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Abstract
In real world complex networks, communities are usually both overlapping and
hierarchical. A very important class of complex networks is the bipartite networks.
Maximal bicliques are the strongest possible structural communities within them.
Here we consider overlapping communities in bipartite networks and propose a
method that detects an order-limited number of overlapping maximal bicliques
covering the network. We formalise a measure of relative community strength by
which communities can be categorised, compared and ranked. There are very few real
bipartite datasets for which any external ground truth about overlapping communities
is known. Here we test three such datasets. We categorise and rank the maximal
biclique communities found by our algorithm according to our measure of strength.
Deeper analysis of these bicliques shows they accord with ground truth and give useful
additional insight. Based on this we suggest our algorithm can find true communities
at the first level of a hierarchy. We add a heuristic merging stage to the maximal
biclique algorithm to produce a second level hierarchy with fewer communities and
obtain positive results when compared with other overlapping community detection
algorithms for bipartite networks.

Keywords: Bipartite network, Overlapping community detection, Maximal biclique,
Community strength, Node similarity

Introduction
The main contribution of this paper is an algorithm combining three concepts (node sim-
ilarity, maximal bicliques and cliques) that can improve community detection in bipartite
networks. The algorithmwe introduce,MaxBic, produces overlappingmaximal bicliques,
covers the network and forms the base level of a community hierarchy. Structurally, these
bicliques are as tightly connected internally as is possible in the network. We measure
how relatively strong or weak they are as communities within the network, according to
5 categories of community strength, formalised here. MaxBic is a deterministic algorithm
and requires no predefined parameters such as the number of communities, maximum
number of community memberships, or allowed proportion of overlap, as initial input.
For a network with n nodes, it produces no more than n maximal bicliques. We show its
time complexity is at worstO

(
n3

)
, irrespective of whether the network is dense or sparse.

A network G is bipartite if its nodes can be partitioned into two sets P (the primary set)
and S (the secondary set) such that edges can only occur between nodes in different sets.
The most tightly connected node sets which can be found in G are complete bipartite
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graphs, or bicliques, on subsets of a nodes in P and b nodes in S, denoted Ka,b. A biclique
ismaximal in G if it is not a proper subgraph of another biclique in G.
At present there is no commonly accepted standard to evaluate the efficiency and

accuracy of overlapping community detection algorithms for bipartite networks. Funda-
mentally then, themeaningfulness of overlapping communities can only be assessed using
external metadata analysis or ground truth where it exists. There are very few such bipar-
tite networks known to us, and as far as we know, this is the first study based on having
some external ground truth (for P ∨ S or P or S) for three networks. These are the (small)
benchmark Southern Women social network, the Noordin Top terrorist network and
the NSW crime area network. Deeper analysis of the maximal bicliques MaxBic detects
in P ∨ S for these networks shows they determine groups that, while smaller and more
numerous than the ground truth communities, are meaningful and bring new insights.
Based on these results, we make the assumption that MaxBic’s bicliques do represent real
communities at the base level. We compare them with those found by other algorithms
for the Southern Women network. To reduce the number of communities detected, we
apply a second stage merging algorithm based on Jaccard similarity. Then we compare the
performance of our two-stage algorithmMaxBicR on the three real networks with that of
other algorithms in the literature. We show it has improved performance in community
detection.
The paper is organized as follows. The rest of this section discusses related work.

In “Methods” section the “Community strength” subsection contains our definition
of community strength, “MaxBic: a new maximal biclique finding algorithm” subsec-
tion formally describes the methodology of our biclique-finding algorithm MaxBic, and
“Computational complexity” subsection provides an overview of its computational com-
plexity. We introduce our heuristic second-stage algorithm to reduce redundancy of
communities in “Reducing redundancy and revealing hierarchy–MaxBicR (J)” subsection.
In “Results” sectionwe applyMaxBic to the three real networks, evaluate the communities
it finds against the ground truth, and uncover new insights. We compare its performance
with other algorithms on the benchmark Southern Women network. Then we compare
the performance of our two-stage algorithm with others on the three networks, taking
MaxBic communities as base level ground truth. Finally, we summarise and discuss future
work in “Conclusion and future work” subsection.

Overlapping communities algorithms

The problem of detecting communities in networks has a long and rich history, par-
ticularly for social networks, where it began in the 1940s (Luce and Perry 1949). For
instance, one widely applied approach for complex networks detects weak links and cuts
them to separate the communities, using e.g. modularity (Newman 2006; Newman and
Girvan 2004) or betweenness centrality (Girvan and Newman 2002). This does not take
into account the possibility that a node might belong to more than one community, so
is unrealistic for many real networks. For example, the original Label Propagation Algo-
rithms (LPAs), introduced by Raghavan et al. (2007) and followed by Leung et al. (2009),
assign only one membership to every node in the network.
Work on detection of overlapping communities, or fuzzy clusters, goes back at least to

the 1970s, e.g. Ruspini (1970). The sociological concept of structural cohesion was for-
malised in Moody and White (2003) in terms of connectivity: the structural cohesion
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of a network equals the minimum number of nodes whose removal would discon-
nect the network. A clique has maximum structural cohesion, as every node must be
removed to disconnect it. In a bipartite network, no cliques exist and a biclique has max-
imum structural cohesion: every node in the smaller set (P or S) must be removed to
disconnect it.
There has been much more emphasis on detecting overlapping communities in general

(unipartite) networks than specifically in those with bipartite structure. Surveys appear in
Fortunato (2010), Ch.11 and Xie et al. (2013), with a loose breakdown into link-clustering
and node-clustering techniques.
The link clustering technique of Ahn et al. (2010) creates a dendrogram from a network

then cuts this dendrogram at various thresholds according to a Partition Density quality
function. Each link in the network is a leaf of the dendrogram whose branches represent
link communities. This method involves similarity between edges rather than nodes and
has been implemented as linkcomm (Kalinka and Tomancak 2011). It can be applied to
bipartite networks but has not been specifically designed for them.
In Palla et al. (2005) the Clique Percolation Method (CPM) uses k-clique percolation

with k ≥ 3, and the overlap forms between communities where a node is in more than
one clique. An exhaustive search for connected subgraphs of two or more cliques is con-
ducted. A clique with k = 2 will not be detected so some nodes may not belong to
any community. This may result in incomplete cover of a network (MaxBic communi-
ties cover all nodes of the network). In Lázár et al. (2010), a quality function Mov is
developed to overcome the limitation of Newman-Girvan Q-modularity (Newman and
Girvan 2004) with overlapping communities. The authors compare the performance of
the CFinder algorithm of Palla et al. (2005) with a version of the link-clustering algo-
rithm of Ahn et al. (2010), using Mov. Our community strength measures are simpler,
but similar in approach to Lázár et al. (2010). Another technique, intrinsic Longitudinal
Community Detection (iLCD) (Cazabet et al. 2010), discovers highly overlapping groups
of nodes. This approach takes the dynamics of the network into consideration and is
claimed to be preferable to CPM in terms of efficiency and computational time. Evans
(2010) shows that detecting overlapping communities using the cliques graph results in
more significant structural communities than detecting overlapping communities directly
using node clustering approaches. The cliques of order k are found, then a network with
these cliques as nodes is constructed. The node clustering algorithm applied to the clique
graph is Louvain (Blondel et al. 2008). Note that if Louvain is run past its first phase, it
may fail to find smaller cliques (Lancichinetti and Fortunato 2014). The very successful
Infomap algorithm (Rosvall and Bergstrom 2008) has an option to identify overlapping
flow communities (Esquivel and Rosvall 2011). Clique-finding algorithms are not effective
on bipartite networks.
We next survey recent techniques designed for bipartite networks.
A recent study (Tarissan 2015) aims to discriminate between two metrics defined on

