs and ASICs are synchronised pairwise to each

other. The objective now is, to find a way to synchronise these islands of local systimes to achieve a

globally synchronised systime.

The EXTOLL network provides global barrier- and interrupt operations (Burkhardt 2007, 2012)

which are used for this purpose in this work. The operation principle of the respective hardware

support units is described in Section 4.1.2. Originally, the status of the interrupt- and especially

the barrier operation, i.e. whether it has been released or not, has to be polled from software at the

respective status-registerfile. The interrupt notification will additionally trigger an automatic kernel

interrupt in the operating system of a participating host computer. However, as the interrupt- and

barrier operations are to be used in an FPGA implementation, an FSM-based hardware unit doing the

control and status polling operation on the barrier unit has been implemented. The control and status

interfaces have been attached to the Playback executor and two additional wait-until instructions to

the playback instruction-set have been added (cf. Section 3.2.2). The Wait-until-barrier instruction

will notify the Barrier Unit that the playback program has reached the barrier point and block the

program until the unit reports to be in released state. The Wait-unit-interrupt instruction will

simply block the execution until the Interrupt Unit reports an interrupt notification. This interrupt

notification signal is thereby hard-wired to the Playback Executor unit. This will signal a common

point in time between all participating units in the configured interrupt tree. This interrupt operation

however relies on a single FPGA executing a master playback program that has to start the interrupt

operation through a write-access to the control registerfile of the root-node’s Interrupt Unit.

The actual quality of the Global Interrupt mechanism in terms of time-jitter is experimentally deter-

mined later in Section 8.6 of this thesis.

This Global Interrupt can now be used to create a globally synchronised systime across all FPGAs.

For this, the hardware interrupt signal from the Interrupt unit is connected to the Event Switch

unit. Here the unit listenes on that signal and uses it to synchronously reset the global systime

counter. Simultaneously the offset to the locally synchronised chip-systime is synchronously stored

in a register. This value is used for converting the incoming and outgoing event timestamps from

and to the BSS-2 ASIC by adding or subtracting this offset, depending on the event’s direction (cf.

Section 7.1.4).

117

7 The Implemented Event Communication

7.3 Event Transmission

If the Event switch forwards events towards the external communication network, they enter the

SPIKE_COMM partition in the FPGA design (cf. Figure 3.4). This partition contains all the design

units that are necessary to pack and un-pack spike events to and from network packets. This Section

will go into the implementation details of the sending-, i.e. packing side.

7.3.1 Timestamp Sorting

In order to be able to delay events at the destination FPGA until their timestamp is due without over-

delaying subsequent events that have a smaller timestamp, events have to be transmitted in sorted

order. As events are timestamped sequentially at the L1-to-L2 interfaces in the HICANN-X chip, the

outgoing event stream at the BSS-2 ASIC is already sorted. However, because this event stream is

transported in parallel through 8 serial communication links between the chip and the FPGA events

may be disarranged, i.e. jittered, to an amount of around 8 to 10 clock cycles due to implementation

details of the mechanism distributing the events across the parallel links. With a clock period of 8 ns,

this corresponds to around 64 ns to 80 ns of jitter in the hardware time-domain or µs in the biological

time-domain respectively. When comparing this to the STDP time constants (cf. Section 5.3.2 and

(Friedmann et al. 2017)), in the worst case (fastest time constant and highest jitter), this corresponds

to 0.7 % of that time constant and is thereby considered in an acceptable range. Consequently in this

first implementation, the timestamps coming from the chip are not sorted (the module is highlighted

with a shaded grid in Figure 7.1). When the (also not yet implemented) merging of event streams

(Section 7.5.2) is added at the receiving branch in a future improvement, the sorting operation could

be implemented completely at the merging units (cf. Section 9.2 on page 194).

7.3.2 Destination Mapping

The first important task, implemented in the event communication architecture at hand, is the map-

ping of the source neuron labels to destination synapse ids and assigning network target node ids to

the events. Events arriving from the L2 at the FPGA and forwarded through Event Switch have a

bit-structure, as shown in Listing 7.4:

typedef logic [1:0] l1_adr_t;
typedef logic [13:0] nrn_adr_t;
typedef struct packed {
l1_adr_t l1_address;
nrn_adr_t neuron_address;

} l2_event_t;

Listing 7.4: Address label format of L2 events from and to the BSS-2 HICANN-X ASIC.

The two most significant bits, forming the l1_address, indicate at which of the four L1-to-L2

event interfaces the respective event has been processed. However, this information is not quite

useful for mapping to a destination synapse address, as all neurons on the chip can be configured

to be routed across any of those event interfaces and incoming events at the chip can also reach all

synapses across any of the event interfaces. Therefore, these two bits are ignored for the mapping

118

7.3 Event Transmission

operation and not transmitted across the network. The receiving FPGA will however have to re-add

them, as to comply to the correct format of events towards the receiving HICANN-X chip. The

actual decision of which L1 event interface is to take the events at the receiving chip can be made by

the target FPGA, based on the rate of events from the network.

The mapping operation is implemented using a large lookup table, addressed directly by the remain-

ing 14 bit neuron_address of the incoming L2 events. This 14 bit address space thereby leads

to a lookup table with 16,384 entries. Each of these entries contains data of the shape, presented in

Listing 7.5 and a total width of 18 bit.

typedef logic [13:0] nrn_adr_t;
typedef logic [2:0] bkt_id_t;
typedef struct packed {
logic valid;
nrn_adr_t dst_event;
bkt_id_t bucket_id;

} lookup_entry_t;

Listing 7.5: Format of lookup table entries in the implemented event communication architecture on
the BSS-2 FPGA.

The individual entries contain a valid flag, the 14 bit target synpase address (dst_event) and

the index of the bucket unit which is to accumulate events from the respective source. The width

of this bucket_id is determined by the number of bucket units implemented in the design. For a

number of 8 buckets, this field is 3 bit wide. This leads to an overall memory requirement of 288 kbit

(1kbit = 1024bit).

Care is taken that the implementation code will result in the usage of block-RAM resources in the

FPGA, as this is the most efficient way to implement large amounts of memory. In the Xilinx®7

series FPGAs, which is used in the BrainScaleS neuromorphic hardware platform, each 36 kbit block

RAM offers 2 kE at a width of 18 bit (Xilinx Inc. 2019). The naive expectation would therefore

be that the physical implementation of the lookup table will use 8 of these 36 kbit block RAMs.

However, it turns out that rather than combining the address space of several wider block RAMs,

the synthesis tool prefers to combine several narrow block RAMs, each supporting the full address

space. This considerably reduces the logic resources required to multiplex the address-space across

the block RAMs. Therefore, the physical synthesis tool actually uses 9 block RAMs at an individual

width of 2 bit to reach the required entry width of 18 bit (cf. Section 8.2.1). Each block RAM

resource on the FPGA offers 16 kE of this size, directly matching the required address space.

The lookup table memory is included into the configuration registerfile. Thereby, it can be configured

through the common configuration interface from each node in the network.

As the event communication architecture handles multiple events in parallel, the destination map-

ping unit also has to be instantiated this number of times. It should be noted that due to limitations

of the registerfile generator tool (cf. Section 4.2.4) each of these instantiations has to be individually

configured at its own address-space in the registerfile. Details on the design considerations regard-

ing these parametrisations will be given in Section 7.8. The experiment software on its turn will

have to configure the mapping entries multiple times onto the hardware. This is represented in the

hierarchical structure of the coordinate classes, as described in Section 8.4.4. As this significantly

119

7 The Implemented Event Communication

impacts the required time to configure the system, this should be a subject to future optimisation (cf.

Section 9.2 on page 195). However, the configuration is not considered critical with regard to its

execution time, as it does not impact the realtime experiment performance.

7.3.3 Accumulation Buckets

After the spike events have now been mapped from source neuron ids to target synapse addresses,

they are demultiplexed to the respective accumulation bucket, as was indicated by the respective

lookup entry.

The main purpose of these buckets, as defined in Section 6.1, is to accumulate spike events and form

larger packets in order to reduce the header overhead before transmitting them across the network.

In the current implementation at hand, the Accumulation Buckets are statically configured for a

specific 16 bit network destination node-address, or multicast group-id (cf. Section 4.1.3 on page 51).

A boolean configuration flag defines, whether the destination address is to be interpreted as node-

id or muticast group-id. An axonal transmission delay of up to 214 clock cycles (≈ 130µs, cf.

Section 7.1.3) is also statically configured per bucket and added to the events’ timestamps.

Events are accumulated until the aggregated packet is full, or one of two statically configured time-

outs applies. The first timeout counter measures the time between two subsequent events entering

the bucket. In contrast, the second timeout counter measures the total time, the first event of a packet

has been stored in the bucket. Under the assumption that the events’ timestamps arrive in ascending

order, or at least have a small jitter, this timeout condition is a good approximation to the Condition

C.2 on page 77. Both of these timeout values are configurable to an extent of up to 1024 clock

cycles, corresponding to ≈ 8µs hardware time and ≈ 8ms bio time.

By configuring the network destination addresses statically in the buckets instead of individually for

each source neuron address in the lookup table of Section 7.3.2, the number of possible destinations

is effectively restricted to exactly the number of available buckets. Thereby, destination conflicts as

analysed in Chapter 6 are principally excluded from occurring by design. This ensures an optimal

aggregation until either the packet is full, or the timeout exceeds. Of course this is only possible as

long as the restricted number of possible destinations suffices the modelled spiking neural network

or the FPGA resources suffice for increasing the number of implemented buckets.

As the design has to process at least two event streams in parallel, as explained in Section 7.1.2, it

will generally happen that more than one mapping unit (Section 7.3.2) request the same bucket. The

bucket unit therefore either has to arbitrate the right of access between the requesting mapping units,

or be able to accept all the incoming events in parallel. As an arbitrated access to the accumulation

buckets would inevitably decrease the throughput of the overall design, the second solution was

selected for the implementation at hand.

Event data is encoded into the network packet using the UT Encoder which was introduced by

(Karasenko 2020). As input, it takes a blocking UT interface (cf. Listing B.2a). The data-index

pairs at the input are then flexibly encoded and serialised into output datagrams of a fixed width.

For this task the UT Encoder uses parametrised information about the widths of the individual data

types, transported across the input interface and distinguished by their respective index value. In

(Karasenko 2020), this information defines the UT alphabet. If the widest element on the alphabet

is wider than the output width, the input data is serialised onto multiple output datagrams. However,

120

7.3 Event Transmission

if the widest element on the alphabet is shorter than the output width, the data is not de-serialised, but

rather padded to the full output width. This fact makes those parametrisations inefficient, as it leads

to possibly high portions of wasted bandwidth on the physical link. On the other hand, parametrising

the UT Encoder output narrower than the width of the physical data output for a serialising operation

is also inefficient. Thereby, multiple shorter datagrams are concatenated to the physical data bus,

effectively reducing the throughput of the UT Encoder, as it outputs one datagram per clock cycle.

So all in all, it is desirable to have the Encoder output as narrow as possible in order to not waste

too much encoding space, but also as wide as necessary to fit a whole input index-data pair. If the

physical bus width is very large compared to the optimal Encoder output width, it might even be

possible to stack multiple UT datagrams into a single physical output datagram. Thereby, only the

transmission latency of the datagrams is partially increased, but the throughput is maximised and the

available space in the network packet is optimally used.

In the case of this design, the UT alphabet has to encode the number of valid events, processed in

parallel at the current clock cycle, as well as their position, i.e. to which event stream they belong.

This is achieved by encoding the positions of the currently valid events directly into the binary index

representation. As the case of no valid event does not produce an empty datagram, but rather no

datagram at all, the positions can be encoded as follows:

idx= poscode−1 . (7.4)

So for example with two parallel event streams, this encoding scheme results in a UT alphabet as

shown in Listing 7.6.

localparam logic [2:0][31:0] event_typelist = {
32'd29, // 1 valid event at position 'b01
32'd29, // 1 valid event at position 'b10
32'd58 // 2 valid events at positions 'b11

};

Listing 7.6: The event encoding UT alphabet, as used in the accumulation buckets for spike event
communication across the network. The event_typelist parametrises the respec-
tive bit-length of UT input-datagrams typed with the respective index.

As the events are 29 bit wide (cf. Listing 7.2), the datagrams are either 29 bit long for one valid

event, or 58 bit wide in case of two valid events. The index decrement in Equation (7.4) saves the

definition of an alphabet entry with zero width that would never be used by the actual data stream.

In this example, the largest datagram is 58 bit wide and therefore safely fits into a 64bit = 1QW

output width together with an additional 2 bit encoding of the index. As the physical width of the

EXTOLL Network-Port on the BrainScaleS FPGA is 128bit = 2QW (cf. Thommes 2018), this fits

two of these UT output datagrams in a single network datagram.

After the UT encoding stage, the encoded data stream is kept in a FIFO buffer to perform the actual

packet aggregation task. As the MTU of the EXTOLL network is 62 QW of payload data (cf. Fig-

ure B.1), a full packet will contain between 62 and 124 encoded events. When a packet is ready for

sending, the bucket requests access towards the NHTL network interface amongst its peers. When

granted by round-robin priority, the buffered data is shifted out towards the NHTL. Header infor-

121

7 The Implemented Event Communication

mation like the final packet size and the network destination address is forwarded across a second

interface towards the network together with the last word of packet-data. The access grant is kept

by the bucket unit until the last word of the packet has been transferred to the control of the NHTL

unit. Then it is released back to the arbiter for another bucket to send its contents in turn.

The buffering scheme in the bucket implementation takes care that the bucket will not be blocked for

new input during the request- and flush phase of an outgoing packet. This is done, by implementing

two data counters. One counter, which is called the occupancy counter, keeps track of the total

amount of encoded datagrams, buffered in the bucket. Whenever this counter is higher than the

threshold for a full packet, a request is issued for this packet towards the network. During the

request and shift-out phases of that packet, the buffer will continue accepting new datagrams until

it is full. The second counter, which is called the packet counter, keeps track of the amount of

datagrams released into the current outgoing packet. This counter ensures that the packet does not

exceed the network MTU and determines the packet’s actual size, which will defer from the MTU in

case of a timeout condition. During shift-out the occupancy counter is decremented while the packet

counter is incremented. If data is accepted simultaneously at the buffer input, the occupancy counter

will stand still. If it is still higher than the packet threshold after the first packet is completely sent,

another packet will be requested.

7.4 The NHTL Transaction Layer

Figure 7.5: Schematic block diagram of the NHTL communication unit. The colour coding is the
same as for Figure 7.1

122

7.4 The NHTL Transaction Layer

The NHTL unit, which was originally developed in (Thommes 2018) is depicted as a schematic

block-diagram in Figure 7.5. Its main purpose is to multiplex the different types of data streams from

the BrainScaleS system FPGA onto the EXTOLL Network-Port and demultiplex data coming from

the Network-Port towards the respective receiving units. For this purpose it basically implements

a simplified version the RMA protocol, as used by the EXTOLL RMA unit (cf. Section 4.2.1 and

Appendix B.2).

As already summarised in Section 3.2.4, it receives playback data from the experiment control soft-

ware stack on a host computer, forwarding it to the Playback Executor unit. Received trace data

from the Playback Executor is sent to a preconfigured memory region back on the host computer.

���� ����

�
��
�
�
�
��
�
	

�
�
�

	
�
��
�
	

��������

���	
���
����

������������

	���

������������

���
����

�
�
�
�
	�
��
��
�
�
�
��
�
	

�
��
��
�
�

�
�
��
�

�
	�
�

�
�
�
��

�
�
�
�
�

�������

����

��
��

����

�������

����

Figure 7.6: Schematic block diagram of the ringbuffer communication scheme between the FPGA’s
NHTL unit and its software counterpart.

This is done using a ringbuffer communication scheme that basically resembles a simplified VELO

protocol for single-ended communication (cf. Section 4.2.2), and does not require to exactly match

the existing protocol for compatibility with the existing VELO software library. A block diagram

of this communication scheme is depicted in Figure 7.6. The FPGA side keeps track of the current

write-pointer and the available space in a reserved memory region on the host. The trace data

is then directly sent to this memory area using RMA. Dedicated notification messages are used

to synchronise the FPGA based write pointer with the host based read pointer. For this, the FPGA

informs the host software about the amount of written data and the software acknowledges the FPGA

about the amount of data that has successfully been received (for details on the software library, cf.

Section 8.4.1). The sub units and data paths, responsible for host-communication in the NHTL unit

are coloured purple in Figure 7.5. The main difference to the original BSS-1 implementation in

(Thommes 2018) is that with BSS-2 the Application Layer interface from and to the Executor unit

(equivalent to the former Application Layer in the BSS-1 FPGA design, compare Thommes 2018)

123

7 The Implemented Event Communication

does not provide different data types anymore. Instead it now transports a single UT-encoded data

stream that is decoded by the software and vice versa.

In addition to the host-communication, the NHTL now also manages the sending and receiving of

spike communication packets that have been pre-assembled by the accumulation buckets (cf. Sec-

tion 7.3) to and from the network. This is done by sending RMA-put messages directly to the respec-

tive destination FPGA, where their payload is forwarded to the receiving side of the SPIKE_COMM

partition (cf. Section 7.5). The respective data paths are coloured green for the sending direction

and blue for the receiving direction in Figure 7.5, the same as in Figure 7.1. While the sending

direction needs to forward some additional information in a separate data path, regarding the desired

network destination and the final size of the packet, the receiving side does not require this kind of

extra information. Spike communication messages are thereby transmitted with higher priority as

compared to host traffic in order to honour the realtime requirements of spike event communication

(cf. Section 5.3). On the receiving side, spike event packets are distinguished from playback data

packets by their target address field in the packet header, just like the different application data types

in the BSS-1 design (cf. Thommes 2018).

The NHTL unit also provides native access to the configuration and status registerfile in a way, com-

patible to that on the EXTOLL hardware (cf. Section 4.2.4). The sub units and data paths responsible

for the registerfile access are coloured yellow in Figure 7.5. Master access paths are thereby depicted

using straight lines, while slave access responses are visualised using dashed lines and open arrow

heads. Remote Registerfile Access (RRA) commands are transported across the network using RMA

messages with a special bit-flag set, marking them as targeted towards the registerfile (cf. Figure B.3

and Figure B.4). A remote registerfile can be accessed using write- or read commands, depending

on the individual access rights of the respectively addressed register. In addition to the BSS-1 imple-

mentation, a second access path was added from the Omnibus. Originating from this Omnibus unit,

it is also possible, to access the local registerfile, as well as remote registerfiles of any other node

in the EXTOLL network. For this purpose, the NHTL offers a dedicated interface for the injection

of RRA commands which are then sent to the respective remote node. The local registerfile itself

offers two arbitrated master ports, one for remote access from the network and one for local access

from the Omnibus. Through these paths, any Omnibus master (as for example the Playback Execu-

tor, or the PPUs on the HICANN-X chip) can access any configuration and status register in the

network (cf. Section 3.2.5 and Section 7.6). For more details on the implementation of this Omnibus

to registerfile bridge, cf. Section 7.6.

7.5 Event Reception

7.5.1 The Reverse Decoder

When spike event packets are received and identified by the NHTL unit on the target FPGA, their

payload content is forwarded to the spike communication receiver. Here the incoming stream of

network datagrams is disassembled into the parallelly packed UT datagrams. These are then fed

through a UT Decoder instance, parametrised with the same UT alphabet as the previous encoding

stage on the source FPGA (cf. Section 7.3.3). The original parallel event streams from the sending

side can now be reconstructed from the decoded UT indices. So if the streams have been in timed

124

7.5 Event Reception

order before (cf. Section 7.3.1), they will remain in that order after reception at the destination

FPGA.

When receiving event packets from more than one source FPGA, these packets will always arrive

sequentially at the EXTOLL Network-Port. Therefore, it is in principle possible to decode all the in-

coming event streams from different packets, using a single UT decoder. However, this is practically

only possible, if the serial datagrams from individual UT encoders, belonging to the same index-data

pair at the encoding input, do not overlap the border between two subsequent packets. Otherwise if

might happen that these datagrams were interrupted by another packet originating from a different

source and thereby breaking the encoded data stream. As the bucket implementation at hand does

not explicitly take care of this, it has to be implicitly ensured that this situation will never arise. This

is achieved by carefully parametrising the width of the encoded datagrams large enough, such that a

single index-data pair will never be serialised into multiple datagrams. This careful parametrisation

of the UT stream width is as well desirable for performance reasons, as explained in detail in 7.3.3.

7.5.2 Merging of Event Streams

� � �� �� � � �� �� � � �� ��

� � �� �� � � �� �� � � �� ��	
��
��������

	
���������������

Figure 7.7: Schematic representation of three incoming event packets containing overlapping parts
of event streams in sorted order. These have to be merged to form a single overall sorted
event stream. Arrows depict the direction of time.

When receiving event streams from different sources, these will arrive in subsequent network pack-

ets at the target FPGA and decoded as described above. However, despite the global synchronisation

of systimes across the network, it is not possible to have the individual event streams arrive in the

correct order at a common destination. This is, among other reasons, principally impeded by the

heterogeneous timespans across which the events are accumulated into network packets at their

source. Another important reason for this are the different transmission delays between the indi-

vidual source nodes and their common target node. Also, the accumulation processes at different

sources will probably overlap with respect to each other. Consequently, although the incoming event

streams might individually be sorted, they will almost certainly overlap at their destination.

An exemplary situation for three overlapping input event streams is shown in Figure 7.7. To com-

pensate for this overlap, the incoming event streams have to be merged into the correct order, form-

ing a single sorted stream of spike events that can then be emitted towards the L2 of the attached

125

7 The Implemented Event Communication

HICANN-X chip. This merging will however take some time, as it has to take into account multiple

subsequent packets containing event stream snippets. How long this can take, depends on how long

the unit waits for additional packets that might contain events which are to be sorted in front of all

the events received. The sending side should add a delay margin for this merging operation to the

outgoing event timestamps in order to allow for proper merging without inducing large drop counts.

As events are processed in parallel data paths in the communication architecture at hand, each of

these data streams will need such a merging unit. The position of these merging units is depicted

on the right side of Figure 7.1 with shaded background. As the merging problem is a rather complex

task, it has not been implemented yet. Therefore, the design at hand only supports the reception of

events from a single source node. For a brief overview on the design space of this problem please

refer to the Outlook Section 9.2.

7.5.3 The Timestamp Delay Buffer

The received events now have to be delayed until the globally synchronised systime matches their

timestamp. Only then they may be forwarded through the Event Switch unit towards the HICANN-X.

For this purpose, the events are inserted into a FIFO buffer, from where they are only extracted once

their timestamps are greater or equal than the continuously evolving value of the systime counter.

However, before the events are inserted into the FIFO buffer, they are first checked whether or not

they have already timed out during transmission. An event is only inserted into the buffer, if the

current systime is still greater or equal than its timestamp. This pre-check optimises the usage of the

precious buffer space, as these events would probably be even further delayed, given that the buffer

is probably not empty when those events arrive.

These two comparisons between the evolving systime value and the timestamps thereby have to be

done carefully with respect to overflow conditions of both operands. This will be elaborated in detail

in Section 7.5.3.2.

The behaviour of the Delay Buffer unit can be configured for whether to buffer received events or

to immediately forward them and if so, whether to dump the timestamp to the current systime or

not. These options can be used to configure a mode, where the transmission delay shall be as low as

possible and any transmission jitter is tolerated by the model. This is especially useful for latency

measurements for the transmission, which can be used to get a first estimate of the required axonal

delay (cf. Equation (5.4)). However, as explained in Section 5.3.2, this mode should not be used for

STDP related experiments. The HICANN-X chip has a small amount of buffering capability and will

add a configurable offset to incoming timestamps and delay them until recent with respect to local

systime, in order to settle the jitter across the serial links between FPGA and chip (cf. Section 3.1.2

on page 37). However, as this internal buffer is quite small, receiving events with timestamps far in

the future will lead to significant spike loss. Therefore, if forwarded immediately, the timestamps

should be dumped to the current systime to prevent this spike event loss on the chip. Besides these

configuration options, the unit reports the number of dropped events due to a full buffer memory and

expired timestamps respectively.

126

7.5 Event Reception

7.5.3.1 Estimation of Network Latency and Buffer Size

According to Equation (5.10), the required buffer space to avoid event loss due to a full delay buffer

is larger or equal the minimum total transmission latency (min(ltot)) including accumulation, net-

work packet transmission and sorting, subtracted from the configured axonal delay. As stated in

Section 7.3.3, the implementation at hand allows the axonal delay to be configured in a range up to

214 systime clock cycles, corresponding to around 130 µs. The accumulation time in turn has a lower

limit set by the inter-event timeout as configured by the user, according to Section 7.3.3.

For the link latency, (Karasenko 2020) states a range between 268 ns to 512 ns in the direction from

FPGA to the chip and between 268 ns to 356 ns from the chip to the FPGA.

536ns ≤ llink ≤ 868ns (7.5)

Finally, the network transmission latency can be estimated by the following considerations: EXTOLL

claims a hop latency of around 70 ns on the Tourmalet Network card (cf. Chapter 4 on page 48) which

is valid for the original Tourmalet clock frequency of 630 MHz. However the Tourmalet cards used

in this project are clocked at a slightly lower frequency of 600 MHz. Additionally, to match the im-

plemented FPGA clock frequency of 100 MHz and only four out of twelve lanes of the link used to

connect to the FPGA, the Tourmalet links are configured to run at half clock frequency (300 MHz),

whereas only the frequency constraint has an effect on the latency. For details on these clocking

considerations cf. Section 8.2.2. Together, these numbers lead to an expected hop latency of around

147 ns on the Tourmalet and 441 ns on the sending and receiving FPGA respectively.

In total, this leads to an expected network transmission latency of

ltrans ≈ 147ns+2 ·441ns = 1.029µs (7.6)

which holds true for a minimal network with one Tourmalet network card. In larger network this

on average scales with the network diameter and in particular with the distance between two com-

municating FPGAs. One should note that for hops between two EXTOLL Tourmalet ASICs, a full

12 lane link can be used at the full speed of 600 MHz leading to additional hop latencies of 73.5 ns.

This latency estimation will later be verified by experiment in a minimal network in Section 8.5.

Altogether, it can be seen that the configurable axonal delay is much higher than the expected total

event communication latency d >> ltot. Therefore the delay buffer size can be set to

Sdbuf ≥ max(d −min(ltot))≈ max(d) (7.7)

which is 214 entries, implemented in block RAM FPGA resources. Thereby the implementation can

handle any configured delay without having to drop events at the receiving side due to a full buffer.

7.5.3.2 Comparison of Values with Possible Overflow

Similar to the overflow issue in Section 7.1.3, when comparing the received events’ timestamps to

the current globally synchronised systime, one, both or none of these operands can overflow their

binary range. Particularly, the timestamp can overflow while adding the axonal delay value at the

source and the systime can overflow due to the time passed while transmitting the event. This leads

127

7 The Implemented Event Communication

0
1

2

3

4

5

6

7
8

9

A

B

C

D

E

F

0’F

st = 00’A

st = 00’D
ts = 00’F
ts > st

1’
7

st = 01’3

st = 01’9
ts = 01’7
ts < st

(a) Neither reception systime nor timestamp does
overflow.

0
1

2

3

4

5

6

7
8

9

A

B

C

D

E

F

1’4

st = 00’E
st = 01’2
ts = 01’4
ts > st

0’4

st = 01’D

st = 10’6
ts = 10’4
ts < st

(b) Reception systime as well as timestamp both
overflow

0
1

2

3

4

5

6

7
8

9

A

B

C

D

E

F

1’F
st = 01’C

st = 10’2
ts = 01’F
ts < st

0’
3

st = 01’B

st = 01’E
ts = 10’3
ts > st

(c) Either systime or timestamp does overflow.

0
1

2

3

4

5

6

7
8

9

A

B

C

D

E

F

0’A

st = 00’6

st = 01’B
ts = 10’A E
ts > st E

(d) Error condition where the systime overflows by
more than half the timestamp binary range.

Figure 7.8: Visualisations of different overflow comparison situations between systime (st) and
timestamp (ts). An event with timestamp is transferred from one systime to another
(solid edges). After reception, the timestamp is compared to the current systime, whether
it lies in the future (green, dashed edges) or in the past (red, dashed edges). The notation
of values is combined binary (before the ’) and hexadecimal (after the ’). Timestamps
are transmitted with limited precision, which is indicated by one MSB less on the trans-
mission edges than at the side-labels.

to the fact that a pure comparison by value is not always sufficient to yield the correct result.

Figure 7.8 shows a visualisation of some example cases for these situations. If none (Figure 7.8a)

or both (Figure 7.8b) of the operands have overflown half their binary range, the normal comparison

will yield the correct result. In these cases, the Most Significant Bits (MSBs) of both operands are

equal. If however exactly one of both operands has overflown half of its range (Figure 7.8c), the

MSBs are different. In this case, the result of comparing the remaining bits apart from the MSB (the

LSBs) has to be inverted to obtain a correct overall result.

This algorithm will however only work if neither of the operands has overflown by more than the

full binary range. Otherwise, the inversion is basing on a false assumption on the actual value of the

received timestamp, as shown in Figure 7.8d. In this example the too long transmission latency (or

the too short timestamp) leads to a misinterpretation of the timestamp being in the (far) future, while

it actually lies in the (far) past.

128

7.6 Configuration and Status Interfaces

7.6 Configuration and Status Interfaces

As already explained in Section 3.2.5, the configuration space is split into two different systems. On

the one hand there is the EXTOLL registerfile, also used by the network hardware and corresponding

FPGA IP units. On the other hand there is the Omnibus system communication bus which is used

by the BrainScaleS (BSS) system. The configuration and status of the spike event communication

units, described above, is placed in the EXTOLL registerfile, in order to make it available for access

from everywhere in the network through a natively supported special packet format (distinguished

by a single bit flag in the packet-header, cf. Appendix B.2). Besides that, the EXTOLL registerfile

hardware is conveniently auto-generated from a generic description together with a clear address-

space documentation.

However, the BrainScaleS-2 (BSS-2) experiment flow, supported by the system software, is based

on playback programs, executed by the Playback Executor unit on the FPGA (cf. Section 3.2.2 and

Section 3.3). Therefore, a bridging unit has to be implemented from the Omnibus to the EXTOLL

registerfile in order to make this configuration space available to the playback-programmed experi-

ment flow. Figure 7.1 shows the main logic building blocks of this configuration and status commu-

nication infrastructure. At first, the Omnibus data path must be widened (cf. Section 7.6.2), as it is

implemented as a 32 bit-wide signal bus while the EXTOLL registers are up to 64 bit wide. After

this, the actual bridge (cf. Section 7.6.4) provides access to the local registerfile address space, as

well as a global access to all the registerfiles in the network, including those of the Tourmalet cards

(cf. Chapter 4).

7.6.1 The Omnibus Interface

As a basis for the description of the Omnibus data-width converter and ODFI bridge below, the

relevant aspects of the Omnibus interface will be introduced here. Generally, the Omnibus com-

munication protocol, used in the BrainScaleS hardware is a simplified version of the Open Core

Protocol (OCP) specified in (OCP 2009).

Figure 7.9 shows a schematic definition of the Omnibus interface as it is used in the BSS-2 system.

It mainly consists of two signal groups, one group that is driven by master units to the interface

and another that is driven by slave units. An access is always initiated by a master unit requesting

a command transaction (MCmd) to a specific address (MAddr) and optionally containing payload

data (MData). The payload data can be signalled to be only partially valid on a byte level, using

the MByteEn signal. The connected slave unit will in any case acknowledge the acceptance of the

command request (SCmdAccept). Then, it either forwards the command, acting as another master

unit down the hierarchy of the bus tree, or responds to the requested command itself by sending an

SResp code optionally containing payload response data (SData). The master unit will in turn

acknowledge the reception of the response by asserting MRespAccept.

The relevant command and response codes, used in the BSS-2 implementation at hand are listed

in Listing 7.7. Command codes especially include a write (WR) and read (RD) command besides

an IDLE code, used to signal no command on the bus. The slave unit will always acknowledge

successful execution of a command by sending a DVA response, even if it is a write command. If an

error occurred, like e.g. receiving an invalid command address, the slave will respond with ERR. An

129

7 The Implemented Event Communication

M
R
e
s
e
t

M
C
m
d
[
3
:
1
]

M
A
d
d
r
[
A
W
:
1
]

M
B
E
n
[
D
W
/
8
:
1
]

S
C
m
d
A
c
c

M
d
a
t
a
[
D
W
:
1
]

S
R
e
s
p
[
2
:
1
]

S
d
a
t
a
[
D
W
:
1
]

M
R
e
s
p
A
c
c

Omnibus Master

Omnibus Slave

Figure 7.9: Schmatic definition of the Omnibus Interface.

typedef enum logic[2:0] {
IDLE = 3'b000,
WR = 3'b001,
RD = 3'b010
// ...

} Ocp_cmd;

typedef enum logic[1:0] {
NULL = 2'b00,
DVA = 2'b01,
ERR = 2'b11
// ...

} Ocp_resp;

Listing 7.7: Extract from the Omnibus OCP command and response type definitions (OCP 2009).

idle response bus is signalled by the NULL code.

Generally, a master unit is obliged to keep an active command asserted until the slave has acknowl-

edged its reception with SCmdAccept. Analogously, a slave unit is obliged to keep an active

response asserted until the master has acknowledged its reception with MRespAccept.

7.6.2 The Omnibus Data-Width Converter

The omnibus communication system, used in BSS-2 implements a variety of hardware units, acting

as Omnibus masters and / or slaves. Existing units include examples like a bus_switch or a

bus_delay, used for building and distributing an address space across a physical design area,

as well as converters from and to FIFO- and RAM interfaces and a bus_reg_target used as

registerfile target to the Omnibus address space.

130

7.6 Configuration and Status Interfaces

In the scope of this thesis, a bus_data_width_converter was implemented, which can be

parametrised for different input- and output data widths which however have to be multiples of

each other. It implements narrowing as well as widening of data transactions in either read or write

direction.

IN
P

U
T

(4
 B

yt
es

)
in

te
rf

ac
e-

sl
av

e

O
U

TP
U

T
(8

 B
yt

es
)

in
te

rf
ac

e-
m

as
te

r

INPUT (8 Bytes)
interface-slave

OUTPUT (4 Bytes)
interface-master

12

7 0

15 8

23 16

31 24

39 32

47 40

55 48

63 56

47 40

55 48

63 56

12

1

2

39 32

15 8

23 16

31 24

7 0

(a) Narrowing operation with little-endian byte ordering.

IN
P

U
T

(4
 B

yt
es

)
in

te
rf

ac
e-

sl
av

e

O
U

TP
U

T
(8

 B
yt

es
)

in
te

rf
ac

e-
m

as
te

r

INPUT (4 Bytes)
interface-slave

OUTPUT (8 Bytes)
interface-master

2

7 0

15 8

23 16

31 24

39 32

47 40

55 48

63 56

15 8

23 16

31 24

12

1

2

7 0

47 40

55 48

63 56

39 32

(b) Widening operation with little-endian byte ordering.

2

47 40

55 48

63 56

15 8

23 16

31 24

12

2

1
39 32 7 0 IN

P
U

T
(4

 B
yt

es
)

in
te

rf
ac

e-
sl

av
e

O
U

TP
U

T
(8

 B
yt

es
)

in
te

rf
ac

e-
m

as
te

r

INPUT (4 Bytes)
interface-slave

OUTPUT (8 Bytes)
interface-master

7 0

15 8

23 16

31 24

39 32

47 40

55 48

63 56

(c) Widening operation with big-endian byte ordering.

Figure 7.10: Operation principle of the Omnibus data width conversion unit.

Figure 7.10 shows the operation principle of the data width converter. In case of narrowing operation

(cf. Figure 7.10a), the input slave splits an incoming transaction into multiple parts according to the

input to output ratio. The incoming transaction is blocked until the output master has successfully

transferred all sub-transactions sequentially across the more narrow output interface. Only then

does the slave acknowledge the acceptance of the input transaction by asserting SCmdAccept.

131

7 The Implemented Event Communication

Alternatively, the slave could also immediately accept an incoming transaction that would then have

to be buffered in an additional FIFO memory until it is fully forwarded. However, this would not

improve the overall throughput, but merely free the previous pipeline stage. If this previous stage

were a splitter-unit addressing distinct parts of the address space, the availability of the adjacent

address space part would be improved. As the narrowing operation is not needed in the current

design, this optimisation is left open for future improvement of the unit.

