Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required.
Read instantly on your browser with Kindle for Web.
Using your mobile phone camera - scan the code below and download the Kindle app.
Image Unavailable
Color:
-
-
-
- To view this video download Flash Player
- VIDEO
Audible sample
Loonshots: How to Nurture the Crazy Ideas That Win Wars, Cure Diseases, and Transform Industries Hardcover – March 19, 2019
Purchase options and add-ons
* Instant WSJ bestseller
* Translated into 18 languages
* #1 Most Recommended Book of the year (Bloomberg annual survey of CEOs and entrepreneurs)
* An Amazon, Bloomberg, Financial Times, Forbes, Inc., Newsweek, Strategy + Business, Tech Crunch, Washington Post Best Business Book of the year
* Recommended by Bill Gates, Daniel Kahneman, Malcolm Gladwell, Dan Pink, Adam Grant, Susan Cain, Sid Mukherjee, Tim Ferriss
Why do good teams kill great ideas?
Loonshots reveals a surprising new way of thinking about the mysteries of group behavior that challenges everything we thought we knew about nurturing radical breakthroughs.
Bahcall, a physicist and entrepreneur, shows why teams, companies, or any group with a mission will suddenly change from embracing new ideas to rejecting them, just as flowing water will suddenly change into brittle ice. Mountains of print have been written about culture. Loonshots identifies the small shifts in structure that control this transition, the same way that temperature controls the change from water to ice.
Using examples that range from the spread of fires in forests to the hunt for terrorists online, and stories of thieves and geniuses and kings, Bahcall shows how a new kind of science can help us become the initiators, rather than the victims, of innovative surprise.
Over the past decade, researchers have been applying the tools and techniques of this new science―the science of phase transitions―to understand how birds flock, fish swim, brains work, people vote, diseases erupt, and ecosystems collapse. Loonshots is the first to apply this science to the spread of breakthrough ideas. Bahcall distills these insights into practical lessons creatives, entrepreneurs, and visionaries can use to change our world.
Along the way, readers will learn how chickens saved millions of lives, what James Bond and Lipitor have in common, what the movie Imitation Game got wrong about WWII, and what really killed Pan Am, Polaroid, and the Qing Dynasty.
“If The Da Vinci Code and Freakonomics had a child together, it would be called Loonshots.” ―Senator Bob Kerrey
- Print length368 pages
- LanguageEnglish
- PublisherSt. Martin's Press
- Publication dateMarch 19, 2019
- Dimensions6.5 x 1.35 x 9.6 inches
- ISBN-101250185963
- ISBN-13978-1250185969
Frequently bought together
Customers who viewed this item also viewed
- When groups are small, for example, everyone’s stake in the outcome of the group project is high.Highlighted by 2,680 Kindle readers
- We can think of the two competing incentives, loosely, as stake and rank.Highlighted by 2,004 Kindle readers
- Applying the science of phase transitions to the behavior of teams, companies, or any group with a mission provides practical rules for nurturing loonshots faster and better.Highlighted by 1,954 Kindle readers
Editorial Reviews
Review
* Washington Post's "10 Leadership Books to Watch for in 2019"
* Newsweek's "Best of Summer Books"
* Financial Times' "Summer Books of 2019
* Thrive Global's "Top Books on Leadership"
* Inc.com's "10 Business Books You Need to Read in 2019"
* Business Insider's "14 Books Everyone Will Be Reading in 2019"
* Management Today's "Top Business Books to Read in 2019"
"A groundbreaking book that spans industries and time." ―Newsweek
"Loonshots crystallizes crucial lessons about innovation and collaboration more exquisitely than any book I've read. Beyond that, it's an absolute page-turner, packed with scintillating stories of world-changing ideas." ―David Epstein, #1 NYT bestselling author of Range and The Sports Gene
“A witty, invigorating exploration of human behaviour and discovery.” ―Nature
“An ambitious and entertaining effort to lay out some fundamental laws of success and uncover the truth about successful group behavior… Bahcall makes the whole idea sing by bringing in references from across business, history, cinema and science.” ―Financial Times
"This thorough, fascinating study will appeal to a broader audience than just business wonks." ―Booklist
“This book has everything: new ideas, bold insights, entertaining history and convincing analysis. Not to be missed by anyone who wants to understand how ideas change the world.” ―Daniel Kahneman, winner of the Nobel Prize and author of Thinking, Fast and Slow
“A wonderful book that explores the beauty, quirkiness and complexity of ideas, Loonshots will both educate and entertain you. If you care about ideas ― especially new and out-of-the-box ones ― you need to read this book.” ―Siddhartha Mukherjee, Pulitzer Prize-winning author of The Emperor of All Maladies