set P, the bipartite clustering coefficient and the bipartite redundancy coefficient, which
attempt to measure the amount of overlap between communities. They favour the redun-
dancy as they find the clustering correlates with node degree in several real networks.
In Xu et al. (2013) an algorithm for community detection in bipartite networks is pro-
posed based on ant colony optimization. It is tested on the SouthernWomen network but
determines communities in P and in S separately, not truly bipartite communities.
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The LPA technique has been extended by Gregory (2010) in the Community Overlap
PRopagation Algorithm (COPRA) to detect overlapping communities in unipartite and
bipartite networks, by introducing a parameter v, the maximum number of community
memberships per node. For sparse networks, with approximately equal numbers of nodes
and edges, and with small v, COPRA is a very fast algorithm: the time complexityO

(
v3n

)
,

plus O(vnlog(v)) per iteration, is almost linear in the network order. A heuristic adap-
tive LPA, BiLPA, is developed by Li et al. (2016) specifically for bipartite networks. They
define a bipartite partition density function and do not need to prespecify the number of
communities to be found, but do have to prespecify a threshold θ for a measure based
on neighborhood overlap above which a node will be assigned to a community. (MaxBic
does not require any parameters to be input.)
Probably the most investigated technique is biclique-finding and merging, in view of

the maximum structural cohesiveness inherent in a biclique. In Cui and Wang (2014) the
authors progressively merge minimal bicliques (of the form Ka,1 : degree a node s in S
has a neighbourhood of a nodes in P) when the current merged set of nodes overlaps the
a nodes and the ratio of overlap number to the degree of s exceeds 0.5. After iteration,
any unmerged nodes are subsequently allocated to all communities they connect to. Their
results on the Southern Women network show communities in P in accord with results
obtained by unipartite overlapping algorithms, but their results on other small bipartite
networks are presented without analysis. They claim a time complexity ofO

(
n2

)
. By con-

trast, MaxBic generates all bicliques of the form K2,b (which we call basic bicliques) before
merging begins.
In Lehmann et al. (2008) the authors extend the idea of a k-clique community fromCPM

to bipartite graphs: a Ka,b biclique community is the union of all Ka,b bicliques that can be
reached from each other, through a series of adjacent Ka,b bicliques. Two Ka,b bicliques
are adjacent if their overlap is at least a Ka−1,b−1 biclique. Du et al. (2008) worked with
ideas related to biclique overlap, and named their algorithm “BiTector”. In BiTector, ini-
tially all maximal bicliques are extracted in order to use them as “clustering cores”. Then
communities are built up by expanding and merging the clustering cores according to a
closeness function based on Jaccard similarity of node sets. On sparse bipartite networks
BiTector is claimed (somewhat surprisingly) to have time complexity approximately pro-
portional to O(n) for the extraction of all maximal bicliques, and overall time complexity
O

(
n2

)
. It would be relatively slow on a dense network. BiTector does not require any input

parameters and covers the network.
The maximal biclique generation problem (MBGP), that of generating all the max-

imal bicliques of a network, cannot be solved in polynomial time with respect to n.
It is at least as hard (Alexe et al. 2004, Lehmann et al. 2008) as the problem of find-
ing a biclique with a maximum number of edges, the decision version of which is
NP-complete (Peeters 2003). As with enumerating maximal cliques, MBGP can be
solved at least exponentially in n (Viard et al. 2016). However some classes of bipar-
tite networks have only polynomially many maximal bicliques (Alexe et al. 2004), and
in some classes of bipartite networks, variants of MBGP have polynomial solutions
(Makin and Uno 2004).
In contrast to BiTector, MaxBic finds at most nmaximal bicliques, derived from merg-

ing node sets based on nodes with optimal similarity in a unipartite supergraph G∗ of G,
but it may be slower than BiTector on sparse networks.
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Methods
We denote a bipartite network by G = (P, S,E) where P = {p1, p2, .., pk} and
S = {s1, s2, .., sl}, E ⊆ P× S is the set of edges in G, n = k + l is the order of G andm = |E|
is the size. Every bipartite network we deal with is assumed to be unweighted and undi-
rected, so its adjacency matrix A is symmetric and can be written in block form. It is not
necessary that it be connected, since each component can be separately clustered, but for
simplicity here we assume that it is (i.e. there exists a path between every pair of nodes).
We further assume k ≥ 2 and l ≥ 2, since otherwise G is a star and necessarily forms a
single community. For brevity, we may represent a biclique by its node set alone.
The MaxBic algorithm is based on three concepts: node similarity; transformation of a

biclique into a clique on the same node set to simplify tracking of overlap and merging;
and maximal bicliques. We work with node similarity, rather than edge similarity as in
Ahn et al. (2010), because in social networks nodes in the same community have similar
patterns and a community of nodes has homogenous structure Barrat et al. (2008).

Node similarity

In social science, the idea of similarity between nodes is not new, with studies going back
to 1971 (Lorrain and White 1971). Similarity there is defined in term of structural equiv-
alence (Lorrain andWhite 1971; Van Steen 2010) where two nodes i and j are structurally
equivalent if they have the same pattern of relationships with all other nodes. This implies
that nodes i and j share the same neighbors for the same purpose (Leicht et al. 2006). The
more similar the nodes are, the more common neighbors they have.
In a bipartite network, it is usual to infer that the more neighbors that two nodes i and j

in the same set (say P) have in common in the other set (S), the higher the likelihood that
they interact, and so the structural similarity of nodes i and j can be measured by their
number of common neighbors. It has been proved that this count is an effective mea-
sure for structural similarity and gives accurate results (Zhou et al. 2009; Liben Nowell
and Kleinberg 2007) on large-scale networks. It underpins the definition of the unipartite
projections GP and GS of G. Moreover, it uses the fundamental topology of the network
(Leicht et al. 2006). Thus we define the similarity of nodes i and j to be their common
neighbors index CNIij, i.e. the size of their set of common neighbors CNSij ≡ �(i) ∩ �(j),
where �(i) ≡ {x|{i, x} ∈ E} is the exclusive neighborhood of node i. The similarity can be
calculated either from the CNS or from the network’s adjacency matrix A =[ aij] :

CNIij ≡ |�(i) ∩ �(j)| =
∑

x
aixajx . (1)

Community strength

Clusters of nodes can be regarded as strong or weak. Probably the simplest andmost natu-
ral definition of a strong cluster is a set of nodes which form a clique, that is, the subgraph
they induce is complete (Palla et al. 2005). The definition of modularity in Newman and
Girvan (2004) is given for general networks and compares the number of edges within a
cluster to the expected number in an equivalent network with edges placed at random,
so a clique will maximise modularity for its set of nodes. Bimodularity is correspondingly
defined for bipartite networks (Barber 2007), so that a biclique will maximise it. How-
ever there are less absolute ideas of community which are commonly used, and which are
more appropriate for measuring the relative strength of maximal bicliques.
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The definitions of strong and weak community given in Radicchi et al. (2004), which
compare the number of edges outgoing from the cluster to the rest of the network, are less
strict conditions than those given in Hu et al. (2008), which compare the number of edges
outgoing from the cluster to each other cluster and not to all the rest of the network.
Here we order community strength into 5 categories, by comparing the definitions in

Hu et al. (2008); Radicchi et al. (2004).

