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Abstract

« Introduction Most airborne laser scanning (ALS) studies
have been carried out in semi-natural forests, but some
research has also been carried out in plantations. Results
indicate that methods similar to those which are used in
semi-natural forest are also usable in plantation forestry.
The study was conducted in a pulpwood plantation growing
Eucalyptus urograndis in Bahia State, Brazil.

« Objectives The aims of this study are to investigate (1)
how accurately the plot volume may be estimated by ALS
data in eucalyptus plantations and (2) how to estimate the
site index directly by combining ALS data and stand age.
The plot volume and site index were estimated by means of
nonlinear mixed-effect modeling in order to take into
account the stand-within-clone hierarchy of the data.

+ Results The obtained accuracies are quite good if
compared to those obtained in semi-natural forests. The
root-mean-square error was 8.2% for plot volume and 2.7%
for site index when the clone effect was used in prediction.
+ Conclusions Precision forestry applied in plantations
differs in many ways from the forestry practiced in a
semi-natural environment. ALS-based forest inventory
methods have a great deal of potential in pulpwood
plantations when the unique features of plantation forestry
are taken into account.
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1 Introduction

Plantation forestry differs in many ways from the forestry
practiced in semi-natural environments. There are several
kinds of forest plantations. The aim may be to provide
wildlife habitat, biological diversity, and other services in
addition to wood production; in that case, multi-species
forest plantations are favored (FAO 2002). However, nearly
all the tropical plantations are grown in monoculture, with
one species being planted over a large area. The primary
reason for this is that silviculture is simpler (Evans 1992).

Although most airborne laser scanning (ALS) studies
have been done in semi-natural forests, some research has
also been carried out in plantations (e.g., McCombs et al.
2003; Wack et al. 2003; Roberts et al. 2005; Donoghue et
al. 2007; Rombouts et al. 2008; Hopkinson et al. 2008;
Tesfamichael 2009; Zonete et al. 2010). The focus in these
studies has been the accuracy of ALS-based stand attribute
estimates including leaf area and growth. Results indicate
that methods similar to those used in semi-natural forests
also seem to be appropriate for plantation forestry. So far,
most studies have dealt with conifer plantations, an
exception being the articles by Wack et al. (2003); Zonete
et al. (2010) and the PhD thesis by Tesfamichael (2009, cf.
journal publications) in which eucalyptus was considered.
Both area-based method (Nasset 2002) and individual tree
detection (Hyyppéd and Inkinen 1999) have been used in
studies concerning plantations.

The type of plantation considered here is a mono-species
eucalyptus plantation which is targeted for pulpwood
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production only. In eucalyptus plantations, trees are planted
in rows using a fixed stand density. However, the stand
density does not necessarily remain the same over the
rotation since some damage may occur. There is no natural
regeneration, thus trees within a stand are genuinely of the
same age and single storied.

Eucalyptus is the most important short fiber source for
pulp and paper production in Brazil due to its rapid growth
and excellent pulp properties (Shatalov et al. 1999; Siverio
et al. 2007). The Eucalyptus hybrid considered in this study,
for instance, may grow over 60 m’/ha/year; thus, the yield
is extremely high compared to most natural or semi-natural
forests (Siverio et al. 2007). A great deal of effort has been
devoted to improving the quality, growth, and yield of
eucalyptus species by means of genetic selection. The yield
potential of a stand can be seen as an interaction of
physiographic factors, such as soil and climate, species and
seed origin (in this study, a clone), and management actions
such as soil preparation, fertilization, etc. (Clutter et al.
1983; Eerikiinen et al. 2002). In eucalyptus plantations, the
aim is to select the most productive and suitable clone to a
particular stand. Typically, all trees in a stand belong to the
same clone. In practice, the growth and yield potential is
quantified by site index (SI), which is usually based on the
development of dominant height over the rotation period.