"The success of Loonshots is a case study in the power of story and humor. James Bond, Isaac Newton, Jane Austen, a world chess champion, and disappearing fish are all used to illustrate how principles of physics apply to the behavior of organizations. Brilliant, funny, fascinating, and most importantly -- useful -- Loonshots should be read by any leader who wants to bring big ideas to life." ―Jennifer Aaker, General Atlantic Professor at Stanford University; author of The Dragonfly Effect and Humor, Seriously
"I inhaled Loonshots. In entertaining and witty prose it provides practical insights leaders can use to create organizations where good, crazy ideas thrive while existing businesses continue to flourish. Bahcall drives these points home through vivid and memorable examples that stick." ―Stephanie Cohen, Chief Strategy Officer, Goldman Sachs
"Safi Bahcall somehow has written a book that is original, smart, useful, and entertaining all at once. Loonshots is a wonderful mix of physics, pharma, film, entrepreneurship, history, business, creativity, and so much more. And Bahcall’s marvelous and mischievous voice will keep you turning the pages." ―Robert Sutton, Professor at Stanford University, author of seven books including Scaling Up Excellence and The No Asshole Rule
"Who knew that one idea could connect naval battles, chirping crickets, and the birth of modern science? If The Da Vinci Code and Freakonomics had a child together, it would be called Loonshots. This book is a must read for anyone in business, education, or public service." ―Senator Bob Kerrey, Medal of Honor recipient, former Navy SEAL and president of The New School
“With riveting stories set in the most unexpected times and places, Loonshots shows how group dynamics and workplace politics conspire against the psychological safety people need in order to boldly share their wildest ideas. Bahcall's fresh ideas and practical solutions―an unusual combination of psychology and physics―should change the way any person or team sets out to change the world.” ―Amy C. Edmondson, author of The Fearless Organization and professor at Harvard Business School
"Loonshots is the book we desperately need now. Today's threats cannot be met by might alone. To defend our nation in an increasingly competitive world, we need to innovate faster and better than those who would do us harm. Bahcall offers a solution to the challenge of nurturing innovation without sacrificing core capabilities or operational edge. Brilliant, insightful, and immediately applicable―Loonshots is destined to become required reading for experienced and rising leaders everywhere." ―Douglas Wickert, Colonel, US Air Force
"Some books challenge what you think―Loonshots will challenge how you think. Never before have we been given such a clear and compelling roadmap to questioning norms, embracing the impossible, and shooting for the stars. Loonshots is a must read for anyone passionate or crazy enough to take on today's biggest challenges." ―Edward Sullivan, CEO of Velocity Group
“Safi Bahcall extends the principles of emergence to the behavior of groups, creating an entirely new way of thinking about why some succeed and others fail. Safi hits all the right notes: the rhythm is right, the humor is right, the scope is right ... everything is right. Loonshots should be required reading for anyone serious about changing the world for the better.” ―Robert Laughlin, winner of the Nobel Prize in physics, author of A Different Universe
“Safi Bahcall proposes that phase-transition physics can illuminate human organizations. Companies that are “crystalline” may be efficiently run but don’t innovate; those that are “liquid” produce floods of ideas but no discipline. The physics suggests, moreover, how companies can be disciplined and innovative at the same time. Anyone interested in a fresh approach to innovation―with lots of lively examples―should read this book.” ―Eric Maskin, winner of the Nobel Prize in economics, professor at Harvard
"Loonshots is a brilliant and wonderfully entertaining book, an unstoppable read, full of surprises and rich with insight into how people create and nurture things that change the world. It’s also an important book. Bahcall, a physicist and biotech entrepreneur, is unfolding the secrets behind successes everywhere." ―Richard Preston, New York Times bestselling author of The Hot Zone and The Wild Trees
About the Author
Safi Bahcall received his BA summa cum laude in physics from Harvard and his PhD from Stanford. After working for three years as a consultant for McKinsey, he co-founded Synta Pharmaceuticals―a biotechnology company developing new drugs for cancer―and served as its CEO for 13 years. In 2008, he was named E&Y New England Biotechnology Entrepreneur of the Year. In 2011, he served on the President's Council of Advisers on Science and Technology working group on the future of national research.