Definition 1 For a particular cluster c to which node i belongs, separate the degree ki of
i into two parts: the number of edges kini = ∑

j∈c aji connecting node i to other nodes in c,
and the number of edges kouti = ∑

j 	∈c aij connecting node i to the nodes in the rest of the
network. Then c is

1 strong (= strong in Radicchi et al. (2004)) if

kini > kouti , ∀i ∈ c ; (2)

2 almost strong (= strong in Hu et al. (2008)) if

kini ≥ max
c′ 	=c

{ ∑

j∈c′
aij

}
, ∀i ∈ c ; (3)

3 almost weak (= weak in Radicchi et al. (2004)) if
∑

i∈c
kini >

∑

i∈c
kouti ; (4)

4 weak (= weak in Hu et al. (2008)) if

∑

i∈c
kini ≥ max

c′ 	=c

{∑

i∈c

∑

j∈c′
aij

}
, and (5)

5 very weak if it does not belong to any strength level according to the above 4
categories.

Clearly the definition of strong community in (2) implies the definition of almost strong
in (3), whichmeans that the definition of strong community in (2) is more restrictive than
in (3). Similarly, the definition of almost weak community in (4) implies the definition of
weak community in (5), which means that the definition of weak community in (5) is less
restrictive than the definition in (4). Furthermore, strong implies almost weak, but almost
strong does not imply almost weak. Figure 1 illustrates which definition implies which.
Based on these categories, we introduce the following measure St of community

strength.

Definition 2 For node i in community c let kmax−out
i = maxc′ 	=c

∑
j∈c′ aij be the max-

imum number of outgoing edges from i toward another community in the network. The
strength St(c) of c is defined as

St(c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
i∈c kini − ∑

i∈c kouti if c is strong
∑

i∈c kini − ∑
i∈c k

max−out
i if c is almost strong

∑
i∈c kouti − ∑

i∈c kini if c is almost weak
∑

i∈c kmax-out
i − ∑

i∈c kini if c is weak

(6)
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Fig. 1 Relationships between the 5 categories of community strength

The higher value for strong and almost strong communities indicates the stronger com-
munity, while the higher value for almost weak and weak communities indicates the
weaker community.

MaxBic: a newmaximal biclique finding algorithm

The MaxBic algorithm can be divided into seven phases, described below. Pseudocode is
given in Appendix A. A worked example on a toy bipartite network is given in Fig. 2.
MaxBic finds, from each node, at most one maximal biclique containing it (others will

usually be found from different nodes). First, using the idea of node similarity, it finds
the set of common neighbors for every pair of nodes in P (S can equally well be chosen,
see Remark 1 below). Each pair in P together with its common neighbors is the node set
of a biclique we term a basic biclique. Second, the node set of each basic biclique is for-
mally treated as the node set of a clique in a (unipartite) supergraph G∗ of G, in order to
merge node sets based on (bi)cliques rather than merging individual nodes. Conceptually
this is based on the results from (Evans 2010) which show in benchmark unipartite net-
works that clique graphs find overlapping communities accurately while node partition
methods fail. Third, the inclusive neighborhoods for each node in G∗ are cross-checked
for complete overlap to permit merging and enlarging, based on the idea that two nodes
in P ∨ S are more likely to belong to the same bipartite community in G when their node
similarity in G∗ is optimal. The resulting bicliques in G are checked for cover and max-
imality. Any node from S not yet accounted for is included in any adjacent community
at this point. These communities are then categorised and ordered by their strength, as
described in “Community strength” subsection.
Phase (i) Determine the common neighbors set of each pair of nodes p, p′ ∈ P. Find the

exclusive neighborhood �(p) for each p ∈ P, then, for every pair of nodes in p, p′ in P, find
CNSpp′ . The subgraph of G induced by the node set {p, p′,�(p)∩�(p′)} is a basic biclique
K2,CNIp,p′ .
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Fig. 2 Schematic illustration on toy example. In (i) we find basic bicliques, and then in (ii) we treat them as
cliques. In (iii) we find inclusive neighborhoods for each node in cliques. In (iv) and (v) comparison between
sets of nodes detects structural similarity between sets in order to merge them into larger bicliques. In (vi)
the final two sets after merging are presented, and finally in (vii) the two overlapping strong communities
are shown

Phase (ii) Replace each basic biclique by a clique. Connect each node in K(p, p′) =
{p, p′,�(p)∩�(p′)} to every other node in it, to form the basic clique K∗(p, p′). Each basic
clique is underpinned by the structure of the projections GP and GS: added edge {p, p′} in
G∗ would form an edge in GP and the added edges on CNSpp′ in G∗ would form a clique
in GS, and so represents fundamental community structure in S. Formally we have a new
network G∗ = (P ∨ S,E∗) where E∗ is the edge list of the basic cliques. Note G∗ is no
longer bipartite, though it has the same node set P ∨ S as G, and E ⊂ E∗.
Phase (iii) Find the inclusive neighborhood of each node in G∗ by merging basic cliques.

For each node i ∈ G∗ we find the set containing i and its neighbors in G∗:
if i ∈ P then,

�∗+(i) = {i} ∪
⎛

⎝
⋃

p∈P, CNSip 	=∅
K(i, p)

⎞

⎠ (7)

and if i ∈ S, then

�∗+(i) = {i} ∪
⎛

⎝
⋃

p,p′∈P, i∈K(p,p′)
K(p, p′)

⎞

⎠ . (8)

Form a container Z of clusters, initially one for each node i ∈ P∨S, which will be updated.
Each cluster ci in Z will consist of an element (node i) and a list, with the form ci = {i :
listi} = {i : j1, j2 . . . }. Initially ci = {i : ∅}, so we start with as many clusters as we have
nodes in the network G.
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Phase (iv) Test for total overlap of neighborhoods and form larger clusters accordingly.
Fix a main node i ∈ P ∨ S and run through each other node j, in order to merge clusters
on nodes with high similarity. Merge j to listi if

�∗+(i) ⊆ �∗+(j). (9)