In the opposite case of widening operation (cf. Figure 7.10b) the input slave has to combine sub-

sequent partial transactions to assemble the full outgoing transaction. The least significant part of

an input transaction’s address thereby identifies, to which position it belongs in the larger output

transaction. The converter unit keeps track of the already received subtransaction positions and only

issues the valid output transaction if all subtransactions have been received at the input. This in-

formation is then stored in a FIFO buffer for the later generation of responses. Furthermore, it is

checked that the subtransactions arrive in ascending order with respect to their address. If these con-

ditions are not satisfied, i.e. a subtransaction arrives with lower address than the previously accepted

one, or a transaction for a different address is received before all subtransactions for the current

address have been received, the output transaction is cancelled and an error-condition is stored in

the FIFO to later generate appropriate responses. An error condition is also generated in case a

parametrised timeout value exceeds after accepting a subtransaction, or if a received subtransaction

does not match the previous one in its command type.

It should be noted that for the response path, the operation mode with respect to narrowing or widen-

ing is inverted as compared to the command path. This means that for narrowing operation in for-

ward direction, the sub-responses have to be accumulated, while for widening operation in forward

direction, the single response has to be divided back to individual responses to the previous sub-

transactions. Therefore, a correct set of read sub-commands to a widening converter will generate

the appropriate set of responses and an error condition at the input slave of this converter unit will

generate an ERR response to each received sub transaction, without forwarding the erroneous request

through the output master interface.

Additionally to the input and output widths, the data width converter is parametrised to whether the

conversion is to happen in little- or big-endian byte order. This is important, as the order to which

the subtransactions are serialised or de-serialised depends on this parameter. To illustrate this, the

widening operation is depicted both for little-endian (Figure 7.10b) and big-endian (Figure 7.10c)

byte ordering.

For the BSS-2 FPGA implementation, the Omnibus data-width converter is needed in the parametri-

sation with 4 B input and 8 B output in little-endian byte order. Its purpose is to widen the Omnibus

interface from the commonly 32 bit wide data bus to the 64 bit data bus of the EXTOLL ODFI

registerfile. Therefore, in order to access the registerfile via the BSS-2 omnibus, two Omnibus trans-

actions have to be issued towards subsequent addresses at 4 B granularity. These are then converted

into a single 8 B transaction with also one bit less in address granularity.

7.6.3 The Registerfile Interface

Before going into the details of the bridging unit between the Omnibus configuration bus and the

EXTOLL registerfile, the signal interface of the latter first has to be introduced in detail. Figure 7.11

132

7.6 Configuration and Status Interfaces

shows a schematic definition of this interface. The master agent can request either a read- or write

access by providing an address and asserting either the read_en or write_en signal respec-

tively. In case of a write transaction, the master agent will also provide payload data using the

write_data bus. The slave agent will then some time later acknowledge the completion of that

transaction request by asserting the access_complete signal. If the transaction has failed this

is most likely due to an invalid address and the slave will notify this by asserting the invalid_-

address signal. If the transaction has however been successful, the slave will respond the obtained

data in case of a read transaction.

Although all bus-widths are freely parametrisable in the given interface definition and in principle

registers of any width can be implemented, the top interface’s data width is always defined by the

widest register in the registerfile. In the end, the implementation of the EXTOLL network protocol

limits the upper limit of registers to 64 bit. As many registers in the FPGA as well as on the Tourmalet

network ASIC use the full width, the top-level interface will certainly also be that wide.

A
d
d
r
[
A
W
:
1
]

R
E
n
a
b
l
e

W
D
a
t
a
[
W
W
:
0
]

A
c
c
e
s
s
C
o
m
p
l

W
E
n
a
b
l
e

A
c
c
e
s
s
I
n
v
a
l

R
d
a
t
a
[
R
W
:
1
]

Regfile Master

Regfile Slave

Figure 7.11: Schematic definition of the EXTOLL registerfile interface, also referred to as Software
Interface.

7.6.4 The Omnibus to Registerfile Bridge

Now that both the formal definition of the Omnibus interface (cf. Section 7.6.1) as well as the

Registerfile interface (Section 7.6.3) has been introduced, the implementation of the bridging unit

between both of them can be described.

133

7 The Implemented Event Communication

�

�

�

�

�

�

�

�

�

	

	

�

�

�

�

�

��� ���

����

��

Figure 7.12: The Finite-State Machine (FSM) controlling access to the EXTOLL registerfile

7.6.4.1 Generic Registerfile Access

In general, access to the registerfile is arbitrated between the different generic registerfile access units

and respectively controlled by an FSM which is shown in Figure 7.12. The unit, which is presented

with an interface definition in Listing 7.8c, receives input commands which are formatted according

to Listing 7.8a and responds according to the format definition in Listing 7.8b. When the input

command (cmd_in) becomes valid (cmd_valid), the FSM changes from IDLE to the REQ state

and requests a registerfile access permission from the arbiter (rra_req). When the arbiter grants

the access permission (rra_gnt), the FSM advances to the RW state. Now the registerfile access

controller unit drives the registerfile interface (rf_access, compare Figure 7.11) according to the

transaction command. When this transaction is complete, the FSM will either advance to the state

REL where the arbiter is released by asserting rra_rel until it de-asserts the rra_gnt signal,

or return directly to IDLE while keeping the granted access right. The latter mode is especially

useful for atomic read-modify-write accesses and is signalled by the do_release field in the

input command.

7.6.4.2 Omnibus Registerfile Access

The actual bridging unit from the Omnibus to the Registerfile implements another FSM controlling

the generic Registerfile access unit based on incoming Omnibus transactions, which is depicted in

Figure 7.13. This unit operates in two different modes for accessing the local Registerfile or a remote

Registerfile on another node in the network. Which mode is to be executed for an incoming Omnibus

transaction, is decided by the state of a configuration register, also connected to the Omnibus system.

This register configures the 16 bit target node-id for the Registerfile access to be generated from

incoming Omnibus transactions. If this configuration register is marked invalid by configuration

to a dedicated valid bit or contains the node-id of the local FPGA, the access is executed to the

local Registerfile (the purple states in Figure 7.13). Otherwise, an access command is inserted

into a FIFO queue towards the NHTL to be sent across the network to and to be responded by the

134

7.6 Configuration and Status Interfaces

typedef struct packed {
logic [AW:1] address;
logic [WW:1] data;
logic is_read;
logic do_release;

} rf_cmd_t;

(a) Command format description.

typedef struct packed {
logic [RW:1] data;
logic err_invalid_addr;

} rf_rsp_t;

(b) Response format description.

module generic_rf_access (
input logic clk, res_n,

input rf_cmd_t cmd_in,
input logic cmd_valid,

output rf_rsp_t rsp_out,
output logic complete,

output logic rra_req,
input logic rra_gnt,
output logic rra_rel,

rf_if.master rf_access
);

(c) Module interface definition. rf_if references the
registerfile interface, as defined in Figure 7.11.

Listing 7.8: Systemverilog module interface descriptions for the generic Registerfile access unit.

��������	
��

��
����	��		�

����

�����	

�
�������

�
���

�
���

������

������

�����������

����

�������

�������

Figure 7.13: The Finite-State Machine (FSM) converting Omnibus transactions into Registerfile ac-
cess transactions.

135

7 The Implemented Event Communication

target node (the blue states in Figure 7.13). The potential response (in case of a read transaction)

is returned by the NHTL through another FIFO queue. The remote node will in between access its

own local Registerfile with the received transaction like for the usual Registerfile access transactions

initiated by the host software, as described in (Thommes 2018).

In both cases (local or remote access), the FSM distinguishes between read- and write transactions.

In case of local write access RF_WR, a special atomic read-modify-write access mode is triggered by

only partially valid MByteEn signals. In that case, the Registerfile address is first read while keeping

the acquired access permission grant from the arbiter (state RF_RD_LOCK). The register content is

then modified at the byte positions, indicated by the MByteEn signal in the state MOD_BUF. After

this, the FSM switches to the normal local write state RF_WR feeding the Generic Registerfile Access

unit with the write transaction and using the same grant that was locked at the read transaction

before. Thereby it is ensured that both access transactions are executed atomically, without another

Registerfile master reading or modifying the respective address in between. After the write access

has succeeded, the access permission is released back to the arbiter.

In case of a remote Registerfile access this read-modify-write transaction mode is not possible due

to restrictions in the EXTOLL network protocol. Also only read transactions RRA_RD are notified

back to the source node with either the content response or an error notification in case of an invalid

address request. Therefore the FSM also only has to enter a waiting state (RRA_WAIT_RD) for

remote read accesses. Remote write accesses (RRA_WR) will immediately return after issuing their

command into the FIFO queue towards the NHTL.

The Omnibus Registerfile Access unit will respond each Omnibus transaction either with RSP_-

DVA in case of successfully executed Registerfile access transactions or RSP_ERR in case of invalid

Registerfile address requests. However it has to be noted that for remote write accesses, due to the

lack of a response or error notification message, invalid address requests will not be notified, but

instead (wrongly) acknowledged by an RSP_DVA response.

7.6.5 Registerfile Access Arbitration

Registerfile accesses have to be arbitrated and multiplexed onto the interface of the top Registerfile

unit, as multiple agents, like e.g. the NHTL and the Omnibus bridge act upon the Registerfile. If these

agents were not arbitrated, their access transactions would most likely interfere on the Registerfile

bus structure and corrupt each other. Also the arbitration enables atomic read-modify-write access

patterns without another master agent interfering with the same register address (cf. Section 7.6.4.1

and Section 7.6.4.2). As these master agents might operate in different clock domains relative to

each other and to the top level Registerfile unit, the arbitration signals (request, grant and

release), as well as the Registerfile interfaces themselves have to be synchronised into the target

clock domain of the Registerfile top level and back to the respective requesting clock. A schematic

block diagram of the Registerfile access arbitration multiplexer is shown in Figure 7.14. The unit can

be parametrised for the number of input interfaces competing for exclusive access to the Registerfile.

The arbitration itself is done using a Round Robin scheduler (cf. Section 2.3.3.1).

136

7.7 Clock Domain Signal Synchronisation

���
���
���
���
���
���
���
���
���

��������	
�

��
�

���
���
���
���
���
���
���
���
���

��������	
�

��
�

���������

��	
����
���

��	
������

��	
����
���

��	
������

���������

���������

���������

�������

��	
����
�

��	
����

�������

���
���
���
���
���
���
���
���
���

��������	
�

��
�

���
���
���
���
���
���
���
���
���

��������	
�

��
�

�������
�

�

����
�����
�

	����	���������

�������
���

�

����
�����
���

	����	�����������

�������
���

�

����
�����
���

	����	�����������

��
�
��	
�

���	���

����
�����

���
���
���
���
���
���
���
���
���

������������

����	
���
�

����

�
�
�

�
�
�
�
�

������

�������

Figure 7.14: Block diagram of the Registerfile Access Arbitration Multiplexer. Input slave interfaces
may reside in different clock domains relative to each other and relative to the output
master interface.

7.7 Clock Domain Signal Synchronisation

Generally, the need for signal synchronisation between different clock domains arises from the setup-

and hold time constraints of flip-flop circuits. A usual flip-flop samples and stores the input data at

the rising edge of a clock signal. In order for the stored value to be stable, the input signal may

not change during a certain time interval before the rising clock edge, which is called the setup-

time. Still, the output signal of the flip-flop will only become stable if the input is kept stable for

another certain time interval after the clock edge, which is called the hold-time. Normally, the place

and route implementation compiler ensures that these constraints are met and the logic and wire

delays in between two design registers do not exceed their allowed margin at an FPGA or ASIC

implementation. However, when two connected registers are located in different clock domains and

137

7 The Implemented Event Communication

the respective clock signals’ frequencies are asynchronous to each other, it is generally not possible

to fulfil these timing constraints at all times. Inevitable setup- and hold time violations will cause

the output signal of the second flip-flop to go in a metastable state (cf. Figure 7.15).

CLK-A CLK-B

Ds

CLK-A

CLK-B

Din Dout

Din

Ds

Dout

Metastable
phase

Stable Output

Figure 7.15: Metastability in digital circuits: Simplified schematic how a data line can cross different
(asynchronous) clock domains (CLK-A and CLK-B) to minimize the risk of metasta-
bility with a double buffer D-Flipflop chain. Figure taken from (WikimediaUser 2015)

How long this state will last, cannot be determined with certainty, but the probability to stay in

the metastable state will decrease exponentially with time. Depending on the time constant of this

probability, the metastability can be filtered out by chaining one ore more additional flip-flops. The

probability that the metastable state of the first flip-flop will cause another timing violation at the

second or third flip-flop will then be very near zero. However, this simple synchronisation strategy

is only suitable for logically independent control signals, as it can take one or multiple cycles until

the synchronised signal resembles the value of the original signal. This may skew the individual bits

of a data bus in time and thereby corrupt the transported data. Furthermore, this only works for cases

where the source clock is slower than the target clock, as otherwise, the synchronised signal might

miss fast pulses on the source signal.

The problem of synchronising a data bus across a clock domain crossing can be solved on different

ways. One way is to implement a synchronised handshake mechanism where the target clock domain

only latches data from the source register, when a valid-signal has been synchronised across the

border. The source clock domain on the other hand does only update its data after an acknowledge

signal has been synchronised back from the target domain, indicating that the data has been read.

Another possibility is to use an asynchronous FIFO where data is inserted from the source clock

domain and extracted in the target clock domain. Thereby, the write- and read pointers have to be

synchronised between both domains. A one bit wide FIFO can also be used to synchronise a pulsing

signal from a fast clock to a slow clock. Alternatively, one can count the number of clock cycles,

the signal is asserted in the source domain and synchronise that number to the target domain in

order to assert the output signal for the exact same number of cycles there. The synchronisation

of the counters or read- and write pointers between the clock domains can again be handled by

handshaking.

138

7.8 Design Parametrisation

In the event communication design, described in the previous sections, clock domain synchronisation

modules (handshake- and count synchronisation) are used that have been provided by Benjamin

Kalisch at the Extoll GmbH in the year 2008, as well as a synchroniser module for the Registerfile

interface, based on the previously mentioned modules and provided by Benjamin Geib at the CAG

in 2011.

7.8 Design Parametrisation

The event communication design, described in the previous Sections of this Chapter is mainly

parametrised by two parameters that are the number of accumulation Buckets B and the number

of parallel event data paths, called Splits S.

As indicated in Figure 7.1, the parameter S thereby especially determines the number of lookup

tables for destination mapping (cf. Section 7.3.2) as well as the number of delay buffers at the re-

ceiving side (cf. Section 7.5.3). Those units, as well as the Accumulation Buckets are configured and

provide status information through their respective sublayer of the Registerfile. Therefore the overall

Registerfile address space, as well as the code block for instantiating and connecting the respectively

generated sub-Registerfile units depends on the values of these parameters. As the Registerfile code

is generated from a generic TCL source description (cf. Section 3.2.5.2 and (Computer Architecture

Group 2018)), this description actually generates itself based upon these parameters using TCL loops

and conditional branches. Additionally, the Registerfile instantiation blocks have to be programmat-

ically inserted into the respective functional unit’s Register Transfer Language (RTL) source code.

This is handled by short postprocessing scripts (implemented in AWK language) that are executed

after the Registerfile generator (cf. Section 3.2.5.2) has finished generating the Registerfile RTL de-

scription. The functional units’ RTL code itself is parametrised using the Systemverilog language

construct of interface arrays (for details please refer to (SystemVerilog 2004)).

To ensure that all code generating instances (the Registerfile generator, the postprocessing scripts)

and the functional units’ RTL source code itself work on the same parameter values, these values are

exported to the environment by the central Makefile script before starting the Registerfile generator

scripts and the FPGA implementation toolchain.

Similarly, the numbers of implemented EXTOLL barrier- and interrupt units (cf. Section 4.1.2) are

parametrised in the FPGA design. While it does not make sense to implement more than 16 barrier-

and 4 interrupt units, which are the numbers provided by the EXTOLL Tourmalet network ASIC,

it might be desirable to save precious FPGA resources, as this amount of barrier- and interrupt

units will not be needed by application purpose of synchronising a single global systime across the

FPGAs taking part in a neuromorphic multi-chip experiment. However, as will be shown later (cf.

Section 8.2), implementing the full number of barrier- and interrupt units does not pose a recourse

problem to the design.

139

8 Commissioning

In the last Chapter, the implemented event communication architecture for the BSS-2 neuromorphic

computing system has been described and explained in detail. This Chapter will now elaborate on

the measures that have been taken in order to verify (cf. Section 8.1), commission (cf. Sections 8.2

to 8.4) and characterise (cf. Sections 8.5 to 8.7) the developed communication architecture in the

context of the BSS-2 system.

The last Section finally demonstrates the successful operation of a biologically motivated neuromor-

phic network model (the Synfire Chain model, cf. Kremkow et al. 2010) across two BSS-2 ASICs

with the developed and implemented communication architecture.

8.1 Simulation and Verification

In order to verify the design with respect to data integrity and functional correctness of the config-

uration bus access, two simulation testbenches have been implemented. These testbenches will be

presented in the following subsections.

8.1.1 Event Communication

������

��	
�

��
���

����������������

	�
���

��	���������

���
�		

�
������������

	�
���	

���

�
������������

	�
���	

���

�
������������

	�
���	

���

�
������������

	�
���	

�������������

	�
���

��	���������

���
�		

�
���

������

������

������

������

������

������

���
�����������

����
���

Figure 8.1: Schematic block diagram of the event communication testbench. One Design Under Test
(DUT) instance is used exclusively as sending unit and is parametrised with a number of
Buckets B and parallel data paths (Splits) S. The network, connecting the single sending
unit to multiple receiving units is mocked using a demultiplexer. The receiving units are
further DUT instances and only the receiving part is used.

141

8 Commissioning

The first testbench exclusively simulates and tests the event communication architecture and is visu-

alised as a schematic block diagram in Figure 8.1. For this purpose, the event communication DUT

is instantiated multiple times and the instances are connected through a mock network, modelled by

a demultiplexer unit. A single DUT is used only for the sending side of the design, while the other

DUT instances are used as receiving units. The sending DUT receives parallel event streams accord-

ing to the parametrised number S of data path Splits and distributes them across the parametrised

number B of Accumulation Buckets. These buckets are configured with ascending destination Node

IDs (NDIDs) resembling the index under which the respective receiving unit is connected to the de-

multiplexer mock-network. Finally, the encoded data streams respectively arriving at the receiving

DUTs are decoded back to event streams.

The event data streams, used for the test are randomly generated and stored to files by a Python

script. This data generating script also implements the reference model and further writes the re-

spectively expected output event streams at the receiving units to files. Furthermore, it generates the

configuration data for the destination mapping lookup tables.

The testbench’s main execution procedure will at first configure the sending DUT, using an instance

of the Generic Registerfile Access unit (cf. Section 7.6.4.1) Subsequently, the testbench will exe-

cute the stored input event streams into the sending DUT. The receiving DUTs are simultaneously

monitored and their output event streams are compared to the previously generated expectation data.

This testbench design verifies that the previously described event communication architecture cor-

rectly maps the input events onto the right bucket and output event label. Furthermore it is veri-

fied that the UT encoding- and decoding units are correctly parametrised and that the implemented

encoding scheme is able to correctly transfer the event information. However, all the timestamp

handling aspects of the design are not tested with this testbench. This will be tested later in the real

world system (cf. Section 8.7).

8.1.2 NHTL and Registerfile Access

The second testbench, employed for verification of the design at hand is the one also used in

(Thommes 2018). Figure 8.2 shows this testbench in the form of a schematic block diagram.

It is based on the Universal Verification Methodology (UVM) and has been extended to also include

the event communication ports of the NHTL unit (cf. Section 7.4) and the Registerfile access via

an Omnibus Data-Width-Converter (cf. Section 7.6.2) and Omnibus Registerfile-Access-Bridge (cf.

Section 7.6.4). Additionally, the existing interface Universal Verification Component (UVC) at the

Application-Layer (AL) interface has been modified to be able to passivate the driver components.

This is useful, as the existing DUV has been extended by the AL-Test interface unit which will be

presented in Section 8.1.5.4. This interface testing unit can be configured to generate patterns to

the AL interface or loopback the received transactions. In these cases, when the AL-Test unit is not

configured to bypass mode, the testbench drivers have to be deactivated, as they are not needed. For

this purpose, the respective components are parametrised with a switch bit that is to be set at the

build phase of the simulation.

The Scoreboard (SCB) now additionally checks that all data transactions that are monitored at the

evtcomm2nhtl port is also seen at the hbp2np port in the correct packet format. In the opposite

direction, the SCB checks that the content of packets arriving with event communication data at the

142

8.1 Simulation and Verification

ev
t2
-

n
h
tl

n
h
tl
2
-

ev
t

hbp2np

np2hbp nhtl2al

al2nhtl

Mon

Mon Mon

Mon

SCB

Master-Drv

Slave-DrvMaster-Drv

Slave-Drv

SequencerSequencer

Test

ack_type

ack_val

Sequencer

o
m
n
i2
-

n
h
tl

n
h
tl
2
-

o
m
n
i

Slave-
Drv

Master-
Drv

Mon
Mon

hbp_read

hbp_type

Sequencer

Slave-
Drv

Master-
Drv

Mon
Mon

NHTL
DUV

Test-AL-IF

Figure 8.2: Schematic block diagram of the extended NHTL testbench, modified from (Thommes
2018). Test sequences are driven through the respective interface sequencer and into the
Design under Verification (DUV). Monitors scan the interfaces and report transactions to
the Scoreboard (SCB) where they are buffered and compared to transactions from other
interfaces.

np2nhtl port will also arrive at the nhtl2evtcomm port output.

For the Omnibus Driver and Sequencer components, an existing interface UVC agent was reused

that is also used for verification of the BSS-2 ASIC. This is one of the key advantages of the UVM

methodology, as existing interface UVCs can easily be ported between different testbenches and

module UVCs.

In the scope of this thesis, several additional test sequences were added to the verification environ-

ment as compared to (Thommes 2018). These additional tests will be shortly summarised in the

following paragraphs.

8.1.2.1 tx_evt_data_test

This test inserts random event data transactions at the respective NHTL interface port. The SCB

then checks that these transactions are correctly transformed into network packets in agreement with

the protocol requirements the EXTOLL NP.

8.1.2.2 rx_evt_data_test

This test inserts EXTOLL network packets into the NHTL’s NP interface port. These packets are

generated, to contain random event data that should be forwarded to the receiving event communi-

cation interface port by the NHTL unit. The SCB checks that the data is correctly forwarded and

received at the interface.

143

8 Commissioning

8.1.2.3 put_random_test

The put_random_test already existed in the original test library in. It was however extended to

also include the random generation of event communication packets into the NP interface and event-

data transactions in the opposite direction, alongside the other packet types. This summarises the

functionality of the tx_evt_data_test (Section 8.1.2.1) and the rx_evt_data_test (Section 8.1.2.2)

together with the existing functionality, described in (Thommes 2018). Transactions of any type and

at any of the NHTL’s interfaces are generated randomly and independently of each other. This is a

major stress test to the NHTL as all data paths are used simultaneously.

8.1.2.4 rra_omnibus_test

This test performs Registerfile write- and read transactions via the two access paths available to

the design. It first writes some values to the Registerfile via the Omnibus Bridge (cf. Section 7.6.2

and Section 7.6.4) and subsequently reads them back via the same Omnibus path and via the native

EXTOLL path. The results read back from the register are both compared to the value written via

the Omnibus. Afterwards, the same procedure is repeated, but this time the values are first written

via the EXTOLL access path and read back on both paths.

8.1.2.5 test_alif

This test sequence configures the AL-test unit (cf. Section 8.1.5.4) through its Registerfile to gen-

erate test transactions with a fixed pattern. The test then polls the status register of the test unit for

completion of the test pattern generation. When all test patterns have been generated, the test repeats

the procedure for multiple iterations. As with this internal test data generation mode the interface

driver component is not needed, it is disabled at the simulation build phase of the testbench environ-

ment. The SCB will again check that all transactions are correctly packed and transmitted through

the NP interface.

8.1.2.6 loopback_test

Similar to the previously described test_alif sequence (Section 8.1.2.5), this test sequence configures

the AL-test unit after deactivating the respective UVC drivers. However, this time, the test unit is

configured for loopback operation and test input is inserted in form of NP packets through the NP

interface driver. There are variants of this test sequence for all the AL interface types.

8.1.3 Continuous Integration

The Electronic Visions group uses Continuous Integration (CI) to continuously build and verify

the software- and design code. The CI system (Jenkins) can trigger build processes on a timed

schedule, e.g. every night or once a week, or (additionally) at every code change that is committed

to a code review server (Gerrit). (Müller, Mauch, et al. 2020; Müller, S. Schmitt, et al. 2020) It is

also possible to trigger CI jobs for repositories that depend on a code-change in another repository,

thereby excluding passive dependency bug insertion. This is used in the scope of this thesis to run

the verification simulations, described above at every code change and regularly scheduled. This

144

8.1 Simulation and Verification

approach drastically reduces the probability of introducing major bugs into the design through code

changes. Additionally, the scheduled regular simulation execution also implements a test regression

to detect bugs that only occur in rare corner cases.

8.1.4 Hardware-Software Co-Simulation

In addition to the functional verification, driven by unit test simulations like the ones described

above, the HXFPGA_CORE partition is simulated as a whole using a system testbench.

This system testbench is directly driven through the same software stack as the live system (cf.

Section 8.4). The connection between the HDL design testbench and the software stack is thereby

established through a Systemverilog DPI (IEEE 2018) interface layer of the software stack. This

interface layer also directly controls the hardware simulator. The DPI interface allows to call C-

functions from a SystemVerilog task or function and vice versa. Thereby, the software can transfer

transactions to the simulation by calling a SystemVerilog task and receive transactions from the

simulation by having an according function called by the simulation process.

This so-called hardware-software co-simulation is used to run a large number of software defined test

cases that can be specific to a particular version of the BrainScaleS hardware or generally applicable

to all hardware versions. These tests can address the FPGA design as well as (a part of) the ASIC,

also simulating the communication links between both parts of the system. Mainly, this approach

enables development of the required changes to the software stack in parallel to the development

of a respectively new hardware version. Also it facilitates the easy development of high level test

cases for verification of new FPGA and software features. Thereby, possible bugs can be directly

investigated on the simulator output in a graphical waveform view.

Unfortunately this approach is not easily applicable to a neuromorphic multi-chip environment, re-

lying on integral features of the EXTOLL network, as it would require a full behavioural model of

the Tourmalet network ASIC. A possible solution would be to exclude the details of the EXTOLL

network and only simulate the remainder of the BrainScaleS FPGA and -ASIC, at least additionally

including the NHTL. This will however require to adapt the libRMA (cf. Section 4.4) to create

DPI calls instead of invoking the EXTOLL kernel-driver calls for the actual hardware access. This

adaptation of the libRMA has been done by Leonard Henger at the Computer Architecture Group,

but has not been tested in the BSS-2 simulation environment yet (cf. Section 9.2 on page 195).

However, the benefit of this additional system simulation environment is also open to discussion,

as the NHTL is already verified, having the unit testbench described in Section 8.1.2. Furthermore,

the event communication between multiple FPGAs would not be simulatable to a higher extent,

than already done with the unit testbench, described in Section 8.1.1. Especially, the transmission

latencies and protocol constraints of the real network cannot be simulated without having a detailed

simulation model of the EXTOLL hardware. Also the timestamp synchronisation that entirely relies

on the EXTOLL barrier and interrupt cannot be simulated without detailed model information. The

only benefit of this simulation interface would be testing the Neuromorphic Hardware Transaction

Layer via Extoll (NHTL-Extoll) software library against a simulated FPGA design, which also can

and has been done in the real hardware (cf. Section 8.1.5.4, Section 8.4.2 and Section 8.4.7).

145

8 Commissioning

8.1.5 Design for Test and Live Debugging

As a simulation model of the EXTOLL hardware has not been available in the course of this the-

sis work, integration tests of the described FPGA design aspects have to be executed on the real

hardware system. In order to facilitate this need for further verification, the design has been built

including multiple methods of Design for Test. This term generally describes the approach of de-

signing a system to directly include tools and handles that will later help verifying and testing the

manufactured ASIC or programmed FPGA, either using special hardware test equipment or directly

in the target system. In the case of a manufactured ASIC this is usually not suited to find vital de-

sign flaws in the first place, as the process of manufacturing the ASIC is quite expensive and time

consuming. However, it can be very useful and even necessary for finding and sorting out chips with

manufacturing defects or variations out of the specified range of tolerance. In the case of FPGA

designs however, the cost of manufacturing is not existant as the only penalty is the time needed to

compile the bitstream file and program it to the FPGA hardware. The former is mostly a matter at

the order of one hour and the latter on the order of minutes. Therefore, one can resort to hardware

integration tests also for (high level) verification purposes in the realm of FPGA design development.

8.1.5.1 Scan Chains

Generally, when employing Design for Test methods on a hardware design, auxiliary structures are

added to the design, allowing to access and manipulate specific state registers or logic signals. An

example for such structures can be a scan chain running through all the register bits or the IO-ring

at the border of an ASIC. An Example for such a scan chain structure is the JTAG protocol (IEEE

2013) offering a method to test and debug integrated circuits by injecting instructions and moving

data into and out of the circuit through a shift register architecture. In the BSS-2 system, JTAG

is used for debugging, as well as for the initialisation and bring-up of the high speed serial links

between the FPGA and the respective ASIC (Hartel 2016; Rettig 2019b).

8.1.5.2 ChipScope Debugging

Insertion of debug structures, like e.g. scan chains, into a design has been automated in most avail-

able tool-chains. Especially for FPGA design, the Xilinx® Vivado® tool offers an automated method

to insert Integrated Logic Analyzer (ILA) cores, which are connected to arbitrary signals in the de-

sign (AMD 2023; Arshak et al. 2006; Xilinx 2011). Signals which are to be observed through an ILA

core are distinctively marked in the HDL source code and afterwards selected in the Vivado® tool

for the actual implementation of an ILA core. The tool will implement one ILA core per involved

clock domain.

These debug cores are accessible through a JTAG port that can be connected from the FPGA PCB

to a dedicated logic analyser device, which in turn can be connected to a running Vivado® software

instance via network or USB. The software tool then allows to program arbitrary triggers to the ILA

cores. When these triggers assert true during operation, based on the involved design signals, the

ILA core records some preconfigured (at the time of implementation) number of clock cycles. For

the most cases, the default setting of 1024 clock cycles will be sufficient. The recorded waveform

data is sent back to the software tool, where it is displayed to the user for the actual debugging.

146

8.1 Simulation and Verification

This method was also used extensively during this work for debugging the FPGA design. However,

it is often quite tedious to have to synthesise, place and route a new bitstream file every time one

wants to add or change some design signals for the ILA cores. It is therefore helpful to generously

select those signals that carry the most information about the state of the design part to be debugged.

In case of network packet communications, managed by the NHTL, this would be the NP and AL

interface signals, as well as the interface towards the SPIKE_COMM partition.

Another problem with this approach is that signals from the precompiled partition netlists cannot

easily be marked for consideration at the ILA core. Instead signals from these design areas have to be

manually routed through the design hierarchy up to the top level module of the respective partition.

As this is even more tedious than simply waiting for a new bitstream file from the implementation

compiler, other methods should be employed for debugging these areas.

8.1.5.3 Counter Registers

Another method for debugging a running design is to integrate counter registers for certain antic-

ipated error conditions as well as performance counters for anticipated key events. Examples for

error conditions could dropped transactions due to full buffers or other reasons, or detected protocol

errors in a network packet. Examples for useful performance counter, e.g. in the NHTL unit, are

numbers of sent and received packets of specific types. These registers can be monitored during

operation of the design and checked for unexpected counts.

A great advantage of this method is that it is also used heavily in the EXTOLL Tourmalet ASIC

where they are globally accessible in the network trough the Registerfile. This poses the only viable

method to debug the behaviour of the network cards. Of course this method is only useful, if the

network is still operational.

8.1.5.4 The AL-Test Interface

In order to test the NHTL unit in conjunction with the newly introduced software layer (cf. Sec-

tion 8.4.1) for host communication through the EXTOLL network, an additional testing unit has

been included between the NHTL unit and the HXFPGA_CORE partition. This so-called AL-Test-

Interface has already been mentioned in the context of the respective unit testbench in Section 8.1.2.

This additional hardware design unit is necessary, as it is not easily possible to simulate the EXTOLL

network communication with a co-simulation setup, as explained in Section 8.1.4.

A schematic block diagram of this testing unit is shown in Figure 8.3. Incoming transaction from

the NHTL can either be forwarded transparently to the Playback Executor or looped back to the

NHTL through a FIFO buffer. Alternatively, there is a configurable test pattern generator, driving

the AL-write interface towards the NHTL. In case of loopback or generated test pattern operation,

the Playback Executor will not be driven, as its responses would not be received by the host.

The pattern generator can be configured to send up to 256 64 bit Quad Words (QWs) with a con-

figurable pause time of up to 256 clock cycles in between. The content of these data QWs can be

programmed to a fixed value or automatically increment from a start value. The generation of these

test patterns will start when a trigger bit is written to the respective control register. When the pattern

has been completely executed, this bit will automatically be reset by the unit.

147

8 Commissioning

� � � �

� � � � � � � �

���������	��
����

�

�
�
�
�
�
�
�
�
�
	

��������	������
�

� � � �

� � � � � � 	

�

�
�
�
	

� � � � � � 	

�
 � � � � � � 	 � � �

� � � � � � 	

�
 � �
 � 	 � � �

���

���

�����

Figure 8.3: Schematic block diagram of the testing unit for the AL interface.

For debug purposes, the testing unit is equipped with a number of counter registers (cf. Section 8.1.5.3)

counting the number of transactions of specific types (the AL types, as described in (Thommes

2018)) received and sent across the AL interface.

8.1.5.5 Signal Multiplexing onto GPIO Pins

Last but not least, another common debugging method is to connect signals from all over the de-

sign to a limited number of GPIO pins, using a multiplexer tree throughout the design that can be

configured using control registers.

This method has been used in the scope of this work especially for measurements for which an

external oscilloscope is required. This has been the case for precise latency measurements for the

transmission of spike event communication packets from FPGA to FPGA (cf. Section 8.5), as well

as measuring the systime synchronisation jitter across multiple FPGAs (cf. Section 8.6.3).

8.2 Physical FPGA implementation

In Section 3.2 the overall FPGA design for the BSS-2 system has been briefly described, while in

Chapter 7 the implemented event communication architecture was presented in detail.

This FPGA design is compiled to a bitstream file for loading on the Kintex®-7 FPGA boards that

are used throughout the BrainScaleS systems. As these are Xilinx FPGAs, the synthesis and im-

plementation flow is mainly handled by the proprietary Xilinx Vivado® software tool. However, the

BrainScaleS hardware design units, used throughout the FPGA design, especially the UT, employ IP

units from the Synopsys DesignWare® Library. As these IP units come in encrypted source files that

cannot be easily processed by Xilinx Vivado®, the main parts of the design have been encapsulated

in a sub top-level (cf. the HXFPGA_CORE box in Figure 3.4). This is separately processed by the

Synopsys Synplify® syntheses compiler. Finally, the synthesised netlist of this sub top-level can be

imported by the Xilinx Vivado® software and instantiated into the overall design.

148

8.2 Physical FPGA implementation

The event communication architecture has been developed and implemented in parallel to the exist-

ing Ethernet based single-chip design (cf. Rettig 2019a). As the evolvement of the existing design

continued with general improvements, the requirement was, to always build upon these general

improvements and to have the overall design mismatch between the newly developed spike event

communication design and the existing one as low as possible. Therefore, the spike event communi-

cation architecture was decided to be implemented in another sub top-level which is then addition-

ally instantiated into a clone of the existing design (cf. the SPIKE_COMM partition in Figure 3.4).

Again it has to be pre-synthesised using the Synopsys Synplify® compiler, as it makes use of the UT

units, developed by (Karasenko 2020) (cf. Section 7.3.3 and Section 7.5.1), which in turn use the

DesignWare® Library.

