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Abstract 

We present the first formal network analysis of curricular networks for public institu-
tions, focusing around five midwestern universities. As a first such study of public 
institutions, our analyses are primarily macroscopic in nature, observing patterns 
in the overall course prerequisite networks (CPNs) and Curriculum Graphs (CGs). 
An overarching objective is to better understand CPN variability and patterns 
across different institutions and how these patterns relate to curricular outcomes. In 
addition to computing well known network centrality measures to capture courses 
of importance in the CPNs studied, we have also formulated some newer methods 
with specific relevance to the curricular domains and corresponding graph types 
at hand. We have discovered that a new graph theoretic measure of node importance 
which we call reach, based on the well-known concept of reachability, is needed 
to more accurately express the critical nature of some introductory courses in a uni-
versity. Another analytical novelty that we introduce and apply to the subject of CPNs 
is the Longest Paths Induced sub-Graph (LPIG) of the CPN, which yields informa-
tion on relatively constrained programs and pathways. Finally, we have established 
a new connection between clustering of the CG and meta-majors at Southern Illinois 
University Edwardsville (SIUE), providing clusterings of the other public institution 
CGs as useful heuristics of major groupings as well. This work is borne from collabora-
tion between academic units and academic advising with hopes of practical benefits 
towards aiding student advising.
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Introduction
Prospective students of an institution may often find the course prerequisite graphs of 
Science, Technology, Engineering, and Mathematics (STEM) degree programs provided 
alongside curricular descriptions (SIUE Civil Engineering Course 2024; SIUE Computer 
Engineering Course 2024; SIUE Electrical Engineering Course 2024; BYU-Idaho 2024; 
Macalester College 2024; Wellesley College 2024; Washington and Lee University 2024). 
Computer Science students may once again come across the course prerequisite graph of 
required courses in their program in their data structures and algorithms classes in the 
context of Directed Acyclic Graphs (DAGs) algorithms. Providing their relevant course 
prerequisite subnetwork as an example not only serves to motivate the students in the 
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topic of DAGs but also often serves as a great visualization and analysis tool to help 
them navigate their own course planning and scheduling. Despite the prevalent avail-
ability of DAGs representing the dependency structure of STEM degree programs, it is 
surprisingly difficult to find public datasets representing the entire course prerequisite 
network (CPN) of any institution, much less finding academic works providing analyses 
of such. To our knowledge, there are two prior works in the academic literature analyz-
ing institutional CPNs: Stavrinides and Zuev (2023) analyzes the CPN of the California 
Institute of Technology (CalTech), and Aldrich (2015) analyzes the CPN of Benedictine 
University. Whereas the CalTech CPN is made public by the authors (Stavrinides and 
Zuev 2023), the Benedictine CPN was not provided publicly by Aldrich (2015).

In Aldrich (2015) the course prerequisite network at Benedictine University is encoded 
as a DAG visualized in Gephi (Heymann and Le  Grand 2013), and some well known 
network science statistics are presented in relation to corresponding curricular ques-
tions. For example, node centralities express the roles of courses acting as hubs (degree 
centrality) or bridges (betweenness centrality) in the overall curriculum structure, while 
path lengths of prerequisite chains within a program yield lower bounds for completion 
time. The work Stavrinides and Zuev (2023) significantly extends CPN analyses for the 
case of the California Institute of Technology (CalTech) to additionally provide topologi-
cal stratification of the CPN and interdependence analysis upon the derived curricular 
networks corresponding to university programs and divisions. Inter-subject relation-
ships within the curriculum graph are implied to correspond to the fundamental rela-
tionships between the knowledge areas themselves, with high betweenness subjects 
appearing more interdisciplinary.

The CalTech and Benedictine CPN analyses of Stavrinides and Zuev (2023); Aldrich 
(2015) serve as important seminal works demonstrating the effectiveness of graph theo-
retic methods in understanding curricular questions. Although both CalTech and Ben-
edictine are private institutions, the distinctions between their CPNs highlighted by 
Stavrinides and Zuev (2023) provide a glimpse of CPN variability. As the vast majority 
of undergraduate students in the United States are enrolled in public institutions (see 
Fig. 4 of IES NCES (2024)), a more complete picture of CPN variability and extractions 
of curricular patterns necessitates consideration of public institutions as well. That is the 
starting point for the present work.

We analyze the CPNs and derived curriculum graphs for 5 Midwestern public uni-
versities: Southern Illinois University Edwardsville (SIUE), Southern Illinois University 
Carbondale (SIUC), University of Illinois Urbana Champaign (UIUC), Missouri Univer-
sity of Science and Technology (MST), and University of Missouri Kansas City (UMKC). 
We include the CalTech CPN and curriculum graph in our comparative analyses as well 
both for context and to include additional, updated analyses of that network.

Our overarching objective is to better understand CPN variability and patterns across 
different institutions and how these patterns relate to curricular outcomes. As a first step 
towards that objective, several basic network statistical measures are compared across 
the different CPNs considered. Some of these measures like degrees, betweenness cen-
tralities, and diameter are immediately extracted via graph visualization tools such as 
Gephi (Heymann and Le Grand 2013) and relate approximately to curricular properties 
such as critical or important courses and critical course sequences respectively, as noted 
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in Aldrich (2015) and Stavrinides and Zuev (2023). Upon extracting the course nodes 
achieving highest degrees and highest betwenness centralities across the different CPNs, 
we illustrate similarities as well as dissimilarities, general patterns.

However, the importance or criticality of a course as expressed via high betweenness 
is of a different nature than the importance or criticality of a course as expressed via 
high out-degree, also noted by Stavrinides and Zuev (2023). As a more general objective, 
we wish to more deeply explore how different notions of node importance in a network 
(CPN) translate to specific notions of course criticality in the curricular landscape.

In the process of this exploration, we have discovered that a new graph theoretic 
measure of node importance is needed to more accurately express the critical nature of 
some introductory courses in a university. This notion, which we call reach, is simply the 
size of the breadth-first-search tree (reachability set) rooted at a node. In Stavrinides and 
Zuev (2023), PageRank centrality, which is the PageRank of the transpose network, was 
noted to better capture the critical nature of fundamental introductory courses com-
pared to out-degrees and betweenness centralities. Whereas the application of PageRank 
centrality to the CPN has a similar motivation to reach and acts very similarly in many 
cases, it does not necessarily produce the same importance orderings. Reach is a mean-
ingful notion of node importance in a DAG but less meaningful for general directed 
graphs and completely meaningless for undirected graphs, perhaps hinting at why reach 
has not been used as a measure previously. We demonstrate the importance of reach as 
a measure in extracting well-known critical introductory courses such as College Alge-
bra (Goonatilake et al. 2013), and we compare the node importance rankings yielded by 
reach with those yielded by the PageRank centrality.

Another analytical novelty that we introduce and apply to the subject of CPNs is 
the Longest Paths Induced sub-Graph (LPIG) of the CPN. Given a length parameter d, 
LPIGd is the subgraph of the CPN induced by all nodes which lie on paths of length d 
or longer in the CPN. The LPIG is also a structure whose meaningful computation is 
highly dependent on the acyclic nature of the DAG: Whereas longest paths in general 
graphs is well-known to be NP-complete (Garey et al. 1974), the longest paths problem 
is linear-time computable for DAGs Sedgewick and Wayne (2011); Cormen et al. (2022). 
Given that each course along a prerequisite chain must be completed in a different term, 
the LPIG6 gives information about highly constrained degree programs in a university. 
Comparison and contrast of LPIGs across different institutions provide further informa-
tion about relative constraints of categories of degrees in addition to motivating discus-
sion on corresponding student outcomes.