Node j will merge only if in G∗ it is in a common clique with i, so in Z the nodes of
ci = {i : j1, j2 . . . } after this phase will be from a clique in G∗ and thus from a biclique in
G (not necessarily maximal).
Phase (v) Repeat Phase (iv) for each i ∈ P ∨ S. The output from this step is clusters,

stored in Z. Each cluster will be either the node set of a biclique in G or of the form {s : ∅}
for some s ∈ S. (No cluster of the form {p : ∅} for some p ∈ P will be in Z: since G is
connected, a nonempty K(p, p′) will exist).
Phase (vi) Reduce the redundancy of clusters. First, remove clusters ci fromZ that satisfy

the condition (i ∪ listi) ⊆ (j ∪ listj) for any cj. This ensures that every i ∈ P ∨ S is in at
least one cluster and that the biclique underlying the cluster is maximal.
Second, if |listi| ≥ 2 and listi ⊂ listj, merge element i to cj. A cluster surviving to this

point with |list| < 2, which has one node from P and the other from S, will stand alone,
as it forms the smallest biclique, a single edge.
Finally, there might be some nodes s in S which are not merged, because they have

degree 1 and aren’t in any �∗+(i), i ∈ P, so cs = {s : ∅} in Z after Phase (v). They are
included in any community to which their adjacent node (in P) belongs.
Phase (vii)Categorise and order the communities in G based on their strength.Using the

definitions in “Community strength” subsection, we have five categories: strong, almost
strong, almost weak, weak and very weak. Communities in the first four categories are
ordered in descending order of strength St.

Remark 1 If we use set S instead of P, the only difference in the edge list E∗ will come
from the smallest basic bicliques, those with 3 nodes. These can only make differences to
the communities of size 1, 2 or 3 found by MaxBic, according to the following argument.
Suppose K(p1, p2) = {p1, p2, s1, s2, . . . , sl′ } is a basic biclique when starting from P. Then

E∗ \ E contains the edges (p1, p2), (s1, s2) and if l′ = 2 then starting from S the same edges
arise by symmetry. If l′ = 3 then also (s1, s3) and (s2, s3) are in E∗ \ E. Starting from S, we
would obtain basic bicliques K(s1, s2) = {s1, s2, p1, p2, . . . },K(s1, s3) = {s1, s3, p1, p2, . . . }
and K(s2, s3) = {s2, s3, p1, p2, . . . }, so the 4 specified edges are in E∗ \ E. If l′ > 3 this
argument generalises. In the smallest case l′ = 1, (p1, p2) is in E∗ \ E when starting from P
but this edge will not arise when starting from S.

Computational complexity

Enumeration of all maximal bicliques is at least exponential in n (Viard et al. 2016). How-
ever MaxBic does not find all maximal bicliques, but at most one maximal biclique for
each node in G, and its time complexity is at most O

(
n2 k

)
where k = |P|, according to

the following argument.
Phase (i) Finding basic bicliques (Algorithm lines 5–12) requires computation of CNS

for every pair of nodes in P so has time complexity O
(
k2

)
.
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Phase (ii-iii) Finding �∗+(i) requires a check of at worst each K(p, p′) (see Eqs. (7) and
(8), Algorithm line 23) and there are n nodes to check for so this step has time complexity
O

(
n k2

)
.

Phase (iv-v) Searching for similarity between nodes using�∗+(i) (Algorithm lines 25–31)
means comparing every pair of these, which can cost O

(
n2

)
.

Phase (vi) The last operation compares each community with each other in order to
reduce the redundancy (Algorithm lines 35–38) which takes O

(|Z|2), where |Z| is the
number of communities, and is no more than n. So this step takes up to O

(
n2

)
also.

Putting these together and noting k < n gives at worst O
(
n2 k

)
.

MaxBic uses set P to find up to n maximal bicliques. If l � k it could be advantageous
to use S instead of P, so overall we have complexity O

(
n2 min{k, l}).

Reducing redundancy and revealing hierarchy–MaxBicR(J)

At present there is no commonly accepted standard for evaluating the efficiency and
accuracy of overlapping community detection algorithms for bipartite networks. We are
proposing MaxBic as an algorithm for determining ground truth or metadata communi-
ties of overlapping maximal bicliques at the base level of a hierarchy. These communities
are necessarily as tightly connected as is possible. To reduce redundancy at the base level
and determine higher levels of a hierarchy of overlapping communities any suitable merg-
ing algorithm (such as described in “Overlapping communities algorithms” subsection)
could be applied.
We have chosen to develop our own merging algorithm in order to avoid bias when

comparing performance with other algorithms. We tried six different methods of merg-
ing base-level communities, all based on the Jaccard similarity coefficient of pairs of
communities which, for two node sets c and c′ is:

J(c, c′) = |c ∩ c′|
|c ∪ c′| (10)

When J(c, c′) = 1 the node sets are identical and when J(c, c′) = 0 they have no overlap.
We tested all six methods on the Southern Women and Noordin Top networks. For

different threshold values of J, we plotted the number of second-level communities found
against the extended normalised mutual information NMI (Lancichinetti et al. 2009) of
those second-level communities and the base-level communities found by MaxBic. The
larger the NMI value, the better the match between two structures. For simplicity here,
we selected one of the six, which uses all nodes in a community so as not to bias towards
P or S, and which gives relatively consistent performance. The full results are reported in
Alzahrani (2016).
There are two stages in our selectedmerging algorithm. In the first stage, select a thresh-

old J ∈[ 0, 1] for the Jaccard similarity coefficient and merge (without discarding) any two
node clusters output by MaxBic which have similarity coefficient at least J. In the sec-
ond stage, treat the resulting clusters as super nodes and weight edges between two super
nodes by their Jaccard coefficient, again thresholding on J. We obtain the incidencematrix
of the cluster graph. We use the modified version of the Breadth-First Search algorithm
(BFS) to traverse between super nodes and identify connected components of the clus-
ter graph. The node set of each connected component is output as a community at the
second level of the hierarchy. We term the combined algorithm (MaxBic followed by this
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merging algorithm) MaxBicR(J). After empirical testing for J in steps of 0.1 we fix J = 0.6
in what follows.

Results
Our goal in this section is to demonstrate that the biclique communities captured
by MaxBic are meaningful in real terms, and, assuming this, that MaxBicR can find
overlapping communities better than some competing algorithms.
In order to evaluate our algorithm we have examined in detail three real bipartite social

networks for which some external ground truth information or metadata analysis about
communities in either set P, or set S, is available. The first, the Southern Women social
network, is a de facto benchmark for testing community detection algorithms in bipar-
tite networks. The second is a terrorist network and the third a crime-location network.
For both the latter, only partitioning algorithms have been applied to date, so our detec-
tion of overlapping communities is new. We stress that we are not aware of any other real
bipartite databases for which any external validation of overlapping communities exists
prior to application of an overlapping community detection algorithm. We believe this is
the first time the overlapping communities detected in three databases have been evalu-
ated against prior information about their communities. The Southern Women database
is typically the only one tested by other authors. We use the extended NMI to compare
community structures.
In overlapping communities, nodes may belong to several communities, and so it is

possible to measure the importance of a node in a bipartite network based on the number
of communities to which it belongs. A node belonging to only one community is likely to
be peripheral, and to many, to be core. Here we propose a simple statistical measure for
determining if a node is core, peripheral or neither, based on the number of communities
to which it belongs.