Forest inventory in eucalyptus plantations is normally
carried out solely by field measurements. These surveys
cover a portion of the population, and sampling design
varies. Permanent sample plots are often used since
information about growth is important. By using permanent
sample plots, it is possible to construct growth models and
to monitor, for example, the growth rate of particular clone.
Pre-harvest inventories are also carried out in eucalyptus
plantations. In such cases, temporary sample plots are used.
It is typical that a certain length of row or rows constitutes a
sample plot, or that fixed number of trees defines a plot.
Sample plots are placed either systematically or randomly,
depending on the purpose of the inventory. Determining
plot locations accurately is not a normal routine in
eucalyptus plantations.

Plantation forestry also occupies a special situation
regarding remote sensing-based forest assessment. Al-
though the stand level information about age and tree
species is also often available for semi-natural forests, this
information is especially accurate in even-age plantations
where trees are of the same age and, in certain cases, of a
known clone. This makes it more feasible to combine
existing stand register data and remote sensing data and to
carry out estimation in a wall-to-wall manner. Accurate age
at tree level also enables the estimation of attributes which
are normally not feasibly estimated by remote sensing.

The aims of this study are to investigate (1) how
accurately the plot volume (V) may be estimated by ALS
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data in eucalyptus plantation and (2) how to estimate SI
directly by combining ALS data and age taken from the
stand register. In order to efficiently utilize all available
information, the estimation was carried out with a nonlinear
mixed-effect model that accounts for the clone effect.

2 Materials
2.1 Study area and field data

The study was performed at a pulpwood plantation growing
eucalyptus in Bahia State, Brazil (16°05" S 39°24" W). The
plantation is owned by Veracel, and the pulp mill itself is
sited within the test area. The cultivated eucalyptus species
is Eucalyptus urograndis, which is a hybrid between
Eucalyptus grandis and Eucalyptus urophylla. This euca-
lyptus hybrid is highly productive and is one of the main
species currently used for pulp production in Brazil (Siverio
et al. 2007).

A network of 195 circular sample plots with a radius of
13 m was established and measured in August—September
2008. Sample plots were placed in 55 forest stands with
three or four plots per stand. Satellite positioning was used
to determine the position of each plot center using a real-
time differential correction signal from the OmniSTAR
satellite (http://www.omnistar.com). The trees are grown in
rows, and the tree spacing is fixed, giving a density of 833
stems per hectare. However, damages may reduce the stem
density. All trees were recorded in the field for diameter at
breast height (d) and quality, and every seventh tree on each
plot was measured for height (%). Naslund’s (1937) h—d
curve was fitted by stands and used to predict heights for
trees without height measurement. Stem volumes were
calculated as a function of d and / using a clone- and age
class-specific model constructed in-house in Veracel.

Plot volume (V) was calculated by aggregating from tree
to plot level, and dominant height (HD) was calculated as
the mean height of the 100 thickest trees at breast height per
hectare. Stand age (7) was taken from the plantation
database in which this parameter was registered at intervals
of 1 month. There were 28 different clones in the 55 stands
from which the field data were collected. All trees in a
stand belonged to the same clone. The site index (SI) was
predicted using the following form of the Chapman—
Richards equation (Clutter et al. 1983):

1 — e_ﬁ]treference ﬁz
7) : (1)

1 —_ efﬁ 1 Leurrent

SI=HD(

where feference 1S the reference age of 7 years, HD is the
current dominant height, Z.u.en 1S the current age, and [,
(0.3341) and (3, (1.1442) are known model parameters in
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Veracel. Information on the essential stand characteristics is
presented in Table 1.

2.2 Airborne laser scanning data

ALS data were collected on August 16, 2008 using an
Optech ALTM 3100 laser scanning system. The test site
was measured from an altitude of approximately 1,200 m
above ground level using a field of view of 30°. Pulse
repetition frequency was set to 50,000 pulses per second,
which resulted a nominal sampling density of about 1.5
measurements per square meter. The footprint was about
35 cm at ground level.