Our final novel application of graph theoretic algorithms and modeling towards 
understanding curricular outcomes concerns the structure and distribution of meta-
majors. As stated in SIUE’s advising website (SIUE Meta-Majors 2024), instead of declar-
ing a major up front, first-year students are grouped into 8 meta-majors according to 
their stated interests, for purposes of advising and tracking. As student retention, per-
sistence, and timely graduation are amongst the important issues that the institution 
continually examines, a hope concerning meta-majors is that there should be sufficient 
connectedness between majors of a given meta-major so that a student starting out with 
unofficial declaration in one major of a meta-major may have the opportunity to switch 
to another major in the same meta-major without great waste of time and credits if the 



Page 4 of 28Yang et al. Applied Network Science            (2024) 9:25 

change of heart is detected soon enough. Burke (2020) We model this property in the 
language of complex networks as the problem of community detection, also called graph 
partitioning or clustering, in the Curricular Graph of majors derived from the CPN. This 
modeling is motivated by the fact that the intra-meta-major connectivity requirement is 
precisely captured by the community detection objective that the connectivity within a 
community be notably higher than the connectivity between communities (Girvan and 
Newman 2002). This brings us to our last investigation: Upon applying modularity based 
clustering to the Curriculum Graph, examine the relationship between the resultant 
clusters and the meta-major subdivisions.

While we have stated our disparate research objectives, we wish to clarify aspects of 
the broader motivation for this work prior to proceeding to technical aspects and results. 
This work represents the first step by the authors towards addressing curricular and 
institutional questions that have arisen in various departmental committees and uni-
versity working groups over the years at the authors’ respective institutions. A primary 
SIUE author chairs the Undergraduate Curriculum Committee in the Computer Science 
department and another SIUE author directs the SIUE Office of Academic Advising and 
architected the meta-majors at that institution: This collaboration arose during their 
work in a university-wide working group on Improving Persistence and Timely Gradu-
ation (IPTG). Both the institutional directives which initiated the IPTG working group 
and the content of the IPTG final report indicated a need to formally study prerequi-
site structure both within programs and across the institutional landscape with respect 
to properties of rigidity versus flexibility in addition to analyzing the composition of 
meta-majors with respect to questions of cohesiveness and minimization of excess cred-
its upon intra-meta-major switching. Prerequisite relationships have a combination of 
artificially constructed and fundamental aspects, where some dependency relationships 
might be universally agreed upon inherent knowledge dependencies while other prereq-
uisite dependencies may serve practical institutional advising purposes. Therefore, in the 
course of our investigations we discovered in the course that it is best to first analyze the 
pattern and variation in prerequisite structure across relevant institutions, which forms 
the major emphasis of the present study.

Towards the question of selecting relevant institutions to study: This collaboration 
further expanded to involve existing collaborators from SIUC Computer Science and 
MST Mathematics departments, hence including those neighboring institutions as well. 
Already with SIUE, SIUC, and MST we cover some different institutional characteristics 
with respect to graduation rates, STEM versus general emphases, graduate versus under-
graduate emphases, rural versus suburban environment, size, and selectivity. However, 
as we wished to include the consistently highest ranked public university across the Illi-
nois and Missouri regions, we include UIUC in our study. The inclusion of UMKC in our 
study is originally due to the implementation of meta-majors in that institution, though 
we were subsequently unable to obtain data on specific meta-major composition there. 
Nonetheless, due to its student composition and persistence problems, meta-majors 
have generally been used as an advising method at UMKC, yielding some similarity to 
SIUE despite other institutional differences between the schools with respect to selec-
tivity, graduate research orientation, and urbanicity. Upon selecting SIUE, SIUC, MST, 
UIUC, and UMKC, in addition to comparing with the previous work on CalTech, our 
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sample incorporates sufficient variation in institutional profiles to form meaningful 
comparisons. With the caveat that much more work yet remains to answer many of the 
persistence related questions forming our original motivations, we now attempt to shed 
some light on broad patterns and variation within and across institutional CPN and cur-
riculum networks for a meaningful sample of Midwestern public institutions.

Description of datasets, definitions, and methods
Datasets

The course information for the public institutions in this work are obtained from each 
school’s online course catalog. For the CalTech data, we used the dataset provided by 
Stavrinides and Zuev (2023). Such data has is used to find prerequisites, co-requisites, 
cross-listing, and other dependency relationships. The outcome of this process is used as 
raw data towards generating graphs connecting the courses (CPN) and programs (CG).

Definitions and notations

CPN formation

All analyses in this work are based on the Course Prerequisite Networks (CPNs) extracted 
from the university catalogs mentioned above. As indicated in Stavrinides and Zuev 
(2023); Aldrich (2015), the CPN graph G = (V ,E) essentially captures the prerequi-
site relationships between courses by including, for each prerequisite X ∈ V  of course 
Y ∈ V  , a directed edge (X ,Y ) ∈ E . Since prerequisites must be satisfied prior to the 
course itself, the CPN is a dependency graph and must be acyclic, forming a directed 
acyclic graph (DAG). Adopting the convention of Stavrinides and Zuev (2023), X ≺ Y  
denotes that course X is a prerequisite for course Y.

In this work, due to the discovery of a sizeable number of co-requisites, cross-listed 
courses, and other indicators of equivalent courses in the various course catalogs we 
have parsed, we need to modify and clarify our CPN to allow the vertex set V to be a 
partition of the course set. The vast majority of members of V are singleton sets whose 
correspondence with individual courses and the prerequisite relationship is straightfor-
ward. However, due to the existence of non-singleton sets in V we must generalize the 
prerequisite relationship to act between sets of courses in order to now properly define 
our CPN: Let S and T be disjoint sets of courses. Then

Prior to specifying the graph construction notation, we take a moment to elaborate upon 
a few issues surrounding the parsing of the course catalog with respect to extracting pre-
requisite information. First, there is the issue of different conjunctions used in expressing 
prerequisite information. While the vast majority of courses have standard prerequisite 
listings connected by the conjunction AND, there are also situations in which the pre-
requisite list is a more general logical expression involving both AND and OR connec-
tives. We acknowledge the differing semantics induced by OR versus AND connectives 
acting on the prerequisite courses, as prerequisites connected via the conjunction opera-
tor are absolute requirements while the others need not be. Nonetheless, we adopt the 
convention in Stavrinides and Zuev (2023) in which we do not distinguish between the 
different types of prerequisites listed for a course in forming the CPN DAG.

(1)S ≺ T ↔ ∃s ∈ S, t ∈ T ∋ s ≺ t
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As a further detail concerning CPN formation, we note the allowance of corequisites 
and course equivalencies in the course catalogs. Co-requisites are instances in which 
a course X is permitted to be taken concurrently with course Y. In many cases, the 
purpose of stating co-requisites is to allow more scheduling flexibility for students 
despite the existence of some degree of knowledge dependence between the respec-
tive courses. Such situations are signified in the course catalog by the listing of a 
course Y as “prerequisite or corequisite” for course X without the mention of X in the 
prerequisite listing of Y. As we are considering the underlying dependence structure 
without solving scheduling in this work, we treat this type of situation as signifying a 
directed edge from Y to X but not vice versa, hence maintaining acyclicity. Namely, 
Y ≺ X  but not X ≺ Y .

The other complicating situations involve true corequisites in addition to general-
ized equivalencies of course sets. The vast majority of true corequisites comprise lec-
ture and corresponding lab pairs which must be taken in the same term such that the 
courses in the pair share the identical course code excepting an additional “L” follow-
ing the corresponding lab. For such lecture and lab pairs of corequisites, in our CPN 
graph we consider the pair as a merged course node with the common course code 
excluding the “L” suffix of the lab code.

The last situation, which was more difficult to parse automatically from the dis-
tinct course catalogs, is the situation of courses which are treated as equivalent or 
cross-listed as indicated by catalog terms such as “Same as”, “co-listed with”, or “cross-
listed with”. In these cases too, consistent with the dependency characterization of the 
CPN structure, we have adopted the convention of merging sets of courses which are 
indicated to be equivalent in some catalog context. Given a set of equivalent courses 
S = {C1,C1, . . . ,C3} , we consider the set of courses in S as a single merged course 
node in the CPN graph.

We note that the merging of course sets in the CPN based on lab-lecture co-req-
uisite relations, cross-listings, co-listings, and other contexts of similarity induce an 
equivalence relation upon courses which are merged. Therefore, let us denote this 
relationship with ≡C as follows given a pair of courses C1 and C2 : C1 ≡C C2 ←→ C1 
and C2 are represented by the same merged vertex in the CPN. Letting CI denote all 
the courses in a given institution I, the equivalence relation ≡C induces a partition on 
CI which we denote as VI:

Clearly, each member of VI is an equivalence class [c]≡C of some course c. Courses which 
were not involved in any merging in the CPN have singleton equivalence classes.