As the Event Switch unit has to be inserted in the main event path of the existing design, this made

it necessary, to also modify the existing HXFPGA_CORE. However, these changes are backwards

compatible, i.e. when the event communication sub top-level is not instantiated, the interface signals

connecting to the Event Switch can be left unconnected (in case of outputs) or passivated (in case

of inputs). The design can fully operate in the existing Ethernet-based single-chip operation mode

without depending on the event communication block.

8.2.1 FPGA Primitive Usage

8.2.1.1 Scaling the Event Communication Architecture

Synthesis of the SPIKE_COMM partition (cf. Figure 3.4) has been run multiple times for different

values of the design parameters S and B, introduced in Section 7.8. Thereby, the the number of

parallel data paths (Splits) S was swept in a range of [2,4] and the number of accumulation buckets

B was swept in a range of [1,32]. For each run, the synthesis compiler reports the number of used

FPGA resource primitives.

The results of these synthesis runs for the event communication architecture, including the units for

Event Transmission (Section 7.3) and Event Reception (Section 7.5) are shown in Figure 8.4. It can

be seen from these plots that the usage of resource primitives rises linearly with the parameters B

and S. A rise in the slope of the fitted linear functions can be explained by the fact that the buckets

themselves are parametrised by the number of Splits S, regarding the number of input ports to the

bucket. Thereby, the number of primitives scales with the product of both parameters B and S. This

effect can be clearly observed for the number of required Lookup Tables (LUTs) (Figure 8.4a) and

Digital Signal Processors (DSPs) (Figure 8.4d), but slightly also for the number of Flip Flops (FFs).

For the LUTs, this can be explained by the amount of bucket-wise required encoding logic for the

UT alphabet, described in Listing 7.6, which rises with the number of input ports, i.e. Splits S. For

the number of FFs, this effect arises from the input register buffers, while the usage of DSPs is

mainly due to the status and error counters in the Registerfile. In this case, each bucket contains one

event counter per input port and one for the number of sent packets at the output.

The buffer size of a bucket does not depend on the number of input ports, but rather on the maximum

packet size constraint of the network. Therefore, the slope for the number of used Block-RAMs

(BRAMs) does not change with the parameter S and the number of BRAMs does not depend on the

product of both parameters. Instead, each Bucket and Split adds a constant, but significant amount

149

8 Commissioning

(a) Lookup Tables (LUTs)

5

10

15

20

25

30

Us
ag

e[
%

]

0 5 10 15 20 25 30
B

5000

10000

15000

20000

25000

30000

#
LU

Ts
S = 2: m = 528.88± 6.36, c = 2169.85± 93.38
S = 3: m = 641.65± 8.3, c = 2870.43± 121.86
S = 4: m = 789.23± 9.02, c = 3763.49± 132.41

(b) Flip Flops (FFs)

2

4

6

8

10

12

Us
ag

e[
%

]

0 5 10 15 20 25 30
B

5000

10000

15000

20000

25000

#
FF

s

S = 2: m = 603.13± 0.44, c = 1945.19± 6.49
S = 3: m = 645.53± 0.65, c = 2557.15± 9.51
S = 4: m = 675.93± 0.82, c = 3166.14± 12.05

(c) Block-RAMs (BRAMs)

15

20

25

30

35

40

Us
ag

e[
%

]

0 5 10 15 20 25 30
B

60

80

100

120

#
BR

AM
s

S = 2: m = 1.13± 0.05, c = 46.88± 0.67
S = 3: m = 1.2± 0.07, c = 70.32± 1.0
S = 4: m = 1.26± 0.09, c = 93.76± 1.33

(d) Digital Signal Processors (DSPs)

10

20

30

40

Us
ag

e[
%

]

0 5 10 15 20 25 30
B

50

100

150

200

250

#
DS

Ps
S = 2: m = 5.0± 0.0, c = 14.0± 0.0
S = 3: m = 6.0± 0.0, c = 21.0± 0.0
S = 4: m = 7.0± 0.0, c = 28.0± 0.0

Figure 8.4: Absolute and relative usage of FPGA resource primitives for the event communication
architecture with different design parameters. The data points have been fitted to a linear
function f (x) = m∗ x+ c. Fitted parameter values are given in the legends.

of required buffer space, as each bucket implements a packet buffer and each split implements a

destination-mapping lookup table on the sending side, as well as a delay buffer on the receiving

side.

Based on these numbers and on the fact that the serial links from the chip on average transport two

events per clock cycle with bursts of three events per clock cycle (cf. Chapter 7 on page 109), it

was decided to implement two parallel data paths (S = 2), rather than three. Thereby, the design

can always handle the average event rate without introducing a throughput bottleneck. The bursts of

three events per clock cycle are handled by compressing the triple-events into multiple double-events

(cf. Section 7.1.2).

8.2.1.2 Evaluating the Overall Design

The overall primitive usage of the design is reported by Vivado® and presented in Figure 8.5. It

can be seen that in total numbers the design is using quite a significant portion of the available

hardware resources on the FPGA. The most used type of primitive blocks are the Lookup Ta-

bles (LUTs), which is quite expected, as all the logic is implemented using these small storage

150

8.2 Physical FPGA implementation

8.2% (6778)
7.1% (5873)9.3% (7708)

27.6% (22751)

20.2% (16635)

27.6% (22749)

(a) FFs (82494, 41%)

7.6% (5466)

6.8% (4838)
4.4% (3173)

26.9% (19220)

27.9% (19988)

26.4% (18855)

(b) LUTs (71540, 71%)

28.4% (55)
4.4% (8.5)

25.6% (49.5)

9.6% (18.5)
26.1% (50.5)

5.9% (11.5)

(c) BRAMs (193.5, 60%)

32.7% (54)

39.4% (65)

13.9% (23)2.4% (4)
11.5% (19)

(d) DSPs (165, 28%)

spike-comm-partition
nhtl-top

pb-trce
extoll-partition

hx-fpga-core other

Figure 8.5: Absolute and relative primitive usage numbers of FFs (a), LUTs (b), BRAMs (c) and
DSPs (d) for the overall FPGA design with parameters S = 2 and B = 8. The distribution
of these primitive usage numbers is given in pie-charts for the major top-level units, as
listed in the legend.

elements on an FPGA. Regarding the distribution of hardware resources among the major top

level design units, the SPIKE_COMM partition uses only a small fraction of the total number of

Flip Flops (8.2 %) the Lookup Tables (7.6 %), but a significant fraction of the Block-RAMs (28.4 %)

and Digital Signal Processors (32.7 %). Regarding logic (LUTs) and registers (FFs) the EXTOLL

partition and HXFPGA_CORE partition are the largest units. Regarding the BRAMs, the HXFPGA_-

CORE partition and playback-trace memory are equally large as the SPIKE_COMM partition. Last

but not least regarding the DSPs, the NHTL and SPIKE_COMM partition are by far the largest units,

followed by the EXTOLL partition while the HXFPGA_CORE is negligible here.

As the focus of this thesis is on the event communication architecture described in Chapter 7, Fig-

ure 8.6 shows the distribution of primitive resource usage on the FPGA with respect to this partition

unit.

By far, the largest fraction of FFs, LUTs and DSPs is spent on the bucket buffers. This is simply

explained by the fact that this is the most complex unit in the event communication architecture,

as it contains the whole encoding logic respectively including an instantiation of the UT Encoder.

Besides that, the bucket unit is replicated multiple times (B = 8) in the design, as in the current

implementation each bucket adds another possible network destination to the events generated by

the neuromorphic chip. Even if a bucket buffer could handle more than one destination, as analysed

151

8 Commissioning

66.7% (4521)

4.9% (332)

10.6% (718)

2.6% (179)
3.6% (247)
2.1% (143)

9.4% (638)

(a) FFs (6778, 3%)

49.1% (2694)

5.4% (295)15.3% (840)

3.4% (187)
6.2% (342)

2.6% (142)

18.0% (987)

(b) LUTs (5487, 5%)

14.5% (8)

32.7% (18)

52.7% (29)

(c) BRAMs (55, 17%)

74.1% (40)

11.1% (6)

11.1% (6)

3.7% (2)

(d) DSPs (54, 9%)

buckets
dest-mappers

delay-buffers
reverse-decoder

omni-rf-access
omni-width-conv

other

Figure 8.6: Absolute and relative primitive usage numbers of FFs (a), LUTs (b), BRAMs (c) and
DSPs (d) for the SPIKE_COMM partition with parameters S = 2 and B = 8. The distri-
bution of these primitive usage numbers is given in pie-charts for the major design units,
as listed in the legend.

in Chapter 6, more bucket instances will imply less destination conflicts on the same bucket instance

and thereby better performance, so the goal should always be to implement as much buckets as

possible.

Regarding the Block-RAMs, the delay buffers use the most amount of resources, followed by the

destination mappers and the buckets. The reason for this BRAM usage distribution is that the delay

buffers implement the by far largest buffers, as they have to potentially store events for a long

time (cf. Equation (5.10) and Section 7.5.3). The bucket buffers only implement a relatively small

buffer of some few maximum sized packets. Especially, these buffers should be able to hold more

than one packet in case the output is not immediately granted access due to other buckets currently

requesting the output with temporarily higher RoundRobin priority. Still, these buffers are quite

small as compared to the lookup tables (cf. Section 7.3.2) and delay buffers (cf. Section 7.5.3) with

214 entries each.

The event data stream compressor, used to convert triple-event into double-events is reported by

the Vivado® implementation tool to consume negligible (less than 1 %) amounts of LUTs, FFs and

DSPs. This justifies the decision to favour this compressing unit above another parallel data path

when compared to the requirement offset from S = 2 to S = 3 in Figure 8.4.

152

8.2 Physical FPGA implementation

For an implemented number of 16 barrier- and 4 interrupt units, as provided in the EXTOLL Tour-

malet network chip, the Vivado® tool reports approximately 0.8 % of the overall available FFs and

approximately 1.3 % of the available LUT resources all together. Therefore it is not necessary to cut

the number of units in order to save FPGA resources here and the full number of supported barrier-

and interrupt units can be confidently implemented.

Figure 8.7: Screenshot of the implemented design floorplan in the Xilinx® Vivado® tool. The ma-
jor design units are highlighted: extoll-partition, nhtl-top, spike-comm-partition, hx-
fpga-core, DDR3 memory interface for pb-trce, DDR3 memory interface for PPU
extmem, AXI interconnect, others. The colour coding is mainly the same as in Fig-
ure 8.5.

8.2.2 EXTOLL Operation Frequencies and Bandwidths

In order to harness the full provided bandwidth of the EXTOLL link between the BrainScaleS FPGA

and the EXTOLL Tourmalet network card, the operation frequencies in the implemented FPGA

design have to be larger than a certain minimum value. This value depends on different parameters

like the width of the internal data paths and the operation frequency on the Tourmalet chip itself, as

well as the physical configuration of the link, especially regarding the number of connected lanes

(cf. Section 4.1.1). What counts in the end for a functional link connection, is that the lane rates RT
l

(Tourmalet) and RF
l (FPGA) match on both ends of the physical connection:

RT
l = RF

l (8.1)

153

8 Commissioning

Thereby this lane bandwidth Rl can be calculated from the network device’s link frequency fL and

data path width w, as well as the number of connected lanes Nl

Rl =
fL ·w

0.8 ·Nl
(8.2)

where the factor 0.8 arises from the 8 bit-10 bit encoding that is used to secure the physical transac-

tion words on each lane.

Equation (8.2) can now be applied to Equation (8.1) and solved for the required FPGA link fre-

quency, leading to the following expression:

f F
L = f T

L · wT

wF · NF
l

NT
l

(8.3)

As the width of the core data path is 128 bit in both the Tourmalet and the BrainScaleS FPGA, the

fraction wT

wF = 1. As stated in Section 4.1.1, the Tourmalet network chip offers NT
l = 12 lanes at each

link. However, the BrainScaleS FPGA can only implement NF
l = 4 lanes due to limited availability

of GTX transceivers for the EXTOLL connection. Thereby one arrives at the expression

f F
L =

f T
L

3
. (8.4)

So in summary, as the FPGA can only make use of one quad on the link, only one third of the overall

link data rate can be implemented. Therefore the FPGA also only needs an operation frequency at

its EXTOLL link that equals a third of the Tourmalet’s link frequency. As the Tourmalet boards,

used in this project run at a frequency of f T
L = 600MHz, this leads to a required FPGA frequency of

f F
L = 200MHz.

In order to ease the timing requirements on the FPGA design (cf. the description of general timing

constraints in Section 7.7), the data rate at the Tourmalet link is reduced through configuration by a

factor of two, leading to a remaining frequency requirement of

f F
L = 100MHz . (8.5)

Plugging these numbers back into Equation (8.2), the full EXTOLL link rate for communication

between two Tourmalet cards derives to RT
L = 96 Gbit

s . However, with the modifications for con-

necting to a BrainScaleS FPGA, the total link rate is reduced to a number of RF
L = 16 Gbit

s . Again

re-correcting this for the 8 bit-10 bit coding, the FPGA has a total useable EXTOLL information

bandwidth of Rinfo = 12.8 Gbit
s . Taking into account the maximum protocol efficiency of 93.9 %

(cf. Equation (B.3)), calculated from the RMA header overhead, one finally arrives at a useable

bandwidth of

Rrma = 12.0
Gbit

s
. (8.6)

However, as pointed out in (J. Schmitt 2017), running the EXTOLL network partition such a low

frequency as compared to the Tourmalet ASIC implementation, running at f T
E = 600MHz, intro-

duces a performance bottleneck in the network protocol flow control mechanism. This is caused

by the restricted number of available credits which is now processed much slower in the FPGA

implementation. Therefore, it is desirable to run the EXTOLL partition at a frequency higher than

154

8.2 Physical FPGA implementation

the minimum value, derived from the lane rate equations above. The EXTOLL partition logic is

therefore implemented at a frequency of

f F
E = 150MHz . (8.7)

As can be seen in Figure 3.4, the HXFPGA_CORE, as well as the SPIKE_COMM partition may

provide a maximum amount of 64 bit of data per clock cycle at the BrainScaleS FPGA system

frequency of 125 MHz. This corresponds to a data rate of 8 Gbit
s respectively.

Consequently, each of these two data streams can be handled comfortably by the EXTOLL link

throughput bandwidth of 12 Gbit
s . However, both streams cannot be sent simultaneously at full data-

rate without bandwidth shortage. This conflict is in principle solved by sending the realtime spike

communication stream with priority over the trace data stream from the Executor. However, the trace

memory buffer in the FPGA will eventually run full, causing the Event Switch (cf. Section 7.1.5) to

block both streams, in case the incoming event stream is replicated to both outputs.

8.2.3 The Test Setup

Figure 8.8: Photo of the prototype experiment setup using the EXTOLL network topology for spike
event- and host communication.

For the tests and measurements, described in this Chapter, the current BSS-2 test platform was used,

which has been described in Chapter 3. A photograph of the particular test setup, used for this

thesis is shown in Figure 8.8. The adaptations made for connecting it to the EXTOLL network are

the same as in (Thommes 2018). The EXTOLL network is connected to the FPGA communication

boards via special EXTOLL cables, manually equipped with USB 3.0 plugs, one per lane. The pin-

layout of these plugs has been documented in (Thommes 2018). Additionally, for the purpose of

programming bitstream files to the FPGA boards, the setup is still connected to an Ethernet network.

For the purpose of measuring inter-chip spike latencies (cf. Section 8.5) and the synchrony precision

of the EXTOLL interrupt (cf. Section 8.6.3), an oscilloscope is attached to GPIO pins on the setup.

155

8 Commissioning

8.3 Network Operation Tools

In order to bring up the EXTOLL network and to do basic accesses to remote Registerfiles from a

host computer’s perspective, some basic, but essential tools and configurations are required. These

include the configuration of the FPGA-facing links on the Tourmalet ASICs in the network, dis-

covery of the physically connected topology, configuration of the routing network tables, utility

executables for accessing remote Registerfiles and the refreshing of lost identity information on

powercycled FPGAs.

These tools and tasks have partly been implemented and solved in the scope of this thesis and will

be shortly introduced and described in the following subsections.

8.3.1 Link Configuration

When powercycling the Tourmalet network card, the EXTOLL ASIC will automatically attempt

to establish a connection across all links, where an attached cable is detected. This connection

is thereby established, by going through a link training procedure which finds the correct delay

settings in a Delay-Locked-Loop (DLL) (cf. e.g. Xanthopoulos 2009) by transmitting known test

patters across the link. This DLL ensures that both communication partners are synchronised across

the link and can exchange code words in a synchronous way. However, when the communication

partners at both ends have different physical parametrisations of their link, the link training proce-

dure will not find a working delay setting. These fundamental link parameters include for example

different numbers of lanes and data rates or different data path widths as it is the case with the

EXTOLL Tourmalet and the BrainScaleS FPGA (cf. Section 8.2.2). When initialising the network,

the Tourmalet links that are physically connected to an FPGA node therefore have to be configured

correctly in order to setup a working connection between both nodes. This configuration includes

the deactivation of two out of three lane-quads as well as the throttling of the link speed by a factor of

two, as motivated in Section 8.2.2. After the Tourmalet link has been configured correctly to match

the FPGA’s parametrisation, the link training procedure has to be retriggered and will now be able

to find the a working delay setting to establish a communication connection across the link.

This link configuration has to be done for each Tourmalet node in the network that connects to

BrainScaleS FPGAs. The configuration is thereby written to the local or remote Registerfile of the

respective EXTOLL ASIC either by accessing the Configuration space through the driver-supported

memory map, or through remote Registerfile access messages (cf. Section 8.3.3). The latter is pos-

sible, as the host computer’s driver installation will execute an initial run of the EMP tool (cf. Sec-

tion 8.3.2) at system startup, already setting up the network operation with the subset of nodes that

are default-compatible to each other.

8.3.2 The Extoll Management Program

When all links have established a functioning communication connection, the next step is to config-

ure the routing tables in the network crossbars in every switching network node (cf. Section 4.1.3).

This task is executed by the Extoll Management Program (EMP) tool which is provided by EXTOLL

whose function has been summarised in Section 4.4.

156

8.3 Network Operation Tools

Especially its first and third step of operation, i.e. discovering the topology and writing the routing

tables using temporary routing configurations, are quite traffic intensive and are not robust against

unstable link connections. So if a link connection is not stable and (temporarily) breaks during this

procedure, the EMP run will fail.

During this thesis work, it turned out that the links between a Tourmalet ASIC and the BrainScaleS

FPGAs can be quite unstable after the Tourmalet has been powercycled and the FPGAs have been

not. The links only become stable when adhering to a strict powercycle procedure, where the FPGAs

are powercycled together with the Tourmalet ASIC (via powercycle of the host-computer) before the

EMP tool is run.

As BrainScaleS FPGAs are always leaf nodes to the network, i.e. don’t possess a crossbar switch

and therefore also don’t possess a routing table, prone to loss of state during powercycle, the EMP

tool is not needed to be re-run after FPGAs have been powercycled.

8.3.3 EXTOLL Registerfile Access Utilities

There are two paths to access a configuration and status Registerfile at a local Tourmalet node.

Hereby local is defined relative to the host computer on which the access is to be performed. A

network card is called local to a host computer if it is connected via the PCIe bus and enumerated in

the kernel driver. It has to be noted that multiple network cards can be physically connected to the

PCIe bus, but only one of them may be handled by the driver. Every additional network card that is

physically connected to the host’s PCIe bus is only supplied with power through the PCIe connector

and will exclusively be reachable via an active network connection to the driver-supported primary

network card.

A local Registerfile will be automatically mapped by the EXTOLL driver into the file system of

the host computer. This means that every register address is mirrored by a respective file and may

be accessed through OS-driven file accesses. An exception to this rule are RAM blocks in the

registerfile, which are mapped to a single file respectively. Additionally for each register, there are

two files; one containing the raw hexadecimal value, and one printed in a human readable format

containing the values of the individual fields. In case of RAM blocks, the files contain a single

line for each RAM address. The paths to those files resemble the hierarchy of the Registerfile, as

defined by the TCL source and distributed throughout the hardware hierarchy (cf. Section 4.2.4 and

Section 3.2.5.2).

The second way to access a Registerfile is via RMA messages, marked by an active RRA modifier

bit (cf. Appendix B.2). These are initiated through a software descriptor, which is communicated via

the PCIe bus to the RMA hardware unit (cf. Section 4.2.1). The RMA unit then initiates a network

packet targeting the remote RMA unit, which in turn accesses the respective registerfile address and

responds to the sending node’s RMA unit. Notably, this not only works for remote nodes, but also

locally, as RMA messages that are addressed to the local node will not be sent across the network.

Instead, the local RMA unit will directly handle the local Registerfile access, as if it had just arrived

from another node on the network. Thereby, the whole network, including the local node, can be

configured solely via RRA messages.

In order to make these two Registerfile access paths easily available, a small Python utility library

has been written. For both access paths, the utility library supports reading and writing to specific

157

8 Commissioning

registerfile addresses or hierarchical path specifiers respectively. Additionally, there are convenience

functions to get or modify specific bit fields at the retrieved register content. In case of filesystem

mapped accesses, the read and write functions operate on the raw valued files. In case of RAM

blocks, the access functions require an additional input argument regarding the requested line.

The RMA based remote Registerfile access utilities rely on a two small binary executables (rra_-

read and rra_write), available trough the lib_rma software library, which is provided by

EXTOLL (Electronic Visions(s), Heidelberg University n.d.[i]). These are run as subprocess from

the Python code which then parses the retrieved console output in case of read access. Notably, if

the remote node is not reachable, either because it is powered down or it’s not reachable through the

network due to a broken link connection, the rra_read executable will not return and therefore has

to be aborted either by user interaction using Ctrl-C or by an expired timeout of the subprocess.

In the latter case, the Python utility will throw an appropriate exception up the call-stack.

8.3.4 Refreshing of IDs

When powercycling BrainScaleS FPGAs, e.g. after flashing a new bitstream the implemented design

looses any state that was imprinted from outside before the power reset happened. This especially

includes the own NDID that was initially assigned by the EMP tool, run at a master network node.

However, some mechanisms in the FPGA design, as e.g. the Omnibus to Registerfile access bridge

(cf. Section 7.6.4.2), as well as the RMA network protocol, implemented by the NHTL unit (cf.

Section 7.4 and (Thommes 2018)), rely on this information about the local NDID. In order to

restore this functionality of the design, the register containing the NDID has to be re-written on all

powercycled nodes. In principle, this could be done by simply re-running the EMP tool. However,

it turns out that this is not quite stable and will often result in a non-functional network, as the

EMP run will re-discover and re-write the whole network configuration which might trigger some

hidden bug. Instead, as the topology did not change through the FPGA’s powercycle and the driver

and Tourmalet ASIC still have a correct representation of the network, one can simply write the

respective register on the FPGA with the NDID information that can be retrieved from the EMP tool

(cf. Section 8.3.2).

It has been observed throughout this work that after rebooting an FPGA, an RRA read operation

will not succeed. However, when investigating this problem using the ChipScope method, described

in Section 8.1.5.2, it can be seen, hat the NHTL correctly receives and responds to the read request

message. When looking into the interface signals of the NP and LP on the FPGA, it is observed

that the response message gets stuck in the NP. Further investigation inside the NP revealed that the

FPGA’s flow-control mechanism has run out of credits, implying that the credit return mechanism

from the Tourmalet has somehow been broken by the powercycle of its partner FPGA. It was further

observed that the FPGA will again be reachable after another powercycle, but only if an access was

attempted in between.

However, this non-reachability can completely be avoided if the FPGA’s LP is requested to send its

ids to the partnering Tourmalet node before the powercycle while it is still reachable. In order to

prevent the FPGAs to not being reachable after powercycle, this workaround has been included in a

utility script together with the refreshment of the NDID, which is run after every powercycle.

158

8.4 Software Integration

8.4 Software Integration

pyNN
pyNN.brainscales2

PyTorch
hxtorch

Network Graph
grenade

Signal-Flow Graph
grenade

Place and Route
grenade

Calib Routines
calix

Logical Container
lola

HW Containers
haldls

FPGA Instructions
fisch

Runtime Control
stadls

Embedded Runtime
libnux

Coordinates
halco

Hardware Database
hwdb

Connection
hxcomm

Host-ARQ
sctrltp

Co-Simulation
flange

NHTL-Extoll
nhtl-extoll

Quiggeldy
hxcomm

EXTOLL RMA
librma

Modelling

Wrapper

Experiment Description Calibration

Hardware Abstraction

Communication

Figure 8.9: Overview of the BSS-2 software architecture. Libraries with white background are un-
changed from the original software stack (cf. Figure 3.5), blue libraries have been ex-
tended and green libraries were added during this work.
This Figure has been modified from (Müller, Arnold, et al. 2022).

In order to integrate the communication functionality added to the BrainScaleS FPGA’s hardware

design (cf. Chapter 7) into the BSS-2 software stack (cf. Section 3.3), two communication layers

have been added. These are indicated with green background at the bottom part of Figure 8.9. The

libRMA (Electronic Visions(s), Heidelberg University n.d.[i]) is provided by EXTOLL and imple-

ments the basic API for using EXTOLL’s RMA communication paradigm and protocol, supported

by the RMA unit on the Tourmalet ASIC (cf. Section 4.2.1) and the NHTL unit on the BrainScaleS

FPGAs respectively (cf. 7.4). The NHTL-Extoll layer builds upon the libRMA and implements the

communication protocol of the NHTL unit, defined in (Thommes 2018).

In addition to these new layers, existing software layers had to be adapted in order to integrate

the EXTOLL communication and additional configuration and status readout capabilities into the

software stack. These layers are indicated with blue background in Figure 8.9.

159

8 Commissioning

With respect to the EXTOLL software stack, which has been summarised in Section 4.4, the NHTL-Extoll

and hxcomm libraries act as middleware and all higher layers above them represent a user applica-

tion.

The following Sections go into detail about the important aspects of these added and adapted soft-

ware layers.

8.4.1 The Neuromorphic Hardware Transaction Layer via Extoll

In order to have the BrainScaleS software stack make use of the EXTOLL network, a new layer

is needed that implements the specific protocol details, defined by the NHTL FPGA hardware unit

(cf. Section 7.4), while using the API provided by the EXTOLL software stack and again providing

a simple API for the hxcomm library of the BrainScaleS software stack. While the BrainScaleS

software stack has been summarised in Section 3.3, the EXTOLL software stack is summarised in

Section 4.4.

A bridge between the EXTOLL RMA library (libRMA) and the BrainScaleS application is provided

by the Neuromorphic Hardware Transaction Layer via Extoll (NHTL-Extoll) library. Originally

an according software layer has been developed for BrainScaleS-1 by (N. A. Buwen 2019), called

libHBP (cf. Thommes, N. Buwen, et al. 2021). With the help of this existing state, Sven Bordukat

developed the NHTL-Extoll library and integrated it into the BSS-2 software stack (cf. Thommes,

Bordukat, et al. 2022). In the following, this library will be referred to as NHTL-Extoll. However, the

respective operation principles and algorithms also apply to the libHBP from (N. A. Buwen 2019)

accordingly.

As already mentioned, the main purpose of this library is to implement the host-side part of the

NHTL transport layer protocol, which is summarised in Figure 8.10.

The libRMA operates on virtual connections attaching to an opened port. The port is associated with

a Virtual Process ID (VPID) while the connection is associated with the respective remote Node ID

(NDID) and connection parameters like whether the connection performs Remote Registerfile Accesss

or whether it operates on physical or virtual addresses. The NHTL-Extoll library defines the entity

of an Endpoint referring to a specific remote BrainScaleS FPGA, connected via the EXTOLL net-

work. The Endpoint thereby holds two virtual connections to the NDID of the respective FPGA.

One connection for RRA and another for RMA data transfers.

As the remote FPGA directly transfers its data into main memory regions of the host, the Endpoint

holds management objects for memory regions that are registered at the RMA driver via the accord-

ing libRMA API function. According to the NHTL protocol (cf. Section 7.4 and Figure 7.6), any

data that is not an RRA response is written to a special memory region that is operated in a ring-

buffer fashion and therefore has to be registered to the FPGA regarding its start address and size.

The NHTL-Extoll library ensures the correct initialisation of this ringbuffer memory region.

As the NHTL hardware unit will notify the availability of new data in that ringbuffer to the host

using special notification messages (cf. Figure B.6), the NHTL-Extoll software library has to im-

plement some mechanism to receive and react to these notifications. For this purpose, the libRMA

offers API functions queries to the EXTOLL notification buffer for newly arrived notifications. The

NHTL-Extoll Endpoint will start an independent active polling thread that calls the respective query

function in regular intervals and goes to sleep in between. If a notification, delivering information

160

8.4 Software Integration

read pointer

N-1

...

invalid pointer

noti pointer

Host PC FPGA

end address

write address

start address

noti pointer f
i
l
l
i
n
g

l
e
v
e
l

f
r
e
e
-

-
s
p
a
c
e

...

1

0

+1

+1

Fpga may write sent by Fpga

Host may read Host may free

inaccessible to Host inaccessible to Host

inaccessible to Fpga inaccessible to Fpga

Figure 8.10: Visualisation of the NHTL transport layer protocol between the host and an FPGA.
The Figure has been taken and modified from (N. A. Buwen 2019). A hardware unit
on the FPGA holds pointers to the start- and end addresses of a host-based
memory region as well as a write pointer and a representation of the amount of
free space (noti pointer). The host on its side holds a read pointer as well
as a representation of the amount of readable, i.e. valid content (invalid pointer
and noti pointer). From time to time, the FPGA notifies the host about new valid
data it has written to the memory and the host in turn notifies the FPGA about the
amount of space that can be overwritten as it has recently been read. For details, cf.
Section 7.4 as well as (Thommes 2018) and (N. A. Buwen 2019).

about available data in the ringbuffer is received, the respective management object is updated and

the received data is made available to the API towards the higher software layer.

8.4.2 Round Trip Latency of the NHTL protocol

Using the AL-Test Interface, described in Section 8.1.5.4, the round-trip latency of the NHTL-Extoll

transport layer has been measured. For this purpose, the AL-Test Interface was configured for loop-

back operation. The host then sends small messages to the FPGA where they are mirrored back to

the receiving ringbuffer in the host’s memory. After every message transfer, the host waits for the

notification message from the NHTL unit that the mirrored response should have arrived at the ring-

buffer. This round-trip measurement was then repeated for 107 and 108 times in two experiments

respectively.

From the resulting histogram plot in Figure 8.11 one can see that the minimum latency is in a bin

range between 4.5 µs and 10 µs, the median latency is located around 50 µs and the typical maximum

161

8 Commissioning

101 102 103 104 105 106 107

Latency [µs]

10−7

10−5

10−3

10−1

re
lat

ive
fre

qu
en

cy

unpinned
pinned

Figure 8.11: Result histograms to the latency measurement of the transport layer protocol. The his-
togram shows the relative frequencies of the respective measured latency values. The
results have been obtained with pinned and unpinned software threads respectively.

latency (where most measurements lie below) is between 100 µs and 200 µs. However there are some

outliers of up to 10 ms, and most notably a significant amount of extremely high latency runs of about

5 s to 10 s has been observed at a relative occurrence rate of 10−5 in the unpinned case.

As the NHTL unit triggers the notification message using a timeout counter which is reset whenever

a data transaction is acquired for sending towards the host and only a single Quad Word transaction

is sent across the loopback, the minimum latency is limited by the value of this timeout, which was

configured to 2 µs. The actual minimum for the half-roundtrip transport latency can therefore be

calculated by subtracting this timeout value from the minimum measured round-trip latency value:

min
(︁
lhrt, transport

)︁
=

min(lrt, measured)− ltimeout

2
(8.8)

Thereby one arrives at a value of around min
(︁
lhrt, transport

)︁
= 1.25µs to 4µs for the minimum half

round-trip latency. This nicely matches the numbers given in the EXTOLL literature of (Nüssle,

Scherer, et al. 2009), stating a half-roundtrip latency of down to 1.2 µs for 8 B of payload.

While the general distribution of latencies seen in Figure 8.11 is justifiable with the varying overhead

of the operating system and CPU scheduling, the enormous latency peaks of several full seconds

need to be further investigated.

An unstable link connection between the host and the FPGA has been excluded by looking at the

respective error counter registers (cf. Section 8.1.5.3) in the Registerfile of the Tourmalet ASIC’s and

FPGA’s Link-Ports. By reading the performance counter registers for received notification messages

in the Tourmalet ASIC’s RMA unit after waiting for some expectable latency time, it was confirmed

that said messages actually arrive within "normal" latency periods. Also the actual data, which is

transmitted in a separate message before the notification, is present in the ringbuffer memory.

These findings imply that the observed enormous latencies do not arise from the hardware imple-

162

8.4 Software Integration

mentation of the NHTL- or the RMA protocol, but rather from somewhere in between the Tourmalet

ASIC’s RMA unit and the user space software. A significant improvement could be achieved by

pinning the user space software threads (the main test execution thread and the thread polling for

new notification messages in the queue) to the same CPU core. Thereby, the relative occurrence rate

could be decreased to 10−8 which can be seen from the pinned histogram in Figure 8.11.

From the comparison of both the unpinned and pinned histograms, one can infer that with the CPU

pinning in place, not only the relative frequency for the extreme outliers decreased significantly by a

factor of 103, but also the "normal" outliers at around 1 ms decreased by an approximate factor of 10.

In return, the relative frequency for minimal and small latencies (the first three bars in the histogram)

significantly increased. From this observation it can be reasoned that the cause of high latencies lies

in the thread-level communication and synchronisation between different CPU cores, which could

e.g. be implemented by cache coherency protocols or atomic operations in the CPU. As the kernel

driver has not been pinned to the same CPU core, the remaining outliers could be attributed to the

synchronisation across this process border. However it is not understood, why this might possibly

take multiple seconds.

The tests have been performed on an Intel® Xeon® Silver 4108 CPU.

8.4.3 The hxcomm Communication Layer

The first layer in the previously existing BrainScaleS software stack that has to be adapted to the

new NHTL-Extoll transport layer is the hxcomm library. This library defines a bunch of specific

connection classes, implementing a common interface to the different transport layers. In the existing

stack these are two alternative transport layers, namely the Host-ARQ, which is based on UDP via

Ethernet, and the flange Co-Simulation interface layer. An hxcomm connection object thereby serves

as a basis for any higher level communication with the BrainScaleS system. The different connection

classes are implemented in a way, such that the specific type of the connection is interchangeable in

higher software layers.

For the new NHTL-Extoll transport layer, a new connection type has been implemented which uses

the API provided by the NHTL-Extoll library. The connection object thereby holds an Endpoint

object for a specific remote FPGA node id, as described in Section 8.4.1. If no node-id is explicitly

given to the connection constructor, it retrieves one from a list provided by the NHTL-Extoll library.

This list is in turn retrieved from a call to the Extoll Management Program. The hxcomm library also

offers convenience functions, returning a connection to an FPGA identified by variables defined at

the OS environment. As these environment variables contain a generic system specifier, this has to

be converted into a node-id (or IP-address in case of a Host-ARQ) before constructing the connection

object. This conversion is supported by the information stored in the Hardware Database.

The hxcomm library also offers the possibility to automatically return the respectively available

transport layer by means of checking the OS environment.

8.4.4 The halco Coordinate Layer

On the next upper level in the BrainScaleS software architecture, abstraction of the hardware is

implemented in several layers.

163

8 Commissioning

Generally, the hardware abstraction in the BrainScaleS software stack makes use of the concept of

coordinates and containers which is explained in detail in (Müller, Mauch, et al. 2020). Coordinates

define an abstract virtual address space on the system’s physical configuration and status address

space using custom defined ranged integer types. Containers on the other hand are objects that

model the internal structure and actual addresses of the configuration and status register accesses.

For the calculation of specific addresses, the container classes rely on the information passed through

a specific coordinate value of the correct type. Container objects thereby represent "a possible state

of a specific hardware entity or entity group". (Müller, Mauch, et al. 2020)

The general BrainScaleS software API defines a playback program for the FPGA’s executor unit as

a sequence of write- or read instructions at specific coordinates, consuming or producing container

objects, accompanied by control flow instructions.

The halco software layer defines and implements the coordinate types and ranges that are used by

container classes from both fisch (Section 8.4.5) and haldls (Section 8.4.6), as well as their hierar-

chical dependencies relative to each other.

