تعدد الأبعاد المتساوي

في الرياضيات، وبالأخص في الطوبولوجيا، يعد تعدد الأبعاد المتساوي خاصية للفضاء حيث يكون البعد المحلي هو نفسه في كل مكان.[1][2]

ويُسمى الفضاء الطوبولوجي X متساوي الأبعاد إذا كان p لكل النقاط في X البعد عند p أي، أن البعد  p(X) يكون ثابتًا. ويعتبر الفضاء الإقليديسي مثالاً للفضاء متساوي البعد. ويترك الاتحاد المنفصل لفضاءين X وY (كفضاء طوبولوجي) مختلفي البعد مثالاً للفضاء غير متساوي البعد.

ويعتبر الصنف الجبري الذي تكون حلقة الإحداثي الخاصة به حلقة كوهن ماكولاي متساوي الأبعاد.

مراجع

عدل
  1. ^ Anand P. Sawant. Hartshorne’s Connectedness Theorem (PDF). ص. 3. مؤرشف من الأصل (PDF) في 24 يونيو 2015. اطلع عليه بتاريخ أغسطس 2020. {{استشهاد بكتاب}}: تحقق من التاريخ في: |تاريخ الوصول= (مساعدة)
  2. ^ Wirthmüller, Klaus. A Topology Primer: Lecture Notes 2001/2002 (PDF). ص. 90. مؤرشف من الأصل (PDF) في 2020-01-10.