Now we may denote the CPN graph for each institution I, as CPNI = (VI ,EI ) where 
VI is the set of equivalence classes of courses, and the directed, unweighted edge set 
EI defines the set-generalized prerequisite relationship ≺ . As the CPNI is a directed 
acyclic graph (DAG): 

 i. For any c ∈ Vi , (c, c) /∈ Ei

 ii. For any x, y ∈ Vi , if path x � y exists in CPNi , then there is no path from y to x.

(2)VI = {{x | x ≡C c} | c ∈ CI }
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In addition to the above notations for the CPN graph and the corresponding node and 
edge sets, we will refer to the adjacency matrix of a graph G as A(G) or simply A when 
the context is clear. When discussing node centralities, especially PageRank centrality, 
sometimes it will be useful to refer to the transpose CPN which has adjacency matrix 
AT = AT (CPNI ) , which is the transpose of the adjacency matrix of CPNI and defined as 
follows. Recall that the transpose matrix AT is defined as follows, for any matrix A:

Likewise, the transpose ET of an edge set E is simply defined as the set of edges with all 
arrow directions reversed, which formally may be represented as:

Curriculum graph formation

As detailed in Stavrinides and Zuev (2023), in order to perform a more macro level anal-
ysis of the relationships between departments and units in the curricular landscape, we 
derive the Curriculum Graph (CG) from the CPN where each node represents a major 
code M and directed edges (M1,M2) between major codes M1 and M2 are weighted 
according to the number of edges in the CPN from nodes with major code M1 into 
nodes with major code M2 . For example, if exactly 5 courses with major code MATH are 
immediate prerequisites of courses with major code PHIL, then there is an edge in the 
CG of weight 5 from node MATH to node PHIL. Note that the CG need not be acyclic 
although it is derived from an acyclic CPN, as different pairs of courses contribute to the 
existence and weights of edges in the CG. For example, an introductory computer sci-
ence (CS) course may be a prerequisite to an upper level mathematics (MATH) course in 
numerical methods, while other introductory mathematics courses might be prerequi-
sites to intermediate computer science courses, forming anti-parallel edges of different 
weights from CS to MATH and from MATH to CS separately, inducing a simple cycle in 
the CG.

As in the case of the CPNs as detailed in the prior section, we must address the treat-
ment of courses that are in the same equivalence class but in different majors. Recall 
that two courses are only in the same equivalence class if they are either co-requisites, 
co-listed, crosslisted, or described to be equivalent with statements such as “same as” in 
the catalog. As such, the existence of courses in the same equivalence class but differ-
ent majors is an indication of some level of symmetric relationship between the majors. 
Therefore, every instance of such an equivalent pair of courses c1 and c2 involving dis-
tinct majors M1 and M2 , respectively, will contribute an additional weight of +1 to both 
the edge (M1,M2) and the edge (M2,M1).

We may refer to the curriculum graph for institution I as CGI = (MI , ÊI ,wI ) where MI 
is the set of majors with distinct major codes, ÊI is the set of directed, weighted edges 
between majors derived from CPNI with weight function wI . It will be useful to overload 
the notation to also define the major function applied to any class c ∈ C as MI (c) , mean-
ing the major code m ∈ MI associated with the course. We note that the major codes also 
necessarily partition the course set C but not the vertices of the CPN. We may therefore 

(3)AT
rc = Acr

(4)ET = {(x, y) | (y, x) ∈ E}
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also define another equivalence relation ≡M upon courses such that c1 ≡M c2 if and 
only if MI (c1) = MI (c2) . Similarly, denote by equivalence class [c]≡M the set of courses 
in the same major as course c. And, for any m ∈ MI , and any c such that m = MI (c) , let 
C(m) = [c]≡M.

For any major code, m ∈ MI , we also overload our notation to extend to function 
VI (m) ⊂ VI as the set of vertices in the CPNI corresponding to m, namely:

Consider again the situation of courses which are equivalent with respect to ≡C but not 
equivalent with respect to ≡M : Sometimes pairs of courses in different majors that are 
nonetheless cross-listed with each other exist. Due to such situations, note that the set 
of VI (m) need not be disjoint, and in fact overlap between VI (m1) and VI (m2) signify a 
strength of connection between m1 and m2 in the Curriculum Graph.

Now we may exactly define ÊI and wI . For any distinct m1,m2 ∈ MI such that m1  = m2

:

Regarding weight function wI , wI (x, y) = 0 if and only if (x, y) /∈ ÊI . For any m1,m2 ∈ MI 
such that (m1,m2) ∈ ÊI:

The adjacency matrix A = A(CGI ) holds both edge and weight information as follows:

Node centralities

Various centrality measures are applied to rank nodes in the CPN and CG to extract 
information about the relative criticality of courses and majors in the curricular land-
scape. We follow the standard definitions of centrality measures such as betweenness 
centrality (BC) Brandes (2001) and out degree centrality (Freeman 1977). In applying 
PageRank (Page et al. 1999) to analyze the CPN, we follow the convention of Stavrinides 
and Zuev (2023) in denoting the PageRank centrality of a node (course) in the CPN to be 
the node’s PageRank in the transpose of the CPN, which we also refer to as the transpose 
PageRank for clarity. The reason for taking the transpose of the CPN prior to application 
of PageRank for the purposes of extracting relative node importance is due to the mean-
ing of edges in the CPN versus their meaning in the World Wide Web (WWW) in the 
original PageRank paper Page et al. (1999): A course Y depends on a course X when X is 
a prerequisite for Y, denoted by the edge (X, Y) in the CPN. But, a website Y depends on 
another website X when the direct link (Y, X) exists in the WWW. Therefore, PageRank 
centralities correspond to the PageRank values of the transpose CPN, namely CPNT

I  as 
described in Sect. 2.2.1. We elaborate on the computation of PageRank centrality in the 
Methods Sect. 2.3. Presently, we continue precisely defining other commonly used cen-
trality measures.

(5)VI (m) = {v ∈ VI | ∃c ∈ C ∋ MI (c) = m}

(6)
(m1,m2) ∈ ÊI ⇐⇒ (∃c1 ∈ C(m1), c2 ∈ C(m2), � ((c1 ≺ c2) (VI (m1) VI (m2) �= ∅)))

(7)wI (m1,m2) = |{(c1, c2) ∈ C(m1)× C(m2) | c1 ≺ c2}| + |(VI (m1)
⋂

VI (m2))|

(8)∀x, y ∈ MI ,Axy = wI (x, y)
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Given a directed graph G = (V ,E) , we use kin(i) and kout(i) to denote the in-degree 
and out-degree of node i, respectively. In terms of adjacency matrix A, kin(i) and kout(i) 
are given by (9).

The betweenness centrality of node i ∈ V  can be written as (10), in which σ(s, t) is the 
total number of the shortest paths from node s to node t, and σ(s, t|i) is the number of 
these shortest paths which passing through i.

Reach

A simple measure of importance for a node x is the number of nodes that are reach-
able from x, where the reachability set is computable in linear time �(|E| + |V |) using 
breadth-first search (BFS) or depth-first search (DFS) rooted at x Cormen et al. (2022). 
Node y is reachable from node x in graph G = (V ,E) if either y = x or there exists a path 
x � y from x to y in G. We extend this definition naturally towards a useful graph statis-
tic named reach as follows: Given graph G = (V ,E) and vertex v ∈ V

Equivalently, note that,

where BFS(v) is the BFS tree rooted at v.
In the context of a CPN, if a course d is reachable from course c, then c lies on a pre-

requisite chain leading to d. Therefore, the reach of a course c in the CPN is precisely the 
number of courses for which c is a direct or indirect prerequisite. This precise meaning 
yields the high relevance of reach as a measure of study in the CPN context.

While reachability is a well-known concept in classical graph theory, we are unaware 
of any mention of the usage of reach, or any equivalent variation under a different name, 
as a network statistic or centrality measure. This may be due to the relative emphasis on 
undirected graphs in network science due to symmetries in many complex networks. In 
fact, reach is not a distinguishing characteristic of a node in an undirected graph, as any 
two nodes in the same component will have the same reach, namely their component 
size. Likewise, for directed graphs that are not DAGs, the Strongly Connected Compo-
nent (SCC) size of a node is a lower bound for its reach, again relating all nodes in the 
same SCC. It is really in DAGs that reach is more meaningful as a distinguishing meas-
ure of node importance, hence the usage of reach in this work.