In order for being able to access EXTOLL Registerfile locations at any node in the network, using

the Omnibus-Registerfile access bridge (cf. Section 7.6.4), a low level coordinate structure has to be

defined that includes both Registerfile addresses and node-ids. These low level coordinates will then

be used by the fisch library (cf. Section 8.4.5).

For this purpose, a coordinate type for 64 bit wide addresses is defined (ExtollAddress), as well

as one for 16 bit wide node-ids (ExtollNodeId). However, some Registerfile addresses are only

present on Tourmalet ASICs and others are only present on BrainScaleS FPGAs. Furthermore, there

are also locations that, although they are logically present on both node types, are located at different

addresses on either Tourmalet ASIC or FPGA. To account for this fact, an additional coordinate type

is needed for the node type, so far only implementing two enumerated values for the Tourmalet ASIC

and the BrainScaleS FPGA (ExtollChipType). Having defined these basic coordinate types,

further compound coordinate types are derived. One type combines the ExtollNodeId with the

ExtollChipType to the new type ExtollNodeIdOnExtollNetwork. Another type further

combines the ExtollAddress with this compound type to a new compound coordinate type

named ExtollAddressOnExtollNetwork.

High level coordinates are defined for each configuration location on the system. These high level

coordinates will then be used by the haldls abstraction layer (cf. Section 8.4.6). If they are located

in an EXTOLL Registerfile somewhere on the network, the high level coordinates are concatenated

with the ExtollNodeIdOnExtollNetwork coordinate type. Generally, all compound types

have member functions providing conversions to one of the original types.

For the spike event communication architecture, as well as for any existing design hier-

archy in the BrainScaleS system, the same method of concatenating coordinate types is

used to create a hierarchical coordinate structure. For example, a basic coordinate type

ExtollSpikeCommSplitOnFPGA is defined, modelling the two parallel data paths in the spike

communication architecture (cf. Section 7.8).

164

8.4 Software Integration

8.4.5 The fisch Instruction Layer

The FPGA Instruction Set Compiler for HICANN (fisch) abstracts arbitrary FPGA instructions, im-

plemented by the communication layer (hxcomm), to a form of register-like read and write instruc-

tions. This is done in the form of container classes. For example, this includes containers for

creating Omnibus or JTAG transactions, timing instructions or the creation of spike event stimuli.

Each container class is directly referenced to a corresponding coordinate type.

In the context of this work, fisch containers have been added for access transactions to the EXTOLL

Registerfile via the Omnibus (cf. Section 3.2.5 and Section 7.6), as well as for the new barrier-

and interrupt instructions (cf. Section 7.2.2). The former defines a Registerfile access with 64 bit

payload and performs two Omnibus accesses to two subsequent Omnibus addresses according

to the requested Registerfile address. The data-width converter unit on the FPGA will collect

these Omnibus transfers and convert them into a single Registerfile transfer (cf. Section 7.6.2).

There are two variants of this container class. One is solely for Registerfile accesses on the

local FPGA, while the other also supports remote Registerfile accesses, mastered by the local

FPGA playback executor. In order to calculate the respective address, the respective member

function of the container takes a coordinate instance of the respective type. For example, for

local-only accesses, this is an ExtollAddress coordinate, while for network-global accesses

an ExtollAddressOnExtollNetwork is required.

For the new barrier- and interrupt wait-instructions, the existing wait-until instruction was amended

by two new variants accordingly.

8.4.6 The haldls Abstraction Layer

This hardware abstraction layer defines and implements container classes modelling the detailed

structure of the configuration and status space on the BrainScaleS system. This exemplarily includes

configuration containers for the neuron and synapse circuits on the BrainScaleS ASICs as well as for

settings on the FPGA. These high level containers are linked to one or multiple of the basic access

containers in the fisch (Section 8.4.5) library. Every haldls container offers a member function that

calculates the respective low-level address coordinate, using an input of its associated high-level

coordinate type.

In the scope of this work, new containers have been added in the haldls layer for Registerfile loca-

tions related to configuration and status readout of the barrier- and interrupt units (cf. Section 4.1.2

and Section 7.2.2) as well as the spike event communication architecture, described in Section 7.3

and Section 7.5. Also some native Omnibus configuration containers were added for the event

switching unit, described in Section 7.1. These containers thereby also rely on newly added coordi-

nate types (cf. Section 8.4.4).

The haldls library also implements an extensive test library that tests every software container and

the underlying hardware implementation for consistency with respect to data integrity after writing

and reading back configurations. This test-suite has been successfully executed via the NHTL-Extoll

transport layer, thereby also verifying the correct implementation of the NHTL hardware transport

layer on the FPGA.

165

8 Commissioning

8.4.7 The calix Calibration Layer as NHTL Stress Test

On top of the hardware abstraction level, the calix library implements algorithms and routines for

calibration of the BSS-2 neuromorphic hardware system, mainly concerning the analogue circuits

on the HICANN-X ASIC. Although this layer has not been changed in the scope of this work, it yet

serves as an extensive stress test to the NHTL-Extoll and NHTL transport layer, as the calibration

routines perform lots of playback program execution cycles and transfer loads of measurement and

calibration data for the extensive analogue configuration space of the BSS-2 ASIC.

Despite that the execution of the main calibration routine has initially re-exposed and suffered from

the extensive latency spikes observed and described in Section 8.4.2, finally the calibration routine

has successfully and reliably been executed via the EXTOLL transport layer.

Thereby, probably a notification message being unnoticed by the libRMA could not trigger the

release of space in the host’s receiving ring-buffer. This would eventually lead to stalling the data

transfer from the FPGA’s playback executor to the host, also stalling the execution of the playback

program, as more data arrives from the HICANN-X ASIC. This finally lead to expiration of the

configured timeout value (defaulting to 0.1 s) in the playback executor. Accordingly, the problem

could successfully be hidden by simply increasing this timeout value to around 5 s in the calibration

routine. However, this is not a viable work-around as it would only hide the symptoms of the actual

problem, while potentially also hiding unrelated problems that would not be detectable with such an

excessive timeout.

Instead of increasing the timeout value, the underlying problem could be further significantly rar-

efied by strongly decreasing the notification rate from the NHTL. Here the underlying mitigation

mechanism builds on the fact that for the test in Section 8.4.2 the obtained occurrence rates are abso-

lute, as each message round-trip will wait for the respective notification. However, when the rate of

notifications per number of messages is decreased, also the occurrence rate of the observed problem

per number of messages will decrease likewise.

In summary, with decreased notification rate, the calibration could successfully be executed without

modifications.

8.5 Inter-Chip Latency Measurement

In order to obtain first results for the spike event latency between two chips, connected across an

EXTOLL network, the postsynaptic potential (PSP) trace of a single neuron has been connected to

an analogue readout pin of the BSS-2 ASIC and from there to a GPIO pin of the chip-carrier board

(cf. Section 3.1.1 on page 35), from where they can be recorded using an oscilloscope. This has

been done on two individual BSS-2 ASICs in order to compare the time-course of the respective

PSP traces on an oscilloscope. The experiment thereby stimulates a neuron on the first chip which

emits spike events that are sent across the network to a neuron on the second chip.

A screenshot from the oscilloscope during this measurement can be seen in Figure 8.12. The latency

is now measured between the time where the PSP of the first neuron drops and the time where the

PSP of the second neuron starts rising. In this example a delay of 1.90 µs is measured between the

oscilloscope cursors. For these measurements, the accumulation timeout has been set to a mini-

mum value and received events are immediately forwarded to the second chip without waiting for a

166

8.5 Inter-Chip Latency Measurement

Figure 8.12: Screenshot on the oscilloscope measurement of the inter-chip spike event latency. The
presynaptic spike-times are measured at the point where the voltage trace starts drop-
ping while the postsynaptic spike-times are measured at the point where the respective
voltage trace starts rising.

configurable axonal delay.

1.6 1.8 2.0 2.2 2.4 2.6 2.8
Latency [µs]

0

2

4

6

8

Co
un

t

Inter-Chip Spike-Latency

SAF, 31: (2.10± 0.32) µs
VCT, 31: (1.94± 0.21) µs

VCT, 8: (1.95± 0.19) µs
VCT, 2: (1.86± 0.18) µs

Figure 8.13: Histogram of the measured inter-chip latency with different settings of the EXTOLL NP
on the FPGAs. These settings encompass whether packets are inserted to the network
in SAF- or VCT mode and how many words are required in the NP’s buffer in order to
start transmitting the packet.

167

8 Commissioning

The described measurement is repeated multiple times with different settings of the EXTOLL NP

on the FPGAs. These settings encompass whether packets are inserted to the network in SAF- or

VCT mode and how many words are required in the NP’s buffer in order to start transmitting the

packet. As these settings directly control a packet’s latency, they pose potential for optimisation

with respect to the default values (SAF with 31 words required). These default values are of course

not ideal in terms of latency, but were chosen in order to compact the transmission of packets to an

end-to-end fashion. However, as the NHTL unit and the accumulation buffers already take care of

this, the latency can be optimised here.

Results are plotted in histogram form in Figure 8.13. One can observe that the mean inter-chip

latency improves by around 16 ns only through switching from SAF mode to VCT. Changing the

amount of required words from 31 to 8 does not significantly change the latency, probably because

the transmitted packets are smaller than this threshold and therefore a timeout takes precedence

anyway. However, further lowering the threshold to 2 again improves the mean latency by about

9 ns. In total, the best optimised setting (VCT, 2) exhibits latency values in a range of

lev = 1.61µs to 2.25µs . (8.9)

It should be noted that generally the latency exhibits a standard variance between 18 ns and 32 ns,

which also decreases in the direction of optimised settings. An explanation for these rather large

latency variations is the interleaved transmission of spike event packets together with host-traffic

containing e.g. MADC data traces, which have been enabled for comparison with the oscilloscope

readings. If a spike event packet requests to be sent while a host-packet is already underway, the

spike packet has to wait until the host-packet has been fully injected to the network, causing extra

latency. As this extra latency also improves with the configuration optimisation, this also explains

the observed trend in latency variation.

The expected numbers for the inter-chip transmission latencies have already been estimated in Sec-

tion 7.5.3.1. The total inter-chip link-latency can be estimated between 512 ns and 868 ns according

to (Karasenko 2020). This variation of course also contributes to the observed latency variation.

When subtracting these reported values from the measured latency range, a remaining portion of the

latency is obtained that can be attributed to the network transmission

ltrans = lev − llink = 1.098µs to 1.382µs . (8.10)

The middle value of this range is 1.240 µs which is about 211ns
8 ns

clk
≈ 26clk higher than the expected net-

work transmission latency of 1.029 µs according to Section 7.5.3.1. This deviation can be attributed

to the additional latency caused by interleaved host traffic (0 clk to 64 clk due to the network MTU

of 64 QW), which on average shifts the mean latency to higher values. To a small portion it will also

be attributed to the additional latency of the spike event data path described in Chapter 7.

In summary, the measured latency range agrees well with the estimated network transmission latency

in Section 7.5.3.1.

The results of these measurements have been presented in a spotlight presentation at the 9th Annual

Neuro-Inspired Computational Elements (NICE) online workshop (cf. Thommes, Bordukat, et al.

2022).

168

8.6 Systime and Experiment Synchronisation

8.6 Systime and Experiment Synchronisation

The concept of Barrier- and Interrupt operations, as developed by (Burkhardt 2007) and implemented

in the EXTOLL hardware (Burkhardt 2012) has been summarised and explained in Section 4.1.2 of

this thesis. Building on this concept, Section 7.2 introduced a method of synchronising a global

systime across multiple FPGAs in an EXTOLL network using the provided global Interrupt func-

tionality. As the EXTOLL Interrupt relies on precise measurements of the particular link latencies

in the network, this Section will go into detail about these measurements. As the measurement

routine for the Interrupt operation is not provided by EXTOLL at the current time, it had to be

implemented in the course of this work. To our best knowledge, this is also the first characterisa-

tion of the EXTOLL global Interrupt operation. In (Burkhardt 2012) the Barrier operation has been

characterised in simulation and in a small compute cluster.

8.6.1 Link Delay Measurements

In order for the Interrupt operation to function as intended, the delay counter on every node has to

be configured according to the actual link latencies between nodes in the network. For the precise

measurement of these latencies, the Interrupt units implement a dedicated mechanism, measuring

the round-trip delay of an Interrupt message on the respective link. With this mechanism, a timer on

the initiating node starts counting clock cycles when the Interrupt message is created. The message

is then sent on its usual path across the link and looped back at the other side’s node. The counter on

the source node is stopped, as soon as the circulated Interrupt message is received. In the first place,

the measurement cycle is started by writing to a specific Registerfile address.

This round-trip measurement has been conducted for each link and each direction in a small EXTOLL

network consisting of one Tourmalet ASIC and four BrainScaleS FPGAs. Figure 8.14 shows the

network used topology and the different modalities that the round-trip latencies have been mea-

sured with. The measurements have been carried out, either mastered by a playback-program (cf.

Section 3.2.2) on one of the FPGAs, or by a measurement script on the host-computer, where the

Tourmalet card is mounted. During the measurements, each node (in the following referred to as

experiment master) has mastered the measurement of each link and each link has been measured in

both directions, i.e. once initiating the round-trip message at the local side and once at the remote

side of the respective link. Results of these measurements are shown in Figure 8.15 and Figure 8.16.

Thereby, for each link, all measurements from different experiment masters have been plotted on the

same axes and separated by blue vertical dashed lines.

Because of the different clock frequencies on the Tourmalet ASIC (600 MHz) and the BrainScaleS

FPGA (150 MHz, compare Section 8.2.2), the numbers of measured clock cycles on both node types

differ by a factor of approximately four. The converted mean values in units of ns match in the range

of one standard deviation.

Furthermore, it can be observed that if measuring the link starting at the FPGA side, the measured

latency values behave less regular if the experiment master measures its own link (Figure 8.15, M-
F1 at link 1-3, M-F2 at link 2-3, M-F4 at link 4-3 and M-F5 at link 5-3) and more regular otherwise.

If measuring the link from the Tourmalet side (Figure 8.16), this observation is inverted.

A possible explanation for this can be found when looking at the messaging patterns indicated with

169

8 Commissioning

����

���� ���� ���� ��	�

(a) FPGA based measurement of a remote link
starting at the FPGA.

����

���� ���� ���� ��	�

(b) FPGA based measurement of the own link start-
ing at the FPGA.

����

���� ���� ���� ��	�

(c) FPGA based measurement of a remote link
starting at the Tourmalet.

����

���� ���� ���� ��	�

(d) FPGA based measurement of the own link start-
ing at the Tourmalet

����

���� ���� ���� ��	�

(e) Tourmalet based measurement starting at the
FPGA.

����

���� ���� ���� ��	�

(f) Tourmalet based measurement starting at the
Tourmalet.

Figure 8.14: Different measurement modalities for the link round-trip latencies in the network. The
experiment is executed on the blue nodes while the red nodes initiate the round-trip
message.

coloured arrows in Figure 8.14. By comparing the measurement modalities shown in Figure 8.14

with the results in Figure 8.15 and Figure 8.16, one can see that the values behave more regular,

always when the Registerfile write-message triggering the actual measurement (shown with a blue
arrow in Figure 8.14) does pass the link to be measured before the measurement is started. This

prepares the EXTOLL Link-Ports on either side of the link to be in the same state before every

measurement and thereby stabilising the latency.

Notably, when the measurement is mastered by a script on the host-computer, the latency is always

either regular or irregular for each link, depending on the start-side for the round-trip. This is because

170

8.6 Systime and Experiment Synchronisation

1300

1325

de
lay

[n
s]

195

200

de
lay

[cl
k]

M-F1 M-F2 M-F4 M-F5 M-T3

interrupt round-trip 1-3

interpolated delay values mean delay =(1322.1± 7.9) ns

1250

1275

1300

de
lay

[n
s]

190

195

de
lay

[cl
k]

M-F1 M-F2 M-F4 M-F5 M-T3

interrupt round-trip 2-3

interpolated delay values mean delay =(1289.9± 9.8) ns

1200

1225

1250

de
lay

[n
s]

180

185

190

de
lay

[cl
k]

M-F1 M-F2 M-F4 M-F5 M-T3

interrupt round-trip 4-3

interpolated delay values mean delay =(1241.5± 7.5) ns

1150

1175

1200

de
lay

[n
s]

0 100 200 300 400 500
measurement number

175

180

de
lay

[cl
k]

M-F1 M-F2 M-F4 M-F5 M-T3

interrupt round-trip 5-3

interpolated delay values mean delay =(1192.5± 9.3) ns

Figure 8.15: Results of the round-trip measurements starting at the link’s FPGA side. Vertical lines
indicate the border between different measurement masters, i.e. which node was used
to configure the measurement. The respective master node is indicated by the blue text
labels.

171

8 Commissioning

1280

1300

1320

1340

de
lay

[n
s]

780

800

de
lay

[cl
k]

M-F1 M-F2 M-F4 M-F5 M-T3

interrupt round-trip 3-1

delay values mean delay =(1314.9± 8.2) ns

1260

1280

1300

de
lay

[n
s]

760

780

de
lay

[cl
k]

M-F1 M-F2 M-F4 M-F5 M-T3

interrupt round-trip 3-2

delay values mean delay =(1283.7± 9.2) ns

1200

1220

1240

1260

de
lay

[n
s]

720

740

760

de
lay

[cl
k]

M-F1 M-F2 M-F4 M-F5 M-T3

interrupt round-trip 3-4

delay values mean delay =(1235.3± 8.7) ns

1160

1180

1200

de
lay

[n
s]

0 100 200 300 400 500
measurement number

700

720

de
lay

[cl
k]

M-F1 M-F2 M-F4 M-F5 M-T3

interrupt round-trip 3-5

delay values mean delay =(1186.0± 9.0) ns

Figure 8.16: Results of the round-trip measurements starting at the link’s Tourmalet side. Vertical
lines indicate the border between different measurement masters, i.e. which node was
used to configure the measurement. The respective master node is indicated by the blue
text labels.

172

8.6 Systime and Experiment Synchronisation

in this case every link is equal with respect to the Tourmalet node and the respective link will never

be pre-conditioned when starting at the (local) Tourmalet and always will be pre-conditioned when

starting at the (remote) FPGA.

Another observation is that the measured latency values are bimodal, i.e. mostly jump between two

values separated by a constant interval. This interval is independent of the direction of measurement

(20 ns, corresponding to 3 clk on an FPGA and 12 clk on the Tourmalet), which can be attributed to

the round-trip nature of the measurement. This effect is most apparent in the cases where the latency

is steadied by link preparation through the triggering Registerfile-write message. In cases with

irregular latency values, where the links are not pre-conditioned, the values perform some drifting

movement, while keeping the same constant interval. This can for example be clearly observed

in Figure 8.16. In some cases, this pattern however is (partly) hidden away by sampling effects

probably created by the repeat rate of measurements.

In order to fully explain this observed latency behaviour a deep insight into the hardware implemen-

tation of the link would be necessary. However, as the original purpose of these measurements is

to obtain a typical delay value for configuring an interrupt synchronisation tree, these (systematic)

latency variations are not of detailed importance. Instead, an averaged value plus standard deviation

uncertainty of the measured round-trip latency will be used.

Hereby, it is important to note that this mean value does not experience a systematic drift on relevant

timescales. This has been validated by performing these measurements at large intervals at the order

of minutes up to days, yielding the same values. However, systematic offsets in the mean delay value

have been observed after powercycling either the FPGA or the Tourmalet on either side of a link.

This is exemplarily shown for the link between FPGA node 1 and Tourmalet node 3 in Figure 8.17.

The reason for these systematic offsets is believed to be the repeated link training, finding a slightly

different agreement on the mutual parameters.

Because of this powercycle effect, it was decided to always repeat a fresh measurement cycle of all

link latencies and setting up a new Interrupt tree before performing an experiment across multiple

BSS-2 FPGAs.

8.6.2 Interrupt- and Barrier Tree Generation

Having measured the round-trip latencies for each link in the network, the task is now to derive

delay values in units of clock cycles for each node that is part of the interrupt-group which is to be

organised in a virtual tree topology. The tree structure is thereby configured in the Registerfile of

the Interrupt units by storing the link-numbers towards the respective node’s children and towards

its parent node. The derivation of the target delay values for each node is illustrated in Figure 8.18.

Algorithmically, the derivation works as follows:

1. Find the longest distance in terms of link-delays (in time-units) from the root node to a leaf

node while constructing the tree.

2. Set the delay value for the root node to the total latency of the longest path plus a small offset.

The offset is required, as for technical reasons, the interrupt delay must at least be one clock

cycle at every node.

173

8 Commissioning

1280

1300

1320

1340

de
lay

[n
s]

1280

1300

1320

1340

de
lay

[n
s]

190

195

200

de
lay

[cl
k]

M-F1 M-F2 M-F4 M-F5
M-F1 M-F2 M-F4 M-F5

interrupt round-trip 1-3

before pwrcyc
after pwrcyc

mean delay =(1307.3± 9.2) ns
mean delay =(1321.9± 7.9) ns

1260

1280

1300

1320

1340

de
lay

[n
s]

1260

1280

1300

1320

1340

de
lay

[n
s]

0 100 200 300 400 500 600 700 800
measurement number

760

780

800

de
lay

[cl
k]

M-F1 M-F2 M-F4 M-F5
M-F1 M-F2 M-F4 M-F5

interrupt round-trip 3-1

before pwrcyc
after pwrcyc

mean delay =(1301.1± 9.1) ns
mean delay =(1315.7± 8.8) ns

Figure 8.17: Measurement of the round-trip latency before and after a powercycle of a node involved
in the measured link. The mean values differ systematically.

3. For each node in the tree, starting at the root, subtract the link latency from the parent node of

the parent’s delay value. Set this as the respective node’s delay value.

4. Convert the delay values from time-units to clock cycles using the respective node’s operation

frequency.

It should be noted that as the nodes are generally operating at different clock speeds, it is impor-

tant to perform the calculations in common absolute time units and only convert the result to clock

cycle units relative to the respective clock frequency afterwards. Following this constraint, the slow-

est clock frequency in the network determines the offset value as the slower nodes cannot wait a

fractional number of cycles for balanced delays.

174

8.6 Systime and Experiment Synchronisation

�

� �

�

��

� �

��

�� �

� � � � � �

�����������

�������	

�������
 �������� �������� ������� ������	 �������

��������

Figure 8.18: Exemplary derivation of interrupt delays from known link latencies in an interrupt
tree. The longest leaf-path serves as basis for the overall global interrupt delay. For
technical reasons, the delay has to be at least one cycle.

8.6.3 Interrupt Synchrony Measurements

Now, after having described the procedures of link delay measurements and creation of an interrupt

tree, these shall be used in order to measure the actual synchrony of the Interrupt signal arriving at

the different FPGAs.

The experiment protocol is defined as follows:

1. a) Measure the latencies of every link from a specific FPGA as playback master.

b) Repeat step 1a 100 times in a single playback program with minimal time in between.

c) Repeat the measurement playback program from step 1b 3 times.

d) Calculate the average delay for every link.

2. Build an interrupt tree using the delays from the previous step 1 using a specific node as tree

root.

3. Capture the time, when the interrupt signal is registered at the FPGA logic using an Oscillo-

scope attached to GPIO pins connected to the interrupt signal.

4. Repeat steps 1 to 3 300 times with 0.5 s time in between.

5. Repeat step 4 for every combination of playback master and root node.

An exemplary screenshot of a step 3 oscilloscope measurement is presented in Figure 8.19. The

channel traces respectively depict the interrupt signal at each FPGA node, lasting for a single clock

cycle. The oscilloscope has been configured to automatically measure the mutual skew between the

four signals at their respective rising edge onset point.

Figure 8.20a shows the raw results of these measurements after step 4. The measured skews are

thereby, without loss of generality all plotted relative to node N1 for comparability. One can observe

that the individual traces always jump between values that are separated by a clock period of 8 ns.

175

8 Commissioning

Figure 8.19: Oscilloscope screenshot of the interrupt synchrony measurement (day A). Channels
translate to node-ids as follows: C1 - N4, C2 - N1, C3 - N2, C4 - N5.

−6
−5
−4
−3
−2
−1

s r
el

[8
ns

clk
]

0 50 100 150
time [s]

−50

−40

−30

−20

−10

s r
el

[n
s]

R1-M1, skew rel. to N1

N4, sclk = (−3.459± 0.039) ns
N2, sclk = (2.365± 0.049) ns
N5, sclk = (3.479± 0.046) ns

(a) Raw data with offsets due to clk-skew (sclk) be-
tween FPGAs.

−6

−5

−4

−3

−2

−1

s r
el

[8
ns

clk
]

0 50 100 150
time [s]

−50

−40

−30

−20

−10

s r
el

[n
s]

R1-M1, skew rel. to N1

N4
N2
N5

N4, ssync= −3.6± 1.1 clk
N2, ssync= −3.9± 1.1 clk
N5, ssync= −3.2± 1.2 clk

(b) Corrected synchronisation-skew (ssync) between
FPGAs with extracted mean values and uncer-
tainties.

Figure 8.20: Postprocessing and extraction of raw measurement data for the relative interrupt skew
between FPGAs.

However, the skew between distinct FPGAs traces is not aligned to multiples of a clock period. This

is due to the fact that the FPGAs do not operate on a synchronised clock signal, but rather exhibit an

intrinsic clock skew that can be extracted from these measurements by rounding the raw values to

the next 8 ns grid position.

After correcting the measured skew values with respect to the respectively extracted clk-skew, the

pure interrupt synchronisation skew which is the goal of these measurements can be determined

176

8.6 Systime and Experiment Synchronisation

in units of clock cycles, as shown in Figure 8.20b. The skew has been averaged for each node

and marked in Figure 8.20b with horizontal lines for the mean value and the respective standard

uncertainty.

����

����

���� ���� ��	�

(a) One FPGA is playback
master and interrupt root at
once.

����

���� ���� ���� ��	�

(b) The Tourmalet is interrupt root and
an FPGA is playback master.

����

����

���� ���� ��	�

(c) One FPGA is playback
master and another one is
interrupt root.

Figure 8.21: Different modalities for the Interrupt operation in the prototype network.

This is now repeated for every possible interrupt operation modality according to step 5. Figure 8.21

shows the principally distinguished modalities according to Section 8.6.1 and Section 8.6.2. In the

small prototype network used in this work, the interrupt tree can have two levels at maximum below

the root, if one of the FPGAs is configured as root of the interrupt tree. If the Tourmalet ASIC is

configured as root, the tree has only a single level. The other distinction criterion is, which FPGA

node acts as playback master, as already discussed in Section 8.6.1. This determines, whether some

(and which) links are pre-conditioned for the latency measurement and the interrupt operation. As

the latency measurement is averaged over a total of 300 iterations in step 1, the changed irregularity

of the measured latency should not have an impact on the interrupt operation. However the links

will be (un-) pre-conditioned also in the actual interrupt operation based on which node is to be the

experiment master, which will probably have an impact on the interrupt accuracy.

The overall results of the step 5 are shown in Figure 8.22. In order to assess the overall stability of

the measured observations, the measurements have been repeated twice with a time distance of 5

days, shown in Figure 8.22a and 8.22b. Every data point in these two plots shows an average skew

value together with its associated uncertainty error-bar.

The first important observation is that the extracted clock-skew sclk is constant and very precise, as

all values are the same on both days and for every measurement modality. Additionally, the error-

bars are so small that they are not perceivable in the plots. Overall, there is only a single outlier for

R4M1, where also the synchronisation skew ssync shows a clear outlier at every node.

From the previously made link pre-conditioning considerations, one would expect that the FPGA

node acting as interrupt root would exhibit a higher skew with respect to the other FPGA nodes.

This is considered to be the case, as by notifying the root to start the interrupt operation, the root’s

link is pre-conditioned. From these considerations, one would also expect that in case of the root

node also being the master, no link should be pre-conditioned counteracting the previous effect.

177

8 Commissioning

−3

−2

−1

0

1

2

3

4

[cl
k]

R1
M

1
R1

M
2

R1
M

4
R1

M
5

R2
M

1
R2

M
2

R2
M

4
R2

M
5

R3
M

1
R3

M
2

R3
M

4
R3

M
5

R4
M

1
R4

M
2

R4
M

4
R4

M
5

R5
M

1
R5

M
2

R5
M

4
R5

M
5

−30

−20

−10

0

10

20

30
[n

s]

skew rel. to N1

N2: ssync

N4: ssync

N5: ssync

N2: sclk
N4: sclk
N5: sclk

(a) Measurements on day A.

−5

−4

−3

−2

−1

0

1

[cl
k]

R1
M

1
R1

M
2

R1
M

4
R1

M
5

R2
M

1
R2

M
2

R2
M

4
R2

M
5

R3
M

1
R3

M
2

R3
M

4
R3

M
5

R4
M

1
R4

M
2

R4
M

4
R4

M
5

R5
M

1
R5

M
2

R5
M

4
R5

M
5

−40

−30

−20

−10

0

10

[n
s]

skew rel. to N1

N2: ssync

N4: ssync

N5: ssync

N2: sclk
N4: sclk
N5: sclk

(b) Measurements on day B.

Figure 8.22: Collected mean values of clock-skew and synchronisation-skew for all measured
modalities.

Another expected effect on the measured skew arises from the fact that a root FPGA node is two

layers apart from the other FPGAs in the interrupt tree. This is expected to multiply the calibration

178

8.6 Systime and Experiment Synchronisation

inaccuracies and therefore also effect the relative skew.

Regarding the results shown in Figure 8.22, one should pay attention to the fact that all values are

plotted relative to the node N1. Therefore relative skews between other node pairs have to be read

from the position of those data points relative to each other, rather than their absolute position on the

vertical axis.

When looking at the results, it can be clearly observed that the respective root node exhibits a larger

absolute value relative to N1 and also a larger distance relative to the other nodes. For a concrete

result-examination, in Figure 8.22a, the values of N2 rise above N4 and N5 when it is configured

root, while N5 rises above the two others accordingly. Also, N4 rises relative to the others accord-

ingly although it does not cross their lines due to its lower relative starting point. Furthermore, also

for N1 being the root, all other nodes’ skew values drop in their absolute axis-value, resembling a

rise of N1 as their node of reference. This can also be confirmed on the second day measurement in

Figure 8.22b.

However, the counteracting effect expected for root-nodes also acting as experiment master cannot

clearly be observed. It is therefore inferred that the distance from the root to the leafs has a larger

effect, than the link pre-conditioning.

Altogether, it should be noted that all presented values jump around a lot, which is manifested in the

error-bars in both plots being rather large with respect to the previously described trends. Also it is

largely possible for single nodes to exhibit persistent offsets, as can be seen in Figure 8.22b, where

all measured skew values are negative relative to N1, but otherwise exhibit the same patterns as in

Figure 8.22a.

In summary, it can be found that the interrupt operation is precise with an overall inter-FPGA-

uncertainty uint of approximately up to 5 8 ns clock cycles in both directions in the worst case

uint ≈±5clk =±40ns . (8.11)

However, it should be noted that this result has been obtained in a relatively small prototype network

and might not be valid in a larger network. For example it could be that in a larger network with a

deeper interrupt tree, the differences in the skew, depending on the root node were even larger. In that

case there are several methods of mitigation towards this effect. First, under the assumption that the

observed effect is predictable with respect to the tree-distance, one could embed a countermeasure

into the delay calibration. Another possibility would be to arrange the network in such a way that all

FPGAs are leaf nodes at the same level and operate a Tourmalet node as root. This would be effective

except for the link pre-conditioning effect that could not be observed in the prototype network.

8.6.4 Synchronous Experiment Execution

On the topmost software level, experiments are defined and executed using a modelling wrapper

like PyNN (Davison et al. 2009; Electronic Visions(s), Heidelberg University n.d.[j]) or HxTorch

(Electronic Visions(s), Heidelberg University n.d.[h]; Paszke et al. 2019; Spilger et al. 2023). Up to

recently, the BrainScaleS-2 experiment flow involved only the execution of single-chip experiments

by connecting to a specific single BSS-2 FPGA and transferring a playback program for execution.

In the work of (Straub 2023), an HxTorch experiment has been partitioned into multiple single-chip

179

8 Commissioning

executions that can be run sequentially on the same chip. In continuation of this work it will also

be possible to run these executions independently in parallel on multiple chips, depending on the

partitioning structure. What is currently missing, is the possibility to execute an experiment across

multiple BSS-2 ASICs while exchanging spike events in real time between them. Here, the focus

shall be on the PyNN wrapper, but in principle the following synchronisation strategy should also be

applicable to other modelling wrappers like HxTorch.

As summarised in Section 3.3, a PyNN experiment runs on a global simulator state which is ini-

tialised be a setup-call and the creation of neuron populations and projections between them before

it can be executed and finally evaluated. Without non-trivial changes to the underlying grenade

experiment description layer, the PyNN simulator will control a single pair of BSS-2 FPGA and

HICANN-X ASIC.

In order to run a neuromorphic experiment across several BSS-2 ASICs, measures have to be taken

to partition the experiment execution between the systems. First, the systems have to be configured

for sending outgoing spike events to the correct remote system, where the receiving neurons of the

inter-chip projections are placed. Second, the systimes and execution flow of playback programs

have to be synchronised in order to make the spike-times compatible across inter-chip projections.

To achieve the former goal, the mapped output spike-labels of the source population and the input

synapse-labels of the destination populations (cf. Section 3.1.1) have to be retrieved from the grenade

data structures. Therefore, the neuron populations need to be defined and processed by grenade for

mapping to hardware spike-labels. This process is triggered with a dummy-execution of the PyNN

simulator by calling pynn.run(None) without specifying an experiment execution time. After

having retrieved the labels, they have to be configured to the FPGAs’ Destination Mapping lookup-

tables together with the EXTOLL node-id of the destination FPGA (cf. Section 7.3.2).

Due to the global simulator state of PyNN and the fact that python internally serialises the execution

of threads with a Global Interpreter Lock (GIL) (Eggen et al. 2019), it is not possible to run multiple

PyNN instances in parallel using threads. Instead, one has to partition the execution into several

processes, each possessing an own python interpreter. This significantly complicates the exchange

of information, like the receiving synapse labels, between those instances. Consequently, the input

synapse labels of one experiment partition have to be communicated to the process of that partition

emitting spikes to be sent to those synapses.

Finally, the goal of synchronising the execution flow of playback programs on multiple FPGAs

and PyNN processes, can be achieved by using the playback instructions for Barrier and Interrupt

operations (cf. Section 4.1.2 and Section 7.2.2, as well as Section 8.6.2).

The preparation and synchronisation procedure thereby involves the following steps:

1. Measure and configure the interrupt- and barrier tree according to Section 8.6.1 and Sec-

tion 8.6.2.

2. Create a new process for each BSS-2 FPGA-ASIC pair taking part in the experiment. Mark

one process as experiment master. For each process:

a) Define the part of the neural network to be emulated on this chip.

b) Retrieve the neuron- and synapse labels and make the latter available to the other pro-

cesses, e.g. using methods of shared memory.

180

8.7 The Synfire Chain Experiment

c) Configure the lookup-tables in the Destination Mapping unit of the FPGA local to the re-

spective process using the local emitting neuron labels and the remote receiving synapse

labels.

d) During experiment execution via injected configurations (cf. Section 3.3):

• pre-realtime:

– Arm the interrupt receivers in the Playback Executor for the global-interrupt

barrier-wait-operation (cf. Section 3.2.2) and the Event Switch for storing the

global systime offset (cf. Section 7.2.2).

– Perform a global Barrier operation and block playback execution until all FPGAs

have reached this point.

• inside-realtime-begin:

– Configure the Event Switch to forward events from the ASIC to the Event Com-

munication units (cf. Section 7.1).

– Perform a global Barrier operation.

– If this process is the experiment master, trigger a global Interrupt operation at

the root node of the configured interrupt tree.

– Wait until the Interrupt message has arrived. Now the systime is synchronised

and the systime offset is stored for timestamp conversions (cf. Section 7.2.2).

• inside-realtime-end:

– Configure the Event Switch to not forward events from the ASIC to the Event

Communication units anymore.

– Perform a global Barrier operation.

• post-realtime:

– Dis-arm the interrupt receivers.

e) Clean up the lookup-tables by invalidating the previously written entries.

f) Retrieve the experiment results (recorded spike trains and Analog to Digital Converter

(ADC) traces) and make them available to the original process.