A digital terrain model (DTM) was generated from the
ALS data. First, laser points were classified as ground and
non-ground points using the method reported by Axelsson
(2000). Then, a raster DTM with a 1-m pixel size was
interpolated using ground points and an inverse distance
weighting algorithm (Lloyd and Atkinson 2002). Finally,
the raster DTM was subtracted from the ellipsoidal heights
of laser points in order to scale the ALS data to the above
ground level (AGL).

3 Methods
3.1 Explanatory variables

The laser scanner used captures a maximum of four range
measurements for each submitted pulse. These echo
categories are “first of many,” “last of many,” “only,” and
“intermediate.” After preliminary tests, it was decided that
only the echo categories “first of many” and “only” would
be used in this study, since the exclusion of “last of many”
and “intermediate” echoes did not significantly decrease the
accuracy of the SI and V estimates. This set contains all of
the first—or surface—echoes since an “only” echo may
also be considered as a first echo.

Numerous height and density metrics were calculated
from the combined set of “first of many” and “only”
echoes. The principle of the area-based method was used
here (Nesset 2002). The first step was to calculate height
distributions for each sample plot using the heights of the

Table 1 Mean, standard deviation (SD), minimum and maximum
values of site index (SI), age and volume (V) at the plot level (n=195)

SI (m trcfcrcncc) Age (Years) v (m3 hail)
Mean 343 7.3 376.1
SD 1.76 2.6 132.8
Min 29.2 2.5 117.7
Max 39.2 11.9 655.7

AGL data. All the laser hits were considered, also ground
hits. Height quantiles for 5%, 10%, 20%,..., 80%, 90%,
95% (h5,..., h95) were computed, and the corresponding
densities (p5,..., p95) were calculated for the respective
quantiles. Height quantiles were calculated by summing the
heights at AGL. For instance, the metric h50 is the height at
which 50% of the cumulative height has accumulated and
p50 is the number of laser hits below h50 divided by all the
laser hits on the plot. In addition, the mean (hmean) and
standard deviation (hstd) of heights at AGL were calculated
by plots. These metrics form a set of candidate explanatory
variables used for modeling SI and V.

3.2 Modeling of site index and plot volume

The same form of the Chapman—Richards equation which is
used to predict the SI in this plantation was used as the
starting point in the modeling of SI (see Eq. 1). However,
instead of modeling the HD separately and inserting the
resulting predictions into Eq. 1, the SI was modeled
directly. This was done by replacing the HD of Eq. 1 with
a linear dominant height model that uses ALS-based
explanatory variables and fitting the equation as a nonlinear
model into the modeling data. Site index results from
multiplying the dominant height with a function of the
current stand age (Eq. 1). Because the function is nonlinear
in stand age, fitting a model for dominant height and using
it in Eq. 1 might result in biased prediction of site index.
Our formulation ensures that the model is unbiased for site
index. We also incorporated nested random effects into the
model to account for the effects of the hierarchical data
(sample plot within stand within clone). To begin with,
however, the form of the HD model was chosen by using
linear regression. At this stage, both manual insertion and
deletion of explanatory variables and a stepwise selection
based on the Akaike information criterion were used.

Preliminary analyses for the model of V showed a linear
relationship between In(V) and the predictors, which is why
a nonlinear model of the exponential form was used to
model the total volume. This led to a model that has the
observed linear relationship and is unbiased for V. This
model was also fitted as a mixed-effect model to account
for data hierarchy.

The nonlinear mixed-effect models were fitted by using
the nlme routine (Pinheiro and Bates 2000) in the R
environment (R Development Core Team 2009) by the
method of restricted maximum likelihood and the algorithm
of Lindstrom and Bates (1990).