Safi is the author of Loonshots: How to Nurture the Crazy Ideas That Win Wars, Cure Diseases, and Transform Industries.
Excerpt. © Reprinted by permission. All rights reserved.
Loonshots
How to Nuture the Crazy Ideas that Win Wars, cure Diseases, and Transform Industries
By Safi BahcallSt. Martin's Press
Copyright © 2019 Safi BahcallAll rights reserved.
ISBN: 978-1-250-18596-9
Contents
Title Page,Copyright Notice,
Dedication,
Epigraphs,
Prologue,
Introduction,
PART ONE: ENGINEERS OF SERENDIPITY,
1. How Loonshots Won a War,
2. The Surprising Fragility of the Loonshot,
3. The Two Types of Loonshots: Trippe vs. Crandall,
4. Edwin Land and the Moses Trap,
5. Escaping the Moses Trap,
PART TWO: THE SCIENCE OF SUDDEN CHANGE,
Interlude: The Importance of Being Emergent,
6. Phase Transitions, I: Marriage, Forest Fires, and Terrorists,
7. Phase Transitions, II: The Magic Number 150,
8. The Fourth Rule,
PART THREE: THE MOTHER OF ALL LOONSHOTS,
9. Why The World Speaks English,
Afterword: Loonshots vs. Disruption,
Acknowledgments,
Glossary,
Appendix a. Summary: The Bush-Vail Rules,
Appendix b. The Innovation Equation,
Illustration Credits,
Source Notes,
Endnotes,
Index,
About the Author,
Copyright,
CHAPTER 1
How Loonshots Won a War
Life on the edge
Had there been prediction markets in 1939, the odds would have favored Nazi Germany.
In the looming battle between world powers, the Allies lagged far behind Germany in what Winston Churchill described as the "secret war": the race for more powerful technologies. Germany's new submarines, called U-boats, threatened to dominate the Atlantic and strangle supply lines to Europe. The planes of the Luftwaffe, ready to bomb Europe into submission, outclassed those of any other air force. And the discovery of nuclear fission early that year, by two German scientists, put Hitler within reach of a weapon with almost unfathomable power.
Had the technology race been lost, Churchill wrote, "all the bravery and sacrifices of the people would have been in vain."
By the time Vannevar Bush, dean of engineering at MIT, quit his job, moved to Washington, and talked his way into a meeting with the president in the summer of 1940, the US Navy already held the key to winning that race. They'd had it for eighteen years. They just didn't know it.
To find that key and win that race, Bush invented a new system for nurturing radical breakthroughs.
It was the secret recipe for winning the secret war.
THE DORCHESTER
In late September 1922, two ham-radio enthusiasts at the US Naval Air Station just outside Washington, DC, set up a shortwave radio transmitter on the edge of the station overlooking the Potomac River. Leo Young, 31, from a small farm town in Ohio, had been building radio sets since high school. His partner, Hoyt Taylor, 42, a former physics professor, was the Navy's senior radio scientist. They'd come together to test whether high-frequency radio could help ships communicate more reliably at sea.
Young rigged the radio's transmitter to operate at 60 megahertz, 20 times higher than the level for which it had been designed. He jacked up the sensitivity of its receiver using a technique he'd discovered in an engineering journal. Equipment suitably tweaked, the two turned on the transmitter, loaded the receiver onto a truck, and drove to Hains Point, a park directly across the Potomac from the naval air station.