Definition 3 Let m(v) denote the number of communities to which node v belongs, and
let μ be the mean and σ the standard deviation of the list of membership counts. Then v is
a core node if

m(v) > μ + tcσ (11)

and v is a peripheral node if

m(v) < μ − tpσ . (12)

Here tp and tc are parameters which can depend on metadata or ground truth. We
would expect tp to be large enough that nodes with m(v) = 1 are peripheral and tc to be
large enough that hubs are core. We let tc and tp be chosen by the researcher.

Benchmark “SouthernWomen" network

The small “Southern Women" network collected by Davis et al. (1941) has become a
benchmark for testing community detection algorithms on bipartite networks. Its com-
munity structure is widely analyzed by social network researchers (Freeman 2003). This
network has k = 18 women (who form set P) who attended l = 14 different events (set
S), with n = 32 andm = 89. See Table 8 in Appendix A for its adjacency matrix. The two
overlapping ground truth communities in P, identified on the basis of inteviews with the
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women, are Women 1 − 9 and Women 9 − 16, which overlap on Woman 9 only. There is
no ground truth published for overlapping communities in the network as a whole.
MaxBic detects 16 overlapping communities in the Southern Women network, see

Table 1. Although structurally each of the 16 is a maximal biclique, hence as strongly
connected internally as is possible, within the network there are no strong communi-
ties according to Definition 1. There are 2 almost strong communities, 3 almost weak
communities, 7 weak and 4 very weak communities.
We analyse these to demonstrate that the communities found by MaxBic represent

real information. We also compare our results with the results in the literature that used
bipartite modularity-based algorithms and other techniques.
First, in 9 of our 16 communities all the women belong to the first ground truth commu-

nity and in 6 they all belong to the second. For example, in our community 9, all 6 women
belong to the first ground truth community and in our community 10 all 5 women belong
to the second ground truth community. Only community 5 is split, which we suggest is
because Events 8 and 9 that the 9 women coattended were the most popular events.
In terms of core and peripheral nodes in the whole network, using the formulas (11) and

(12) we have μ ≈ 3.72 and σ ≈ 2.55. Selecting tp = 1 (to isolate nodes with membership
1), and tc = 1 for consistency, we have μ + σ = 6.27 and μ − σ = 1.17. Therefore,
the core nodes are those with membership 7 or more (Women 1-Evelyn and 3-Theresa;
Events 8, 9 and 5) and peripheral nodes are those with membership 1 (Women 6-Frances,
7-Eleanor, 16-Dorothy, 17-Olivia and 18-Flora; Events 1, 2 and 11). Evelyn and Theresa
were frequently identified in earlier studies (Freeman 2003) as core members of one of
the ground truth communities. That was because they coattended 7 events.
We compare our results for the Southern Women network with results in the literature

produced by overlapping community algorithms.
First, we consider published results where only the communities in set P (Women) are

detected. The result of calculating NMI for these published community structures can be
seen in Table 2.

Table 1 The 16 metadata communities found by MaxBic in the Southern Women network

Category Comm. No. Events ; Women St

Almost strong 1 3 4 5 ;1 3 4 5 10

2 3 4 5 7 ; 3 4 5 9

Almost weak 3 9 10 12 13 14 ; 12 13 14 -10

4 3 5 6 8 ; 1 2 3 4 6 -10

5 8 9 ; 1 3 8 9 10 11 12 13 16 0

Weak 6 2 3 5 6 8 ; 1 2 3 -11

7 5 6 7 8 ;2 3 4 7 -11

8 1 3 5 6 8 ;1 2 4 -10

9 3 5 ; 1 2 3 4 5 6 -7

10 10 12 ; 11 12 13 14 15 -6

11 8 9 10 12 ;11 12 13 -4

12 8 9 10 12 13 14 ; 12 13 -1

Very weak 13 9 11 ; 14 17 18 -

14 7 8 9 12 ;10 13 -

15 5 7 8 9 ; 3 9 -

16 6 8 9 ; 1 3 8 -
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Table 2 Comparison of ground truth with MaxBic, MaxBicR(0.6) and four other methods for
detecting overlapping communities of Women (P)

Method No. of communities NMI

Ground truth 2 1

Probabilistic model (Chang and Tang 2014) 2 0.869604

COPRA (Gregory 2010) 2 0.666013

MaxBic 16 0.460668

MaxBicR(0.6) 9 0.336311

BiTector (Du et al. 2008) 4 0.301657

linkcomm (Ahn et al. 2010) 7 0.238834

The results in Table 2 for MaxBic and MaxBicR are very encouraging. The two meth-
ods with higher NMI have prematched the ground truth by presetting either the number
of communities K = 2 (Chang and Tang 2014) or the maximum number of member-
ships v = 2 (Gregory 2010), but still don’t obtain the ground truth communities. MaxBic
and MaxBicR(0.6) outperform BiTector, which also merges maximal bicliques (one of its
4 communities is our community 5 and, similarly, is their only one split across ground
truth communities) and linkcomm, the only algorithm based on edge similarity rather
than node similarity. MaxBic is designed to find communities in the whole node set (P∨S
not P), and is a first stage algorithm only, so finds more communities than the other
algorithms.
Second, we consider published results where all nodes within the Southern Women

network are clustered. Because there is no ground truth published for overlapping com-
munities in the whole network and we have demonstrated that our communities well
represent the ground truth, we make the assumption that the strongest structural com-
munities (our 16 maximal bicliques in Table 1) are a true base level of the hierarchical
overlapping community structure of this network. The community number and NMI for
each algorithm is shown in Table 3.
Now we see that MaxBicR(0.6) has the highest NMI against MaxBic, as could be

hoped, since we are merging the maximal bicliques found by MaxBic. It is encouraging
that BiTector, which also merges maximal bicliques, detects the next most similar com-
munities to MaxBicR. linkcomm performs next best, then COPRA (when preset to 2
overlapping communities). It may be reasonable to conclude that the Probabilistic model
(preset to 2 overlapping communities) and BiLPA (which obtains overlapping communi-
ties if θ ≤ 0.8) are missing some fundamental community structure carried by maximal
bicliques.

Table 3 Comparisons of MaxBic metadata communities with MaxBicR(0.6) and five other methods
for detecting overlapping communities of Women and Events (P ∨ S)

Method No. of communities NMI

MaxBic 16 1

MaxBicR(0.6) 9 0.818521

BiTector (Du et al. 2008) 4 0.679316

linkcomm (Ahn et al. 2010) 7 0.468365

COPRA (Gregory 2010) 2 0.452535

Probabilistic model (Chang and Tang 2014) 2 0.316433

BiLPA (Li et al. 2016) 4 0.315424
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We will only continue comparisons of MaxBic and MaxBicR(0.6) with the two con-
current overlapping community detection algorithms COPRA and linkcomm, as they
use methodologies different from MaxBic and BiTector. We tested COPRA for v =
1, 2, . . . , 10 and report only the highest NMI obtained (which always occurred for
v = 2 or 3).