3.3 Accuracy assessment

Accuracy assessment was carried out by leave-one-out
cross validation (LOOCYV) in order to avoid too positive
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results. In LOOCV model, parameters were repeatedly
estimated by ignoring the observation for which the
prediction is done. Therefore, the exact parameter estimates
reported in Table 2 were not used in LOOCV. Accuracy
assessment was carried out at three different levels: for the
fixed part of the mixed-effect model, by using the predicted
clone effect, and by using the predicted stand and clone
effects. The accuracy of estimates was evaluated in terms
root-mean-square error (RMSE) and bias at the plot level:

n 52
MSE 1| D 05— )
n

(2)

BIAS = w (3)

where 7 is the number of plots, y; is the observed value for
plot i, and y; is the predicted value for plot i. Moreover, the
relative RMSEs and biases were calculated by dividing the
absolute values (Eqs. 2 and 3) by the true mean of the
variable in question.

4 Results
4.1 Nonlinear mixed-effect models

The model for the SI is as follows:

S 1 1 — e Brtternce \ P
1. =
o <ﬁ3 + B4h90.4 + Bsh95.i” + B/ hmeancki) <1 - efﬁ't”"“"“")

+ be + bek + Ecki
(4)

where SI; is the SI for clone ¢, stand &, and plot #; b, is a
random clone effect; b is a random stand effect (stands are
nested within clones); and . is the residual for clone c,
stand k, and plot i. (3; and (3, are the known parameters of
the SI model (the same as in Eq. 1). The random effects and

residuals are assumed to be uncorrelated and normally
distributed with mean zero and constant variance.
The model for the plot volume is as follows:

Vi = elBrtBs1og(h10)+8, log(hs0)+B10/p90+betba) | o - (5)

where V., is V for clone ¢, stand k, and plot [; b, is a
random clone effect; b is a random stand effect (stands are
nested within clones); and ¢ is the residual for clone c,
stand k, and plot i. The random effects and residuals are
assumed to be normally distributed with mean zero and
constant variance. Preliminary analyses showed increasing
residual variance with respect to the prediction, so the
residual was assumed to be normally distributed with mean
zero and variance var(eck,»):athOz‘s, where o and ¢ are the
parameters of the power-type variance function. The
parameter estimates for both models are listed in Table 2.

4.2 Accuracies

The RMSE and bias of the LOOCYV estimates of SI and V
are presented in Table 3. Level denotes the level of
grouping used for obtaining the predictions. Level “fixed”
means that only the fixed part of the model (Egs. 4 or 5) is
used, level “clone” means that the predicted clone effect is
used in the prediction, and “stand” means that the predicted
random effect for the stand within clone is also used in the
prediction.

The accuracy of estimation of SI was 1.11 m at the
reference age of 7 years when only the fixed part of the
model was used in the prediction. The inclusion of random
effects improved the accuracy notably but not quite as
much as in the case of V. The SI estimates were virtually
unbiased at all levels of grouping. In relative terms, the
accuracy of SI was very good; however, this is mainly a
consequence of the range of SI (see also Fig. 1).

The estimates of V were already rather accurate without
random effects (Table 3); however, the inclusion of random
clone effects improved the accuracy from 11.86% to 8.77%,
and the further inclusion of random stand effects decreased

Table 2 Parameter estimates for

the fixed independent variables Equation 4 Equation 5

and estimated variances for

random effects at the clone, Coefficient Estimate SE Coefficient Estimate SE

forest stand, and plot level B3 0.0977596 0.0028945 55 11.415382 2.298940
B4 -0.0034367 0.0001932 Bs 0.142945 0.077417
s 0.0000432 0.0000031 B 1.460686 0.095138
B -0.0008237 0.0003894 Bio -1.133237 0.236214
Random parameters Random parameters
Var(b,) 0.4782312 Var(b,) 0.064235%
Var(b ) 0.726614> Var(b.) 0.065542>
VAI(E ) 0.659612> VAI(E ) 0.015319%h50*23¢

) Springer f ﬁif;é IN%



ALS in a eucalyptus plantation

1089

Table 3 The RMSE and bias of
the estimates of SI and Vat SI

\%

different levels of grouping

Bias RMSE Bias

using LOOCV Level RMSE
Fixed 1.11 m, 3.22%
Clone 0.96 m, 2.81%
Stand 0.78 m, 2.28%

0.14 m, 0.41%
0.03 m, 0.10%
0.01 m, 0.03%

44.61 m°, 11.86%
33.00 m%, 8.77%
26.32 m>, 7.00%

8.24 m>, 2.19%
1.46 m>, 0.39%
-0.28 m*, —0.07%

the RMSE to 7.00%. There was some bias in the estimates
of V when only the fixed part of the model was used. In
absolute terms, the accuracy of V was between 26 and
45 m’ha .