They placed the receiver on the stone seawall at the edge of the park and aimed it at the transmitter across the river. The receiver emitted the steady tone of a clear signal. Suddenly, the tone doubled in volume. Then it disappeared completely for a few seconds. Then it came back at double volume for a moment before settling back to the original, steady tone. They looked up and saw that a ship, the Dorchester, had passed between the receiver and the transmitter.
To the two engineers, the doubling in strength was an unmistakable sign of something called radio-wave interference: two synchronized beams adding together. When the hull of the Dorchester reached a "sweet-spot" distance from the line of sight between transmitter and receiver, the beam bouncing off the hull (beam #1 on the left in the figure on the previous page) traveled through a path exactly one-half of a radio wavelength longer than the line-of-sight beam (beam #2). At that point, the two beams precisely synchronized, which explained why the tone from the receiver doubled. As the ship passed through the line of sight, it blocked the signal completely. After the ship cleared the line of the sight, on the right in the figure, the tone came back. When the back of the boat reached the same sweet-spot distance from the line of sight, the reflected and direct beams synchronized precisely again. That explained the second doubling in tone.
Young and Taylor were testing a tool for communication. But they had accidentally discovered a tool for detection.
The two engineers repeated the experiment successfully several more times, and a few days later, on September 27, they sent a letter to their superiors describing a new way to detect enemy ships. A line of US ships carrying receivers and transmitters could immediately detect "the passage of an enemy vessel ... irrespective of fog, darkness or smoke screen."
This was the earliest known proposal for the use of radar in battle. One military historian would later write that the technology changed the face of warfare "more than any single development since the airplane."
The Navy ignored it.
With no support for their proposal and their request for funding rejected, Young and Taylor abandoned the idea. They worked on other radio projects for the Navy — but they didn't forget. Eight years later, in early 1930, Young and another engineer at the lab, Lawrence Hyland, set about testing a new idea for guiding the landing of planes. A transmitter on the ground near a landing strip would beam a radio signal into the sky; the pilot in an approaching plane would direct his plane to follow the signal and land. One hot, muggy afternoon in June, in a field two miles from the upward-pointing transmitter, Hyland began testing the receiver they planned to use. As he adjusted the equipment, his receiver suddenly grew loud and noisy. Then it quieted down. A few moments later, it grew loud again. Then it settled down again. The pattern persisted. He checked and rechecked his equipment and couldn't find a problem. As he prepared to return his broken receiver to the lab, he noticed something odd: the signal got loud whenever a plane flew overhead.
Hyland told Young, who quickly realized the connection with what he had seen years earlier on the Potomac. The beam aimed into the sky bounced off an overhead plane and landed in Hyland's receiver. Reflecting radio waves, as they soon confirmed, could detect not only ships but planes flying as high as eight thousand feet, even when those planes were miles away. They conducted detailed tests and, once again, submitted a proposal for something never seen before in warfare: an early warning system for enemy aircraft.
Nothing happened. A request for $5,000 in funding was rejected because the time to see results "might well exceed two or three years." Another desk chief wrote dismissively that the idea was "a wild dream with practically no chance of real success," listing a handful of reasons it was impractical. It took five years for the military to assign one full-time person to the project.
One career officer who fought a mostly losing battle inside the Navy to accelerate development of radar recalled later, "It really pained me ... to think how much two years of fleet experience with radar before 1941 could have saved us in lives, planes, ships and battles lost during the initial phases of the Pacific war."
A radar early warning system was still being field-tested in Hawaii on the morning of December 7, 1941.
The surprise attack on Pearl Harbor, by 353 enemy aircraft, killed 2,403 people.
HOW NOT TO FIGHT A WAR
Like Miller's piranha, described in the introduction, Young and Taylor's discovery was a classic loonshot. The idea that would turn the course of the war passed through a decade-long tunnel of neglect and skepticism.