3. Evaluate all the results after all processes have finished their execution.

8.7 The Synfire Chain Experiment

As a first multi-chip neuromorphic experiment, a Synfire Chain model was implemented across two

BSS-2 systems. Historically, the Synfire Chain model has been inspired by (Abeles 1991; Aertsen

et al. 1996; Diesmann et al. 1999; Gewaltig et al. 2001) and investigated with respect to its neural

signal propagation properties by (Kremkow et al. 2010). The latter work shows that this model

"increases the selectivity for propagation of synchrony through a feedforward network" and cites

this behaviour to be also observed in biological in vivo studies.

181

8 Commissioning

Generally, a Synfire Chain consists of multiple connected chain links, each consisting of an exci-

tatory and an inhibitory population of neurons. While the excitatory populations actively carry the

feedforward signal through the chain, the inhibitory populations mediate the activity of the excitatory

ones by being stimulated by the same feedforward signal, and inhibiting the excitatory population

in their local chain link. A depiction of this neural network topology is shown in Figure 8.23, where

the excitatory populations are coloured in red and the inhibitory populations are coloured in blue.

������

������

Figure 8.23: Population projection graph of a Synfire Chain network spanning two BSS-2 ASICs.
The excitatory populations will excite all neurons at the next chain link, while the
inhibitory populations will inhibit the excitatory neurons at their own chain link. This
synfire chain is broken into several parts which are connected back and forth between
the two chips. Activity is started through a stimulus projection at an excitatory input
population on Chip A. This figure is modified from (Müller, Emmel, et al. 2023) where
it has been contributed by the author of this thesis.

For benchmarking purposes, the Synfire Chain is connected back and forth between two synchro-

nised BSS-2 systems. Thereby, each break in the chain collects spikes from an excitatory population

and transfers them to the retrieved event-label addresses of an excitatory input population (boldly

dashed in Figure 8.23) on the remote chip, as explained in Section 8.6.4 and using the spike event

communication architecture described in Chapter 7. Stimulus input is injected at least at the first

chain link, but can be configured to be added at any chain break input population. Likewise, the

number of chain links and breaks can be configured for the experiment. The projection weights,

named as indicated in Figure 8.23 where chosen manually in order to obtain a well propagating sig-

nal. The chosen values in a range between [1,63] are listed in Table 8.1. Thereby the value for the

winh-exc weight is implemented as a free parameter, defaulting to −50.

Projection Weight
winp-exc 60
winp-inh 40
wexc-exc 50
wexc-inh 30
winh-exc -X = -50

Table 8.1: Chosen weight values for the Synfire Chain implementation. The winh-exc value is varied
with a default of −50.

The population sizes in the chain links respectively comprise 7 excitatory and inhibitory neurons.

182

8.7 The Synfire Chain Experiment

Figure 8.24: Resulting Synfire Chain activity diagrams of the synfire chain experiment with even
(a) and odd (b) number of chain breaks at the excitatory projections are presented here.
The neuron ids are numbered independently on both chips, and the respective spikes are
plotted on the same axis using different colours. Inhibitory spike trains are plotted at
the top while excitatory spike trains are plotted at the bottom half. The time axis is
given in hardware units. Full participation of all neurons in the Synfire Chain can only
be reached with an even number of chain breaks.

Figure 8.24 shows the resulting spike-trains from both chips with a number of 36 chain links per

chip, as this is the highest number implementable at the given population size and a total of 512

available neurons on each chip, using 504 neurons on each chip. On the left plot (a), the chain has

been broken 4 times, while it has been broken apart 5 times on the right plot (b). Due to the geometry

of the described topology (cf. Figure 8.23), only with an even number of chain breaks, the whole

chain will take part in the signal propagation. This can be seen in Figure 8.24 where on the right

plot (b), the neurons of the respective chip repeat their activation pattern at every cycle, while on the

left plot (a) they alternate.

Generally one can also observe that the inhibitory activation patterns are not as neat, as the excitatory

ones. This is very well expected as the inhibitory neurons moderate the excitatory ones, but not

themselves.

Figure 8.25 shows results obtained from changing the inhibitory weight winh-exc from the default

(−50, cf. Figure 8.24) to lower absolute values. When the inhibitory weight is lowered too much,

the signal-transmission starts blurring out (cf. Figure 8.25 (c) and (d)). It can be observed that the

number of events, accumulated per packet is quite low between 1.9 evt
pkt and 2.3 evt

pkt . This is because

in the Synfire Chain model exhibits serial activity rather than simultaneous activity. At the bottom

right plot (d) of Figure 8.25 one can observe a little higher number of events per packet, as more

activity is generated. However, this is still quite a small number and illustrates that even as the plot

may look like simultaneous spiking, the events are still quite sequential with an Inter Spike Interval

of the merged spike trains being larger than the default value for the packet timeout which is set to 50

183

8 Commissioning

Figure 8.25: Resulting Synfire Chain activity diagrams when lowering the absolute value of the in-
hibitory weight winh-exc. The Figure legends additionally show additional information
about the number of dropped events due to expired timestamps (drp-exp) and the num-
ber of events per network packet (evts-pp).

clock cycles. Furthermore, as Figure 8.25 (c) and (d) where both recorded with the same inhibitory

weight setting, the point in time when the Synfire Chain starts dispersing is somewhat random or

rather sensitively depending on small fluctuations in the activity rate at individual chain links.

Figure 8.26 shows experiment results obtained from changing the value of the modelled axonal

delay, as well as the timeout value for the accumulation of spike events to packets (cf. Section 7.3.3).

It is observed that the number of dropped events due to expired timestamp rises quickly when the

axonal delay is less than 250 clock cycles higher than the programmed timeout value (Figure 8.26 (a)

to (c)). In Figure 8.26 (a) the drop rate is even large enough to break the signal propagation through

the Synfire Chain, which is why the absolute drop number lowers in this case. With Equation (5.4),

this leeds to the conclusion that the total transmission delay through the network, including the two

184

8.7 The Synfire Chain Experiment

Figure 8.26: Resulting Synfire Chain activity diagrams when changing the modelled axonal delay
value for the inter-chip connections ((a) to (c)) as well as the packet aggregation timeout
value (d). The Figure legends additionally show additional information about the num-
ber of dropped events due to expired timestamps (drp-exp) and the number of events
per network packet (evts-pp). These plots have been recorded with unoptimised FPGA
NP settings in SAF mode.

chip-links, must be upper-bounded in the order of 250 clock cycles, corresponding to 2 µs. This

finding roughly agrees with the latency measurements in Section 8.5. The effect of increasing the

axonal delay can also be observed directly in the plots at the larger gaps at the inter-chip chain

breaks.

When increasing the packet aggregation timeout in Figure 8.26 (d) together with the delay, also an

increased number of now between 3.6 evt
pkt and 3.7 evt

pkt can be observed. This is however still less than

the expected maximum of 7 evt
pkt according to the population size. This shows that the excitatory spike

events in the chain links must be spread across more than approximately 2 µs in their time of arrival

185

8 Commissioning

at the accumulation bucket, as on average two packets are needed to transport them at a timeout

value of 250 8 ns clock cycles. This is despite that according to the spike train’s timestamp data,

the activity is actually spread across approximately 1 µs, as can be seen in Figure 8.27 and therefore

indicates a transmission spread of around 1 µs, probably introduced by the transmission from the

chip. One probable reason for this is the additional transmission of lots of MADC data and spike

events that are not transmitted across the network.

Figure 8.27: Zoom into Figure 8.26 (d).

It should be noted that the average value for the number of events per packet is calculated from a

total count of events and a total count of packets, retrieved from performance counter registers in the

FPGA, instead of having access to the actual packet sizes.

As described and measured in Section 8.5, the network latency can be optimised by configuring the

FPGA’s NP to operate in VCT mode instead of SAF and by reducing the number of words required

in the NP’s buffer to inject the first flit into the network to a minimum (the default value is 31 here).

This optimisation leads to the results shown in Figure 8.28.

Now it can be observed that approximately the same number of expired-timestamp-drops occur for

a lower axonal delay setting. From this finding one can deduce the network latency to be reduced

by approximately 30clk · 8 ns
clk = 240ns which matches the mean value improvement found in Sec-

tion 8.5.

186

8.7 The Synfire Chain Experiment

Figure 8.28: Resulting Synfire Chain activity diagrams when changing the modelled axonal delay
value. The Figure legends additionally show the number of dropped events due to
expired timestamps (drp-exp). These plots have been recorded with optimised FPGA
NP settings in VCT mode.

187

9 Conclusion

Finally this thesis will be concluded by summarising the presented achievements and discussing the

limitations of the presented implementation and how these can be improved in the future.

9.1 Summary

At the beginning of this thesis, an concise introduction is given on the background of neural infor-

mation processing in biology (Section 2.1), neuromorphic computing in general (Section 2.2), as

well as the principles and techniques of high-performance interconnection networks (Section 2.3),

which are essential for both massively parallel classical computers and large-scale neuromorphic

computing systems. Neuromorphic computing has been emerging as a specialised computational

approach to machine learning and artificial intelligence in the last decades.

The main contribution of this thesis is the design and implementation of a packet-based event com-

munication architecture for the BrainScaleS-2 neuromorphic computing system, using the EXTOLL

interconnection network technology. Both, the BrainScaleS-2 system (Chapter 3) as well as the

EXTOLL network technology (Chapter 4) have been introduced in detail. While BrainScaleS is a

mixed-signal accelerated neuromorphic computing system which emulates neural dynamics using

analogue electronics with a high speedup factor compared to biological timescales, the EXTOLL

network provides the high bandwidth, as well as the low latency and high sustained injection rates

of small packets, that is required to communicate neuromorphic spike events on those accelerated

timescales. Another vital advantage of the EXTOLL network is the relatively easy access to the

required network interface hardware units for an FPGA implementation, as the EXTOLL technol-

ogy has been developed by the former Computer Architecture Group (CAG) within the Institute of

Computer Engineering at University of Heidelberg and the EXTOLL company is a spin-off from

CAG. This facilitated direct personal communication and support from the responsible experts.

Chapter 5 gives an overview on the concept of packet-based event communication for neuromorphic

computing and puts it into context with respect to requirements regarding Quality of Service (QoS).

The concept is also compared to existing neuromorphic computing systems from the historical back-

ground of the BrainScaleS-2 system, as well as the SpiNNaker system which has been developed

in Manchester, parallel to the BrainScaleS system within the Human Brain Project, funded by the

European Union.

To summarise, spike communication has to provide stable transmission latencies between the em-

ulated neurons and synapses, which are placed on different chips, where the delay values can be

user-defined through the axonal delays in the neural network model implemented on the neuromor-

phic computing system (cf. Section 5.3.1). This latency constraint thereby scales with the acceler-

189

9 Conclusion

ation factor of the neuromorphic computing system with respect to the biological timescale, which

is usually at the order of ms. The transmission jitter, i.e. the variation in transmission latency, has to

be kept as low as possible, as timing variations introduced by the technical network implementation

would directly influence e.g. STDP learning at the receiving emulated synapses (cf. Section 5.3.2),

as well as integration of spikes from different sources.

Both, the latency and jitter constraint can be fulfilled by delaying received spike events at the desti-

nation node by a fixed amount of time which is defined by the modelled axonal delay and must be

larger than the maximum possible transmission latency through the network, including the process-

ing time at the source and destination (cf. Section 5.4 and Section 5.6). At the destination, events

generally have to be sorted if the delays between a source- and destination neuromorphic node are

inhomogeneous, or a destination node receives event streams from multiple source nodes.

In order to optimise the throughput in a packet-based network like EXTOLL with relatively large

header sizes, as compared to specialised event communication networks, this theses introduces the

concept of so-called bucket buffers. These accumulate spike events to form larger network packets,

targeting common destination nodes. Thereby, the ratio of the header size with respect to the payload

can be optimised. According to the used packet types which are summarised in Appendix B.2, the

payload efficiency of the presented implementation using the EXTOLL network ranges between

20 % and 94 %.

Chapter 6 starts by formally defining properties of an accumulation bucket. For this purpose, three

criteria are defined for when a packet has to be closed and sent across the network while accumu-

lating events for a common destination (Section 6.1.1), namely when it is full with respect to the

network’s MTU, when one of the accumulated events crosses a timeout threshold with respect to its

arrival timestamp, as well as if the bucket is required for the accumulation of events towards another

destination. The latter case can only occur, if there are more appearing destinations than bucket

buffers available.

Furthermore, different strategies are defined for assigning the different event destinations to the

available buckets (Section 6.1.2). These can be either static, meaning that a given destination is

always mapped to the same bucket, or dynamic if the assignment is determined based on the current

operating state of all buckets.

Following these definitions, a mathematical method, using the concept of Markov Chains, is derived

for evaluating the expected number of events that can be accumulated and how long this is expected

to take (Section 6.2), if the average event rate is high enough to not exceed the timeout condition first.

This analysis is quantitatively carried out for the expected accumulation length with different static

assignment strategies (cf. Section 6.1.2.1) and exemplary destination distributions in Section 6.3.

A metric is proposed in Section 6.3.5 to approximate the expected number of accumulatable events,

namely the ratio of the most probable destination’s probability to the sum of all other destinations’

probabilities at the particular bucket (Equation (6.58)). This metric is used in Section 6.3.6 for a

proof of concept optimisation of the static assignment mapping of destinations with respect to their

probability of occurrence. In general, the assignment to- as well as the number of available buckets

should be optimised in a way that very frequent destinations are accumulated in individual buckets.

190

9.1 Summary

Other destinations assigned to those same buckets should be significantly less frequent in order to

not severely disturb the accumulation of those events with the more probable destination. From the

resulting plots from the different prerequisites, one can read the required number of buckets such

that buckets can be expected to be filled before a conflict will occur.

The distribution of event destination probabilities itself depends on the activity of the neural pop-

ulations, as well as their mapping to the multitude of neuromorphic chips. As described in Sec-

tion 6.1.2.3 and Section 6.3.1, these activity numbers might be a-priori unknown to the user, making

it impossible to optimise the probability distribution of destinations by adjusting the mapping of

populations. In that case, the assignment of destinations to buckets should be dynamically optimised

directly in the communication hardware (the FPGA firmware).

As is argued in Section 6.2.2.5 that the Markov Chain method is not applicable to dynamic as-

signment strategies (cf. Section 6.1.2.2), a simulation is additionally set up in order to evaluate the

performance of the dynamic RoundRobin strategy (AS.3). RoundRobin is representatively evaluated

amongst AS.3 to AS.6 on page 79, as it is argued in Section 6.1.2.3 that the other dynamic strate-

gies will in the worst case converge against RoundRobin assignment. Besides that, the simulation

is validated against the mathematical approach by simulating the previously analysed static assign-

ment strategies. The obtained stochastic simulation results thereby match the expectations from the

Markov Chain approach to the extent of simulation accuracy.

In summary, it can be found that for normally distributed destinations, RoundRobin Assignment on

average has the same performance as the Modulo assignment at the worst performing buckets. In any

case a uniform destination distribution is the worst possible case, as any accumulating destination

will be disturbed equally frequent by any other destination.

The expected time it takes, to accumulate a network packet until conflict has not been specifically

analysed. This decision is justifiable by the fact that the accumulation time (as argued in Sec-

tion 6.2.4.3) linearly depends on the average firing activity of the populations contributing to a

bucket’s input event stream. Effectively, the accumulation time is thereby linearly connected to the

expected accumulation length with an a-priori unknown factor. A quantitative analysis without a jus-

tified assumption on the contributing firing activity (which varies with the modelled neural network

and training) would not be expressive and is therefore omitted here. However, the requirement that

a destination conflict should on average occur after the timeout constraint closes a packet now leads

to a required number of buckets via the obtained analysis- and simulation results. Equation (6.54)

relates this requirement constraint to the size of the packet header as well as the size of a single event

and the desired limit for the header overhead or payload efficiency, respectively. For the EXTOLL

packet headers (cf. Appendix B.2) and the BSS-2 event coding scheme (cf. Section 7.3.3), the ratio

of header size to event size is 32B
8B = 4, so to reach a header overhead below a threshold oh or a

payload efficiency above a threshold epl, at least

E [Nacc]≥ 4 · 1−oh

oh
= 4 · epl

1− epl
= 4 · epl

oh
(9.1)

events have to accumulated. By choosing values for the desired header overhead or payload effi-

ciency threshold and plugging the result of this equation into one of the result plots in Chapter 6,

one arrives at a required minimal configuration of the bucket system under the respective destination

191

9 Conclusion

distribution for which that plot has been created. Thereby two things should be noted: First, the

EXTOLL network’s maximum payload size (MTU) of 496 B, corresponding to 62 to 124 events,

depending on whether they are packet as doublets or singlets and second, the required accumulation

time still depending on the mean event rate. The latter caveat has to be kept in mind when interpret-

ing the relatively low number of events transported per packet during the Synfire Chain experiment

in Section 8.7, where the event rate is quite low.

Chapter 7 in detail presents the event communication architecture which has been implemented

during this work. Here, one important contribution is the synchronised interpretation of transmit-

ted timestamps on different BSS-2 FPGAs in the EXTOLL network by use of the global interrupt

mechanism, developed by (Burkhardt 2007, 2012).

Events arriving from the BSS-2 neuromorphic ASIC are first indexed into a lookup table memory

to determine the assignment to a specific bucket buffer and to provide a translation to the synapse

address in the context of the receiving ASIC. Lookup entries are marked invalid by default at FPGA

reset. Thereby, events yielding an invalid, i.e. undefined lookup entry are dropped. This can be

used to filter out events that shall only be logged in the experiment trace but are not meant for an

inter-chip connection.

The buckets are configured to target a specific destination in the EXTOLL network which can also

be a multicast group. The accumulation time is limited by two static timeouts, one for the whole

packet and one for the ISI at the bucket’s input interface. Additionally, the buckets’ configuration

space contains the respective axonal delay that is added to every event’s timestamp and used at

the destination to eliminate the network transmission jitter including accumulation. As stated in

Equation (5.4), this value has to be large enough to contain all parts of the delay between creation of

the event on the source chip until the reception at the destination FPGA. According to (Alexander

Schmidt 2017) the transmission latency and -jitter between the destination FPGA and the receiving

synapse driver is handled inside the ASIC by adding another small delay to the timestamp and

therefore does not have to be included in the timestamp across the network.

If the axonal delay value is configured too small, events will be dropped at the destination FPGA as

they will arrive after the globally synchronised systime has passed their timestamp value. This effect

is also observed in the Synfire Chain experiment in Section 8.7 (cf. Figure 8.26 and Figure 8.28)

where it is used to estimate a value for the network delay. However, the receiving side also allows

to deactivate this check by configuration. The implemented delay buffer at the receiving side allows

to delay spike events for up to 214 clock cycles for biological timescale delays up to 130 ms with the

BSS-2 speedup of 1000, as has been motivated in Section 5.3.1 with reference to (Swadlow et al.

2012).

In Section 7.5.3.1, the network latency between two BSS-2 FPGAs, connected to the same EXTOLL

Tourmalet card, has been estimated to approximately 1 µs. This expectation has been confirmed by

measurement in Section 8.5 and indirectly also by the Synfire Chain experiment in Section 8.7. This

delay value is expected to scale in steps of approximately 75 ns in larger networks for each hop

across another Tourmalet node between the source- and destination FPGA, as the EXTOLL network

cards operate at a much higher frequency than the BSS-2 FPGAs.

192

9.1 Summary

The design of a bridging interface unit between the BSS-2 system configuration- and status readout

bus (Omnibus) and the EXTOLL Registerfile is described in Section 7.6. This has been necessary to

enable configuration and status readout of the EXTOLL Interrupt and Barrier units globally across

the network through the existing system access paradigm, mastered by the FPGA-internal Playback

Executor unit which is programmed via user-defined Playback Programs.

Overall, the communication architecture described in this thesis has been designed in a parametris-

able way such that e.g. the number of bucket buffers or parallel data paths can be selected at compile

time. This design approach and methodology is described in Section 7.8.

Finally, Chapter 8 describes the methods employed for verifying and testing the described imple-

mentation (cf. Section 8.1), as well as considerations for the physical FPGA implementation (cf.

Section 8.2) and the measures taken to seamlessly integrate the spike event communication into the

BSS-2 software stack (Section 8.4).

Last but not least, Sections 8.5 to 8.7 describe the measurements and experiments done on the system

for characterising and demonstrating the synchronisation of multiple BSS-2 FPGAs including spike

event communication across the EXTOLL network.

To begin with, the individual delays on EXTOLL links between the Tourmalet ASIC and the BSS-2

FPGAs have been measured in both directions respectively, which is described and discussed in

Section 8.6.1. The results of these measurements are required to precisely configure the EXTOLL

Interrupt units to balance out the transmission of global interrupt messages such that every node

in the network asserts an interrupt at the same point in time (cf. Section 4.1.2 of this thesis and

Section 3.4 in Burkhardt 2012).

Next, the overall accuracy of the global Interrupt operation has been assessed in a minimal network

of one Tourmalet and four FPGA nodes, using an oscilloscope to measure the absolute timing rela-

tion of the interrupt signals on every involved FPGA node. These measurements are described and

discussed in Section 8.6.3, yielding an overall uncertainty result of

uint ≈±5clk =±40ns . (8.11)

To our best knowledge, this is the first quantification of the EXTOLL global interrupt accuracy.

Finally, the operation of a neuromorphic network emulation spanning two BSS-2 ASICs is demon-

strated in Section 8.7, implementing the model of a Synfire Chain which describes a mechanism

of reliable signal propagation in biological neural networks according to (Kremkow et al. 2010).

Thereby, the activity crosses the network multiple times between parts of the chain. Experiments

conducted on this model have investigated the effect of tuning the inhibitory weight (Figure 8.25),

as well as the axonal delay and timeout configurations at the accumulation bucket. Hereby, the

estimated and previously measured network transmission delay values could be confirmed.

In summary, all considerations and developments, carried out in this thesis led to a functional system

which can be used for meaningful experiments. However, there are still some aspects that can

and should be improved or complemented in future work to increase the usability and application

193

9 Conclusion

coverage. The next Section will elaborate in detail on these aspects.

9.2 Outlook and Discussion

With the current implementation of the event communication architecture (as described in Chap-

ter 7), missing a mechanism for merging multiple event streams from different locations, only one

event stream from a single source node can be processed on the receiving side (for a description of

the underlying problem cf. Section 7.5.2). The algorithmic solution for this problem is commonly

referred to as priority queue.

In the BSS-1 system, a priority queue implementation based on a binary heap sort algorithm has

been implemented (Scholze, Henker, et al. 2010). However, this algorithm has a logarithmic time

complexity, because the insertion and retrieval of events in a binary tree data structure was im-

plemented using a single dual-port RAM, sequentially executing the binary search for the correct

insertion location. This might be justifiable if spike events sparsely arrive at the sorting interface

with occasional bursts. However in the limit case of high event rates using the full bandwidth of the

event interface (one event every clock cycle, compare Section 7.1.2) and especially with support for

very large delay values as provided with the current implementation, this poses a major bottleneck.

Furthermore, large accumulated event packets containing lots of events to be merge-sorted will also

lead to an increased required depth of the heap-sorting tree.

Alternative implementations of priority queues with constant insertion and retrieval complexity are

compared and discussed in (Kohútka 2022). The probably most promising priority queue archi-

tecture with respect to large buffer sizes while providing constant response time as needed for the

merging of event streams is the Heap Queue (Kohútka et al. 2018). This is basically a pipelined

version of the binary heap sort algorithm and uses one dual-port RAM per tree level. The response

time for insertion and retrieval of an element is reported to be two clock cycles. Therefore it will

be necessary to either drive the merging unit at double clock speed with respect to the remaining

event communication architecture, or to interleave the insertion and retrieval access through two

individual Heap Queues. When using this kind of priority queue, the sorting on the sending side

also becomes obsolete (cf. Section 7.3.1). With adding the merging unit, the design will become

generally applicable to scale up the BSS-2 system.

Another aspect that is currently not supported is accumulating events towards more destinations, than

buckets are available in the implemented design. This is caused by the fact, that the destinations are

currently configured directly at the bucket units rather than the destination mapping lookup table. If

there are more destinations to be mapped to accumulation buckets and the FPGA resources do not

suffice to further increase this design parameter, the bucket units need to be adapted to also allow

relabelling in case of a conflict condition at the input (cf. Section 7.3.3 and Chapter 6). In this

case, the static bucket assignment in the destination mapping lookup table (cf. Section 7.3.2) can be

programmed in a way, that multiple neuron labels point to the same bucket-id. For this to work, the

lookup tables would still have to contain the assigned bucket id, but additionally also the network

destination which is currently configured at the bucket.

In this case it would be highly beneficial to optimise the bucket assignment using a strategy similar

194

9.2 Outlook and Discussion

to the one proposed in Section 6.3.6. Although this optimisation strategy might also be worthy for

further optimisation as pointed out there, it serves as a good starting point for assignment optimisa-

tion.

However, as pointed out before, it could occur that the abundance distribution of destinations among

the events from the user-implemented neural network model on the distributed neuromorphic com-

puting system is not a-priori known to the user. This might e.g. be the case if the model itself is

to be investigated using the neuromorphic emulation and the firing rates of the specific populations

cannot be trivially estimated in advance. In this case, the static assignment can also not be optimised

in advance and a dynamic assignment, which autonomously optimises the performance at run-time

will be beneficial.

In order to implement a dynamic bucket assignment, more complex changes to the communication

architecture are necessary. On the one hand, the lookup of the assigned bucket has to be separated

from the network destination lookup. On the other hand, the bucket assignment tables have to be dy-

namically updated, based on the current state of all buckets, as defined in Section 6.1.2.2. A possible

design architecture for such a dynamic event accumulation system is proposed in Appendix C.

A more simple improvement to the current event communication architecture concerns the dropping

of over-delayed events. Currently, these are only dropped after reception and decoding at the des-

tination FPGA. However, if packets wait a long time for receiving a grant to the sending network

interface, it could be advantageous to already check for a possible timestamp timeout at the source

FPGA, as also done in (Grübl 2007) for spike event communication between Spikey chips. Thereby

precious network bandwidth could be saved by not injecting futile payload. However, this check

would take place after encoding the events into the packet, as the accumulation buffer is currently

placed behind the encoding stage. Therefore, the resulting drop would affect the whole packet of ac-

cumulated events and thereby impose a trade-off between saved network bandwidth and the number

of dropped events that could still have arrived in time. An alternative would be to accumulate events

before encoding them. This would allow to drop individual events that would not be able to arrive at

the destination node in time because the network interface request took too long.

Generally, the presented communication architecture is also applicable to interconnect BSS-1 Wafer

Modules. However this would also need some adaptations regarding the interjection of the spike

event data stream, as in BSS-1 eight HICANN ASICs were connected to one FPGA. Also the

overall FPGA design was structured differently (cf. Thommes 2018). With some adaptations in

the destination synapse address mapping at the lookup tables both systems could probably even be

operated together, which however might also pose practical issues on the modelling side, regarding

their different acceleration factors (103 in BSS-2 vs 104 in BSS-1). Besides that, the software stacks

of BSS-1 and BSS-2 would probably need large adjustments to achieve compatibility.

The particular implementation of the presented event communication architecture can be further

optimised at various places. One point would be to optimise the UT encoding scheme to not simply

pad datagrams if they are smaller than the output width, but rather place them partly in the datagrams

195

9 Conclusion

as they fit. Thereby the bandwidth efficiency could be largely improved in the case when the event

stream from the chip provides single events with gaps in between such that they cannot be compacted

by the module described in Section 7.1.2.

Furthermore, the configuration procedure for the destination-mapping lookup tables can be opti-

mised in a way that both (all) tables are written with one write access to the configuration bus. This

however would require a manual hookup to the RAM interface provided by the Registerfile generator

(cf. Section 4.2.4 and Section 7.3.2). This is not trivial because it has to be ensured, that regenerating

the registerfile will not destroy the adapted interface attachment.

Regarding the design verification and testing simulation interface, the DPI interface which has been

described in Section 8.1.4 may be finally implemented and tested with the modified libRMA. How-

ever, as already discussed in the respective section, the benefit of this additional simulation over the

existing co-simulation is debatable, as the host-communication can already be successfully tested

using the real system and the NHTL unit is extensively verified using the extended UVM testbench

from (Thommes 2018).

The problem of a too large bandwidth requirement when simultaneously sending spike events to

peer FPGAs and trace data to the host at full rate (cf. Section 8.2.2 on page 155) can be solved in

different ways. First, one could increase the trace memory buffer size in order to store all trace data

until the end of the experiment and only report them to the host software afterwards. Second, one

might drop any trace event that cannot be buffered. The latter option is not preferable due to the

obvious data loss. The first option, however has been implemented by Robin Heinemann for the

existing Ethernet-based design. This involved the application of a Xilinx® IP DMA controller for

the DDR3 memory banks, available on the FPGA boards. However, this led to a largely increased

recourse requirement for the DMA controller, which probably has to be optimised before it can fit

into the design at hand (cf. Section 8.2.1).

Another improvement by a factor of two in both latency and bandwidth can be achieved by trying

to increase the operation frequency at the EXTOLL partition. Thereby the throttling of the Tour-

malet link towards the FPGAs by that factor would not be necessary anymore. Apart from that,

slightly increasing the operation frequency for compatibility with the original Tourmalet frequency

of 630 MHz as compared to the current adaptation to 600 MHz would ease the network scaling

through the use of standard EXTOLL network cards.

Finally, on the BSS-2 software stack, further integration of the multi-chip experiment flow, described

in Section 8.6.4 will be needed for full user-support of multi-chip neuromorphic experiments on

BrainScaleS-2. This will probably include the libraries Quiggeldy for automatic setup reservation,

Calix for the global interrupt delay measurement and configuration as well as Pynn, PyTorch and

Grenade for the overall experiment description as well as the mapping and connecting of neural

networks across several ASICs (cf. Section 3.3). Especially the latter two aspects are of great im-

portance to the high-level usability of the multi-chip BSS-2 system. As indicated in Figure 6.1 and

Figure 6.2 in the preface of Chapter 6, the concrete mapping of neural populations to chips deter-

mines the distribution of event destinations at the respective source node and thereby also the stress

onto the accumulation system. A strategically favourable placement of those populations, thereby

196

9.2 Outlook and Discussion

constitutes a first order optimisation of the accumulation process. Generally, populations that are

expected to communicate frequently should be placed as near as possible with regard to the over-

all network topology and in the best case on the same chip. Also, frequent destination populations

should not be spread across many destination nodes.

Neural event projections that target multiple destination nodes at the same time can be realised by

defining multicast groups in the EXTOLL network. The possibility for mapping spike events coming

from the neuromorphic chip to a multicast destination is already implemented in the lookup tables in

the current implementation (cf. Section 7.3.2). However, the EXTOLL software libraries, as well as

the Extoll Management Program (EMP) do not yet support programming the multicast routing tables

on the Tourmalet ASICs. Therefore, this will also be needed in some layer of the BSS-2 software

stack to support spreading out activity across multiple destination chips.

197

Part IV

Appendix

199

A Mathematics derivations

A.1 Derivation of the Dennard Scaling Law

The Dennard scaling law (Dennard et al. 1974) connects the scaling of the physical size d of a

MOSFET transistor to its performance characteristics like its power consumption P and switching

frequency f . The switching power P of a digital circuit is proportional to its capacitance C, the

frequency at which it is driven and the square of its operation voltage V .

P ∝ C · f ·V 2 (A.1)

The capacitance at first, is proportional to the area over distance, so

C ∝
A
d

∝ d . (A.2)

Second, as the electric field is proportional to the voltage over distance, the voltage can be scaled

proportional to the transistor size while keeping the electric field constant

E ∝
V
d
, E = const

V ∝ d .
(A.3)

Lastly, the current I is proportional to the capacitance multiplied by the momentary change of voltage

I =C ·V̇ . (A.4)

Keeping the voltage change rate V̇ constant, this means that the current will also scale linearly with

the transistor dimension as well as the transition time ∆t. As the switching frequency is reciprocally

connected to the transition time, it will scale anti-proportional with the size:

f ∝
1
d

. (A.5)

Putting all this together, leads to a quadratic scaling of a circuits power consumption with the scale

of its length dimension, i.e. its area:

P ∝ d · 1
d
·d2 = d2

∝ A . (A.6)

201

A Mathematics derivations

A.2 Poisson Distribution Statistics

A.2.1 Derivation of the Poisson ISI Distribution

The following derivation of the Poisson ISI distribution leans on the description given in (Heeger

2000).

The poisson probability distribution defines the probability to find n spikes during a time interval

∆t = t2 − t1 as

P{n spikes during ∆t}= e−⟨n⟩ ⟨n⟩n

n!
(A.7)

where ⟨n⟩ is the average spike count in that interval, given by

⟨n⟩=
∫︂ t2

t1
r(t)dt . (A.8)

The distribution of time intervals between two spikes (the Inter Spike Interval (ISI)) can be derived

through the probability for a single spike to occur after a time interval τ

P{next spike occurs before τ}= 1− e−⟨n⟩ (A.9)

which can be identified as the cumulative probability distribution for at least one spike in that inter-

val. By calculating the time derivative of (A.9) one arrives at the wanted probability distribution for

the ISIs:

p(τ) =
d
dt

(︂
1− e⟨n⟩

)︂
=

d⟨n⟩
dt

e−⟨n⟩ (A.10)

With a constant spike rate r(t) = r the average spike count becomes ⟨n⟩= r∆t and the ISI distribution

becomes

p(τ) = re−rτ . (2.4)

A.2.2 Adding Poisson Distributions

Here a proof is provided that the sum two independent Poisson distributions again yields a Poisson

distribution.

Let the random variable X be poisson distributed with rate µ and Y be poisson distributed with rate

λ :

P (X = m) =
λ m

m!
· e−λ

P (Y = n) =
µn

n!
· e−µ

(A.11)

then

202

A.3 Proving total probability in the Markov Transition Matrix

P (X +Y = k) =
k

∑
i=0

P (X +Y = k,X = i)

=
k

∑
i=0

P (Y = k− i,X = i)

=
k

∑
i=0

P (Y = k− i) ·P (X = i)

=
k

∑
i=0

e−µ µk−i

(k− i)!
· e−λ λ i

i!

= e−(µ+λ) 1
k!

k

∑
i=0

k!
i!(k− i)!

µ
k−i

λ
i

= e−(µ+λ) 1
k!

k

∑
i=0

(︃
k
i

)︃
µ

k−i
λ

i

=
(µ +λ)k

k!
· e−(µ+λ)

=
δ k

k!
· e−δ

(A.12)

which is a Poisson distribution with rate (δ = µ +λ).

A.3 Proving total probability in the Markov Transition Matrix

Here proofs are provided that the rows in the Matrix

Pi, j =

⎛⎜⎜⎜⎜⎝
Pother,0 Pacc,0 0 0

0 P d⋆

acc Pother P d⋆

relab

0 P d⋆

acc Pother P d⋆

relab

0 0 0 1

⎞⎟⎟⎟⎟⎠ (6.15)

sum up to 1 with the definitions given in Section 6.2.2.

A.3.1 Row 1

Pother,0 +Pacc,0 = ∑
d

P(d) · (1−P(d → b))

+∑
d

P(d) ·P(d → b)

= ∑
d

P(d)−∑
d

P(d) ·P(d → b)

+∑
d

P(d) ·P(d → b)

= ∑
d

P(d)

= 1

(A.13)

203

A Mathematics derivations

A.3.2 Rows 2 and 3

P d⋆

acc +Pother +P d⋆

relab = P(d⋆) ·P(d⋆ → b)+∑
d

P(d) · (1−P(d → b))

+ ∑
d ̸=d⋆

P(d) ·P(d → b)

= ∑
d

P(d)−∑
d

P(d) ·P(d → b)

+∑
d

P(d) ·P(d → b)

= ∑
d

P(d)

= 1

(A.14)

A.3.3 Row 1 with Rate Probability

P⋆
other,0 +P⋆

acc,0 = (1−Prate)+Prate ·Pother,0

+Prate ·Pacc,0

= 1−Prate +Prate · (Pother,0 +Pacc,0)

= 1−Prate +Prate

= 1

(A.15)

A.3.4 Row 2 and 3 with Rate Probability

P⋆ d⋆

acc +P⋆
other +P⋆ d⋆

relab = Prate ·P d⋆

acc

+(1−Prate)+Prate ·Pother,0

+Prate ·P d⋆

relab

= 1−Prate

+Prate ·
[︂
P d⋆

acc +Pother +P d⋆

relab

]︂
= 1−Prate +Prate

= 1

(A.16)

204

B Implementation Details

B.1 Used Signal Interfaces

This Section introduces the interface-types, used within the Event Switch unit, described in Sec-

tion 7.1.