Figure 1 depicts the plots of observed versus predicted
SI and Vat the “clone” level. In relative terms, the variation
around the line of perfect fit is greater in the case of SI than
in the case of V. In both cases, however, the trend is
predicted fairly well. Increasing residual variance with
respect to the prediction is apparent in the case of V. With
the selected model form, the non-homogeneous variance
was satisfactorily modeled by a variance function of the
power form.

5 Discussion

Precision forestry applied to plantations differs in many ways
from the forestry practiced in semi-natural environments.
ALS-based forest inventory and assessment has a great deal of
potential in pulpwood plantations when the unique features of
plantation forestry are taken into account.

In this study, SI was modeled directly in one stage.
Another option is a two-stage approach, where the HD is
first modeled and then the resulting prediction is used in the
known SI curve. The direct modeling approach is justified

since the only use of the predicted HD is the prediction of
SI. In addition, the model was fitted in a nonlinear form,
where the SI was treated as an independent variable as
such, without transformations. These two methodological
choices led to unbiased prediction of SI, which could not
have been guaranteed by using the two-stage method and/or
a linearized form of the applied HD model. Also, the
applied nonlinear model for plot volume led to an unbiased
prediction of volume.

Using the clone and stand effects in the prediction
improved the accuracy of the prediction considerably. This
improvement resulted from using all the plot-specific
observations of the response (Vor SI) for the stand or clone
under consideration in the prediction. For clones that do not
have measurements available, this level of accuracy is not
possible because the prediction can be done only at the
“fixed” level. For clones with measurements from different
stands, the prediction can be done at the “clone” level.
Prediction at the “stand” level can be done only if sample
plot measurements from that particular stand are available.
The practical use of the model arises from the possibility of
using the clone effect in the prediction for stands with no
measured sample plots. In those cases, the prediction could
be close to the reported accuracy at the clone level.

The accuracy of plot-level volume prediction in this
study was better than what has been found in earlier studies
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concerning boreal forests. For example, in the review by
Neesset et al. (2004), the plot-level accuracy varied between
15% and 20%. This is, of course, also dependent on plot
size. The results reported here, including clone effects, are
far more accurate than what Maltamo et al. (2006) obtained
on large plots (900 m?) in boreal forests, with relative
RMSE values of 8.82% and 12.0%, respectively. This
indicates that plantation forests can be characterized more
accurately by ALS than semi-natural forests.

Breidenbach et al. (2008) applied linear mixed-effect
models with a random intercept on the stand level on the
three study sites in the USA and Germany. Comparable
area-based method was used as here. The RMSE of the
volume by study sites was 16.7%, 24.3%, and 32.1%.
Compared with the fixed-effects models fitted with gener-
alized least squares, the use of mixed-effect modeling with
random stand effects improved the RMSE only from 2% to
4%. Here, the inclusion of random clone and stand effects
improved the accuracy more. One reason for this may be
the homogeneity of eucalyptus stands. Therefore, in
eucalyptus plantation, a larger proportion of unexplained
variance is caused by between-stand (and clone) variation
than in semi-natural forests, and this variance may be
accounted for by random clone and stand effects.