Into that tunnel strode a man with an uncommon ability to see past common doubts — Vannevar Bush, a tall, thin, upstanding preacher's son, who swore like a sailor and dressed like a tailor. When the First World War began, Bush had just completed a graduate degree in engineering. He volunteered at the submarine research station in New London, Connecticut. His experience there would be similar to that of Young and Taylor eight years later. The Navy buried his most valuable idea: a magnetic device for detecting submerged submarines. From the experience, Bush wrote, he learned "how not to fight a war." In the high- stakes competition between weapons and counterweapons, the weak link was not the supply of new ideas. It was the transfer of those ideas to the field.
Transfer requires trust and respect on both sides. But officers "made it utterly clear that scientists or engineers employed in these laboratories were of a lower caste of society," Bush wrote, referring to New London and similar centers. At the start of that war — the first in which poison gas was used — the secretary of war rejected an offer of help from the American Chemical Society because he "had looked into the matter and found the War Department already had a chemist."
Despite that friction, Bush chose to maintain his ties with the Navy after the war. It forced him to learn a new skill: the ability to embrace others unlike himself, a skill that would later prove immensely valuable. Bush served in the naval reserves for eight years, even as his career as an academic, an engineer, and a businessman grew. He was appointed a professor of engineering at MIT, invented one of the earliest computers (an analog machine), and helped launch a company that grew into the massive electronics manufacturer Raytheon.
By the mid-1930s, Bush had risen to second in command to the president of MIT, and he was still consulting for the Navy. What he saw in the military alarmed him. Despite the growing threat from fascism in Europe and Asia, the armed services in 1936 cut funds for research on new technologies to one-twentieth the cost of one battleship. An Army memo explained that the only force that mattered was "the infantry with rifle and bayonet." Bush warned of a growing technology gap with Germany. But little had changed since his experience in New London. Generals had no interest in the views of "damn professors," their term for civilian scientists.
By 1938, Hitler had annexed Austria and the Sudetenland; Franco and his Nationalists had captured most of Spain; Mussolini was in full control of Italy; and Japan had invaded China and captured Beijing (then called Peking). Bush and a handful of other scientific leaders — including James Conant, a chemist and the president of Harvard University — believed war was coming and the US was dangerously unprepared. Both had witnessed the tendency of generals to fight a war with the weapons and tactics of the preceding war. They understood that the same mistake this time — facing a much greater German threat — could be fatal.
The military, Bush knew, had been gearing up to produce more of the same: more planes, more ships, more guns. Like a large film studio churning out sequel after sequel, the military was operating in what we might call a franchise phase. To invent the radically new technologies necessary to defeat the Germans, however, the military would need to operate in an entirely different phase, one that offered scientists and engineers, as Bush wrote, the "independence and opportunity to explore the bizarre."
In other words, Bush understood intuitively that being good at franchises and being good at loonshots are phases of organization. And the same organization can't be in two phases at the same time, for the same reason water can't be both solid and liquid at the same time — under ordinary conditions.
Ordinary conditions did not apply in 1938. The generals really would need munitions built at an unprecedented rate, troops and supplies distributed across four continents, and millions of soldiers directed in battle. But the military would also need to win Churchill's secret war: the race to create technologies that did not yet exist.
To survive, the country needed both.
One molecule can't transform solid ice into liquid water by yelling at its neighbors to loosen up a little. Which is why Bush didn't try to change military culture. A different kind of pressure is required. So Bush created a new structure. He adopted the principles of life on the edge of a phase transition: the unique conditions under which two phases can coexist.
In April 1944, a glowing Time profile would describe Vannevar Bush as the general of a secret army of scientists that "is regarded almost with awe" in Washington. In October 1945, the Committee on Appropriations of the US House of Representatives would declare that without Bush's organization, "it is safe to say that victory still would await achievement."
But in 1938, Bush's battles were just beginning.
GATHERING STORM
By the mid-1930s, Bush had become widely known for his skill in bridging science, industry, and government. So it came as no surprise when, in 1938, the Carnegie Institution, a Washington-based think tank that supports scientific research, offered Bush their top job. In response, the president of MIT offered to step down and make Bush president of the university if he would stay.
Bush declined. Although a prestigious career and generations of New England family ties rooted him in Boston, Bush understood that the nation's defense would be led from Washington. And no one else had his ability to bridge worlds. He was uniquely qualified, he knew, to mobilize the nation's scientists for war.