We conclude our introduction of the measure reach by noting the uniqueness of the 
information conveyed by reach in a DAG compared to all other known centrality meas-
ures considered. While we shall observe some correlation between the lists of high-
est reach nodes and highest transpose PageRank (tPR) nodes in some results, it is not 

(9)k in (i) =

n∑

j=1

Aji and k out (i) =

n∑

j=1

Aij

(10)β(i) =
∑

s �=i,t �=i

σ(s, t|i)

σ (s, t)

(11)reach(v) = |{u ∈ V | ∃v � u}|

(12)reach(v) = |BFS(v)|
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difficult to construct an infinite class of DAGs for which the highest reach and highest 
tPR nodes differ for every setting of the dampening factor. A simple example of such an 
extremal graph is given in Fig. 1. The highest reach of that network is achieved by node 1 
whereas the highest tPR is node 7, independent of dampening factor.

Longest paths induced sub‑graph

As paths in the CPN represent pre-requisite chains, the length of the longest path lead-
ing to a course corresponds to the number of terms required to complete that course 
in the curriculum.1 Courses that are sink nodes of relatively long prerequisite chains 
constrain the schedules of their respective degree programs. And, degree programs that 
have higher numbers of such constraining courses (and the chains that lead to them) 
are likely candidates for further analysis of how to aid student persistence throughout 
the completion of the curricula. Noting that 4 years is the standard time for undergrad-
uate degree completion at a university, sample advertised curricula for undergraduate 
degree programs are all based on the 4 year degree goal. Moreover, with the exception 
of CalTech which is on the quarter system, all of the public institutions involved in this 
study operate on the semester system, where the standard number of terms per year 
(excluding the summer term) is 2, leading to 8 term graduation goals. In general, given a 
standard graduation goal of n terms, we wish to identify and analyze courses and degree 
programs which are involved in paths of length t = n− 2 or more. Noting that path 
lengths are traditionally expressed as the sum of edge weights, which for an unweighted 
graph is the number of edges along the path, the number of nodes along the path is one 
more than the path length. We formulate a new graph theoretic construct called longest 
paths induced sub-graph LPIGt that permits exactly such identification and analysis. 
As the LPIGt is based on the computation of longest paths in a graph, we first discuss the 
computation of longest paths.

Like reach, the longest paths problem in a graph has limited applicability for general 
graphs but high relevance for DAGs (like the CPNs). Unlike reach, however, the lim-
ited applicability of longest paths in general graphs arises due to computational con-
cerns: The longest path problem in both general directed graphs and in undirected 

Fig. 1 Extremal example exhibiting high difference between transpose PageRank and Reach

1 While there is some flexibility granted by edges resulting from prerequisites listed in the disjunctive “OR” form, the 
vast majority of links are due to the conjunctive “AND”. Moreover, even “OR” based prerequisites yield that some paths 
must be chosen to complete requirements, with many of the “OR” based sub-paths being of comparable lengths.
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graphs is NP-complete due to a reduction from the Hamiltonian Path problem (Cor-
men et  al. 2022; Sedgewick and Wayne 2011). In DAGs, however, the longest path 
problem is linear-time solveable by updating path estimates from vertices considered 
in topological sort order, which results from the reverse finish time order of a depth-
first search (DFS) of the graph (Cormen et al. 2022). Likewise, deciding the existence 
of paths of length at least k (for some given k) is in the class P when restricted to 
DAGs. However, the problem of computing all sufficiently long paths (of length at 
least k) is no longer in P even under the DAG restriction due to the potentially expo-
nential number of such paths. Nonetheless, finding all nodes involved in sufficiently 
long paths (of length at least k) in a DAG is solveable in polynomial time with similar 
dynamic programming methods that allow the computation of a sufficiently long path 
in the first place as ties for predecessor nodes can also be memoized to be recon-
structed during backtracking. In practice, however, when the number of sufficiently 
long paths in a DAG is not overwhelming, it may also be useful to simply compute all 
such paths, as that computation is still polynomial time in the number of such paths. 
Regardless of the choice of method, we emphasize that computing all nodes involved 
in sufficiently long paths in a DAG is a feasible problem, and this is precisely the set 
of nodes in the LPIG.

Notationally: Given an unweighted DAG G = (V ,E) , with n = |V | , let k be given 
such that 1 ≤ k ≤ n− 1 . A node v ∈ V  is said to lie on a sufficiently long path with 
respect to k iff there exists some x, y ∈ V  and a path
p =< e1, e2, e3, . . . , ek+d >=< (x,u1), (u1,u2), (u2,u3), . . . , (uk−1+d , y) > such that
|p| ≥ k , meaning d ≥ 0 , and v ∈ {x, y,u1,u2,u3, . . . ,uk−1+d}

Given DAG G = (V ,E) , let

Then, the induced sub-graph LPIGk(G) = (V k ,Ek) where

Implementation of methods

The pipeline of our methods is as follows: (i) extraction of course catalog information 
to form the CPN graphs, (ii) construction of the Curriculum Graphs from the CPN 
and catalog data, (iii) computation of network centrality and importance measures 
on both types of networks, (iv) construction of the LPIG network from the CPN, and 
(v) clustering of the Curriculum Graphs. All parts of this pipeline have been imple-
mented in Python, with Gephi additionally used to aid in the visualization and analy-
ses of parts (iii) and (v).

For part (i), the Python libraries request and beautifulshop4 were used to extract 
each school’s course information from their official websites and organize it into their 
CPN’s adjacency list. In terms of the graph construction for parts (i), (ii), and (iv) we 
mainly used the Python networkX library (Hagberg et al. 2008). For part (iii), we used 
Gephi to compute degree and betweenness centrality distributions and networkX to 

(13)V k = {v ∈ V | v lies on a sufficiently long path w.r.t. k}

(14)Ek = {(x, y) ∈ V k × V k | (x, y) ∈ E}
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compute other measures such as reach and transpose PageRank (Page et al. 1999). For 
part (v), we primarily used Gephi for the clustering computation and visualization 
using modularity clustering based on the Louvian method (Blondel et al. 2008).

PageRank and modularity clustering are both parametrized methods. As prior work 
Boldi et al. (2009); Page et al. (1999) indicates δ = 0.85 to be an empirically reliable para-
metric setting for the dampening factor of PageRank, that is the setting that we adopt. 
Regarding the resolution parameter for modularity clustering in Gephi, the default set-
ting of the resolution to r = 1.0 is commonly used and recommended in general when 
the number of desired clusters is unknown. That is the setting that we also adopt for our 
experiments in part (v).

Results
Comparison of basic network statistics

An overview of the basic network statistics is seen in Table  1. This table also yields 
approximate institutional information about the number of courses and number of 
majors corresponding to the size of the CPN and the size of the CG, respectively. The 
size of the CPN is a lower bound on the actual number of distinct courses as equivalent 
courses are merged into one node as described in Sect.  2.2.1. On the other hand, the 
size of the CG is an upper bound on the number of distinct majors as it may include 
some codes for programs that are not currently majors as well. As the percentage of 
course equivalences and non-major codes are very low, the approximations provided by 
the CPN size and CG size are very near to the actual number of courses and majors, 
respectively. Therefore, this table well-encapsulates the immediate variation between the 
institutional sizes, with UIUC and CalTech standing out as the largest and smallest outli-
ers respectively.

CPN centrality results

We have computed various measures of network centrality in the CPNs to better ana-
lyze candidates for courses important in the curricular landscape. The measures consid-
ered are betweenness centrality, out degree, reach, and transpose PageRank. The highest 
betweenness centrality courses of the six institutions may be found in Table 2. The high-
est outdegree courses are in Table 3. The highest reach courses are in Table 4. And the 
highest transpose PageRank courses are in Table 5. The full names of the courses in these 
tables are provided in the Appendix section.