Noordin top terrorist network

The Noordin Top terrorist network described in detail by the International Crisis Group
(2006) was subsequently formalised in terms of several unipartite and bipartite networks.
One of these is an affiliation bipartite network described in Roberts and Everton (2011);
Everton (2012); Alzahrani and Horadam (2016) which links 74 individuals (set P) who had
45 affiliations (set S). Here n = 119 and m = 276. In Fig. 3 we plot the node degrees of
the network.
Metadata analysis (Everton (2012), using information in International Crisis Group

(2006)) partitioned set S into six categories, which we used in the following numerical
order: Organizations (8 events), Operations (5), Training (11), Meeting (12), Finance (2)
and Logistics (7).
In our previous study (Alzahrani and Horadam 2014) which partitioned the projected

actor network GP into 5 disjoint communities using Infomap, we noted that each actor
could belong to more than one community. Applying MaxBic to the bipartite network
results in 39 base level communities, of which 8 are almost strong, 23 are weak and 8 are
very weak. Again, there are no strong communities, though all communities are maximal
bicliques (possibly with some degree 1 nodes included).We list the almost strong commu-
nities in Table 4 and very weak communities in Table 5, as their small numbers are easier
to visualise and evaluate. The weak communities are listed in Table 9 in the Appendix A.

Fig. 3 Node degrees of the Noordin Top terrorist network. Noordin Top has degree 23, Organization 5
(Affiliation 5–Jemaah Islameyah) has 21, Operation 1 (Affiliation 9–Australian Embassy bombing Sep 2004)
has 18 and Azhari Husin has 17. The two top actors under different centrality measures of the network (see
(Roberts and Everton 2011; Alzahrani and Horadam 2014)), Noordin Top and Azhari Husin, stand out
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Table 4 The 8 almost strong communities identified using MaxBic in Noordin Top terrorist network

No. Almost strong communities St

1 7 22 Abdullah Sunata Aris Munandar Asep Jaja Dani Chandra Hari Kuncoro 21

2 8 9 17 21 Apuy Fathurrochman Heri Golun Iqbal Huseini Iwan Dharmawan 16

3 8 9 15 Fathurrochman Heri Golun Iqbal Huseini Irun Hidayat Iwan Dharmawan 10

4 6 7 22 Abdullah Sunata Aris Munandar Asep Jaja Iqbal Huseini Umar Wayan 10

5 30 Joni Achmad Fauzan Musab Sahidi Said Sungkar Usman bin Sef 8

6 20 Enceng Kurnia Harun Hence Malewa 6

7 2 Abu Bakar Baasyir Adung Zulkarnaen 6

8 38 Ubeid 2

The smallest community is almost strong community 8 (see Table 4) of two nodes,
Ubeid andAffiliation 38 (Finance 2). This is an example of a community that is notmerged
in Phase (vi) of MaxBic because its | list| < 2. For deeper analysis, we return to the meta-
data (International Crisis Group 2006) and the 6 affiliation categories in Everton (2012)
to illustrate that our structural communities are meaningful in real terms.
The almost strong communities are visualised in Fig. 4. What is notable is that they

do not contain any of the 5 most central individuals previously identified (Roberts and
Everton (2011), Table 3). This is consistent with a decentralised cell structure in which the
“footsoldiers", who are linked by Training events or belonging to the same Organisation,
are not in direct contact with the network leaders.
The very weak communities are visualised in Fig. 5. By contrast, all but one of them

contain one or both of the two most central individuals,Noordin Top (who ran the group)
and his master bomb maker Azhari Husin, who frequently travelled together. In the main
they are linked through internal communication (Meeting events) and Logistics.
In the weak communities (see Table 9 in Appendix A), for instance, community 16 has

strong relationships between its members, because they were involved in virtually every
major bombing (Operations). Ali Ghufron is the bomber in 2002 Bali Bombing I and col-
laborated with Hambali. In community 11, Abdul Rauf, Imam Samudra and Iqbal were
also involved directly in the Operation of Bali Bombing I. The basis of community 3 is
that its members have Trained together and were involved directly in the 2004 Australian
Embassy Bombing Operation.
Overlap between our communities also has meaning. For instance, Abdul Malik and

UmarWayan overlap in weak communities 4 and 1 because they attended the sameOrga-
nization (Jemaah Islamiyah) with other people in both communities such as Abdullah

Table 5 The 8 very weak communities identified using MaxBic in Noordin Top terrorist network

No. Very weak communities

1 5 22 Fathurrahman al-Ghozi Hari Kuncoro Muchtar Umar Wayan

2 5 11 18 42 Azhari Husin Fathurrahman al-Ghozi Jabir

3 5 11 31 Azhari Husin Fathurrahman al-Ghozi Subur Sugiarto

4 5 18 Azhari Husin Cholily Fathurrahman al-Ghozi Jabir

5 34 35 41 Abu Dujanah Azhari Husin Noordin Top Qotadah

6 13 26 41 Azhari Husin Ismail Mohamed Rais Noordin Top

7 31 41 42 Ahmad Rofiq Ridho Azhari Husin Imam Bukhori Noordin Top

8 31 41 45 Azhari Husin Cholily Noordin Top
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Fig. 4 Almost strong communities found by MaxBic

Sungkar and Agus Ahmad. Apuy overlaps in almost strong community 2 and weak com-
munity 3, reflecting the common Training category he attended with the members from
both communities.
The actors with the most community memberships are the three who together form

weak community 2: Iqbal Huseini, Azhari Husin and Noordin Top with 12, 11 and 10
memberships respectively. This indicates that they are important nodes in the network.
In term of core and peripheral nodes, using the formulas (11) and (12) we have μ ≈ 2.38
and σ ≈ 2.32, and on selecting tp = 1 (to isolate nodes with membership 1), and tc = 1
for consistency, we have μ + σ = 4.7 and μ − σ = 0.06. Therefore, the core nodes are
those with membership 5 or more and peripheral nodes are those with membership 1.

Fig. 5 Very weak communities found by MaxBic
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Comparison with the other algorithms, taking MaxBic communities as metadata com-
munities, appears in Table 6. We see that relative performance mimics that in Table 3,
with MaxBicR(0.6) and linkcomm finding similar numbers of communities, more than
COPRA, with NMI descending in the same order.