"All of [my] recent ancestors were sea captains, and they have a way of running things without any doubt," Bush said years later. "So it may have been partly that, and partly my association with my grandfather, who was a whaling skipper, [which] left me with some inclination to run a show, once I was in it."
Bush quit his job, accepted the Carnegie offer, and moved to Washington.
With the help of the Carnegie trustees, one of whom was President Franklin Roosevelt's uncle, Bush put together a plan. "I knew that you couldn't get anything done in that damn town," he recalled, "unless you organized under the wing of the President."
A place for Bush under that wing seemed unlikely. The president, a lawyer surrounded by social planners, had shown little interest in science or scientists. Bush, a conservative by nature and upbringing, was in turn skeptical of both FDR and his New Deal aides. He'd grown up distrusting "social innovators," whom he thought of "as a bunch of long-haired idealists or do-gooders."
Bush leaned on the president's uncle to get a meeting with Harry Hopkins, Roosevelt's closest advisor. Hopkins, a former social worker and a do-gooder of the highest order, was an equally unlikely ally. Years later Bush wrote, "The fact that Harry and I hit it off is among the minor miracles." But hit it off they did — Hopkins had a taste for bold ideas.
On June 12, 1940, at 4:30 p.m., Bush and Hopkins met with Roosevelt in the Oval Office. Their message: the Army and Navy trailed far behind Germany in the technologies that would be critical to winning the coming war. The military on its own was incapable of catching up in time. Bush proposed that FDR authorize a new science and technology group within the federal government, to be led by Bush, reporting directly to the president.
FDR listened, read Bush's proposal — four short paragraphs in the middle of one piece of paper — and signed it "OK — FDR." The meeting lasted all of ten minutes.
Bush's new organization, eventually called the Office of Scientific Research and Development (OSRD), would create the opportunity Bush sought for scientists, engineers, and inventors at universities and private labs to explore the bizarre. It would be a national department of loonshots, seeding and sheltering promising but fragile ideas across the country. The group would develop the unproven technologies the military was unwilling to fund. It would be led by a damn professor.
The military and its supporters, as expected, objected. They told Bush his new group "was an end run, a grab by which a small company of scientists and engineers, acting outside established channels, got hold of the authority and money for the program of developing new weapons."
Bush's answer: "That, in fact, is exactly what it was."
LIFE AT 32 FAHRENHEIT
Imagine bringing that bathtub to the brink of freezing. A little bit one way or the other and the whole thing freezes or liquefies. But right on the cusp, blocks of ice coexist with pockets of liquid. The coexistence of two phases, on the edge of a phase transition, is called phase separation. The phases break apart — but stay connected.
The connection between the two phases takes the form of a balanced cycling back and forth: Molecules in ice patches melt into adjacent pools of liquid. Molecules of liquid swimming by an ice patch lock onto a surface and freeze. That cycling, in which neither phase overwhelms the other, is called dynamic equilibrium.
As we will see, phase separation and dynamic equilibrium were the key ingredients in Bush's recipe. "The essence of a sound military organization is that it should be tight. But a tight organization does not lend itself to innovations," Bush wrote. "And loosening it in time of war ... would be fraught with danger." But, Bush continued, there "should be close collaboration between the military and [some] organization, made loose in its structure on purpose."
In other words, the two phases must break apart while staying connected.
Bush's attempt to apply the first of these two principles, phase separation — a new agency entirely under his control — did not begin well. One officer explained to Bush "that no damned civilian could possibly understand a military problem." Bush's reaction: "I waded into him ... and said that, unfortunately, there were still some officers in existence who were so dense that they did not realize that the art of war was being revolutionized all about them."
(Continues...)Excerpted from Loonshots by Safi Bahcall. Copyright © 2019 Safi Bahcall. Excerpted by permission of St. Martin's Press.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.