Table 1 General data at a glance

MST SIUE SIUC UMKC UIUC CalTech

Size of CPN 1964 2342 3979 2304 5126 771

Number of edges in CPN 2157 2135 3044 1321 3827 772

Size of CPNLcc 1083 883 1395 624 1607 436

Diameter of CPN 8 9 7 7 10 5

Longest path of CPN 12 13 13 11 12 6

Size of CG 53 80 104 101 184 26

Size of CGmax 45 52 90 57 147 25
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From Table 2, it can be seen that mathematics courses, especially those of the Calcu-
lus series, are a consistent bottleneck for curricula across the different institutions. In 
addition to mathematics courses, the basic sciences such as chemistry, physics, and biol-
ogy are also over-represented. Several engineering courses, especially in civil engineer-
ing and electrical and computer engineering, also occupy positions of high betweenness 
centrality across multiple institutions. In fact, all high betweenness physics courses 

Table 2 The courses with the highest BC at each institution

MST SIUE SIUC UMKC UIUC CalTech

MATH1215 CHEM121A MATH250 MATH220 MATH220 CH21ABC

MATH3304 BIOL220 CHEM200 MATH266 MATH231 PH125ABC

CIVENG2200 PHYS141(M) MATH150 CIVENGR275 MATH241 PH2ABC

PHYSICS2135 MATH150 CHEM210(M) PHYSICS240 MATH257 ACM95/100AB

MATH1214 NURS231 CHEM140A CIVENGR276 CS225 CS38

MATH2222 CE240 MATH151 ECENGR276 CHEM104 ACM116

MATH1221 MS251 CHEM330 MATH210 ECE210 AE101ABC

Table 3 Courses with the highest out degree at each institution

1 If multiple courses share the highest out degree, their count is given in parentheses instead of listing course numbers

MST SIUE SIUC UMKC UIUC CalTech

54: ENGLISH1120 51: ENG102 37: ENGL102 98: ENGLISH225 67: MATH220 32: MA2102

50: HISTORY1310 48: ENG102N 33: (*2) 26: ENGLISH110 61: MATH221 30: ACM95/100AB

47: HISTORY1300 42: BIOL220 32: (*3) 22: MATH110(M) 54: MATH241 27: MA1ABC

45: MATH3304 30: PSYC111 28: MATH111 20: PHYSICS250 46: MATH285 22: BI8

43: HISTORY1200 29: MATH150 26: MATH305 18: (*2) 41: MATH415 19: MA3103,PH2ABC

42: MATH2222 26: CIED100 24: (*2) 17: (*2) 40: ECON302 17: PH125ABC

33: STAT3115 19: MATH125 23: (*3) 16: (*2) 37: CS225 16: CH41ABC,PH1ABC

32: STAT3117 18: (*5) 22: (*2) 15: (*2) 36: MATH257 15: (*3)

28: (*5)1 17: (*3) 21: (*3) 14: (*4) 35: PSYC100 14: CH21ABC

27: POLSCI1200 16: (*2) 20: (*2) 13: (*3) 31: STAT400(M) 12: (*5)

Table 4 Courses with the highest reach at each institution

College Algebra or equivalent is in boldface

MST SIUE SIUC UMKC UIUC CalTech

MATH1140,MATH1120 MATH120 MATH108 MATH110(M) MATH112 MA1ABC

MATH1160 MATH125 MATH111 MATH120 MATH115 MA2102

MATH1214 MATH150 MATH106 MATH125 MATH220 PH1ABC

MATH1208 MATH145 MATH109 MATH266 MATH221 CS1

MATH1210 MATH152 MATH150 MATH210 MATH231 PH2ABC

MATH1211 MATH250 MATH151 ENGLISH110 MATH241 CH1AB

MATH1215 CHEM113 MATH250 MATH220 MATH211 MA3103,PH12ABC

MATH1221 CHEM121A MATH140 PHYSICS240 CS101 ACM95/100AB

MATH2222 PHYS140 MATH125 MATH268 MATH257 ACM11

PHYSICS1135 PHYS141(M) MATH139 ENGLISH225 CHEM102 BI8
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for MST, SIUE and UMKC are also engineering physics courses. Most notably, with the 
exception of one nursing course at SIUE, every course achieving high betweenness cen-
trality is a STEM course across all institutions.

Unlike the case of betweenness centrality, the highest out degree courses are distrib-
uted across non-STEM majors in addition to STEM majors, as can be seen in Table 3. 
This measure also exhibits more variation across institutions. Although mathemat-
ics courses dominate the highest degree positions at UIUC and CalTech and appear as 
high degree courses in other institutions as well, English courses dominate the highest 
degree positions at MST, SIUE, SIUC, and UMKC. Closer analyses of the highest degree 
courses reveals that in some cases the successors of a highest degree course are in the 
same major, while in other cases the course is a direct prerequisite for courses across 
diverse majors. The next measure considered, namely reach, precisely captures the total 
immediate and downstream influence of a course in the CPN, hence well complement-
ing the information provided by out degree.

College Algebra is the consistently highest reach class in all public institutions shown 
in Table 4.2 College Algebra is also consistently amongst the top two highest transpose 
PageRank (tPR) courses according to Table  5. This prominent positioning of College 
Algebra in the CPN is supported by educational research highlighting the criticality of 
that course across university curricula (Goonatilake et al. 2013). Generally, introductory 
mathematics courses dominate both reach and tPR tables across all institutions with 
introductory English and basic science courses interspersed. Some introductory com-
puter science courses also arise as high reach courses at UIUC and CalTech, where they 
also achieve high tPR. A notable engineering course that achieves high tPR is the civil 
engineering course CE242 at SIUE.

Longest paths induced graphs

In this section we present our results concerning the longest paths induced subgraphs 
(LPIGs) of each institutional CPN, specifically the LPIG6 graphs which contain all 

Table 5 Courses with the highest transpose PageRank at each institution

College Algebra or equivalent is in boldface

MST SIUE SIUC UMKC UIUC CalTech

MATH1215 MATH120 MATH108 ENGLISH110 MATH231 MA1ABC

MATH1140 MATH125 MATH111 MATH110(M) MATH112 PH1ABC

MATH1120 MATH150 MATH250 ENGLISH225 MATH241 MA2102

MATH1214 MATH152 MATH150 MATH120 MATH220 CS1

MATH1160 CHEM121A MATH151 MATH226 MATH221 CH1AB

MATH1208 MATH250 MATH106 MATH220 MATH115 BI8

MATH1221 CHEM121B MATH109 CHEM211(M) CHEM102 CH41ABC

CHEM1310 PHYS141(M) ENGL101 MATH268 PHYS211 PH2ABC

MATH2222 BIOL220 CHEM200 MATH210 MATH285 CS2

ENGLISH1120 CE242 PSYC102 PHYSICS240 PHYS212 MA5105ABC

2 While MATH110 Precalculus Algebra at UMKC is no longer titled College Algebra, some educational websites refer 
to that course as College Algebra, and it has a similar ALEKS placement score as College Algebra in other institutions.
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prerequisite chains of seven or more courses. As all public institutions of this study have 
standard eight term timelines, LPIG6 gives information on highly constrained degrees 
and course sequences. In this section, we refer to the LPIG6 graph of a given institution 
simply as LPIG. An overview of the network statistics for the LPIG networks are found 
in Table 6. This data can be taken together with the CPN longest path lengths provided 
by Table  1 for general comparisons. While there is some variation across the institu-
tions with respect to LPIG sizes and the lengths of longest paths, CalTech is orders of 
magnitude smaller than the other institutions in both measures. This is especially strik-
ing when considering that CalTech is on a quarter system which permits a standard 12 
terms instead of the 8 term standard of the other institutions. In contrast to CalTech, 
the public institutions involved in this study have hundreds of sink nodes in their LPIGs 
and longest paths comprising 12 to 14 course prerequisite chains, involving many terms 
more than their standard undergraduate program length. The significance of such con-
strained substructures in the public institutions considered warrants further analysis of 
which programs and categories of study are involved (Fig. 2).