NSW crime network

This historic crime data from the Australian state of New South Wales (NSW)
was published in 2013 (NSW Bureau of Crime Statistics and Research). It was col-
lected from January 1995 to 2009, and includes data about every crime by month
of occurrence, categorised by offence type. There are 21 offence categories (set S),
some of which have subcategories, e.g. the category Homicide has four subcategories
(Murder, Attempted Murder, Accessory to Murder and Manslaughter). The underly-
ing social network of offenders is reflected in the reported crimes. The data reports
the crime according to the local government area (LGA) in which it was committed
(set P, k = 155). Here n = 176, m = 8, 761, so we have a denser network than in
the previous examples. No detection of overlapping communities has been undertaken
to date.
In Alzahrani and Horadam (2014) using the partitioning algorithm Louvain on the pro-

jected network for P, no communities are detected, whereas using Infomap we found P
partitioned into 2 communities, one (IC1) containing 82 LGAs and the other (IC2) con-
taining 73 LGAs. When the LGAs are coloured on a map of NSW according to their
Infomap community membership, a very strong geographical divide is apparent (see
Fig. 6). Generally speaking, IC1 includes the more populated LGAs and IC2 includes
the majority of rural and “Outback" LGAs. The 38 LGAs in the main metropolitan area,
Sydney, are all in IC1. This provides external validation of the Infomap partition, and leads
us to expect at least 2 overlapping communities in P ∨ S.
Applying MaxBic to the NSW crime network results in 50 overlapping communities, of

which 30 are strong and 20 are almost weak, according to Definition 1.
Comparison of MaxBicR with the two concurrent overlapping community detection

algorithms, again assuming theMaxBic communities are metadata communities, appears
in Table 7. MaxBicR(0.6) finds 8 communities, all of which are strong according to
Definition 1. Neither linkcomm nor COPRA can detect any communities, contrary to the
geographical evidence, and the evidence fromMaxBic that there are 30 maximal bicliques
that are strong communities within the network.
Closer analysis of the memberships of the 50 MaxBic communities, helps to reconcile

these findings and understand this network better. In fact, 63 LGAs and 7 Offence cate-
gories have the maximummembership of 50, that is, they lie in everyMaxBic community.
This means these nodes form a K63,7 biclique, which is the intersection of all 50 MaxBic

Table 6 Comparison of community numbers and NMI for Noordin Top terrorist network

Method No. of communities NMI

MaxBic 39 1

MaxBicR(0.6) 33 0.981

linkcomm (Ahn et al. 2010) 25 0.561785

COPRA (Gregory 2010) 6 0.435674
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Fig. 6 Geographical divide of NSW communities found using Infomap (c.f. Alzahrani and Horadam (2014),
Fig.1a). The uncoloured area is the Australian Capital Territory, which does not form part of NSW

communities and is a very dominant structure in the network. It is not, however, maxi-
mal, i.e. one of the 50 communities: every MaxBic community contains additional nodes
from P or S. For example, only one of the 50 communities contains just the 63 common P
nodes, but it contains all 21 S nodes.
To determine core and peripheral nodes, using the formulas (11) and (12) we have

μ ≈ 35.1 and σ ≈ 14.23, and on selecting tp = tc = 1 for consistency with the other
datasets, we haveμ+σ = 49.31 andμ−σ = 20.85. Therefore, the core nodes are (unsur-
prisingly) the 70 withmembership 50 and peripheral nodes are those withmembership 20
or less. There are 34 peripheral LGAs, of which all but 2 (both high socio-economic status
Sydney LGAs) lie in IC2, and 3 peripheral Offence categories (Drug offences, Blackmail
and extortion, and Prostitution offences).
We can conclude that MaxBic allows us to identify an extremely dominant structurally

cohesive biclique in the network. Finally, in this dominant biclique the 63 LGAs are split,
albeit very disproportionately, across the geographical divide, with 53 (84%) being in IC1
and 10 in IC2. This may account for the inability of the other algorithms to determine any
communities, overlapping or otherwise.

Conclusion and future work
Bipartite networks are a very important class of complex networks, but have not received
the same attention in community detection investigations as unipartite networks have. In

Table 7 Comparison of community numbers and NMI for NSW crime network

Method No. of communities NMI

MaxBic 50 1

MaxBicR(0.6) 8 0.68345

linkcomm (Ahn et al. 2010) 1 0.36458

COPRA (Gregory 2010) 1 0.36458
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particular, there is no accepted standard planted community model for generating syn-
thetic bipartite networks that can be used to compare performance of overlapping com-
munity detection algorithms. Consequently, at present, performance can fundamentally
only be measured against ground truth or metadata analysis where this exists.
We have introduced a new maximal biclique-finding algorithm, MaxBic, for detection

of overlapping communities in bipartite networks. It is based on node similarity and finds
an order-limited number of overlapping maximal bicliques which (after allowing for some
nodes of degree 1) cover an unweighted undirected connected bipartite network. We can
categorise and rank these bicliques by new measures of relative strength.
We have shown MaxBic has time complexity at worst O

(
n2 min{k, l}), irrespective of

whether the network is sparse or dense, whereas the problem of finding all maximal
bicliques runs at least exponentially in n. The improvement occurs because MaxBic finds
at most nmaximal bicliques.
The overlapping community structure produced by our algorithm consists of maxi-

mal bicliques, with perhaps some degree 1 nodes included. At a formal level therefore,
it represents communities that are as strong as possible in a bipartite network repre-
sentation and so truly captures structural communities that can form the base level
of a community hierarchy. We tested this base level for three small bipartite net-
works for which some ground truth or metadata analysis was available, in some detail.
We conclude that the overlapping communities we find do capture ground truth in a
real sense.
Whilst the base level of the overlapping community hierarchy carries important

information, in large dense networks it may be too much information for sensi-
ble analysis. Most effective algorithms use further techniques to reduce the number
of communities found by amalgamating smaller ones according to some measure of
community strength. We introduce a second stage algorithm which will merge com-
munities if their fraction of overlap passes a fixed threshold (here set at 0.6) and
use it to show that the communities it finds, at the next level of the hierarchy, bet-
ter capture the maximal biclique information present in the data than do compet-
ing algorithms. Any other second stage algorithm could be applied and further work
could compare performance of several of these when input with the MaxBic output
communities.
Analysis of overlapping communities in the Noordin Top terrorist network and other

dark networks should bring new insights. We can identify core actors and most com-
mon affiliations. For instance, in this kind of terrorist network, hidden relations can
be observed through overlapping communities, and actors who have more connections
and overlap with many others might have more influence and may be more dangerous
persons.
Similarly, deeper analysis of the strong communities in the NSW crime network may

help identify or confirm gang locations and offences they specialise in. To counteract the
dominance of the intersection biclique we discovered, it may be useful to include all the
offence subcategories in further experiments.
Finally, we aim to speed up the running time of MaxBic by further optimizing our code.