B.1.1 Valid-Next Interfaces

interface valid_next_if #(
parameter PORTS = 1,
parameter WIDTH = 8,
parameter type TYPE = logic [WIDTH-1:0]

)();
TYPE [PORTS-1:0] data;
logic [PORTS-1:0] valid;
logic next;

modport master (
output valid, data,
input next

);
modport slave (

input valid, data,
output next

);
endinterface

Listing B.1: SystemVerilog definition of a valid-next interface.

The valid-next interface is the most generic blocking interface and its SystemVerilog definition is

shown in Listing B.1. Data of a certain WIDTH or a specific TYPE, e.g. a packed struct is

transported from the interface master to the slave. The interface master signals validity of

the data to the slave by asserting the respective valid signal HIGH. The valid data is held at the

interface until the slave signals reception by asserting the next signal HIGH.

The definition above has a special parameter PORTS, specifying the number of parallel data

buses to be signalled with individual valid signals, but controlled by a single next signal. For

any parametrisation different from the default, i.e. PORTS != 1 this is therefore called a multi-

valid-single-next interface.

B.1.2 UT Interfaces

The UT interfaces were originally introduced by (Karasenko 2020). Listing B.2a shows the def-

inition of the blocking UT interface. It basically resembles a valid-next interface, but adds an up

205

B Implementation Details

interface ut_b_if #(
parameter WIDTH,
parameter type T = logic

[WIDTH-1:0]↪→
)();
logic valid, next;
T data;
int unsigned idx;

modport master (
output valid, data, idx,
input next

);
modport slave (

input valid, data, idx,
output next

);
endinterface

(a) The blocking UT interface

interface ut_b_if #(
parameter WIDTH,
parameter type T = logic

[WIDTH-1:0]↪→
)();

logic valid;
T data;
int unsigned idx;

modport master (
output valid, data, idx

);
modport slave (

input valid, data, idx
);

endinterface

(b) The non-blocking UT interface

Listing B.2: SystemVerilog definition of the UT interfaces.

to 32 bit wide type identifier (int unsigned idx). Thereby the signalling of sum-types, as in-

troduced in (Karasenko 2020) is possible and multiple independent data queues can be multiplexed

over a single interface.

The non-blocking version, shown in Listing B.2b omits the next signal and presents any valid data-

index pair only for a single clock cycle. If the slave does not read the presented data during the

single cycle, e.g. because of a blocking pipeline stage, the data will be lost.

B.1.3 FIFO Interfaces

interface fifo_write_if #(
parameter WIDTH,
parameter type T =

logic[WIDTH-1:0]↪→
)();
logic shift_in, full, a_full;
T data_in;

modport fifo (
input shift_in, data_in,
output full, a_full

);
modport client (
output shift_in, data_in,
input full, a_full

);
endinterface

(a) The FIFO write-interface

interface fifo_read_if #(
parameter WIDTH,
parameter type T =

logic[WIDTH-1:0]↪→
)();

logic shift_out, empty, a_empty;
T data_out;

modport fifo (
input shift_out,
output data_out, empty, a_empty

);
modport client (

output shift_out,
input data_out, empty, a_empty

);
endinterface

(b) The FIFO read-interface

Listing B.3: SystemVerilog definition of the FIFO interfaces.

For reading from and writing to FIFO queues, there are two distinct interfaces, which are defined in

206

B.1 Used Signal Interfaces

module conv_vn_to_fifo (
valid_next_if.slave from_vn,
fifo_write_if.client to_fifo

);
logic move_data;
assign move_data = from_vn.valid

&& !to_fifo.full;↪→

assign to_fifo.data_in =
from_vn.data;↪→

assign to_fifo.shift_in =
move_data;↪→

assign from_vn.next = move_data;
endmodule

(a) Conversion from a Valid-Next to a FIFO inter-
face.

module conv_fifo_to_vn (
fifo_read_if.client from_fifo,
valid_next_if.master to_vn

);
logic move_data;
assign move_data =

!from_fifo.empty &&
to_vn.next;

↪→
↪→

assign to_vn.data =
from_fifo.data_out;↪→

assign to_vn.valid =
!from_fifo.empty;↪→

assign from_fifo.shift_out =
move_data;↪→

endmodule

(b) Conversion from a FIFO to a Valid-Next inter-
face.

Listing B.3. These interfaces work a little different from the valid-next interfaces, discussed above.

The client signals valid input data to the write-interface (Listing B.3a) of the fifo by asserting

the shift_in signal HIGH. The fifo will always accept this data within one clock cycle, except

when it is full, which it signals back to the client. Shifting data into a full fifo is considered

an error and may lead to undefined behaviour and not only the loss of the current data, but also the

corruption of already buffered data. An additional a_full signal therefore warns the client at a

configurable threshold, when the FIFO is almost full.

At the read-interface (Listing B.3b), the fifo signals the availability of data to the client by

de-asserting the empty signal LOW. The client may then request reading that data by asserting

shift_out HIGH. The fifo will then present new data if available after one clock cycle or assert

empty HIGH otherwise. The additional a_empty signal again warns the client at a configurable

threshold, when the FIFO is almost empty.

B.1.4 Conversion between Valid-Next and FIFO Interfaces

Although, valid-next interfaces (Appendix B.1.1) and FIFO interfaces are quite different in their

definition, they can however, be easily converted between each other. This conversion can be done

by the assignments given in Appendix B.1.4, assuming equal data type (i.e. width) at both interfaces.

The conversion UT interfaces is similar, as the data bus at the FIFO interface now represents the

concatenation of both the data and idx signal buses from the UT interface. The non-blocking

version of UT- or general Valid-Next interfaces can also be converted similarly. However, in this

case it should be noted that any full of the FIFO-write interface will inevitably lead to loss of

valid data, as it cannot be stalled. This condition should be reported through a drop-counter with the

condition

logic drop;

assign drop = from_vn.valid && to_fifo.full;
(B.1)

207

B Implementation Details

On the other side, the read-interface conversion will now always immediately take available data

from the FIFO:

assign move_data = !from_fifo.empty; (B.2)

B.2 Used Network Packet Types

This Section will list the EXTOLL RMA (cf. Section 4.2.1) packet formats, used in the NHTL

transport layer implementation (cf. Section 7.4). This not only includes communication between

host computer and FPGAs but also packet types used for inter-FPGA communication. Most details

of the NHTL communication protocol have already been presented in (Thommes 2018). Nonetheless

they are shortly repeated here to the reader for reference; for more details the reader may refer to the

original thesis of (Thommes 2018). Additionally, packet types and communication modes, specially

used for global configuration mastered by the FPGA’s Playback Executor (cf. Section 3.2.2 and

Section 7.6.4) and for spike communication (cf. Section 7.3 and Section 7.5) will be introduced

here.

���������	�������

�
��
��
��
��
�

�������
���	
��

����
��

��	
��
�����

���

������
��	
��

���

�����
��	
��

���������	��������
��
�

���	
��
�
�����

���

������
��	
��

���

�����
��	
��

���������	��������
��
�

�������

���	
��
���	
��

����
��

��	
��
�����

���

�����
��	
��

���

�����
��	
��

���

�����
��	
��

�����
��������
��
�

������

����������
��

���	
��

���

�����
��	
��

���

�����
��	
��

���

�����
��	
��

���������
��
� ����
��

������ �����������	
��

���������
����
�����
��	
�����	
��

Figure B.1: Overview on the different RMA packet types used in the scope of this thesis. Every
packet is preceded by an Start Of Packet (SOP) header (grey), followed by a type-
specific RMA header (orange) and different amounts of payload (blue). The MTU for a
single packet is 512 B excluding the SOP header, but including the RMA header. Addi-
tionally, the EXTOLL NP automatically appends an EOP footer, containing a CRC for
the complete packet.

An overview of all used RMA packet types is shown in Figure B.1. From the largest possible packet,

the maximum payload efficiency (cf. Equation (5.3) and J. Schmitt 2017) can be determined:

Epl,max =
496B

496B+16B+2 ·8B
≈ 93.9% (B.3)

208

B.2 Used Network Packet Types

The minimum protocol efficiency can be determined analogueously:

Epl,min =
8B

8B+16B+2 ·8B
= 20% (B.4)

RMA PUT packets are used to send host-communication payload in both directions from the host

software to the Playback Executor and from the Trace Memory to a ringbuffer region in the hosts

main memory.

Notifications are sent in order to used by the NHTL unit to inform the host software about the amount

of trace information sent to the ringbuffer in its memory. The other way round, the host-software

uses notifications to inform the NHTL unit about free space in the ringbuffer. Generally, notifications

can be requested as automatic response to any other RMA packet.

Remote Registerfile Accesss (RRAs) are generally communicated using RMA PUT and GET com-

mands with a modifier bit set. For this, the NHTL restricts itself to the byte-granular access packets

(PUT- and GET BYTE). GET requests are generally responded with GET Response packets.

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� � � � � 	
 � � � �

� � � �

�

�

��
�

��

�
�
�
�
��
�
�
�	 �����������	
���	
��	����

����	���	

��	�����

���� ��

�
�

�
�
�

�
�
�

��

��

�����������	����	��	�� �!�

���	
�"	����

Figure B.2: The SOP Header contains essential routing information like the destination node-id and
Virtual Process ID (VPID), as well as a modifier bit for MC messaging. Other modifier
bits select the virtual channel (AVC and DVC) and Traffic Class (TC) to be used for
the respective packet. The TU field selects whether the packet is destined to the RMA
Completer or Responder unit.

The SOP header format is shown in Figure B.2, containing essential routing information. A packet

can be routed using one of two Deterministic Virtual Channels (DVCs) or using an Adaptive Virtual

Channel (AVC). The EXTOLL network supports four different traffic classes (separate routes) and

up to 216 destinations or 64 multicast groups (if the MC bit is set). While PUT packets will always

target the RMA Completer unit, GET packets will always target the RMA Responder unit.

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� � � � � 	
 � � � �

� � � �

�

� �����

��
�

��

�
�
�
�
��
�
�
�	

�����	��
����

��	�
�������
������

�����	��
����

��	�
�������
�������

�
�
�

�

�

������
����

���	��	���
�� !��
��

"#$����%&��
�'���

�
�
�
��

�

�

�

���
���
���
���
���
���
���
���
���
���
���

�#$����!(��!�
��)�

�
�
�
��

�

�

�

������
*���
��

Figure B.3: A Registerfile-PUT packet’s header, besides the general packet header information, con-
tains a Registerfile address to be accessed in write-mode. The payload size is fixed to
one QW (the addressable unit in the Registerfile) and the RRA modifier is set.

209

B Implementation Details

In contrast to the SOP header, specific command headers contain information that is required to

interpret the packet content at its destination. This generally includes information about its source

node as well as a type-specifier, error- and mode-flags, information about the payload size (actu-

ally transported as decremented by one for optimised bit efficiency) and the address information

from where to read and where to write the accessed payload information. An acknowledgement

notification can be requested on either side of the transfer back to the software process issuing the

request.

�
�
�
��

�

�

�

���������	��
�

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� � � � � 	
 � � � �

� � � �

�

� �����

��
�

��

�
�
�
�
��
�
�
�	

�������������
��	��		�����������

�������������
��	��		������������

�

�

���������
�

�� �!���"������		�����������

�� �!���"������		������������

	

���������!���#��!�
�

�
�
�

$%&����
�
�
�
��

�

�

�

���
���
���
���
���
���
���
���
���
���

�%&�����'���	���(�)*����+���

(a)

����������	
�����	

������	����	

�����

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� � � � � 	
 � � � �

� � � �

�

�

��
�

��

�
�
�
�
��
�
�
�	

�
�
�
��

�

�

�

�

�

�
�
�
��

�

�

�

��������	�����	�������	������

��������	�����	�������	�������

������	 �

���
���
���
���
���
���
���
���
���
���
���

�!"�����#$���	��%�&!"����

�
�
�

'(
�	�)���

(b)

Figure B.4: (a) A Registerfile-GET request packet’s header, compared to a corresponding
Registerfile-PUT request (cf. Figure B.3), carries an additional address field contain-
ing the location where the response payload shall be written to. Again the payload
size is fixed to one QW and the RRA modifier is set. (b) A Registerfile-GET-Response
packet’s header mirrors the source information from the respective GET request’s (cf.
Figure B.4a) source to its own destination. The single address field now carries the re-
sponse address that has been received from the GET request. Again the payload size is
fixed to one QW and the RRA modifier is set.

Originally, Remote Registerfile Access where only supported by the NHTL as mastered by

the host software. In the context of this theses, support was added for FPGA-mastered

Remote Registerfile Access to arbitrary nodes in the network, driven by Omnibus access instructions

in the playback program to a special part of the Omnibus address space (cf. Section 7.6.4). This part

of the Omnibus address space has to be large enough to contain the full Registerfile address space

210

B.2 Used Network Packet Types

at any node in the network. As the Registerfile of the Tourmalet ASIC is larger than the one in the

BSS-2 FPGA, this is the limiting factor. The Tourmalet Registerfile has a byte-granular address size

of 26 bit. However, as the Registerfile is addressed in units of 1 QW and the three least significant

address bits are always clamped to zero, 23 bit are sufficient to describe the address space. Because

of the data-width conversion from the 32 bit Omnibus to the 64 bit registerfile (cf. Section 7.6.2), a

24’th address bit is required to map the registerfile address space into the Omnibus.

The RRA packet header formats are shown in Figure B.3, for PUT requests and Figure B.4 for

GET requests and GET-Response packets respectively. The mastering node will send a PUT or GET

request packet to the remote node and receive a GET-Response respectively. In case of an invalid

address request, the GET-Response will have an Error-flag asserted. PUT requests do not produce a

response.

The NHTL protocol sends playback programs directly to a FIFO queue in the FPGA unit and returns

trace data to a ringbuffer memory region at the host. These data transfers are done using RMA

PUT-QW packets. Notably, a full playback buffer will stall the reception of packets at the FPGA

and thereby may eventually stall the RMA requester unit at the remote Tourmalet ASIC. In the

opposite direction, a full ringbuffer will stall the insertion of packets into the network and thereby

also make the trace buffer fill up, eventually stalling the trace path of the Playback Executor unit.

Both cases have been observed during system tests, the latter playing a role in the effects, described

in Section 8.4.7.

Live spike event data are also sent using the same packet type coded as stream of UT datagrams (cf.

Section 7.3 and Section 7.4), but not to the host, but directly to other FPGAs where they are received

and further processed for timed execution (cf. Section 7.5).

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� � � � � 	
 � � � �

� � � �

�

� �����

��
�

��

�
�
�
�
��
�
�
�	

�
�
�
��

�

�

�

�

�

�������

���
���
���
���
���
���
���
���
���
���

	�����
���
�����

�����
�������
�	����

�����
�������
��	�	��

������
�� �

���������!
��"#�!
 �������
$���
 �

�
�
�
��

�

�

�

�#%&�#�
��'�

Figure B.5: A normal RMA-PUT request can carry up to 496 B of payload data to subsequent ad-
dresses in destination node’s memory-space. The Translate Enable (TE) bit determines
whether the accessed address is virtual and fist has to be translated by the EXTOLL
Address-Translation-Unit (ATU).

A flow control mechanism for the NHTL transport layer is implemented using notification messages

transporting information about the amount of moved data and freed buffer space to the host’s ring-

buffer memory region. These notification messages are transported using RMA Notification packets,

shown in Figure B.6.

For a future improvement, a similar notification flow control mechanism could also be implemented

in the direction from the host to the FPGA to prevent stalling the network when the playback buffer

runs full. Alternatively packets might be accepted and dropped if they cannot be buffered. However

211

B Implementation Details

this would break the high-level experiment flow and would also have to be notified back to the

host-software to throw an exception and abort the user’s experiment program.

�
�
�
��

�

�

�

���������	�
���
�����������

��
��

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� � � � � 	
 � � � �

� � � �

�

� �����

��
�

��

�
�
�
�
��
�
�
�	 �
���

��������

�
�
�
��

�

�

�

�

�

�������� !���"���

#$%	�	&�����
	�����&��'����

(������)�*!

�������&���!�+
&��*!(������,�
��*!

�&�-����&

(a)

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� � � � � 	
 � � � �

� � � �

�

� �����

��
�

��

�
�
�
�
��
�
�
�	 �������	
��
���

�
�
�
��

�

�

�

�

�

�����������
�
��

�������	
��
���

������	����

��� �� !�"	��#�!"	��������	$���	��

%&'(�	��)"�*���+�	
��
��

�
�
�
��

�

�

�

�!"+��,-!�

(b)

Figure B.6: RMA Notification packets are used for communicating protocol information in both di-
rections between the host software and the FPGA’s NHTL unit. (a) In the direction
from the FPGA to the host, the notification message contains the number of payload
QWs sent to the host ringbuffer since the last notification, labelled by an id-number of
the particular ringbuffer. Besides that, the notification contains some debug information,
namely the number of configuration changes regarding the NHTL unit’s ringbuffer con-
troller since the last notification. (b) In the opposite direction, the host software notifies
the NHTL unit about the number of QWs read from the ringbuffer since the last notifi-
cation and thereby the amount of freed space, again labelled by an identifier regarding
the particular ringbuffer instance.

212

C Dynamic Bucket Concept

In Chapter 6, the theoretical properties and limitations of the event accumulation process have been

studied under different input distribution constraints and assignment strategies. As has been argued

in Section 9.1 on page 190 and Section 9.2 on page 195, it might not always be possible for a user or

mapping algorithm to optimise a static strategy for assigning event destinations to particular buckets.

Therefore it has been proposed that dynamic assignment at runtime, based on the current state of all

buckets, might be advantageous.

A possible implementation concept for dynamic bucket assignment has been developed at the early

time of this thesis’ work. However, this has not yet been implemented in favour of the more simple

design described in Chapter 7. This dynamic assignment design concept will be concisely described

in this Chapter. It has been presented at the 8th Annual Neuro-Inspired Computational Elements

(NICE) online workshop in 2021 (cf. Thommes, N. Buwen, et al. 2021).

C.1 Overview

An overview block diagram of the proposed dynamic assignment architecture is presented in Fig-

ure C.1. Events, arriving from the neuromorphic ASIC are in a first step indexed into a lookup table

to retrieve the mapped network- and synapse destination address. In a second step, the network des-

tination is now indexed into another lookup table to retrieve the currently assigned bucket id. This is

in contrast to the implemented architecture described in Section 7.3, where only one lookup directly

provides the bucket id and the network destination is configured to the bucket units themselves.

If the second lookup yields that currently no bucket is assigned to the given destination, an empty

bucket is provided by the Free Bucket Arbiter instead, if available. If also no empty bucket is avail-

able, an already occupied bucket has to be interrupted in its accumulation process with a conflict

condition. In this case the Occupied Bucket Arbiter selects a bucket for interruption. This selection

can follow one of the strategies, listed and discussed under Section 6.1.2.2 and Section 6.1.2.3 re-

spectively. In terms of critical path length, this arbitration might become problematic with increasing

number of buckets, in case the selection is based on an optimisation like e.g. "the bucket containing

the most accumulated events" (AS.5) or "the bucket with nearest timeout" (AS.6). In case of local

arbitration strategies like RoundRobin (AS.3) or Random assignment (AS.4), the implementation is

rather not critical with respect to the timing path length.

That bucket, which is selected and receives the conflicting event must then update all the Bucket-

LUTs at the parallel input data paths with its new assignment. When a bucket has closed its packet, it

requests access to the network interface. This arbitration can again follow one of the said arbitration

strategies.

Regarding memory resource requirements, a naive lookup table for the mapping of network desti-

nations to bucket ids is even more challenging than the event destination lookup. While the latter

213

C Dynamic Bucket Concept

�������

��������

���	����

������

��		
��

�

�

�

�

��������

������

����
���

���
����

������

��		
��

�

�

�

�

��������

������

����
���

���
����

�
�
�
�
�
�

��

�
�
�
�
�
�

��

�
�
�
�
�
�

��

�
�
�
�
�
�

��

Figure C.1: Schematic block diagram of the proposed dynamic bucket assignment architecture. In
this example, events arrive from two parallel data paths after being mapped to network
destinations. The assigned bucket for the mapped destination is acquired from a lookup
table. If no bucket is assigned yet, a free bucket will be selected by by the Free Bucket
Arbiter (on the left). If no bucket is left free (conflict condition), the Occupied Bucket
Arbiter (on the right) selects a bucket for re-assignment. The assigned bucket is re-
quested to take the event and if granted, the event is stored in its the buffer. When a
bucket is full or requested for re-assignment, it requests access to the network interface
before sending the accumulated packet away.

has an address size of 14 bit for the BSS-2 event labels, the former would even be eight times larger

with the 16 bit EXTOLL node id plus the 1 bit multicast flag. To reduce the memory requirement

drastically, the second stage index, retrieved from the first stage may be changed to a shorter Global

Unique Identifier (GUID) which is unique with respect to all used node ids in the network. This is

possible, as only a small fraction of the theoretically supported 216 EXTOLL nodes will be needed

for a large scale BSS-2 system in the near future. The actual 17 bit network destination address will

then be retrieved from another lookup table. However this one is sufficient to be implemented only

214

C.2 Arbitration Request Pipeline

once for the whole design and may be accessed via an arbiter by the buckets while accumulating

events and before sending out the packets.

As the free bucket arbiter and the occupied bucket arbiter can make their decision speculatively

before it is needed by a requesting input buffer, they do not cause additional latency. However,

as multiple input buffers might request an empty or occupied bucket at the same time, the arbiter

implementation must be capable of also giving out multiple grants at the same time if the parallel

data paths shall not be serialised by their requests.

C.2 Arbitration Request Pipeline

���

�����	
�

�
������

��	������

������

���

�
�
�

�������

������� ���

!�

�"���

���������	

��
��
�

���

	
#$��	
�

�
������

������
�

����

���% "

�&����

'((')���!�*	�+������,�-����������-

�.�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

���

)��

��������	
	

���	

	

�
�����

��������	
	

���	

�
�����

���

Figure C.2: Schematic block diagram of the bucket request pipeline, symbolised by the one-hot re-
quest in Figure C.1. Incoming events have to wait a first clock cycle for the result of
the bucket lookup. On the second stage, they wait for a grant from the respectively re-
quested bucket. If the bucket is interrupted by a new destination it updates the lookup
tables in all the input channels. Events that have already acquired a bucket id from this
now out-of-date lookup table need to be invalidated in order to repeat their lookup. Dur-
ing the update, the current event is kept in a third pipeline stage.

In order to ensure full event throughput with one event at every clock cycle, the input data paths have

to be pipelined in three stages. A schematic block diagram of this pipeline is shown in Figure C.2.

The first clock cycle is spent on retrieving the respective bucket id from the lookup table, followed

215

C Dynamic Bucket Concept

by the second cycle, which is spent on requesting the respective bucket to grant this input channel.

If granted, the event is stored in the bucket. Otherwise, the pipeline is stalled until the event is

eventually taken. However, if the bucket is interrupted by a new destination, it has to update the

lookup tables and all waiting events, that are now holding a possibly invalid lookup result, have to

be cancelled and repeat their lookup by cycling back to the pipeline start. The third pipeline stage

ensures, that the repeated lookup happens after the update has been done. The lookup also has to

be repeated, if an empty bucket has not immediately granted the requesting event, because then it

probably has been labelled otherwise by another input channel.

Care must be taken to prevent events from endlessly cycling the pipeline as their lookup might

be repeatedly invalidated by updates to the lookup table. A possible safety measure would be to

implement a cycle counter, that is propagated with the event around the pipeline and which will

cause the event to be dropped after a certain number of cycles. This would be similar to the Time To

Live (TTL) counter in the Internet Protocol.

C.3 Bucket Finite-State Machine

The behaviour of a dynamically assigned bucket can be described by a Finite-State Machine (FSM)

as depicted in Appendix C.3. As this FSM looks rather complicated at the first glance, it shall not be

described in full detail here. Rather the following description shall provide guidance instructions of

how to read the diagram while giving an overview on the basic function of the bucket.

216

C
.3

B
ucketFinite-State

M
achine

��������

	�
��

����

	�������

������

����

	�
�����

�����

������

���
���

���

�����

�������

��������	

���
������	

��������

�����

���������	

���
�������

	�
�

	���

��������

����������	

���������

��
���

����������	

���
�������

���������	

�
���
�������

���
������	

���������������������

��������	

�
���
������	

��������

��������	

��������

��������	

����������	

�
���
�������

��������	

���������	

�
���
�������

��������	

�������

��������	

�
���
�������	

�������

�������	

���

	�	�

������������

������

��������

	��	

�����

	�	�

����������

���
������

	���

��
����������

��������

	�	�

������������

������

��������

�
���
�������	

��������

���
������

�������	

���

��������

�����

�����

�
���
�������	

��������	

���������

	�
�

����������

����������

	���

����������

	���

��������

	�
�

����

�����

��������	

����������	

���
�������

��������	

���������	

���
������

	���

������������

��������

	�
�

!������������

������������

��������

	�	"

����������

	�
�

����

	�
�

��������	

���
�������	

�������

���
�������	

��������	

���������

���
�������	

��������

	���

���������	

���
�������

	��� 	�
�

���������	

�
���
�������

�����

	�
�

��������	

���
������	

��������

	���

��������	

���������	

�
���
�������

Figure C.3: State diagram of the Finite-State Machine describing the behaviour of a dynamically assigned bucket. States are coded by seven binary state variables
that can be partially asserted at the same time. These variables are listed in the legend on the lower left edge and colour coded to the respective states.
Hexadecimal numbers on each state also give the exact state code. The initial state is Empty (0x20). Long-range transitions across the diagram edges
are depicted by small state-duplicates, i.e. connected by reference.

217

C Dynamic Bucket Concept

Generally, the bucket’s state is described by seven state variables which have the following meanings:

• Free: A bucket is free, i.e. empty if it contains no events. In this case it is available for

assignment and requests the Free Bucket Arbiter.

• Blocking: When a bucket changes its assignment state, i.e. is assigned to or de-assigned from

a specific destination, it temporarily blocks events from the input channels. The lookup tables

are updated in this state and requesting events in the input pipelines have to repeat their lookup

with a new pipeline cycle.

• Aggregating: In this state, the bucket performs its main purpose of collecting, i.e. aggregating

events for the assigned destination.

• External Trigger: In this state, the bucket has received a conflicting request, conveyed by the

occupied-bucket arbiter. This will lead to a re-assignment and lookup table update.

• Requesting: In this state, whether because it has accumulated a full packet or the packet

timeout exceeded or it has received a conflicting request, the bucket requests the network

interface in order to send the closed packet.

• Flushing: After the bucket has received a grant from the network interface, it will flush out

the aggregated packet.

• Flushable: In this state, the bucket is available for flushing by external trigger. It requests the

Occupied Bucket Arbiter and can thereby be requested with a new destination.

These atomic state variables can partly be asserted at the same time. Importantly, a bucket should

be able to accumulate events for a new packet while flushing an already finished one to the network.

In Appendix C.3, the particular states are coloured with respect to the currently active atomic state

variables. The vector of these state bits thereby completely encodes the state space. Each state block

is labelled with the hexadecimal value of the state vector as defined in the Figure’s legend. The

typical state transitions roughly cycle trough a sequence, as defined by the list above. However,

there exist several shortcuts looping back or skipping states in this sequence.

218

D Acronyms

ADC Analog to Digital Converter

AdEx Adaptive Exponential integrate-and-fire model Gerstner and Brette 2009b

AER Address Event Representation

AL Application-Layer

AMD Advanced Micro Devices

ANN Artificial Neural Network

ANNCORE Analog Neural Network Core

API Application Programming Interface

ARM Acorn RISC Machines / Advanced RISC Machines

ARQ Automatic Repeat reQuest

ASIC Application Specific Integrated Circuit

ATOLL Atomic Low Latency

ATU Address-Translation-Unit

AVC Adaptive Virtual Channel

AWK A programming language designed for scanning text files, named after the surnames of its

three authors Alfred V. Aho, Peter J. Weinberger und Brian W. Kernighan.Aho et al. 1988

BRAIN Initiative Brain Research Through Advancing Innovative Neurotechnologies® Initiative

BRAM Block-RAM

BSS BrainScaleS

BSS-1 BrainScaleS-1

BSS-2 BrainScaleS-2

CADC Column-parallel ADC

CAG the former Computer Architecture Group within ZITI at the University of Heidelberg

219

Acronyms

CAM Content Addressable Memory

CI Continuous Integration

CMOS Complementary Metal-Oxide-Semiconductor

CNN Convolutional Neural Network

CPU Central Processing Unit

CRC Cyclic Redundancy Checksum

DAC Digital to Analog Converter

DDR Double Data Rate

DLL Delay-Locked-Loop

DMA Direct Memory Access

DPI Direct Programming Interface

DRAM dynamic random access memory

DSP Digital Signal Processor

DUT Design Under Test

DUV Design under Verification

DVC Deterministic Virtual Channel

E Unit for table-Entries

EINC European Institute for Neormorphic Computing

EMP Extoll Management Program

ENIAC Electronic Numerical Integrator and Computer

EOP End Of Packet

EXTOLL Extended Atomic Low Latency (ATOLL)

FCAA fetch-compare-and-add

FF Flip Flop

FIFO First In First Out

FinFET Fin Field Effect Transistor

fisch FPGA Instruction Set Compiler for HICANN

220

Acronyms

flit flow control unit

Flop Floating Point Operation

FPGA Field Programmable Gate Array

FSM Finite-State Machine

FU Functional Unit

GAAFET Gate All Around Field Effect Transistor

GALS Globally-Asynchronous, Locally-Synchronous

GIL Global Interpreter Lock

GPIO General Purpose Input and Output

GUID Global Unique Identifier

HBP Human Brain Project

HDL Hardware Definition Language

HICANN High Input Count Analog Neural Network

HICANN-X High Input Count Analog Neural Network with HAGEN Extensions

HMF Hybrid Multiscale Facility

HOL Head of Line Blocking

HPE Hewlett Packard Enterprise

HT HyperTransport

HTAX HyperTransport Advanced Crossbar

HTML Hyper Text Markup Language

HToC HyperTransport on-chip Protocol

IC Integrated Circuit

ILA Integrated Logic Analyzer

IP Intellectual Property

ISI Inter Spike Interval

ISO International Standardisation Organisation

ITU International Telecommunication Union

221

Acronyms

JTAG Joint Test Action Group

L1 Layer 1

L2 Layer 2

LED Light Emitting Diode

libHBP Former name of the NHTL-Extoll API

libRMA User-level API for RMA communication, provided by EXTOLL.

LIF Leaky Integrate-and-Fire

LP Link-Port

LSB Least Significant Bit

LUT Lookup Table

LVDS low voltage differential signaling

MADC Membrane ADC

MC Multicast

MIN Multistage Interconnection Network

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MPI Message Passing Interface

MSB Most Significant Bit

MTU Maximum Transmission Unit

NDID Node ID

NHTL Network HMF Transaction Layer

NHTL-Extoll Neuromorphic Hardware Transaction Layer via Extoll

NIC Network Interface Controller

NICE Neuro-Inspired Computational Elements

NP Network-Port

NRP Neuro-Robotics Platform

OCP Open Core Protocol

OS Operating System

222

Acronyms

OSI Open Systems Interconnection

PCB Printed Circuit Board

PCIe Peripheral Component Interconnect Express

phit physical digit

PPU Plasticity Processing Unit

PSP postsynaptic potential

PyNN A Python package for simulator-independent specification of neuronal network models.

QoS Quality of Service

QW Quad Word

RAM Random Access Memory

RF Register File

RFG register file generator

RISC Reduced Instruction Set Computer

RMA Remote Memory Access

RRA Remote Registerfile Access

RTL Register Transfer Language

SAF Store-and-Forward Switching

SCB Scoreboard

SIMD Single Instruction Multiple Data

SIMO Single-In-Multiple-Out

SMFU Shared Memory Functional Unit

SNN Spiking Neural Network

SOP Start Of Packet

SpiNNaker Spiking Neural Network Architecture

SRAM static random access memory

STDP spike-timing-dependent plasticity

STP short-term plasticity

223

Acronyms

systime system time

TC Traffic Class

TCL Tool Command Language

TDM Time Devision Multiplexing

TE Translate Enable

TRADIC TRAnsistor Digital Computer

TSMC Taiwan Semiconductor Manufacturing Company Limited

TTL Time To Live

TU Target Unit

UDP User Datagram Protocol

UMC United Microelectronics Corporation

USB Universal Serial Bus

UT universal translator

UVC Universal Verification Component

UVM Universal Verification Methodology

VC Virtual Channel

VCT Virtual Cut-Through Switching

VELO Virtualised Engine for Low Overhead

VLSI Very Large Scale Integration

VoIP Voice over Internet Protocol

VOQ Virtual Output Queue

VPID Virtual Process ID

VRHD Virtual Ringbuffer Handler

WAR Write After Read

WAW Write After Write

WHS Wormhole Switching

WSI Wafer Scale Integration

224

Acronyms

XML Extensible Markup Language

XOR Exclusive OR

ZITI Zentrales Institut für Technische Informatik (Institute of Computer Engineering)

225

Publications

(Thommes, N. Buwen, et al. 2021): Tobias Thommes, Niels Buwen, Andreas Grübl, Eric Müller,

Ulrich Brüning, and Johannes Schemmel (2021). “BrainScaleS Large Scale Spike Communication

using Extoll”. In: 2021 8th Neuro Inspired Computational Elements Workshop (NICE’2020). peer-

reviewed extended abstract incl. paper presentation. arXiv: 2111.15296 [cs.AR]

The contents of this publication are presented in Section 8.4.1 and in Appendix C.

(Thommes, Bordukat, et al. 2022): Tobias Thommes, Sven Bordukat, Andreas Grübl, Vitali Karasenko,

Eric Müller, and Johannes Schemmel (2022). “Demonstrating BrainScaleS-2 Inter-Chip Pulse Com-

munication using EXTOLL”. in: Neuro-inspired Computational Elements Workshop (NICE ’22),

March 29 – April 1, 2022. Virtual Event, USA: Association for Computing Machinery, pp. 98–100.

ISBN: 9781450395595. DOI: 10.1145/3517343.3517376. arXiv: 2202.12122 [cs.AR]

The contents of this publication are presented in Section 8.4.1 and Section 8.5.

(Thommes, Grübl, et al. 2023): Tobias Thommes, Andreas Grübl, and Johannes Schemmel (2023).

“Optimising Spike Throughput and Latency for Spike-Event Accumulation on Packet-Based In-

terconnection Networks”. In: 7th HBP Student Conference on Interdisciplinary Brain Research.

Frontiers Media SA, pp. 258–264

The contents of this publication are presented in Chapter 6.

(Müller, Emmel, et al. 2023): Eric Müller, Arne Emmel, et al. (2023). The BrainScaleS-2 Neuromor-

phic Platform — A Report on the Integration and Operation of an Open Science Hardware Platform

within EBRAINS. DOI: 10.5281/zenodo.8375522

This publication is cited in the preface of Chapter 3 and in Section 8.7.

226

https://arxiv.org/abs/2111.15296
https://doi.org/10.1145/3517343.3517376
https://arxiv.org/abs/2202.12122
https://doi.org/10.5281/zenodo.8375522

References

Aamir, Syed Ahmed, Paul Müller, Gerd Kiene, Laura Kriener, Yannik Stradmann, Andreas Grübl,

Johannes Schemmel, and Karlheinz Meier (2018). “A Mixed-Signal Structured AdEx Neuron for

Accelerated Neuromorphic Cores”. In: IEEE Transactions on Biomedical Circuits and Systems

12.5, pp. 1027–1037. ISSN: 1932-4545. DOI: 10.1109/TBCAS.2018.2848203.

Abbott, Larry F (1999). “Lapicque’s introduction of the integrate-and-fire model neuron (1907)”. In:

Brain research bulletin 50.5-6, pp. 303–304. DOI: 10.1016/s0361-9230(99)00161-6.