Towards such investigation, Table 7 gives an overall picture of the major programs of 
study appearing most frequently as sink nodes of the LPIG subnetworks, while Figs. 3, 4, 
5, 6, 7 and 8 show the representative LPIG6 networks of each institution with color codes 
for categories of study given by Fig. 2. Engineering programs can be seen to dominate 
both the sink nodes of the institutional LPIGs of Table  7 and a significant portion of 
every institutional LPIG in the color coded LPIG figures as indicated by the prevalence 
of the sky blue subnetworks. Indeed, exactly two categories of study are common to all 
six LPIG networks: The mathematics & physics category in cyan and the engineering 
category in sky blue. However, with the exception of the CalTech and SIUE LPIG net-
works which include some mathematics & physics sink nodes, the cyan mathematics & 

Table 6 The statistics for the Longest Paths Induced sub-Graphs in each institution

MST SIUE SIUC UMKC UIUC CalTech

Size of LPIG6 584 493 484 247 862 20

Number of paths 1151 917 863 372 1745 26

Number of source nodes 7 15 26 8 23 2

Number of sink nodes 374 276 238 121 475 6

Number of components 1 4 9 4 15 1

Top 3 highest BC MATH1215 CHEM121A CHEM200 MATH220 MATH220 CDS231

MATH3304 BIOL220 MATH250 MATH266 MATH231 CMS122

CIVENG2200 PHYS141(M) MATH150 CIVENGR275 MATH257 CHE101

Table 7 The highest frequency majors amongst LPIG sink nodes

MST SIUE SIUC UMKC UIUC CalTech

49: MECHENG 54: BIOL 34: ECE 27: MECENGR 56: ECE 4: CDS

37: ELECENG 23: CHEM 29: ME 24: ECENGR 44: CEE 2: CHE

32: CIVENG 22: ME 22: CE 23: CIVENGR 37: CS

25: NUCENG 20: PHYS 16: SPAN 13: CONSVTY 24: ME

24: ARCHENG 16: ECE,FIN 14: PLB,CHEM 8: MGT 21: MSE



Page 16 of 28Yang et al. Applied Network Science            (2024) 9:25 

physics course category tend towards the source end of the institutional LPIG networks 
as prerequisites of engineering and other STEM fields. STEM fields in general comprise 
the vast majority of all LPIG networks with exceptions of special note in each institution. 
In addition to the occurrence of some non-STEM LPIG categories in some institutions, 
the precise composition of the STEM fields populating the LPIG networks exhibit inter-
esting variation across institutions.

The SIUC LPIG is the most diverse as it includes all of the eleven categories of study 
listed. SIUE has the second most diverse LPIG in that the only excluded categories are 

Fig. 2 LPIG color map

Fig. 3 LPIG at MST

Fig. 4 LPIG at SIUE
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Fig. 5 LPIG at SIUC

Fig. 6 LPIG at UMKC

Fig. 7 LPIG at UIUC

Fig. 8 LPIG at CalTech
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education, biology specializations, and agriculture. In fact, closer inspection of SIUE’s 
LPIG indicates that several biology specializations and agriculture related courses are 
found within the green biology and chemistry category though their course codes are 
simply biology. UIUC also has a relatively diverse LPIG as it includes all categories 
except for nursing, military, business, and education. The LPIG of UMKC contains only 
the categories of mathematics and physics, engineering, business related, military and 
aviation, and music and the arts. However, UMKC’s LPIG is notable in the significant 
size of its music and arts related subnetwork. MST’s LPIG network is the least diverse 
amongst the public institutions considered, involving only the categories of mathematics 
and physics, engineering, biology and chemistry, and business related programs. None-
theless, it is the second largest LPIG comprising 584 nodes. CalTech’s LPIG of only 20 
courses includes only the categories of mathematics and physics, and engineering.

Curriculum graph analysis

The Curriculum Graph (CG) is defined on the set of majors and extracted from the 
course dependency information encoded by the CPN as described in Sect. 2.2.2. The CG 
allows us to study macroscopic relationships between and among disciplines in the over-
all curricular landscape. Our analyses of the CG includes both the extraction of impor-
tant majors with respect to network centrality metrics and the inference of groupings of 
majors with applications to meta-majors.

Centralities of major fields

Tables 8 and 9 list the majors obtaining the highest betweenness centralities and highest 
out-degrees among the institutions studied.

Fields achieving high betweenness centrality in a CG by definition have a higher ten-
dency to connect other fields to each other, hence corresponding to some quantification 
of interdisciplinarity (Stavrinides and Zuev 2023). That the relative inter-disciplinarity 
of fields can vary according to the institutional context is demonstrated by the colum-
nar variation of Table 8. While mathematics appears to connect many majors at MST, 
SIUE, SIUC, UMKC, and CalTech, mathematics does not appear amongst the highest 
betweenness major nodes of the UIUC CG, which is instead dominated by majors in the 
humanities and social sciences. Likewise, although mathematics and engineering majors 

Table 8 The highest betweenness centrality nodes in CGs at each institution

MST SIUE SIUC UMKC UIUC CalTech

PHILOS MATH MATH MATH ANTH BI

COMPENG STAT CI MECENGR PS ACM

MATH PHYS PSYC STAT AFST AE

HISTORY IE AFR BIOLOGY PSYC CH

ENGMGT CS SCI ACCTNG NRES CHE

CIVENG ENSC PLB DSOM REL CS

COMPSCI CHEM ENGL HLSC PHIL ME

ART MS BIOL CIVENGR CS PH

SPMS GEOG HIST CHEM ECE EE

ELECENG CIED ANS ECON MACS APH
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are dispersed amongst MST’s highest betweenness fields, humanities majors such as 
philosophy, history, speech and media studies, and art also occupy positions of high 
interdisciplinary importance. On the other hand, the highest betweenness centrality 
majors at SIUE and UMKC are almost entirely STEM fields. Given that MST and UIUC 
are well-known for their STEM programs, a possible explanation for the relatively higher 
betweenness of some of the non-STEM majors at those institutions may be greater cur-
ricular interaction between their STEM and non-STEM programs.

Like the case of CG betweenness distributions, math again features prominently in 
the out degree distributions of the institutional CGs shown in Table 9, reconfirming the 
critical importance of the subject in the curricular landscape overall. Out degree distri-
butions appear more STEM oriented overall across the different institutions, including 
MST. However, UIUC once again includes a notable proportion of humanities majors 
achieving importance with respect to out degree in its CG.

Meta‑majors and CG clustering

Our last network analysis concerns unsupervised inference of major groupings to better 
understand inter-major relationships and the macroscopic curricular landscape. Gener-
ally speaking, majors tend to be associated with specific departments or schools of an 
institution, and those departments are often further organized into schools or colleges of 
the institution. While such administrative subdivisions may reflect some of the natural 
groupings of the underlying fields of knowledge with which they are associated, they do 
not necessarily provide an accurate reflection the relationships between and amongst the 
curricular paths. However, relationships between curricula themselves are very impor-
tant, especially as a non-negligible portion of incoming freshmen arrive with undeclared 
major, and another non-negligible portion of those who have declared a major switch to 
another major. Of course, such changes may have adverse effects on timely completion 
of studies when the switch occurs too late or between fields whose curricular landscapes 
are too dissimilar. Therefore, more accurate inference of appropriate inter-major group-
ings with respect to curricular relationships is useful information to present to students 
and advisors from the start, towards aiding in curricular planning. With precisely such 
concerns in mind, SIUE has implemented a system in which incoming freshmen choose 

Table 9 The highest out-degree nodes in CGs at each institution

MST SIUE SIUC UMKC UIUC CalTech

MATH MATH MATH MATH MATH MA

CIVENG CHEM CHEM ENGLISH CWL ACM

STAT ENG BIOL STAT GWS PH

MECHENG STAT PLB CHEM REL CH

COMPSCI BIOL AFR PHYSICS HIST CMS

PHYSICS CIED MICR MECENGR, BIOLOGY CS BI

AEROENG,ARCHENG CE,ME MBMB CIVENGR, COMPSCI ENGL AE

ELECENG CS ENGR ECENGR, HLSC AFRO CS

ENVENG, CHEM MS, IE ZOOL DSOM, GEOG LLS ME

COMPENG ENSC CSEM ENVSCI, LSANATO, ACCTNG ECE APH
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a general meta-major, which corresponds to a related group of majors, rather than spe-
cific major in their first year.