A slow point is Phase (iv-v) but this could perhaps be implemented to runmore quickly on
real datasets by e.g. comparing only those node pairs which are more likely to be similar,
not all of them.
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Appendix A

Algorithm 1 MaxBic: Phases (i-vi)
1: Input: E (edge list)
2: G = (P, S,E)

3: n = |P ∨ S| //order of G
4: k = |P|
5: for i = 1 to k do
6: �(pi) = {y ∈ S : edge(pi, y) ∈ E}
7: end for
8: for i = 1 to k do
9: for j = i + 1, j > i to k do

10: CNSij = �(pi) ∩ �(pj)
11: if CNSij 	= ∅
12: Clique K∗(pi, pj) ⇐= CNSij ∪ pi ∪ pj // assign nodes to new basic clique
13: for i∗ = 1 to |K∗(pi, pj)| do
14: for j∗ = i∗ + 1, j∗ > i∗ to |K∗(pi, pj)| do
15: E∗ ⇐= edge(i∗, j∗) // insert edges to E∗
16: G∗ = (P, S,E∗)
17: end for
18: end for
19: end for
20: end for
21: for i = 1 to n do
22: ci = {i :} ⇐= i // initial step in G∗, take each node and assign to unique cluster
23: �∗+(i) // find inclusive neighbors for each cluster
24: end for
25: for i = 1 to n do
26: ci = main // main identifies the cluster we compare with other clusters
27: for j = 1, j 	= i to n do
28: if �∗+(i) ⊆ �∗+(j)
29: ci ⇐ cj // join cluster cj to cluster ci
30: Z ⇐ {i:j . . . } // Z is a container which contains node i and its joined nodes
31: end for
32: end for
33: Return: Z = {ci} // vector of sets of form ci = {i : j1, j2 . . . }; i is the element and j1, j2 . . . is the

list
34: F = |Z|
35: for i = 1 To F do
36: for j = 1, j 	= i to F do

if ci ⊆ cj
remove ci from Z

37: end for
38: end for
39: // now we compare list of each set as total subset of another set in order to reduce set

redundancy.
40: for i = 1 to F do
41: for j = 1, j 	= i to F do

if listi ⊆ listj AND |listi| ≥ 2 Then
42: element ci ∪ cj
43: end for

if |listi| = 1
44: ci ∪ �(ci)
45: end for
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Algorithm 1 MaxBic Phase (vii): Order communities by strength
46: F = |Z|
47: for i = 1 To F do
48: ci ⇐= i
49: for j = 1 To |ci| do
50: kinj = ∑

x∈ci axj
51: koutj = ∑

x 	∈ci ajx
52: end for
53: end for
54: for i = 1 To F do
55: ci ⇐= i
56: for j = 1 To |ci| do
57: for k = 1 To F do
58: kmax−out

j = maxck 	=ci
∑

x∈ck ajx
59: end for
60: end for
61: end for
62: for i = 1 To F do
63: ci ⇐= i
64: for j = 1 To |ci| do
65: if kinj > koutj ∀j ∈ ci, then
66: Strong_community ⇐= ci // assign node to strong community
67: Else if kinj ≥ kmax−out

j ∀j ∈ ci, then
68: Almost_strong_community ⇐= ci // assign node to almost strong community
69: Else if

∑
j∈ci k

in
j >

∑
j∈ci k

out
j then

70: Almost_weak_community ⇐= ci // assign node to almost weak community
71: Else if

∑
j∈ci k

in
j ≥ ∑

j∈ci k
max−out
j Then

72: Weak_community ⇐= ci // assign node to weak community
73: Else
74: Very_weak_community ⇐= ci // assign node to very weak community
75: end for
76: end for
77: for i = 1 To F do
78: ci ⇐= i
79: if ci ⊆ Strong_community
80: St(ci) = ∑

j∈ci k
in
j − ∑

j∈ci k
out
j

81: Else if ci ⊆ Almost_strong_community
82: St(ci) = ∑

j∈ci k
in
j − ∑

j∈ci k
max-out
j

83: Else if ci ⊆ Almost_weak_community
84: St(ci) = ∑

j∈ci k
out
j − ∑

j∈ci k
in
j

85: Else if ci ⊆ Weak_community
86: St(ci) = ∑

j∈ci k
max-out
j − ∑

j∈ci k
in
j

87: Else
88: Very_weak_community ⇐= ci
89: end for
90: Sort(Strong_communities)
91: Sort(Almost_strong_communities)
92: Sort(Almost_weak_community)
93: Sort(Weak_community)
94: result ⇐= ordered strong and almost strong communities by larger value
95: result ⇐= ordered weak and almost weak communities by smaller value
96: Return: result community file
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Further data and results

Table 8 Representation of the adjacency matrix of Southern Women bipartite network, from
(Freeman 2003)

Event 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Woman

1 Evelyn 1 1 1 1 1 1 1 1

2 Laura 1 1 1 1 1 1 1

3 Theresa 1 1 1 1 1 1 1 1

4 Brenda 1 1 1 1 1 1 1

5 Charlotte 1 1 1 1

6 Frances 1 1 1 1

7 Eleanor 1 1 1 1

8 Pearl 1 1 1

9 Ruth 1 1 1 1

10 Verne 1 1 1 1

11 Myra 1 1 1 1

12 Katherine 1 1 1 1 1 1

13 Sylvia 1 1 1 1 1 1 1

14 Nora 1 1 1 1 1 1 1 1

15 Helen 1 1 1 1 1

16 Dorothy 1 1

17 Olivia 1 1

18 Flora 1 1
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Table 9 The 23 weak communities identified using MaxBic in Noordin Top terrorist network

No. Weak communities St

1 1 8 9 Abdul Malik Agus Ahmad Ajengan Masduki Akram -13

Engkos Kosasih Fathurrochman Iqbal Huseini Irun Hidayat Umar Wayan

2 9 11 13 26 31 32 34 35 36 41 42 45 Azhari Husin -12

Iqbal Huseini Noordin Top

3 9 17 Apuy Baharudin Soleh Heri Golun Iqbal Huseini -11

Iwan Dharmawan Umar

4 1 5 Abdul Malik Abdullah Sungkar Ajengan Masduki Akram Chandra -10

Engkos Kosasih Fathurrahman al-Ghozi Umar Wayan

5 8 9 15 17 21 Fathurrochman Heri Golun Iqbal Huseini Iwan Dharmawan -10

6 5 13 Asmar Latin Sani Azhari Husin Fathurrahman al-Ghozi -10

Ismail Mohamed Ihsan

7 3 9 33 37 41 Abu Fida Iqbal Huseini Son Hadi -9

8 29 31 32 41 42 43 44 Ahmad Rofiq Ridho Noordin Top -9

9 9 19 27 Aceng Kurnia Achmad Hasan Heri Sigu Samboja Iqbal Huseini -8

10 6 7 22 40 Abdullah Sunata Asep Jaja Iqbal Huseini Umar Wayan -7

11 8 10 Abdul Rauf Fathurrochman Imam Samudra Iqbal -6

12 21 39 Iwan Dharmawan Saptono Urwah -6

13 8 16 Fathurrochman Irun Hidayat Iwan Dharmawan Rosihin Noor -5

14 11 24 41 Anif Solchanudin Misno Noordin Top Salik Firdaus -5

15 3 25 Achmad Hasan Son Hadi Suramto -5

16 4 10 Ali Ghufron Hambali Marwan -4

17 5 10 12 13 Azhari Husin Fathurrahman al-Ghozi -3

Mohamed Ihsan Toni Togar

18 32 41 44 Ahmad Rofiq Ridho Joko Triharmanto -3

Noordin Top Purnama Putra

19 5 10 14 Dulmatin Fathurrahman al-Ghozi Marwan Umar Patek -3

20 13 26 28 41 Ismail Mohamed Rais Noordin Top -2

21 7 32 41 44 Iqbal Huseini JokoTriharmanto Purnama Putra -2

22 10 12 Azhari Husin Hambali Imam Samudra Mohamed Ihsan Toni Togar -1

23 23 34 35 41 Noordin Top Qotadah 0
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