Abbott, Larry F and Sacha B Nelson (2000). “Synaptic plasticity: taming the beast”. In: Nature

Neuroscience 3, pp. 1178–1183.

Abeles, M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex. New York: Cambridge

University Press.

Aertsen, A., M. Diesmann, and M. O. Gewaltig (1996). “Propagation of synchronous spiking activity

in feedforward neural networks.” In: J Physiol Paris 90.3-4, pp. 243–247. ISSN: 0928-4257. URL:

http://view.ncbi.nlm.nih.gov/pubmed/9116676.

Aho, Alfred V, Brian W Kernighan, and Peter J Weinberger (1988). The AWK programming lan-

guage. Addison-Wesley. ISBN: 978-0-201-07981-4.

Ajima, Yuichiro et al. (2018). “The Tofu Interconnect D”. In: 2018 IEEE International Conference

on Cluster Computing (CLUSTER), pp. 646–654. DOI: 10.1109/CLUSTER.2018.00090.

Allen, Christina and Charles F Stevens (1994). “An evaluation of causes for unreliability of synaptic

transmission.” In: Proceedings of the National Academy of Sciences 91.22, pp. 10380–10383.

DOI: 10.1073/pnas.91.22.10380.

Amari, Shun’ichi (1967). “A Theory of Adaptive Pattern Classifiers”. In: IEEE Transactions on

Electronic Computers EC-16.3, pp. 299–307. DOI: 10.1109/PGEC.1967.264666.

Amari, Shun’ichi (1993). “Backpropagation and stochastic gradient descent method”. In: Neuro-

computing 5.4, pp. 185–196. ISSN: 0925-2312. DOI: 10.1016/0925-2312(93)90006-O.

AMD (2023). Vivado Design Suite User Guide (UG908). Programming and Debugging. Version v2023.1.

Amdahl, Gene M. (1967). “Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities”. In: Proceedings of the April 18-20, 1967, Spring Joint Computer Con-

ference. AFIPS ’67 (Spring). Association for Computing Machinery, pp. 483–485. ISBN: 9781450378956.

DOI: 10.1145/1465482.1465560.

Amunts, Katrin, Hartmut Mohlberg, Sebastian Bludau, and Karl Zilles (2020). “Julich-Brain: A 3D

probabilistic atlas of the human brain’s cytoarchitecture”. In: Science 369.6506, pp. 988–992.

DOI: 10.1126/science.abb4588.

Arora, Sanjeev, Tom Leighton, and Bruce Maggs (1990). “On-Line Algorithms for Path Selection

in a Nonblocking Network”. In: Proceedings of the Twenty-Second Annual ACM Symposium on

Theory of Computing. New York, NY, USA: Association for Computing Machinery, pp. 149–158.

ISBN: 0897913612. DOI: 10.1145/100216.100232.

227

https://doi.org/10.1109/TBCAS.2018.2848203
https://doi.org/10.1016/s0361-9230(99)00161-6
http://view.ncbi.nlm.nih.gov/pubmed/9116676
https://doi.org/10.1109/CLUSTER.2018.00090
https://doi.org/10.1073/pnas.91.22.10380
https://doi.org/10.1109/PGEC.1967.264666
https://doi.org/10.1016/0925-2312(93)90006-O
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1126/science.abb4588
https://doi.org/10.1145/100216.100232

References

Arshak, Khalil, Essa Jafer, and Christian Ibala (2006). “Testing FPGA based digital system using

XILINX ChipScope logic analyzer”. In: 2006 29th International Spring Seminar on Electronics

Technology. IEEE, pp. 355–360. DOI: 10.1109/ISSE.2006.365129.

Baddeley, Roland, L. F. Abbott, Michael C. A. Booth, Frank Sengpiel, Toby Freeman, Edward A.

Wakeman, and Edmund T. Rolls (1997). “Responses of neurons in primary and inferior temporal

visual cortices to natural scenes”. In: Proceedings of the Royal Society B 264, pp. 1775–1783.

Ben Abdallah, Abderazek and Khanh N. Dang (2022). Neuromorphic computing principles and or-

ganization. Cham: Springer. ISBN: 978-3-030-92525-3. DOI: 10.1007/978-3-030-92525-

3_1.

Beneš, Václav E. (1965). Mathematical theory of connecting networks and telephone traffic. Mathe-

matics in science and engineering ; v. 17 17. New York: Academic Press. ISBN: 978-0-08-095523-

0. URL: http://www.sciencedirect.com/science/book/9780120875504.

Bi, Guo-qiang and Mu-ming Poo (1998). “Synaptic modifications in cultured hippocampal neurons:

dependence on spike timing, synaptic strength, and postsynaptic cell type.” In: Journal of Neu-

roscience 18.24, pp. 10464–10472. ISSN: 0270-6474. DOI: 10.1523/JNEUROSCI.18-24-

10464.1998. URL: http://www.jneurosci.org/content/18/24/10464.

Billaudelle, Sebastian (2017). “Design and Implementation of a Short Term Plasticity Circuit for a

65 nm Neuromorphic Hardware System”. Master thesis. Ruprecht-Karls-Universität Heidelberg.

Billaudelle, Sebastian (2022). “From transistors to learning systems. circuits and algorithms for

brain-inspired computing”. PhD thesis. Ruprecht-Karls-Universität Heidelberg.

Black, Paul E. (2011). postman’s sort. URL: https://www.nist.gov/dads/HTML/

postmansort.html (visited on 06/23/2023).

Block, H. D. (1962). “The Perceptron: a model for brain functioning”. In: Reviews of Modern Physics

34, pp. 123–135.

Boërio, D., J-Y. Hogrel, A. Créange, and J-P. Lefaucheur (2004). “Méthodes et intérêt clinique de

la mesure de la période réfractaire nerveuse périphérique chez l’homme”. In: Neurophysiologie

Clinique/Clinical Neurophysiology 34.6, pp. 279–291. ISSN: 0987-7053. DOI: 10.1016/j.

neucli.2004.08.002.

Bohnstingl, Thomas, Franz Scherr, Christian Pehle, Karlheinz Meier, and Wolfgang Maass (2019).

“Neuromorphic Hardware Learns to Learn”. In: Frontiers in Neuroscience 2019.13, pp. 1–14.

ISSN: 1662-4548. DOI: 10.3389/fnins.2019.00483.

Brunel, N. (2000). “Dynamics of sparsely connected networks of excitatory and inhibitory spiking

neurons”. In: Journal of Computational Neuroscience 8.3, pp. 183–208.

Burkhardt, Niels (2007). “Fast Hardware Barrier Synchronisation for a Reliable Interconnection

Network”. Diploma thesis. Mannheim University.

Burkhardt, Niels (2012). “A Hardware Verification Methodology for an Interconnection Network

with fast Process Synchronization”. PhD thesis. Mannheim University.

Buwen, Niels Arwed (2019). “Design and Implementation of a Transport Layer for the Extoll Net-

work Interface in the BrainScaleS Neuromorphic Computing Platform”. Master thesis. Ruprecht-

Karls-Universität Heidelberg.

Clos, Charles (1953). “A study of non-blocking switching networks”. In: The Bell System Technical

Journal 32.2, pp. 406–424. DOI: 10.1002/j.1538-7305.1953.tb01433.x.

228

https://doi.org/10.1109/ISSE.2006.365129
https://doi.org/10.1007/978-3-030-92525-3_1
https://doi.org/10.1007/978-3-030-92525-3_1
http://www.sciencedirect.com/science/book/9780120875504
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
http://www.jneurosci.org/content/18/24/10464
https://www.nist.gov/dads/HTML/postmansort.html
https://www.nist.gov/dads/HTML/postmansort.html
https://doi.org/10.1016/j.neucli.2004.08.002
https://doi.org/10.1016/j.neucli.2004.08.002
https://doi.org/10.3389/fnins.2019.00483
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x

References

Computer Architecture Group (2018). The CAG Registerfile Generator. URL: https://github.

com/unihd-cag/odfi-rfg.

Cormen, Thomas H., Charles Eric Leiserson, Ronald Linn Rivest, and Clifford Stein (2009). Intro-

duction to algorithms. eng. Third edition. Cambridge, Massachusetts ; London, England: MIT

Press, xix, 1292 pages. ISBN: 978-0-262-03384-8 and 978-0-262-53305-8.

Corwin, Edward and Antonette Logar (2004). “Sorting in Linear Time - Variations on the Bucket

Sort”. In: Journal of Computing Sciences in Colleges 20.1, pp. 197–202. ISSN: 1937-4771. URL:

https : / / dl . acm . org / doi / abs / 10 . 5555 / 1040231 . 1040257 (visited on

06/28/2023).

Culurciello, Eugenio and Andreas G Andreou (2003). “A Comparative Study of Access Topolo-

gies for Chip-Level Address-Event Communication Channels”. In: IEEE Transactions on Neural

Networks 14.5. DOI: 10.1109/TNN.2003.816385.

Datta, Gourav, Souvik Kundu, and Peter A. Beerel (2021). “Training Energy-Efficient Deep Spiking

Neural Networks with Single-Spike Hybrid Input Encoding”. In: 2021 International Joint Confer-

ence on Neural Networks (IJCNN), pp. 1–8. DOI: 10.1109/IJCNN52387.2021.9534306.

Davies, Donald W. (1999). “The Bombe a Remarkable Logic Machine”. In: Cryptologia 23.2,

pp. 108–138. DOI: 10.1080/0161-119991887793.

Davison, Andrew P., Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif Muller, Dejan Pecevski,

Laurent Perrinet, and Pierre Yger (2009). “PyNN: a common interface for neuronal network sim-

ulators”. In: Front. Neuroinform. 2.11. DOI: 10.3389/neuro.11.011.2008.

Dayan, Peter and L. F. Abbott (2001). Theoretical Neuroscience: Computational and Mathematical

Modeling of Neural Systems. Cambride, Massachusetts: The MIT press. ISBN: 0-262-04199-5.

De Sensi, Daniele, Salvatore Di Girolamo, Kim H. McMahon, Duncan Roweth, and Torsten Hoefler

(2020). “An In-Depth Analysis of the Slingshot Interconnect”. In: SC20: International Conference

for High Performance Computing, Networking, Storage and Analysis, pp. 1–14. DOI: 10.1109/

SC41405.2020.00039.

Deng, Yangdong and W.P. Maly (2005). “2.5-dimensional VLSI system integration”. In: IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems 13.6, pp. 668–677. DOI: 10.1109/

TVLSI.2005.848814.

Dennard, R.H., F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bassous, and A.R. LeBlanc (1974).

“Design of ion-implanted MOSFET’s with very small physical dimensions”. In: IEEE Journal of

Solid-State Circuits 9.5, pp. 256–268. DOI: 10.1109/JSSC.1974.1050511.

Diesmann, M., M.-O. Gewaltig, and A. Aertsen (1999). “Stable propagation of synchronous spiking

in cortical neural networks”. In: Nature 402, pp. 529–533.

Duato, Jose, Sudhakar Yalamanchili, and Lionel M Ni (2003). Interconnection Networks. an Engi-

neering Approach. The Morgan Kaufmann Series in Computer Architecture and Design. Morgan

Kaufmann. ISBN: 978-0-08-050899-3.

Eckert Jr, John Presper and John W Mauchly (1964). “Electronic Numerical Integrator And Com-

puter”. U.S. pat. 3120606. URL: https://worldwide.espacenet.com/patent/

search?q=pn%3DUS3120606A.

Eggen, Roger and Maurice Eggen (2019). “Thread and process efficiency in python”. In: Proceed-

ings of the international conference on parallel and distributed processing techniques and appli-

229

https://github.com/unihd-cag/odfi-rfg
https://github.com/unihd-cag/odfi-rfg
https://dl.acm.org/doi/abs/10.5555/1040231.1040257
https://doi.org/10.1109/TNN.2003.816385
https://doi.org/10.1109/IJCNN52387.2021.9534306
https://doi.org/10.1080/0161-119991887793
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/TVLSI.2005.848814
https://doi.org/10.1109/TVLSI.2005.848814
https://doi.org/10.1109/JSSC.1974.1050511
https://worldwide.espacenet.com/patent/search?q=pn%3DUS3120606A
https://worldwide.espacenet.com/patent/search?q=pn%3DUS3120606A

References

cations (PDPTA). The Steering Committee of The World Congress in Computer Science, pp. 32–

36. ISBN: 1-60132-508-8.

Electronic Visions(s), Heidelberg University (2022). libnux. URL: https://github.com/

electronicvisions/libnux.

Electronic Visions(s), Heidelberg University (n.d.[a]). calix. Calibration routines for HICANN-X.

URL: https://github.com/electronicvisions/calix.

Electronic Visions(s), Heidelberg University (n.d.[b]). fisch. FPGA Instruction Set Compiler for HI-

CANN. URL: https://github.com/electronicvisions/fisch.

Electronic Visions(s), Heidelberg University (n.d.[c]). flange. Linking C++ software stacks with

SystemVerilog using DPI. URL: https://github.com/electronicvisions/flange.

Electronic Visions(s), Heidelberg University (n.d.[d]). grenade. GRaph-based Experiment Nota-

tion And Data-flow Execution. URL: https://github.com/electronicvisions/

grenade.

Electronic Visions(s), Heidelberg University (n.d.[e]). halco. URL: https://github.com/

electronicvisions/halco.

Electronic Visions(s), Heidelberg University (n.d.[f]). haldls. URL: https://github.com/

electronicvisions/haldls.

Electronic Visions(s), Heidelberg University (n.d.[g]). hxcomm. Low-level communication with HICANN-

X. URL: https://github.com/electronicvisions/hxcomm.

Electronic Visions(s), Heidelberg University (n.d.[h]). hxtorch. PyTorch for BrainScaleS-2. URL:

https://github.com/electronicvisions/hxtorch.

Electronic Visions(s), Heidelberg University (n.d.[i]). librma. Fork of EXTOLL’s RMA Userspace

Library. URL: https://github.com/electronicvisions/librma.

Electronic Visions(s), Heidelberg University (n.d.[j]). pynn-brainscales. PyNN for BrainScaleS-2.

URL: https://github.com/electronicvisions/pynn-brainscales.

EXTOLL GmbH (2017a). Technology Overview. Company Website archived from the original. URL:

https://web.archive.org/web/20170722133708/http://www.extoll.de/

technology (visited on 08/23/2023).

EXTOLL GmbH (2017b). Tourmalet (ASIC). Company Website archived from the original. URL:

https://web.archive.org/web/20170717092946/http://www.extoll.de/

products/tourmalet (visited on 08/23/2023).

Fernández, Eduardo et al. (2021). “Visual percepts evoked with an intracortical 96-channel mi-

croelectrode array inserted in human occipital cortex”. In: The Journal of Clinical Investigation

131.23. DOI: 10.1172/JCI151331.

Fieres, J., A. Grübl, S. Philipp, K. Meier, J. Schemmel, and F. Schürmann (2004). “A Platform for

Parallel Operation of VLSI Neural Networks”. In: Proc. of the 2004 Brain Inspired Cognitive

Systems Conference (BICS2004). University of Stirling, Scotland, UK.

Friedmann, Simon (2013). “A New Approach to Learning in Neuromorphic Hardware”. PhD thesis.

Ruprecht-Karls-Universität Heidelberg. DOI: 10.11588/heidok.00015359. URL: http:

//archiv.ub.uni-heidelberg.de/volltextserver/15359/.

230

https://github.com/electronicvisions/libnux
https://github.com/electronicvisions/libnux
https://github.com/electronicvisions/calix
https://github.com/electronicvisions/fisch
https://github.com/electronicvisions/flange
https://github.com/electronicvisions/grenade
https://github.com/electronicvisions/grenade
https://github.com/electronicvisions/halco
https://github.com/electronicvisions/halco
https://github.com/electronicvisions/haldls
https://github.com/electronicvisions/haldls
https://github.com/electronicvisions/hxcomm
https://github.com/electronicvisions/hxtorch
https://github.com/electronicvisions/librma
https://github.com/electronicvisions/pynn-brainscales
https://web.archive.org/web/20170722133708/http://www.extoll.de/technology
https://web.archive.org/web/20170722133708/http://www.extoll.de/technology
https://web.archive.org/web/20170717092946/http://www.extoll.de/products/tourmalet
https://web.archive.org/web/20170717092946/http://www.extoll.de/products/tourmalet
https://doi.org/10.1172/JCI151331
https://doi.org/10.11588/heidok.00015359
http://archiv.ub.uni-heidelberg.de/volltextserver/15359/
http://archiv.ub.uni-heidelberg.de/volltextserver/15359/

References

Friedmann, Simon (2015). Omnibus On-Chip Bus. forked from https : / / github . com /

five-elephants/omnibus. URL: https://github.com/electronicvisions/

omnibus.

Friedmann, Simon, Johannes Schemmel, Andreas Grübl, Andreas Hartel, Matthias Hock, and Karl-

heinz Meier (2017). “Demonstrating Hybrid Learning in a Flexible Neuromorphic Hardware Sys-

tem”. In: IEEE Transactions on Biomedical Circuits and Systems 11.1, pp. 128–142. ISSN: 1932-

4545. DOI: 10.1109/TBCAS.2016.2579164.

Fröning, Holger (2015). “EXTOLL and Data Movements in Heterogeneous Computing Environ-

ments”. In: Sustained Simulation Performance 2014. Springer International Publishing, pp. 127–

139. ISBN: 978-3-319-10626-7. DOI: 10.1007/978-3-319-10626-7_11.

Fröning, Holger and Heiner Litz (2010). “Efficient hardware support for the Partitioned Global

Address Space”. In: 2010 IEEE International Symposium on Parallel & Distributed Processing,

Workshops and Phd Forum (IPDPSW), pp. 1–6. DOI: 10.1109/IPDPSW.2010.5470851.

Fröning, Holger, Mondrian Nüssle, Heiner Litz, Christian Leber, and Ulrich Brüning (2013). “On

Achieving High Message Rates”. In: 2013 13th IEEE/ACM International Symposium on Cluster,

Cloud, and Grid Computing, pp. 498–505. DOI: 10.1109/CCGrid.2013.43.

Fukushima, K. (1988). “Neocognitron: A Hierarchical Neural Network Capable of Visual Pattern

Recognition”. In: Neural Networks 1, pp. 119–130.

Fukushima, K. and S. Miyake (1982). “Neocognitron: A new algorithm for pattern recognition tol-

erant of deformations and shifts in position”. In: Pattern Recognition 15(6), pp. 455–469.

Fukushima, K., S. Miyake, and T. Ito (1983). “Neocognitron: A neural network model for a mech-

anism of visual pattern recognition”. In: IEEE Transactions on Systems, Man and Cybernetics

SMC-13, pp. 826–834.

Fukushima, Kunihiko (1980). “Neocognitron: A self-organizing neural network model for a mech-

anism of pattern recognition unaffected by shift in position”. In: Biological cybernetics 36.4,

pp. 193–202.

Furber, Steve (2016). “Large-scale neuromorphic computing systems”. In: Journal of Neural Engi-

neering 13.5. DOI: 10.1088/1741-2560/13/5/051001.

Furber, Steve B., Francesco Galluppi, Steve Temple, and Luis A. Plana (2014). “The SpiNNaker

Project”. In: Proceedings of the IEEE. Vol. 102. 5, pp. 652–665. DOI: 10.1109/JPROC.

2014.2304638.

Furber, Steve B., David R. Lester, Luis A. Plana, Jim D. Garside, Eustace Painkras, Steve Temple,

and Andrew D. Brown (2013). “Overview of the SpiNNaker System Architecture”. In: IEEE

Transactions on Computers 62.12. ISSN: 0018-9340. DOI: 10.1109/TC.2012.142.

Geib, Benjamin Ulrich (2012). “Hardware support for efficient packet processing”. PhD thesis.

Mannheim University.

Gekle, Michael et al. (2015). Taschenlehrbuch Physiologie. 2., überarbeitete Auflage. Georg Thieme

Verlag. ISBN: 978-3-13-144982-5.

Gerstner, Wulfram and Romain Brette (2009a). “Adaptive exponential integrate-and-fire model”. In:

Scholarpedia 4.6, p. 8427. DOI: 10.4249/scholarpedia.8427.

Gerstner, Wulfram and Romain Brette (2009b). “Adaptive exponential integrate-and-fire model”.

In: Scholarpedia 4.6, p. 8427. DOI: 10.4249/scholarpedia.8427. URL: http://

231

https://github.com/five-elephants/omnibus
https://github.com/five-elephants/omnibus
https://github.com/electronicvisions/omnibus
https://github.com/electronicvisions/omnibus
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1007/978-3-319-10626-7_11
https://doi.org/10.1109/IPDPSW.2010.5470851
https://doi.org/10.1109/CCGrid.2013.43
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.4249/scholarpedia.8427
https://doi.org/10.4249/scholarpedia.8427
http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model
http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model

References

www.scholarpedia.org/article/Adaptive_exponential_integrate-and-

fire_model.

Gerstner, Wulfram and Werner Kistler (2002). Spiking Neuron Models. Single Neurons, Populations,

Plasticity. Cambridge University Press.

Gerstner, Wulfram, Andreas K Kreiter, Henry Markram, and Andreas VM Herz (1997). “Neural

codes: firing rates and beyond”. In: Proceedings of the National Academy of Sciences 94.24,

pp. 12740–12741.

Gewaltig, M. O., M. Diesmann, and A. Aertsen (2001). “Propagation of cortical synfire activity:

survival probability in single trials and stability in the mean.” In: Neural Netw 14.6-7, pp. 657–

673. ISSN: 0893-6080. URL: http://view.ncbi.nlm.nih.gov/pubmed/11665761.

Giese, Alexander, Benjamin Kalisch, and Mondrian Nüssle (2012). RMA2 Specification. Tech. rep.

revision 2.0.4, CAG Confidential. Institue for Computer Engineering, Computer Architecture

Group.

Grübl, Andreas (2007). “VLSI Implementation of a Spiking Neural Network”. Document No. HD-

KIP 07-10. PhD thesis. Ruprecht-Karls-University, Heidelberg. URL: http://www.kip.

uni-heidelberg.de/Veroeffentlichungen/details.php?id=1788.

Grzybowski, Andrzej and Matthew H. Kaufman (2007). “Sir Charles Bell (1774-1842): contribu-

tions to neuro-ophthalmology”. In: Acta Ophthalmologica Scandinavica 85.8, pp. 897–901. DOI:

10.1111/j.1600-0420.2007.00972.x.

Gustafson, John L. (1988). “Reevaluating Amdahl’s Law”. In: Commun. ACM 31.5, pp. 532–533.

ISSN: 0001-0782. DOI: 10.1145/42411.42415.

Güttler, Maurice Gilbert (2017). “Achieving a Higher Integration Level of Neuromorphic Hardware

using Wafer Embedding”. PhD thesis. Ruprecht-Karls-Universität Heidelberg. DOI: 10.11588/

heidok.00023723.

Hanser, Hartwig, Christine Scholtyssek, et al. (2000). Ramón y Cajal. Lexikon der Neurowissenschaft.

Hartel, Andreas (2016). “Implementation and Characterization of Mixed-Signal Neuromorphic ASICs”.

PhD thesis. Ruprecht-Karls-Universität Heidelberg.

Hebb, Donald O. (1949). The Organization of Behaviour. New York: Wiley.

Heeger, David (2000). Poisson model of spike generation. Handout. New York University, pp. 1–13.

URL: https://www.cns.nyu.edu/~david/handouts/poisson.pdf.

Hessler, Neal A, Aneil M Shirke, and Roberto Malinow (1993). “The probability of transmitter

release at a mammalian central synapse”. In: Nature 366.6455, pp. 569–572. DOI: 10.1038/

366569a0.

Hewlett Packard Enterprise (2023). HPE Slingshot Interconnect. URL: https://www.hpe.

com/de/de/compute/hpc/slingshot-interconnect.html (visited on 09/21/2023).

Hodgkin, Alan Lloyd and Andrew F. Huxley (1952). “A quantitative description of membrane cur-

rent and its application to conduction and excitation in nerve.” In: J Physiol 117.4, pp. 500–544.

ISSN: 0022-3751. URL: http://view.ncbi.nlm.nih.gov/pubmed/12991237.

Hornung, Moritz (2020). “Adapting the Cortical Microcircuit Model for the BrainScaleS-1 hard-

ware”. Bachelor thesis. Universität Heidelberg.

232

http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model
http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model
http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model
http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model
http://view.ncbi.nlm.nih.gov/pubmed/11665761
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=1788
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=1788
https://doi.org/10.1111/j.1600-0420.2007.00972.x
https://doi.org/10.1145/42411.42415
https://doi.org/10.11588/heidok.00023723
https://doi.org/10.11588/heidok.00023723
https://www.cns.nyu.edu/~david/handouts/poisson.pdf
https://doi.org/10.1038/366569a0
https://doi.org/10.1038/366569a0
https://www.hpe.com/de/de/compute/hpc/slingshot-interconnect.html
https://www.hpe.com/de/de/compute/hpc/slingshot-interconnect.html
http://view.ncbi.nlm.nih.gov/pubmed/12991237

References

Huang, Ya-Chi, Meng-Hsueh Chiang, Shui-Jinn Wang, and Jerry G. Fossum (2017). “GAAFET

Versus Pragmatic FinFET at the 5nm Si-Based CMOS Technology Node”. In: IEEE Journal of

the Electron Devices Society 5.3, pp. 164–169. DOI: 10.1109/JEDS.2017.2689738.

IEEE (2013). “IEEE Standard for Test Access Port and Boundary-Scan Architecture”. In: IEEE

Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pp. 1–444. DOI: 10.1109/IEEESTD.

2013.6515989.

IEEE (2018). IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Veri-

fication Language. Standard 1800-2017 (Revision of IEEE Std 1800-2012). Institute of Electrical

and Electronics Engineers. DOI: 10.1109/IEEESTD.2018.8299595.

IEEE (2021). International Roadmap For Devices And Systems™: More Moore. URL: https:

//irds.ieee.org/editions/2021/more-moore (visited on 09/21/2023).

Irvine, M.M. (2001). “Early digital computers at Bell Telephone Laboratories”. In: IEEE Annals of

the History of Computing 23.3, pp. 22–42. DOI: 10.1109/85.948904.

ITU (1994). ITU-T X.200 (07/1994). URL: https://handle.itu.int/11.1002/1000/

2820.

Jones, Edward G. (1999). “Golgi, Cajal and the Neuron Doctrine”. In: Journal of the History of the

Neurosciences 8.2, pp. 170–178. DOI: 10.1076/jhin.8.2.170.1838.

Jurczak, M., N. Collaert, A. Veloso, T. Hoffmann, and S. Biesemans (2009). “Review of FINFET

technology”. In: 2009 IEEE International SOI Conference, pp. 1–4. DOI: 10.1109/SOI.

2009.5318794.

Kaiser, Jakob, Sebastian Billaudelle, Eric Müller, Christian Tetzlaff, Johannes Schemmel, and Se-

bastian Schmitt (2022). “Emulating dendritic computing paradigms on analog neuromorphic hard-

ware”. In: Neuroscience 489, pp. 290–300. ISSN: 0306-4522. DOI: 10.1016/j.neuroscience.

2021.08.013. URL: https://www.sciencedirect.com/science/article/

pii/S0306452221004218.

Kanzleiter, Lea (2018). “A Parametrizable Switch For Neuromorphic Hardware”. Bachelor thesis.

Ruprecht-Karls-Universität Heidelberg.

Karasenko, Vitali (2014). A communication infrastructure for a neuromorphic system. Master’s the-

sis (English), University of Heidelberg.

Karasenko, Vitali (2020). “Von Neumann bottlenecks in non-von Neumann computing architec-

tures”. PhD thesis. Universität Heidelberg. URL: http://archiv.ub.uni-heidelberg.

de/volltextserver/28691/1/KarasenkoPhD.pdf.

Kernighan, Brian W. and Dennis M. Ritchie (1977). The M4 Macro Processor. Tech. rep. Murray

Hill, New Jersey 07974: Bell Laboratories.

Ketcham, Carl (2004). “Method and apparatus for packet aggregation in packet-based network”. U.S.

pat. 6721334b1. URL: https://patents.google.com/patent/US6721334B1/en.

Kiene, Gerd (2017). “Mixed-Signal Neuron and Readout Circuits for a Neuromorphic System”.

Master thesis. Ruprecht-Karls-Universität Heidelberg.

Kilby, Jack S. (1964). “Miniturized Electronic Circuits”. U.S. pat. 3138743. URL: https://

worldwide.espacenet.com/patent/search?q=pn%3DUS3138743A (visited on

06/12/2023).

233

https://doi.org/10.1109/JEDS.2017.2689738
https://doi.org/10.1109/IEEESTD.2013.6515989
https://doi.org/10.1109/IEEESTD.2013.6515989
https://doi.org/10.1109/IEEESTD.2018.8299595
https://irds.ieee.org/editions/2021/more-moore
https://irds.ieee.org/editions/2021/more-moore
https://doi.org/10.1109/85.948904
https://handle.itu.int/11.1002/1000/2820
https://handle.itu.int/11.1002/1000/2820
https://doi.org/10.1076/jhin.8.2.170.1838
https://doi.org/10.1109/SOI.2009.5318794
https://doi.org/10.1109/SOI.2009.5318794
https://doi.org/10.1016/j.neuroscience.2021.08.013
https://doi.org/10.1016/j.neuroscience.2021.08.013
https://www.sciencedirect.com/science/article/pii/S0306452221004218
https://www.sciencedirect.com/science/article/pii/S0306452221004218
http://archiv.ub.uni-heidelberg.de/volltextserver/28691/1/KarasenkoPhD.pdf
http://archiv.ub.uni-heidelberg.de/volltextserver/28691/1/KarasenkoPhD.pdf
https://patents.google.com/patent/US6721334B1/en
https://worldwide.espacenet.com/patent/search?q=pn%3DUS3138743A
https://worldwide.espacenet.com/patent/search?q=pn%3DUS3138743A

References

Kim, Jinwoo et al. (2020). “Architecture, Chip, and Package Codesign Flow for Interposer-Based

2.5-D Chiplet Integration Enabling Heterogeneous IP Reuse”. In: IEEE Transactions on Very

Large Scale Integration (VLSI) Systems 28.11, pp. 2424–2437. DOI: 10.1109/TVLSI.2020.

3015494.

Kim, Kyungtae, S. Ganguly, R. Izmailov, and Sangjin Hong (2006). “On Packet Aggregation Mecha-

nisms for Improving VoIP Quality in Mesh Networks”. In: 2006 IEEE 63rd Vehicular Technology

Conference. Vol. 2, pp. 891–895. DOI: 10.1109/VETECS.2006.1682953.

Kleider, Mitja (2017). “Neuron Circuit Characterization in a Neuromorphic System”. HD-KIP 17-

135. PhD thesis. Universität Heidelberg. URL: http://www.kip.uni-heidelberg.de/

Veroeffentlichungen/details.php?id=3657.

Kohútka, Lukáš (2022). “Efficiency of Priority Queue Architectures in FPGA”. In: Journal of Low

Power Electronics and Applications 12.3. ISSN: 2079-9268. DOI: 10.3390/jlpea12030039.

Kohútka, Lukáš, Lukáš Nagy, and Viera Stopjaková (2018). “A Novel Hardware-Accelerated Prior-

ity Queue for Real-Time Systems”. In: 2018 21st Euromicro Conference on Digital System Design

(DSD), pp. 46–53. DOI: 10.1109/DSD.2018.00023.

Kremkow, J., L.U. Perrinet, G.S. Masson, and A. Aertsen (2010). “Functional consequences of cor-

related excitatory and inhibitory conductances in cortical networks.” In: J Comput Neurosci 28,

pp. 579–594.

Krol, Laurens R. (2021). Action potential schematics.svg. URL: https://commons.wikimedia.

org/wiki/File:Action_potential_schematic.svg (visited on 09/19/2023).

Leibfried, Aron (2021). “On-chip calibration and closed-loop experiments on analog neuromorphic

hardware”. Master thesis. Ruprecht-Karls-Universität Heidelberg.

Lenfant, Jaques (1978). “Parallel Permutations of Data: A Benes Network Control Algorithm for

Frequently Used Permutations”. In: IEEE Transactions on Computers C-27.7, pp. 637–647. DOI:

10.1109/TC.1978.1675164.

Leonard, William R. and Marcia L. Robertson (1994). “Evolutionary perspectives on human nu-

trition: The influence of brain and body size on diet and metabolism”. In: American Journal of

Human Biology 6.1, pp. 77–88. DOI: 10.1002/ajhb.1310060111.

Li, Hongmin, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi (2017). “CIFAR10-DVS: An

Event-Stream Dataset for Object Classification”. In: Frontiers in Neuroscience 11. ISSN: 1662-

453X. DOI: 10.3389/fnins.2017.00309.

Lichtsteiner, Patrick, Christoph Posch, and Tobi Delbruck (2008). “A 128×128 120 dB 15 µs La-

tency Asynchronous Temporal Contrast Vision Sensor”. In: IEEE Journal of Solid-State Circuits

43, pp. 566–576. DOI: 10.1109/JSSC.2007.914337.

Litz, Heiner, Holger Fröning, Mondrian Nüssle, and Ulrich Brüning (2008). “VELO: A novel com-

munication engine for ultra-low latency message transfers”. In: 2008 37th International Con-

ference on Parallel Processing, pp. 238–245. ISBN: 9780769533742. DOI: 10.1109/ICPP.

2008.85.

Litz, Heiner Hannes (2011). “Improving the Scalability of High Performance Computer Systems”.

PhD thesis. Mannheim University.

234

https://doi.org/10.1109/TVLSI.2020.3015494
https://doi.org/10.1109/TVLSI.2020.3015494
https://doi.org/10.1109/VETECS.2006.1682953
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3657
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3657
https://doi.org/10.3390/jlpea12030039
https://doi.org/10.1109/DSD.2018.00023
https://commons.wikimedia.org/wiki/File:Action_potential_schematic.svg
https://commons.wikimedia.org/wiki/File:Action_potential_schematic.svg
https://doi.org/10.1109/TC.1978.1675164
https://doi.org/10.1002/ajhb.1310060111
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/ICPP.2008.85
https://doi.org/10.1109/ICPP.2008.85

References

Liu, Min and Tobi Delbruck (2017). “Block-matching optical flow for dynamic vision sensors: Al-

gorithm and FPGA implementation”. In: 2017 IEEE International Symposium on Circuits and

Systems (ISCAS), pp. 1–4. DOI: 10.1109/ISCAS.2017.8050295.

Mahowald, Misha (1992). “VLSI analogs of neuronal visual processing: a synthesis of form and

function”. PhD thesis. California Institute of Technology. DOI: 10.7907/Z9CZ35CD.

Markram, H. (2012). “The Human Brain Project”. In: Scientific American 306.6, pp. 50–55.

Markram, H., J. Lübke, M. Frotscher, and B. Sakmann (1997). “Regulation of Synaptic Efficacy By

Coincidence of Postsynaptic Aps.” In: Science 275, pp. 213–215.

Mayr, Christian, Sebastian Hoeppner, and Steve Furber (2019). “Spinnaker 2: A 10 million core pro-

cessor system for brain simulation and machine learning”. In: arXiv preprint arXiv:1911.02385.

McKeown, N. (1999). “The iSLIP scheduling algorithm for input-queued switches”. In: IEEE/ACM

Transactions on Networking 7.2, pp. 188–201. DOI: 10.1109/90.769767.

Millner, Sebastian (2012). “Development of a Multi-Compartment Neuron Model Emulation”. PhD

thesis. Ruprecht-Karls-Universität Heidelberg. DOI: 10.11588/heidok.00013979.

Minsky, Marvin and Seymour Papert (1969). Perceptrons. An Introduction to Computational Geom-

etry. Cambridge, MA: MIT Press.

Moore, Gordon E. (2006). “Lithography and the future of Moore’s Law”. In: IEEE Solid-State Cir-

cuits Society Newsletter 11.3, pp. 37–42. DOI: 10.1109/N-SSC.2006.4785861.

Müller, Eric, Elias Arnold, et al. (2022). “A Scalable Approach to Modeling on Accelerated Neuro-

morphic Hardware”. In: Front. Neurosci. 16. ISSN: 1662-453X. DOI: 10.3389/fnins.2022.