As stated in SIUE’s advising website SIUE Meta-Majors (2024), first-year students are 
grouped into 8 meta-majors according to their stated interests, for purposes of advis-
ing and tracking: “Meta-Majors are combinations of academic majors from different 
academic areas with related courses that fit within a career area. With a Meta-Major, 
students can explore major choices by initially following a standard first-year curricu-
lum, and then, when they decide on their major, a four-year educational plan is followed 
to complete a degree without losing time and money.” It should be noted that any given 
meta-major is not necessarily contained in the same academic administrative unit or 
school within the institution but is rather constructed with commonalities in knowledge 
areas, skills, related careers, and student interests in mind. The names of the eight meta-
majors are given in Fig. 9, which also shows meta-major color codes used in later figures.

As student retention, persistence, and timely graduation are amongst the important 
issues that the institution continually examines, a hope concerning meta-majors is that 
there should be sufficient connectedness between majors of a given meta-major so that 
a student starting out with unofficial declaration in one major of a meta-major may 
have the opportunity to switch to another major in the same meta-major without great 
waste of time and credits if the change of heart is detected soon enough. We model this 
property in the language of complex networks as the problem of community detection, 
also called graph partitioning or clustering, in the CG, which is the curricular network 
of majors derived from the CPN. This modeling is motivated by the fact that the intra-
meta-major connectivity requirement for meta-majors is precisely captured by the com-
munity detection objective that the connectivity within a community be notably higher 
than the connectivity between communities (Girvan and Newman 2002). More sim-
ply, clustering is the problem of unsupervised inference of natural groupings of related 
nodes, and meta-majors are groupings of related majors. Hence, it is worthwhile to 
examine the relationship between the resultant clusters of the CG and the actual meta-
major subdivisions.

Figure 10 provides the visualization of exactly such a comparison for the largest con-
nected component (LCC) of the SIUE CG. The meta-majors of the LCC can be seen 
in part (a). The modularity based clusterings of the LCC are given in parts (b) and (d), 
where (b) is based on the default resolution setting. And, the administrative groupings of 
SIUE departments into colleges and schools can be seen in part (d). The relative match-
ing between the meta-major groupings at SIUE and the default clustering of the SIUE CG 
is immediately apparent from parts (a) and (b), especially when compared to the admin-
istrative subdivisions of part (c). This is partly due to the large proportion of university 
departments contained in the College of Arts and Sciences (CAS) at SIUE. The meta-
majors capture some of the finer-tuned groupings within CAS which are also yielded by 
the clustering. For example, the green political science, sociology, and criminal justice 

Fig. 9 SIUE metamajor color map
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majors are grouped together in both the clusterings and the meta-majors though they 
all reside in CAS. Ditto the pink digital humanities, mass communications, and english 
majors which are grouped together in both the default clustering and the meta-major 
groupings. Likewise, the engineering, math, and physics meta-major straddles both the 
School of Engineering (SoE) and CAS, but corresponds well with the clustering at res-
olution 2.3, which does not separate out the highly intra-connected mechanical engi-
neering related sub-group inferred by the 1.0 resolution clustering. Some groupings of 
courses are stable across all of the methods of categorization, especially the majority of 
business related majors and the majority of engineering majors. And, as a rare exception, 
the teaching and learning meta-major is actually better captured by the administrative 
division of Education, Health, and Human Behavior than by the default clustering which 
includes three more majors in addition to the existing four of that meta-major. To be 
clear, we do not suggest that the clustering replace the meta-major groupings as the CG 
is not based on the finer tuned information of precise degree completion requirements 
of each major but only structural inter-major dependency information. However, the 

Fig. 10 SIUE Curriculum Graph
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relatively high similarity between the CG clustering and the meta-major groupings does 
provide macroscopic validation of the meta-major constructions.

As the institutions other than SIUE studied in this work do not appear to use advise-
ment policies utilizing specific meta-major mappings, we are unable to analyze pub-
lished meta-majors at the other institutions. Nonetheless, due to the similarity between 
the meta-majors and CG clustering at SIUE, we provide visualizations of the clustering 
of the largest connected components (LCCs) of the CGs of the other public institutions 
in Fig. 11.

Discussion, conclusion, and future work
We have presented the first formal network analysis of curricular networks for public 
institutions, focusing around 5 midwestern universities. As a first such study, our analy-
ses are primarily macroscopic in nature, observing patterns in the overall CPN and CG 
networks. In addition to computing well known network centrality measures to cap-
ture courses of importance in the CPNs studied, we have also formulated some newer 

Fig. 11 Curriculum Graph Clustering
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methods with specific relevance to the curricular domains and corresponding graph 
types at hand. For example, we have proposed reach as a measure of special relevance for 
DAGs such as the CPNs studied herein. Another method that we propose with specific 
meaning and computational feasibility for the CPNs is the longest paths induced sub-
graph (LPIG) which yields information on relatively constrained programs and path-
ways. Finally, we have established a new connection between clustering of the CG and 
meta-majors at SIUE, providing clusterings of the other public institution CGs as useful 
heuristics of major groupings as well.

While certain subsets STEM courses and majors unsurprisingly feature prominently 
amongst the critical nodes of the CPN, CG, and LPIG networks, the consistency with 
which some such patterns were echoed across all studied institutions is a testament to 
the power of network science methods in automatically extracting such well-attested 
information. More interesting, perhaps, are the humanities and non-STEM courses and 
programs which also featured prominently in some of the curricular networks, especially 
for institutions well-known for their top ranking engineering programs such as UIUC. 
While engineering programs are known to have especially long course chains, as also 
confirmed by their dominant place in all the institutional LPIGs, again it was the diver-
sity of course categories, both STEM and non-STEM, in the LPIG networks that we 
found to be interesting.

Looking more closely at patterns concerning non-engineering course chains which 
arise in the LPIG networks, the institutional variance appears to indicate some spe-
cializations offered at the respective institutions which are not widely offered in gen-
eral institutions. Such examples include music education at SIUE which is well known 
for its Suzuki programs, the several biological specializations at SIUC which has strong 
introductory medical pathways leading to the SIU medical school, the highly rated 
music conservatory programs at UMKC, and the French, Spanish, and well-known agri-
culture programs at UIUC which complement that institution’s enormous engineering 
sub-networks.

Another aspect of the LPIG networks that was surprising to us was the vast discrep-
ancy between the length and number of very long paths in the CPNs of all of the pub-
lic schools when compared to the CPN of CalTech. While we have primarily included 
CalTech in our analyses to compare with the prior work of Stavrinides and Zuev (2023), 
the vast discrepancy in this regard is more striking when considering the 12 term stand-
ard degree completion time for CalTech versus the 8 term standard in the other institu-
tions considered. We know that a large part of this difference is due to the existence of 
introductory mathematics sequences from College Algebra to Pre-Calculus in the public 
institutions which many freshmen who seriously pursue STEM majors will test out of via 
the ALEKS placement exam, testing directly into some level of Calculus instead.

Such courses do not exist in the CalTech curriculum as CalTech has required its 
incoming freshmen to have taken a year of Calculus in highschool or to have dem-
onstrated mastery of the same, in addition to similar requirements with physics. Of 
course, students at any U.S. higher education institution may skip introductory sub-
paths across different parts of the curricular network anyway due to AP, IB, or Honors 
courses in highschool, or other forms of equivalent advancement accepted from the 
perspective of a given institution. However, for a variety of reasons including equity 
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concerns, public institutions which serve their states and local regions generally can-
not require their students to have already taken calculus before admission given the 
small minority of American highschool students who do so. It is this condition of 
K-12 mathematics education in the U.S. that causes a course such as College Alge-
bra, which is of remedial content as far as university mathematics courses are con-
cerned, to be an actual bottleneck in the advancement of a non-negligible portion of 
university students with negative impact on retention and graduation (Goonatilake 
et al. 2013). Nonetheless, even putting aside a total of two to four introductory math-
ematics and science courses in all of the longest paths across the public institutions, 
the lengths and number of the prefix-trimmed longest paths at the public institutions 
would still be significantly more than those at CalTech, especially when controlling 
for standard undergraduate degree length. Given that CalTech is a premiere STEM 
oriented higher education institution with many advanced offerings in engineering 
and the natural sciences, we believe that this discrepancy warrants further investiga-
tion as the magnitude of such curricular pathways may affect timely graduation and 
persistence.