Product details
- Publisher : St. Martin's Press; First Edition (March 19, 2019)
- Language : English
- Hardcover : 368 pages
- ISBN-10 : 1250185963
- ISBN-13 : 978-1250185969
- Item Weight : 1.2 pounds
- Dimensions : 6.5 x 1.35 x 9.6 inches
- Best Sellers Rank: #213,308 in Books (See Top 100 in Books)
- #407 in Workplace Culture (Books)
- #1,821 in Business Management (Books)
- #2,467 in Leadership & Motivation
- Customer Reviews:
About the author
Safi received his BA in physics from Harvard, his PhD from Stanford, and was a Miller Research Fellow at UC Berkeley. After working for three years as a consultant for McKinsey, he co-founded a biotechnology company developing new drugs for cancer. He led its IPO and served as its CEO for 13 years. In 2008, he was named E&Y New England Biotechnology Entrepreneur of the Year. In 2011, he worked with President Obama’s council of science advisors on the future of national research. He lives with his wife, two children, and roughly 37 Gerald + Piggie books in Cambridge, MA.
Latest info: www.bahcall.com
Customer reviews
Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.
To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.
Learn more how customers reviews work on AmazonCustomers say
Customers find the book fantastic and a great page-turner. They also find the ideas and explanations interesting and insightful. Readers appreciate the richly entertaining historical examples and anecdotal approach. They describe the writing style as compelling, straightforward, and intellectually satisfying.
AI-generated from the text of customer reviews
Customers find the book fantastic, great, and a page-turner. They say it's well worth their time and the best management book ever. Readers also mention the book is enjoyable and a must-read for entrepreneurs, VCs, board members, and C-level managers.
"...Consider it the most fun required reading you’ll ever do.-- Ali Binazir, M.D., M.Phil.,..." Read more
"...Despite those two issues, count me as a fan, though - an easy, well-researched read that could spark a few interesting experiments in the corporate..." Read more
"...In any case, the book is great...." Read more
"...Very well done." Read more
Customers find the ideas and explanations in the book interesting. They say it helps them absorb concepts, theories, and ideas. Readers also mention the book is insightful on many fronts and has a wealth of foundational knowledge.
"...I found this book enjoyable and enlightening enough to have read it twice already...." Read more
"I loved this book. It triggered several paradigm shifts for me...." Read more
"...Even better, he offers solid, helpful advice on how to keep things "on the edge," not too rigid, but not too loose, either - maintaining the dynamic..." Read more
"It contains plenty of examples to make points clearer...." Read more
Customers find the stories fascinating, entertaining, and thought-provoking. They appreciate the anecdotal approach and excellent insights from history, business, and physics. Readers also mention the premise is interesting and includes unique perspectives through the lens of physics.
"...so ably and lucidly points out in this book, through richly entertaining historical examples with a dollop or two of basic physics thrown in - is..." Read more
"The goodInteresting stories and anecdotes about business history.The bad..." Read more
"...equilibrium or harmony in music or life, this book presents important historical anecdotes, as well as recent and current trends in science and tech...." Read more
"...The book is great as a "how-to" and it is built on great stories and anecdotes of both great success and horrible failures...." Read more
Customers find the writing style compelling, easy to read, and absorb. They appreciate the straightforward yet highly intellectually satisfying description of concepts. Readers also mention the book is a smooth read with an excellent story-telling style.
"...Despite those two issues, count me as a fan, though - an easy, well-researched read that could spark a few interesting experiments in the corporate..." Read more
"...He takes this basic thesis, builds it out, makes it understandable .. and, if you have ever worked in the corporate world, I think you'll find it..." Read more
"...Both focus on ‘how we know’. Both are exceptional writers (my previous experience of great writers was Burgess, which dates)...." Read more
"...It is easy to read, and for the scientifically minded, clues and even formulae for measuring the phase in which you might find yourself, or are up..." Read more
Reviews with images
A great book
-
Top reviews
Top reviews from the United States
There was a problem filtering reviews right now. Please try again later.
Aaaand you would be wrong. As a rule, the folks who came up with such painfully obvious innovations as radar, statins and anti-angiogenesis drugs were rejected, and again, and again. For up to 32 years.
Loonshots are “widely dismissed ideas whose champions are often written off as crazy.” Through dozens of engaging stories told with insight and wry humor, Bahcall describes how loonshots (such as radar, the internet, and Pixar movies) come about, how to nurture them, how to champion them, and how to keep from inadvertently killing them.