884128.

Müller, Eric, Arne Emmel, et al. (2023). The BrainScaleS-2 Neuromorphic Platform — A Report

on the Integration and Operation of an Open Science Hardware Platform within EBRAINS. DOI:

10.5281/zenodo.8375522.

Müller, Eric, Christian Mauch, Philipp Spilger, Oliver Julien Breitwieser, Johann Klähn, David

Stöckel, Timo Wunderlich, and Johannes Schemmel (2020). Extending BrainScaleS OS for BrainScaleS-

2. Tech. rep. Heidelberg, Germany: Electronic Vision(s), Kirchhoff Institute for Physics, Heidel-

berg University, Germany. DOI: 10.48550/arXiv.2003.13750. arXiv: 2003.13750

[cs.NE].

Müller, Eric, Moritz Schilling, and Christian Mauch (2018). HostARQ Slow Control Transport Pro-

tocol. URL: https://github.com/electronicvisions/sctrltp.

Müller, Eric, Sebastian Schmitt, et al. (2020). “The Operating System of the Neuromorphic BrainScaleS-

1 System”. In: arXiv preprint. submitted to Neurocomputing OSP. arXiv: 2003.13749 [cs.NE].

URL: http://arxiv.org/abs/2003.13749.

Najmaei, Sina, Andreu L. Glasmann, Marshall A. Schroeder, Wendy L. Sarney, Matthew L. Chin,

and Daniel M. Potrepka (2022). “Advancements in materials, devices, and integration schemes

for a new generation of neuromorphic computers”. In: Materials Today 59, pp. 80–106. ISSN:

1369-7021. DOI: https://doi.org/10.1016/j.mattod.2022.08.017.

Nielsen, Bo Friis (2020). Lecture notes on phase-type distributions for 02407 Stochastic Processes.

Technical University of Denmark, pp. 1–21. URL: http://www2.imm.dtu.dk/courses/

02407/lectnotes/ftf.pdf.

235

https://doi.org/10.1109/ISCAS.2017.8050295
https://doi.org/10.7907/Z9CZ35CD
https://doi.org/10.1109/90.769767
https://doi.org/10.11588/heidok.00013979
https://doi.org/10.1109/N-SSC.2006.4785861
https://doi.org/10.3389/fnins.2022.884128
https://doi.org/10.3389/fnins.2022.884128
https://doi.org/10.5281/zenodo.8375522
https://doi.org/10.48550/arXiv.2003.13750
https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2003.13750
https://github.com/electronicvisions/sctrltp
https://arxiv.org/abs/2003.13749
http://arxiv.org/abs/2003.13749
https://doi.org/https://doi.org/10.1016/j.mattod.2022.08.017
http://www2.imm.dtu.dk/courses/02407/lectnotes/ftf.pdf
http://www2.imm.dtu.dk/courses/02407/lectnotes/ftf.pdf

References

Nobel Prize Outreach AB (2023). All Nobel Prizes. URL: https://www.nobelprize.org/

prizes/lists/all-nobel-prizes/ (visited on 09/20/2023).

Noyce, Robert N. (1961). “Semiconductor Device-And-Lead Structure”. U.S. pat. 2981877. URL:

https://worldwide.espacenet.com/patent/search?q=pn%3DUS2981877A.

Nüßle, Mondrian Benediktus (2008). “Acceleration of the Hardware-Software Interface of a Com-

munication Device For Parallel Systems”. PhD thesis. Mannheim University.

Nüssle, Mondrian, Benjamin Geib, Holger Fröning, and Ulrich Brüning (2009). “An FPGA-based

custom high performance interconnection network”. In: 2009 International Conference on Recon-

figurable Computing and FPGAs. IEEE, pp. 113–118. DOI: 10.1109/ReConFig.2009.23.

Nüssle, Mondrian, Martin Scherer, and Ulrich Brüning (2009). “A Resource Optimized Remote-

Memory-Access Architecture for Low-latency Communication”. In: International Conference on

Parallel Processing, pp. 220–227. DOI: 10.1109/ICPP.2009.62.

OCP (2009). Open Core Protocol Specification 3.0. URL: http://www.ocpip.org/home.

Ousterhout, John and Community (2023). Tcl Developer Xchange. Open Source Programming Lan-

guage. URL: https://www.tcl.tk (visited on 06/01/2023).

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning

Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach, H.

Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc.,

pp. 8024–8035. URL: http://papers.neurips.cc/paper/9015-pytorch-an-

imperative-style-high-performance-deep-learning-library.pdf.

Pearson, Martin J, Shirin Dora, Oliver Struckmeier, Thomas C Knowles, Ben Mitchinson, Kshitij

Tiwari, Ville Kyrki, Sander Bohte, and Cyriel Pennartz (2021). “Multimodal representation learn-

ing for place recognition using deep Hebbian predictive coding”. In: Frontiers in Robotics and AI

8. DOI: 10.3389/frobt.2021.732023.

Pehle, Christian (2021). “Adjoint equations of spiking neural networks”. PhD thesis. Ruprecht-

Karls-Universität Heidelberg. DOI: 10.11588/heidok.00029866.

Pehle, Christian et al. (2022). “The BrainScaleS-2 Accelerated Neuromorphic System with Hybrid

Plasticity”. In: Frontiers in Neuroscience 16. ISSN: 1662-453X. DOI: 10.3389/fnins.2022.

795876.

Peterson, Martin (2022). “The St. Petersburg Paradox”. In: The Standford Encyclopedia of Philos-

ophy. Ed. by Edward N. Zalta. Summer 2022. Metaphysics Research Lab, Stanford University.

URL: https://plato.stanford.edu/archives/sum2022/entries/paradox-

stpetersburg/.

Petrovici, Mihai Alexandru (2016). Form Versus Function. Theory and Models for Neuronal Sub-

strates. Springer Theses. Springer Cham, pp. XXVI, 374. ISBN: 978-3-319-39552-4. DOI: 10.

1007/978-3-319-39552-4.

Philipp, Stefan (2008). “Design and Implementation of a Multi-Class Network Architecture for

Hardware Neural Networks”. PhD thesis. Ruprecht-Karls-Universität Heidelberg.

Piccolino, Marco (1998). “Animal electricity and the birth of electrophysiology: the legacy of Luigi

Galvani”. In: Brain Research Bulletin 46.5, pp. 381–407. ISSN: 0361-9230. DOI: 10.1016/

S0361-9230(98)00026-4.

236

https://www.nobelprize.org/prizes/lists/all-nobel-prizes/
https://www.nobelprize.org/prizes/lists/all-nobel-prizes/
https://worldwide.espacenet.com/patent/search?q=pn%3DUS2981877A
https://doi.org/10.1109/ReConFig.2009.23
https://doi.org/10.1109/ICPP.2009.62
http://www.ocpip.org/home
https://www.tcl.tk
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.3389/frobt.2021.732023
https://doi.org/10.11588/heidok.00029866
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.3389/fnins.2022.795876
https://plato.stanford.edu/archives/sum2022/entries/paradox-stpetersburg/
https://plato.stanford.edu/archives/sum2022/entries/paradox-stpetersburg/
https://doi.org/10.1007/978-3-319-39552-4
https://doi.org/10.1007/978-3-319-39552-4
https://doi.org/10.1016/S0361-9230(98)00026-4
https://doi.org/10.1016/S0361-9230(98)00026-4

References

Plana, Luis A., Jim Garside, Jonathan Heathcote, Jeffrey Pepper, Steve Temple, Simon Davidson,

Mikel Lujan, and Steve Furber (2020). “spiNNlink: FPGA-Based Interconnect for the Million-

Core SpiNNaker System”. In: IEEE Access 8, pp. 84918–84928. ISSN: 2169-3536. DOI: 10.

1109/ACCESS.2020.2991038.

Potjans, Tobias C. and Markus Diesmann (2012). “The Cell-Type Specific Cortical Microcircuit:

Relating Structure and Activity in a Full-Scale Spiking Network Modela”. In: Cereb. Cortex 24

(3), pp. 785–806. DOI: 10.1093/cercor/bhs358.

Prades, Javier, Federico Silla, José Duato, Holger Fröning, and Mondrian Nüssle (2012). “A New

End-to-End Flow-Control Mechanism for High Performance Computing Clusters”. In: 2012 IEEE

International Conference on Cluster Computing, pp. 320–328. DOI: 10.1109/CLUSTER.

2012.15.

Privault, Nicolas (2018). Understanding Markov Chains. 2nd ed. 2018. Springer Undergraduate

Mathematics Series. Singapore: Springer Singapore, XVII, 372 pages. ISBN: 978-981-13-0658-7.

DOI: 10.1007/978-981-13-0659-4.

Rajkumar, Ajay and Michael D Turner (2008). “Packet aggregation for real time services on packet

data networks”. U.S. pat. 7391769b2. URL: https://patents.google.com/patent/

US7391769B2/en.

Reinagel, Pamela and R Clay Reid (2000). “Temporal coding of visual information in the thalamus”.

In: Journal of neuroscience 20.14, pp. 5392–5400.

Rettig, Marco (2019a). “Characterizing the Event Interface of the HICANN-X”. Bachelor thesis.

Ruprecht-Karls-Universität Heidelberg.

Rettig, Marco (2019b). Verification of a Parameterizable JTAG Driver Module. Internship report.

Rieke, F., D. Warland, R. de Ruyter van Steveninck, and W. Bialek (1997). Spikes - Exploring the

neural code. MIT Press, Cambridge, MA.

Rodrigues, Joel J. P. C. and Paulo A. C. S. Neves (2010). “A survey on IP-based wireless sensor

network solutions”. In: International Journal of Communication Systems 23.8, pp. 963–981. DOI:

10.1002/dac.1099.

Rosenblatt, F. (1958). “The Perceptron: a probabilistic model for information storage and organiza-

tion in the brain”. In: Psychological Review 65, pp. 386–408.

Roser, Max and Hannah Ritchie (2020). Moore’s Law Transistor Count 1970-2020.png. URL: https:

//commons.wikimedia.org/wiki/File:Moore%27s_Law_Transistor_

Count_1970-2020.png (visited on 09/21/2023).

Sale, Tony (2004). “Alan Turing at Bletchley Park in World War II”. In: Alan Turing: Life and

Legacy of a Great Thinker. Ed. by Christof Teuscher. Springer Berlin Heidelberg, pp. 441–462.

ISBN: 978-3-662-05642-4. DOI: 10.1007/978-3-662-05642-4_18.

Schemmel, J., J. Fieres, and K. Meier (2008). “Wafer-Scale Integration of Analog Neural Networks”.

In: Proceedings of the 2008 International Joint Conference on Neural Networks (IJCNN).

Schemmel, Johannes, Sebastian Billaudelle, Philipp Dauer, and Johannes Weis (2022). “Accelerated

Analog Neuromorphic Computing”. DOI: 10.1007/978-3-030-91741-8_6.

Schemmel, Johannes, Daniel Brüderle, Andreas Grübl, Matthias Hock, Karlheinz Meier, and Se-

bastian Millner (2010). “A Wafer-Scale Neuromorphic Hardware System for Large-Scale Neural

237

https://doi.org/10.1109/ACCESS.2020.2991038
https://doi.org/10.1109/ACCESS.2020.2991038
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1109/CLUSTER.2012.15
https://doi.org/10.1109/CLUSTER.2012.15
https://doi.org/10.1007/978-981-13-0659-4
https://patents.google.com/patent/US7391769B2/en
https://patents.google.com/patent/US7391769B2/en
https://doi.org/10.1002/dac.1099
https://commons.wikimedia.org/wiki/File:Moore%27s_Law_Transistor_Count_1970-2020.png
https://commons.wikimedia.org/wiki/File:Moore%27s_Law_Transistor_Count_1970-2020.png
https://commons.wikimedia.org/wiki/File:Moore%27s_Law_Transistor_Count_1970-2020.png
https://doi.org/10.1007/978-3-662-05642-4_18
https://doi.org/10.1007/978-3-030-91741-8_6

References

Modeling”. In: Proceedings of the 2010 IEEE International Symposium on Circuits and Systems

(ISCAS), pp. 1947–1950. DOI: 10.1109/ISCAS.2010.5536970.

Schmidt, Albrecht (2002). “Ubiquitous Computing - Computing in Context”. PhD thesis. Lancaster

University (United Kingdom).

Schmidt, Alexander (2017). “Design und Charakterisierung einer Routing-Schnittstelle für Neu-

romorphe Hardware”. written in German language. Bachelor thesis. Ruprecht-Karls-Universität

Heidelberg.

Schmidt, Hartmut et al. (2023). “From Clean Room to Machine Room: Commissioning of the

First-Generation BrainScaleS Wafer-Scale Neuromorphic System”. In: arXiv preprint. DOI: 10.

1088/2634-4386/acf7e4. arXiv: 2303.12359 [cs.ET].

Schmitt, Juri (2017). “Accelerating Checkpoint/Restart Application Performance in Large-Scale

Systems with Network Attached Memory”. PhD thesis. Ruprecht-Karls-Universität Heidelberg.

DOI: 10.11588/heidok.00023800.

Scholze, S., H. Eisenreich, et al. (2011). “A 32 GBit/s Communication SoC for a Waferscale Neuro-

morphic System”. In: Integration, the VLSI Journal. in press. DOI: 10.1016/j.vlsi.2011.

05.003.

Scholze, S., S. Henker, J. Partzsch, C. Mayr, and R. Schuffny (2010). “Optimized queue based

communication in VLSI using a weakly ordered binary heap”. In: Mixed Design of Integrated

Circuits and Systems (MIXDES), 2010 Proceedings of the 17th International Conference, pp. 316–

320.

Schreiber, Korbinian (2021). “Accelerated neuromorphic cybernetics”. PhD thesis. Universität Hei-

delberg.

Seindal, René, François Pinard, Gary V. Vaughan, and Eric Blake (2021). GNU M4, version 1.4.19.

A powerful macro processor. URL: https://www.gnu.org/software/m4/manual/

m4.pdf (visited on 06/01/2023).

Shalf, John, Sudip Dosanjh, and John Morrison (2011). “Exascale Computing Technology Chal-

lenges”. In: High Performance Computing for Computational Science – VECPAR 2010. Springer

Berlin Heidelberg, pp. 1–25. ISBN: 978-3-642-19328-6. DOI: 10 . 1007 / 978 - 3 - 642 -

19328-6_1.

Sigman, Karl (2016). Expected Number of Visits of a Finite State Markov Chain to a Transient State.

Columbia University in the City of New York, pp. 1–3. URL: www.columbia.edu/~ks20/

4106-18-Fall/Notes-Transient.pdf.

Silver, David, Aja Huang, et al. (2016). “Mastering the game of Go with deep neural networks and

tree search”. In: Nature 529.7587, pp. 484–489.

Silver, David, Julian Schrittwieser, et al. (2017). “Mastering the game of go without human knowl-

edge”. In: Nature 550.7676, pp. 354–359.

Silvestri, L et al. (2021). “Universal autofocus for quantitative volumetric microscopy of whole

mouse brains”. In: Nature Methods 18.8, pp. 953–958. DOI: 10.1038/s41592-021-01208-

1.

Sima, Dezsö (2000). “The design space of register renaming techniques”. In: IEEE Micro 20.5,

pp. 70–83. DOI: 10.1109/40.877952.

238

https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1088/2634-4386/acf7e4
https://doi.org/10.1088/2634-4386/acf7e4
https://arxiv.org/abs/2303.12359
https://doi.org/10.11588/heidok.00023800
https://doi.org/10.1016/j.vlsi.2011.05.003
https://doi.org/10.1016/j.vlsi.2011.05.003
https://www.gnu.org/software/m4/manual/m4.pdf
https://www.gnu.org/software/m4/manual/m4.pdf
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1007/978-3-642-19328-6_1
www.columbia.edu/~ks20/4106-18-Fall/Notes-Transient.pdf
www.columbia.edu/~ks20/4106-18-Fall/Notes-Transient.pdf
https://doi.org/10.1038/s41592-021-01208-1
https://doi.org/10.1038/s41592-021-01208-1
https://doi.org/10.1109/40.877952

References

Sivilotti, Massimo Antonio (1991). “Wiring Considerations in Analog VLSI Systems, with Appli-

cation to Field-Programmable Networks”. PhD thesis. California Institute of Technology. DOI:

10.7907/stj4-kh72.

Slogsnat, David, Alexander Giese, Mondrian Nüssle, and Ulrich Brüning (2008). “An Open-Source

HyperTransport Core”. In: ACM Trans. Reconfigurable Technol. Syst. 1.3. ISSN: 1936-7406. DOI:

10.1145/1391732.1391734.

Spilger, Philipp (2021). “From Neural Network Descriptions to Neuromorphic Hardware — A

Signal-Flow Graph Compiler Approach”. Master’s thesis. Universität Heidelberg.

Spilger, Philipp, Elias Arnold, Luca Blessing, Christian Mauch, Christian Pehle, Eric Müller, and

Johannes Schemmel (2023). “hxtorch.snn: Machine-learning-inspired Spiking Neural Network

Modeling on BrainScaleS-2”. In: Neuro-inspired Computational Elements Workshop (NICE 2023).

University of Texas, San Antonio, USA: Association for Computing Machinery, pp. 57–62. DOI:

10.1145/3584954.3584993. arXiv: 2212.12210 [cs.NE].

Stacho, Martin, Christina Herold, Noemi Rook, Hermann Wagner, Markus Axer, Katrin Amunts,

and Onur Güntürkün (2020). “A cortex-like canonical circuit in the avian forebrain”. In: Science

369.6511. DOI: 10.1126/science.abc5534.

Stevens, Charles and Anthony Zador (1995). “When is an integrate-and-fire neuron like a poisson

neuron?” In: Advances in neural information processing systems 8.

Stradmann, Yannik and Johannes Schemmel (2023). “Biomorphic control for high-speed robotic

applications”. In: 7th HBP Student Conference on Interdisciplinary Brain Research. Frontiers

Media SA, pp. 277–281.

Straub, Jan Valentin (2023). “Multi-Single-Chip Training of Spiking Neural Networks with BrainScaleS-

2”. HD-KIP 23-53. Bachelor thesis. Ruprecht-Karls-Universität Heidelberg.

Swadlow, A. Harvey and Dr. Stephen G. Waxman (2012). “Axonal conduction delays”. In: Scholar-

pedia 7 (6), p. 1451. ISSN: 1941-6016. DOI: 10.4249/scholarpedia.1451.

SystemVerilog (2004). SystemVerilog 3.1a Language Reference Manual. Accellera.

Takawadekar, Vaibhav and Yogita M. Vaidya (2021). “Neuromorphic computing: Modelling of 3D

integrated circuit components using TSV”. In: 2021 12th International Conference on Com-

puting Communication and Networking Technologies (ICCCNT), pp. 1–7. DOI: 10 . 1109 /

ICCCNT51525.2021.9579593.

Thanasoulis, Vasileios (2019). “Analysis and Development of a Communication Infrastructure for a

Wafer-scale Neuromorphic System”. PhD thesis. Technical University of Dresden.

Thommes, Tobias (2018). “Design and Implementation of an EXTOLL Network-Interface for the

Communication FPGA in the BrainScaleS Neuromorphic Computing System”. Master thesis.

Ruprecht-Karls-Universität Heidelberg.

Thommes, Tobias, Sven Bordukat, Andreas Grübl, Vitali Karasenko, Eric Müller, and Johannes

Schemmel (2022). “Demonstrating BrainScaleS-2 Inter-Chip Pulse Communication using EX-

TOLL”. In: Neuro-inspired Computational Elements Workshop (NICE ’22), March 29 – April 1,

2022. Virtual Event, USA: Association for Computing Machinery, pp. 98–100. ISBN: 9781450395595.

DOI: 10.1145/3517343.3517376. arXiv: 2202.12122 [cs.AR].

Thommes, Tobias, Niels Buwen, Andreas Grübl, Eric Müller, Ulrich Brüning, and Johannes Schem-

mel (2021). “BrainScaleS Large Scale Spike Communication using Extoll”. In: 2021 8th Neuro

239

https://doi.org/10.7907/stj4-kh72
https://doi.org/10.1145/1391732.1391734
https://doi.org/10.1145/3584954.3584993
https://arxiv.org/abs/2212.12210
https://doi.org/10.1126/science.abc5534
https://doi.org/10.4249/scholarpedia.1451
https://doi.org/10.1109/ICCCNT51525.2021.9579593
https://doi.org/10.1109/ICCCNT51525.2021.9579593
https://doi.org/10.1145/3517343.3517376
https://arxiv.org/abs/2202.12122

References

Inspired Computational Elements Workshop (NICE’2020). peer-reviewed extended abstract incl.

paper presentation. arXiv: 2111.15296 [cs.AR].

Thommes, Tobias, Andreas Grübl, and Johannes Schemmel (2023). “Optimising Spike Throughput

and Latency for Spike-Event Accumulation on Packet-Based Interconnection Networks”. In: 7th

HBP Student Conference on Interdisciplinary Brain Research. Frontiers Media SA, pp. 258–264.

Top 500 List (2023). Top500. URL: https://www.top500.org/lists/top500/2023/

06/ (visited on 09/21/2023).

Tsodyks, M. and H. Markram (1997). “The neural code between neocortical pyramidal neurons

depends on neurotransmitter release probability”. In: Proceedings of the national academy of

science USA 94, pp. 719–723.

Wagner, Fabien B et al. (2018). “Targeted neurotechnology restores walking in humans with spinal

cord injury”. In: Nature 563.7729, pp. 65–71. DOI: 10.1038/s41586-018-0649-2.

Wang, Huifang E. et al. (2023). “Delineating epileptogenic networks using brain imaging data and

personalized modeling in drug-resistant epilepsy”. In: Science Translational Medicine 15.680.

DOI: 10.1126/scitranslmed.abp8982.

Waxman, Stephen G and Harvey A Swadlow (1976). “Ultrastructure of visual callosal axons in the

rabbit”. In: Experimental Neurology 53.1, pp. 115–127. DOI: 10.1016/0014-4886(76)

90287-9.

Wehr, Michael and Anthony M Zador (2003). “Balanced inhibition underlies tuning and sharpens

spike timing in auditory cortex”. In: Nature 426.6965, pp. 442–446.

Wenzel, Martin (2018). “An Extendable Environment for Control and Status Register File Genera-

tion”. Master thesis. Ruprecht-Karls-Universität Heidelberg.

WikimediaUser (2006). Synapse Illustration2 tweaked.svg. URL: https://commons.wikimedia.

org/wiki/File:Synapse_Illustration2_tweaked.svg (visited on 03/09/2023).

WikimediaUser (2015). Metastability D-Flipflops.svg. URL: https://commons.wikimedia.

org/wiki/File:Metastability_D-Flipflops.svg (visited on 08/08/2023).

WikimediaUser (2019). Neuron.svg. URL: https://commons.wikimedia.org/wiki/

File:Neuron.svg (visited on 03/08/2023).

Wikipedia (2023a). 10 µm process — Wikipedia, The Free Encyclopedia. URL: https://en.

wikipedia.org/w/index.php?title=10_%C2%B5m_process&oldid=1176108259

(visited on 09/21/2023).

Wikipedia (2023b). 3 nm process — Wikipedia, The Free Encyclopedia. URL: https://en.

wikipedia.org/w/index.php?title=3_nm_process&oldid=1175852042

(visited on 09/21/2023).

Wikipedia (2023c). History of neuroscience — Wikipedia, The Free Encyclopedia. URL: https:

//en.wikipedia.org/w/index.php?title=History_of_neuroscience&

oldid=1169719273 (visited on 09/21/2023).

Wikipedia (2023d). Z1 (Rechner) — Wikipedia, die freie Enzyklopädie. URL: https://de.

wikipedia.org/w/index.php?title=Z1_(Rechner)&oldid=237136306

(visited on 09/20/2023).

Wikipedia (2023e). Zuse Z2 — Wikipedia, die freie Enzyklopädie. URL: https://de.wikipedia.

org/w/index.php?title=Zuse_Z2&oldid=235237282 (visited on 09/20/2023).

240

https://arxiv.org/abs/2111.15296
https://www.top500.org/lists/top500/2023/06/
https://www.top500.org/lists/top500/2023/06/
https://doi.org/10.1038/s41586-018-0649-2
https://doi.org/10.1126/scitranslmed.abp8982
https://doi.org/10.1016/0014-4886(76)90287-9
https://doi.org/10.1016/0014-4886(76)90287-9
https://commons.wikimedia.org/wiki/File:Synapse_Illustration2_tweaked.svg
https://commons.wikimedia.org/wiki/File:Synapse_Illustration2_tweaked.svg
https://commons.wikimedia.org/wiki/File:Metastability_D-Flipflops.svg
https://commons.wikimedia.org/wiki/File:Metastability_D-Flipflops.svg
https://commons.wikimedia.org/wiki/File:Neuron.svg
https://commons.wikimedia.org/wiki/File:Neuron.svg
https://en.wikipedia.org/w/index.php?title=10_%C2%B5m_process&oldid=1176108259
https://en.wikipedia.org/w/index.php?title=10_%C2%B5m_process&oldid=1176108259
https://en.wikipedia.org/w/index.php?title=3_nm_process&oldid=1175852042
https://en.wikipedia.org/w/index.php?title=3_nm_process&oldid=1175852042
https://en.wikipedia.org/w/index.php?title=History_of_neuroscience&oldid=1169719273
https://en.wikipedia.org/w/index.php?title=History_of_neuroscience&oldid=1169719273
https://en.wikipedia.org/w/index.php?title=History_of_neuroscience&oldid=1169719273
https://de.wikipedia.org/w/index.php?title=Z1_(Rechner)&oldid=237136306
https://de.wikipedia.org/w/index.php?title=Z1_(Rechner)&oldid=237136306
https://de.wikipedia.org/w/index.php?title=Zuse_Z2&oldid=235237282
https://de.wikipedia.org/w/index.php?title=Zuse_Z2&oldid=235237282

References

Wu, Jian, Steve Furber, and Jim Garside (2009). “A Programmable Adaptive Router for a GALS

Parallel System”. In: 2009 15th IEEE Symposium on Asynchronous Circuits and Systems, pp. 23–

31. DOI: 10.1109/ASYNC.2009.17.

Wunderlich, Timo et al. (2019). “Demonstrating Advantages of Neuromorphic Computation: A Pilot

Study”. In: Frontiers in Neuroscience 13, p. 260. ISSN: 1662-453X. DOI: 10.3389/fnins.

2019.00260. URL: https://www.frontiersin.org/article/10.3389/fnins.

2019.00260.

Xanthopoulos, Thucydides (2009). “Digital Delay Lock Techniques”. In: Clocking in Modern VLSI

Systems. Springer US, pp. 183–244. ISBN: 978-1-4419-0261-0. DOI: 10.1007/978-1-4419-

0261-0_6.

Xilinx (2011). LogiCORE IP ChipScope Pro Integrated Logic Analyzer (ILA). Version v1.04a.

Xilinx Inc. (2018). 7 Series FPGAs GTX/GTH Transceivers. User Guide. ug476 1.12.1.

Xilinx Inc. (2019). 7 Series FPGAs Memory Resources: User Guide. ug473, pp. 1–88. URL: https:

//www.xilinx.com/support/documentation/user_guides/ug473_7Series_

Memory_Resources.pdf (visited on 07/13/2023).

Yu, Qiang, Huajin Tang, Jun Hu, and Kay Chen Tan (2017). Neuromorphic cognitive systems. a

learning and memory centered approach. Intelligent systems reference library. Cham: Springer

International Publishing. ISBN: 978-3-319-55310-8.

Zimmermann, Hubert (1980). “OSI Reference Model - The ISO Model of Architecture for Open

Systems Interconnection”. In: IEEE Transactions on Communications 28.4, pp. 425–432. DOI:

10.1109/TCOM.1980.1094702.

Zoschke, Kai, Maurice Guettler, Lars Boettcher, Andreas Gruebl, Dan Husmann, Johannes Schem-

mel, Karlheinz Meier, and Oswin Ehrmann (2017). “Full Wafer Redistribution and Wafer Embed-

ding as Key Technologies for a Multi-Scale Neuromorphic Hardware Cluster”. In: EPTC 2017.

DOI: 10.1109/EPTC.2017.8277579.

241

https://doi.org/10.1109/ASYNC.2009.17
https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.3389/fnins.2019.00260
https://www.frontiersin.org/article/10.3389/fnins.2019.00260
https://www.frontiersin.org/article/10.3389/fnins.2019.00260
https://doi.org/10.1007/978-1-4419-0261-0_6
https://doi.org/10.1007/978-1-4419-0261-0_6
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://doi.org/10.1109/TCOM.1980.1094702
https://doi.org/10.1109/EPTC.2017.8277579

Acknowledgements - Danksagungen

Zum Schluss möchte ich allen Personen danken, die durch ihre freundliche Unterstützung zum Ge-

lingen dieser Arbeit beigetragen haben. Ganz besonders danken möchte ich an dieser Stelle

• Dr. habil. Johannes Schemmel für die Übernahme der Betreuung und Begutachtung dieser

Arbeit nach Karlheinz Meiers Tod und dafür, dass er mich immer in all meinen Ideen unter-

stützt hat.

• dem verstorbenen Prof. Dr. Karlheinz Meier dass er mir diese Doktorarbeit ermöglicht hat.

Möge er bei Gott ewigen Frieden finden.

• Prof. Dr. Peter Fischer für die freundliche Übernahme des Zweitgutachtens.

• Prof. Dr. em. Ulrich Brüning für seine freundliche, stets kompetente und sehr hilfreiche Be-

treuung seit meiner Bachelorarbeit im Jahr 2015 über meine Masterarbeit im Jahr 2017-18 bis

zu meiner Doktorarbeit. Ebenfalls vielen Dank für die vielen spannenden Vorlesungen, die im-

mer gespickt waren mit erhellenden Anekdoten aus der Geschichte der Computerentwicklung.

Möge die Macht stets mit Ihnen sein!

• Prof. Dr. Wolfram Pernice und Prof. Dr. Matthias Bartelmann, dass sie als Prüfer an der

Verteidigung meiner Dissertation teilhaben werden.

• Dr. Andreas Grübl für viele fruchtbare Diskussionen zu den Themen dieser Arbeit und für

seine stetige und teils aufopferungsvolle Mitbetreuung seit meiner Masterarbeit. Für seine Co-

Autorenschaft bei meinen Veröffentlichungen und last but not least für die vielen hilfreichen

Kommentare beim Korrekturlesen dieses Manuskripts.

• Dr. Juri Schmidt und Dr. Vitali Karasenko für die Co-Betreuung meiner Masterarbeit und

ihre Unterstützung beim Zurechtfinden in den Details der BrainScaleS FPGA designs und der

EXTOLL RMA Unit.

• Niels Buwen, Leonard Henger und Sven Bordukat für ihre Arbeit an der Software Integra-

tion des NHTL EXTOLL Transport-Layers.

• Dr. Eric Müller, Dr. Christian Mauch und Phillip Spilger für die Betreuung der Software

Integration und ihre Unterstützung beim Zurechtfinden im BrainScaleS Softwarestack.

• Joscha Ilmberger für seine Expertise in vielen Aspekten der BrainScaleS-2 Hardware.

242

• Dr. Niels Burkhardt, Dr. Dirk Frey, Tobias Groschup, Dr. Benjamin Kalisch, Dr. Sarah
Neurwirth und Dr. Mondrian Nüssle für ihre Unterstützung seitens der EXTOLL GmbH.

• Dr. Andreas Baumbach, Dr. Sebastian Billaudelle, Julian Gölz, Dr. Andreas Grübl, Ja-
kob Kaiser, Phillip Spilger und Yannik Stradmann für das Korrekturlesen dieses Manu-

skripts.

• meinen ehemaligen und aktuellen Büro-Kollegen in chronologischer Reihenfolge Dr. Sebas-
tian Billaudelle, Dr. Christian Pehle, Dr. Korbinian Schreiber, Dr. Benjamin Kramer,
Simeon Kanya, Yannik Stradmann, Phillip Spilger, Phillip Dauer, Johannes Weis, Robin
Heinemann und Kaspar Haas für viele entspannte und produktive Stunden am Arbeitsplatz,

die durch ihre freundliche, professionelle und oft erheiternde Gesellschaft, die Arbeit nie ha-

ben langweilig werden lassen.

• der Kicker-Crew, hier besonders Sebastian, Joscha, Yannik, Phillip S. und Phillip D. und
Eric für viele lustige Momente und legendäre (Eigen-) Tore in alle Richtungen.

• Dr. Christian Mauch für seine Grillkünste im Dienste aller Visions.

• allen Visions und den Mitgliedern der ehemaligen Rechnerarchitektur Gruppe für die

tolle Zusammenarbeit und die schöne gemeinsame Zeit.

• meinen Feuerwehr Kameradinnen und Kameraden in Langenthal und Neuenheim für viele ge-

meinsame Festbesuche, Übungs- und Freizeitstunden, in denen ich meine Arbeit beiseitelegen

und geistige Kraft tanken konnte.

• meiner Tanzpartnerin Lea Gammelin für die vielen tänzerisch anspruchsvollen und schönen,

teils lustigen Stunden.

• meinen Eltern Dr. Eduard Thommes und Maria Thommes, sowie meinen Großeltern Ewald
und Franziska Thommes und Alfred und Elisabeth Tures für ihre Liebe und Unterstützung

in allen Lebenslagen.

• meinem Bruder Johannes und meiner Schwester Anna für viele tolle gemeinsame Kind-

heitserinnerungen und Erlebnisse. Ein besonderer Dank geht an Anna, die mir in den letzten

Wochen meiner Arbeit einen Grund zum Frühaufstehen gegeben hat ;-).

243

Statement of originality - Erklärung:

I certify that this thesis, and the research to which it refers, are the product of my own work. Any

ideas or quotations from the work of other people, published or otherwise, are fully acknowledged

in accordance with the standard referencing practices of the discipline.

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen als die angegebe-

nen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 4. Oktober 2023 .

245

	Table of Contents
	I Introduction
	1 Motivation and Overview
	2 Background
	2.1 Neural Networks in Biology
	2.2 Neuromorphic Computing
	2.3 High Performance Interconnection Networks

	3 The BrainScaleS-2 System
	3.1 The HICANN-X ASIC
	3.2 The Communication FPGA
	3.3 The Software Stack and Experiment Flow

	4 The EXTOLL Network Technology
	4.1 The Network Partition
	4.2 The NIC partition
	4.3 The Host Interface
	4.4 The Software Stack

	II Event Communication
	5 Event Communication Principles and Systems
	5.1 Event Communication in General
	5.2 Event Communication for SNNs
	5.3 Quality of Service Requirements for Spike Communication
	5.4 Methods for obtaining Spike Communication qos
	5.5 Existing Spike Communication Architectures
	5.6 Event Communication in a Packet-Based Network

	6 Formal Analysis of Event Aggregation
	6.1 Accumulation Buckets
	6.2 Mathematical Analysis
	6.3 Results of the Mathematical Analysis
	6.4 Simulation Analysis

	III Implementation and Experiments
	7 The Implemented Event Communication
	7.1 The Event Switch
	7.2 Systime Synchronisation
	7.3 Event Transmission
	7.4 The NHTL Transaction Layer
	7.5 Event Reception
	7.6 Configuration and Status Interfaces
	7.7 Clock Domain Signal Synchronisation
	7.8 Design Parametrisation

	8 Commissioning
	8.1 Simulation and Verification
	8.2 Physical FPGA implementation
	8.3 Network Operation Tools
	8.4 Software Integration
	8.5 Inter-Chip Latency Measurement
	8.6 Systime and Experiment Synchronisation
	8.7 The Synfire Chain Experiment

	9 Conclusion
	9.1 Summary
	9.2 Outlook and Discussion

	IV Appendix
	A Mathematics derivations
	A.1 Derivation of the Dennard Scaling Law
	A.2 Poisson Distribution Statistics
	A.3 Proving total probability in the Markov Transition Matrix

	B Implementation Details
	B.1 Used Signal Interfaces
	B.2 Used Network Packet Types

	C Dynamic Bucket Concept
	C.1 Overview
	C.2 Arbitration Request Pipeline
	C.3 Bucket Finite-State Machine

	D Acronyms
	Publications
	References
	Acknowledgements - Danksagungen