Indeed, we remind that timely graduation and persistence questions in an institu-
tional working group precisely formed the original motivation for this collaboration 
though the public data analyzed in this study could not directly be used towards sta-
tistically validated conclusions in that regard. Rather, we re-emphasize that our LPIG 
analysis concerns lower bounds on graduation times and rigidity of curricula over-rep-
resented in the LPIG. Taken together with our evidence for meta-major cohesion, this 
information can be used to better advise students in our respective institutions and 
beyond. For example, Electrical Engineering and Mechanical Engineering are consist-
ently over-represented in the LPIGs of all institutions. They are also in the cohesive 
Engineering, Math, and Physics meta-major which also includes Statistics, Industrial 
Engineering, and other majors not represented strongly in the LPIGs. An incoming 
freshman interested in the Engineering, Math, and Physics meta-major without hav-
ing tested into (or beyond) Calculus should be encouraged to pursue the programs 
such as Statistics and Industrial Engineering which yield some hope of graduation 
within six years. Given that the 8 year graduation rates at MST, SIUE, SIUC, UMKC, 
UIUC, and CalTech are 71%, 57%, 56%, 56%, 87%, and 94%, respectively (U.S. Depart-
ment of Education 2024), we cannot over-emphasize the importance of leading stu-
dents towards feasible graduation paths as soon as possible in public institutions. In 
conjunction with such advising considerations, might academic units also benefit 
from making graduation paths slightly more feasible given that prerequisite structure 
is both inherent and human-made? Without sacrificing the most universally agreed 
upon prerequisite relationships, some reconsideration of excessive prerequisite struc-
tures in the most rigid of curricula might broaden participation in those fields.

Future directions investigating the relationship between student outcomes and 
CPN pathways must involve finer tuned analysis of degree pathways in addition to 
longitudinal course statistic of the students in the programs. Towards this end, we 
wish to examine the structure of specific degree programs within and among repre-
sentative institutions. As the area of formal network theoretic analyses of curricular 
pathways is still relatively new with a small sample of networks publicly available, it 
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is also worthwhile to continue providing macroscopic analyses of the CPN and CG 
networks of a much wider selection of institutions. Many open questions remain with 
respect to wider ranging institutional patterns. We hope that this work will contribute 
to motivating such future directions in curricular network analyses.

Appendix
See Table 10, 11, 12, 13, 14, 15, 16.

Table 10 MST course list

Course code Course name Course code Course name

MATH1120 College Algebra ENGLISH1120 Exposition & Argumentation

MATH1140 College Algebra CIVENG2200 Statics

MATH1160 Trigonometry CHEM1310 General Chemistry I

MATH1208 Calc. with Anal. Geometry I HISTORY1200 Modern Western Civilization

MATH1210 Calculus I-A HISTORY1300 American History to 1877

MATH1211 Calculus I-B HISTORY1310 American History since 1877

MATH1214 Calculus I POLSCI1200 American Government

MATH1215 Calculus II PHYSICS1135 Engineering Physics I

MATH1221 Calc. with Anal. Geometry II PHYSICS2135 Engineering Physics II

MATH2222 Calculus III STAT3115 Engineering Statistics

MATH3304 Elementary Diff. Equ. STAT3117 Intro. to Prob. & Stat.

Table 11 SIUE course list

Course code Course name Course code Course name

MATH120 College Algebra ENG102 English Composition II

MATH125 Pre-Calc. Math. with Trig. ENG102N English Composition II (Non-Native)

MATH145 Calc. for the Life Sci. BIOL220 Genetics

MATH150 Calculus I CE240 Statics

MATH152 Calculus II CE242 Mechanics of Solids

MATH250 Calculus III PHYS141(M) Physics I for Engineers

CHEM121A General Chemistry PHYS140 Intro. to Phys. & Physical Reasoning

CHEM121B General Chemistry PSYC111 Foundations of Psychology

CHEM113 Intro. to Chemistry CIED100 Introduction to Education

Table 12 SIUC course list

Course code Course name Course code Course name

MATH106 College Algebra Enhanced MATH250 Calculus II

MATH108 College Algebra MATH305 Introduction to Differential Equations

MATH109 Trig. & Anal. Geometry PSYC102 Introduction to Psychology

MATH111 Precalculus CHEM140A Chemistry

MATH125 Technical Math. with App. CHEM200 Intro. to Chemical Principles

MATH139 Finite Mathematics CHEM210 General & Inorganic Chemistry

MATH140 Short Course in Calculus CHEM330 Quantitative Analysis

MATH150 Calculus I ENGL101 English Composition I

MATH151 Calculus I Enhanced ENGL102 English Composition II
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Table 13 UMKC course list

Course code Course name Course code Course name

MATH110 Precalculus Algebra PHYSICS250 Physics for Sci. & Eng. II

MATH120 Precalculus CHEM211 General Chemistry I

MATH125 Trigonometry CIVENGR275 Engineering Statics

MATH210 Calculus I CIVENGR276 Strength Of Materials

MATH220 Calculus II ECENGR276 Circuit Theory I

MATH266 Accelerated Calculus I ENGLISH110 Intro. to Academic Prose

MATH268 Accelerated Calculus II ENGLISH225 English II: Inter. Academic Prose

PHYSICS240 Physics for Sci. & Eng. I

Table 14 UIUC course list

Course code Course name Course code Course name

MATH112 Algebra CHEM102 General Chemistry I

MATH220 Calculus CHEM104 General Chemistry II

MATH221 Calculus I CHEM202 Accelerated Chemistry I

MATH231 Calculus II ECE210 Analog Signal Processing

MATH241 Calculus III ECON102 Microeconomic Principles

MATH257 Lin. Alg. with Computational App. ECON302 Inter Microeconomic Theory

MATH285 Intro. Differential Equations PHYS211 University Physics: Mechanics

MATH415 Applied Linear Algebra PHYS212 University Physics: Elec & Mag

CS101 Intro Computing: Eng. & Sci. PSYC100 Intro. Psych.

CS225 Data Structures TAM251 Intro. Solid Mechanics

STAT400 Statistics and Probability I

Table 15 CalTech course list

Course code Course name Course code Course name

MA1ABC Calc. of One & Several Var. & Lin. Alg. BI8 Intro. to Molecular Biology

MA3103 Intro. to Probability & Statistics CH1AB General Chemistry

MA2102 Differential Equations CH21ABC Physical Chemistry

MA5105ABC Intro. to Abstract Algebra CH41ABC Organic Chemistry

CS1 Intro. to Computer Programming PH1ABC Classical Mech. & Electromag.

CS2 Intro. to Programming Methods PH12ABC Waves, Quantum Phys., & Stat. Mech.

ACM11 Intro. to Computational Sci. & Eng. PH125ABC Quantum Mechanics

ACM95/100AB Intro. Meth. of App. Math. for Phys. Sci. PH2ABC Waves, Quantum Mech., & Stat. Phys.
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Abbreviations
CG  Curriculum Graph
CPN  Course prerequisite network
DAG  Directed acyclic graph
LPIG  Longest paths induced sub-grap
STEM  Science, technology, engineering, mathematics
tPR  Transpose PageRank
MST  Missouri University of Science and Technology
SIUE  Southern Illinois University Edwardsville
SIUC  Southern Illinois University Carbondale
UMKC  University of Missouri Kansas City
UIUC  University of Illinois Urbana Champaign
CalTech  California Institute of Technology
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Table 16 The highest in-degree nodes in CGs at each institution

MST SIUE SIUC UMKC UIUC CalTech

MECHENG ENSC PLB MECENGR CWL GE

CIVENG IE CHEM PHYSICS GWS AE

AEROENG ME MBMB BIOLOGY, CIVENGR CS CS

ARCHENG NURS ZOOL ASTR HIST EE

ELECENG BIOL AFR ECENGR REL BE

COMPENG PHYS MICR BMDENGR ECE CMS

COMPSCI ECE PSAS HLSC ENGL AY

ENVENG CI PHSL COMPSCI, GEOLOGY, MGT, 
LIFESCI

AFRO APH, CHE

CHEMENG MRE CSEM MATH, BLKS NRES BI

MINENG SOCW ME DSOM LLS PH
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