A gifted storyteller, Bahcall populates the narrative with characters endlessly fascinating because of their pluck, stubbornness, luck, or sheer genius: Vannevar Bush, the creator of the Office of Science Research and Development which basically won WW2; Akira Endo, the Japanese chemist who screened 6000 fungi to discover statins only to have his work stolen; Judah Folkman, the saintly discoverer of angiogenesis; Juan Terry Trippe, the larger-than-life founder of PanAm; Charles Lindbergh; Edwin Land, the supergenius founder of Polaroid; and Steve Jobs, who continues to get a lot more credit for Apple’s products than he deserved.
In each of these instances, Bahcall goes deep, uncovering the complexities that belie simplistic origin stories and hero worship (Jobs and Newton are notably knocked down a few notches). Bahcall has done some serious sleuthing here. He also has a flair for super-clear explanations of complex scientific subjects.
One of the book's central theses is that loonshots have their genesis in company *structure* and not culture. He draws a parallel from the science of phase transitions. To generate loonshots, you want fluidity: smaller teams with mostly creative folks (“artists”). To generate franchises, or even just to bring the loonshots to market, you want solidity: bigger teams staffed with “soldiers” with well-defined roles. Leading to the Loonshot Rules:
1. Separate the phases: Separate your artists and soldiers.
2. Dynamic equilibrium: Love your artists and soldiers equally.
3. Critical mass: Have a loonshot group large enough to ignite.
In the latter part of the book, Bahcall presents a plausible quantitative model for the various forces that incline team members towards loonshot vs franchise behavior, and how to tweak those variables to get the kind of company you want.
I found this book enjoyable and enlightening enough to have read it twice already. If you are an entrepreneur, scientist, artist, drug developer, military officer, or just a rabid fan of ideas with some of your own you’d like to make real, you should find out about P-type (product) loonshots vs S-type (strategy) loonshots; the Bush-Vail rules; systems mindset vs outcome mindset for doing postmortems; and the dreaded Moses trap. Also, why *does* the world speak English and not Chinese, when the Chinese invented printing and gunpowder hundreds of years before the West? With the word “loonshot” likely poised to become part of the vernacular in innovative circles, this is the book that puts you ahead of the curve. Consider it the most fun required reading you’ll ever do.
-- Ali Binazir, M.D., M.Phil., host of "The Ideaverse", author of The Tao of Dating: The Smart Woman's Guide to Being Absolutely Irresistible, the highest-rated dating book on Amazon, and Should I Go to Medical School?: An Irreverent Guide to the Pros and Cons of a Career in Medicine
In all seriousness though, Loonshots is a pretty compelling read about managing the tension between nurturing high risk, “crazy” projects and offering due respect to the steady part of a business, as well as ensuring adequate collaboration between those two areas of a company. Not only do the ideas make sense as described, but what makes this book particularly enjoyable is the handful of examples of this theory in action - all presented in a new light.
There are a couple of things to complain about besides the matrix comment above (which is only part joke - the labels were indeed confusing the first time I encountered the matrix in the book). First and foremost, the book itself goes somewhat against Bahcall’s own advice to “love your artists and soldiers equally,” aka show equal appreciation to both the ones doing the high risk experimentation as well as the ones leading the steady business lines. The book is an ode to the artists, as their adventures get considerably more airtime. Undoubtedly the artist’s journey is more interesting, but it’s important for an overall balanced argument to show the work of the steady hand as well. Second, Bahcall’s approach towards figuring out the ideal team size in a business is unnecessarily “scientific.” The content on that topic stands well enough on its own without forcing an equation on it.
Despite those two issues, count me as a fan, though - an easy, well-researched read that could spark a few interesting experiments in the corporate world.
Top reviews from other countries
Safi explore inovation process so easly that makes you desire stand up and start a startup immediataly.
Not a short book, but a very good one.
I particularly loved how the author brings in scientific principles, mostly from physics, to explain behavioural changes within companies. This book will change the way you think about how to structure your organization such that you give yourself the best possible chance to create innovative breakthroughs.