The RMSE of V at the “clone” level decreased from
8.77% to 6.73% when the accuracy was assessed by
LOOCYV at the stand level using an average of three to four
plots per stand. This indicates that more accurate results can
be obtained at the stand level. However, three to four plots
represent only a rather small area when compared to the
average stand size of the plantation, which is over 20 ha.
This indicates that the true values used in evaluation
include sampling errors and that, at the whole stand level,
the accuracy could be even better. The comparison of
accuracies of traditional field survey and ALS-based
inventory at the stand level was not possible here because
of the lack of suitable field data. This kind of comparison
would be desirable but remain a task of future study. An
advantage of ALS-based forest inventory is 100% areal
coverage, whereas in field surveys, some sampling error
always exists. This makes a comparison quite laborious and
expensive to implement.

In eucalyptus plantations, stands are even-aged and the
exact planting date is known. Since ALS data cover 100%
of an inventory area, it is possible to predict SI based on
HD and age, or SI may be predicted directly as done here.
Figure 2 depicts SI predicted on a grid using a cell size of
15 m. The prediction was carried out by Eq. 4 at the
“clone” level. Only one stand is presented in Fig. 2. There
is an apparent trend in SI, with decreasing productivity
from south to north. The benefit and added value that
remote sensing bring is the within stand variation of SI,
since it provides new possibilities to carry out precision
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Fig. 2 Predicted SI (M feference) i One stand using a cell size of 15 m.
The clone effect was taken into account in the prediction

forestry. For instance, it may be used for guiding or
monitoring fertilization by pinpointing accurately more
and less productive areas within a stand.

The normal use of SI is to assess the growth potential of
a stand when a certain tree species is grown. The model
presented in this paper includes a joint model of SI for all
the clones of the modeling dataset. In addition, it is possible
to predict the clone effect for new clones of the same
species. Thus, instead of providing a site index model for
only one clone, it can be seen as an SI model family that
can be used for different clones of Fucalyptus urograndis.

Permanent sample plots are used in eucalyptus plantation
to provide data to construct growth models and to monitor
the growth rate. Often these models are clone specific. In
addition, the same data may be used to construct clone-
specific volume models. Therefore, permanent sample plots
cannot be replaced by remote sensing since field measure-
ments are needed for other purposes too. One alternative
would be to use permanent sample plots as the field sample
plots of the ALS-based forest inventory. For pre-harvest
inventory purposes, ALS-based wall-to-wall prediction of
growing stock might suit well. In that case, the essential
question is timing: how often should inventory be carried
out? In any case, plot positions must be determined
accurately in ALS-based forest inventory, which is not the
current practice.

An alternative approach to estimating growing stock by
ALS data is to carry out individual tree detection. The
advantage of such an approach is that less sample plots are
needed, but on the other hand, individual tree detection
requires that tree positions are determined on the field and
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that ALS data is denser (a higher number of pulses per
square meter). Individual tree detection provides many
possibilities because it inherently provides tree-level data,
but in pulpwood plantations tree-level information is not of
primary interest. The situation differs considerably in sawn-
wood plantations. For example, in pine plantations, the
primary interest may be in diameter distribution or even
only in the most largest and valuable sawn-wood trees. In
such cases, ALS should provide information on tree
diameter, which is challenging both on individual tree
(Maltamo et al. 2009) and area-based approaches (e.g.,
Packalén and Maltamo 2008).

The point cloud collected by ALS is dependent on the
scanning configuration, e.g., the pulse repetition frequency or
flying altitude, and the response also varies among different
sensors (Nasset 2009). Therefore, such kind of area-based
models as presented here must be made case-by-case by
plantations, but from the operational point of view, this is not
a major restriction. If several sensors or different scanning
configurations are used, the sensor or scanning configuration
effect may be taken into account as a random effect in a
similar manner as were the clone and stand considered here.
However, this probably decreases the accuracy.

The clone level explained a considerable amount of the
between-stand variation for both models, and including the
clone effect in the prediction considerably improves the
accuracy. This observation leads to suggesting the placing
of sample plots over the whole inventory area so that some
measurements are available for all clones. The prediction
could then be carried on a grid for the whole plantation at
the clone level. Final inventory results may be obtained by
aggregation to stand level, or cell level results may be used
as such.
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