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Abstract

In this contribution, the accuracy and efficiency of various modeling assumptions and
numerical settings in thermo-mechanical simulations of powder bed fusion (PBF)
processes are analyzed. Thermo-mechanical simulations are used to develop a better
understanding of the process and to determine residual stresses and distortions based
on the temperature history. In these numerically very complex simulations, modeling
assumptions are often made that reduce computational effort but lead to inaccuracies.
These assumptions include the omission of the surrounding powder or the use of
geometrically linearized material models. The numerical setting, in particular the
temporal and spatial discretizations, can further lead to discretization errors. Here, a
highly parallelized and adaptive finite element method based on the open source C++
library deal.II is validated and utilized, to investigate some of these modeling
assumptions and to identify the required temporal and spatial discretizations for the
simulation of PBF of Ti-6Al-4V. The insights initially gained on a simple wall-like
geometry are transferred to a larger open rectangular profile where the results of a
detailed simulation are compared with those of a more efficient one. The results for the
efficient approach show a maximum deviation of ≈ 8% in the displacements and
≈ 3.5% in the residual stresses while significantly reducing the computational time.

Keywords: Selective beam melting, Medium fidelity model, Finite element simulation,
Thermo mechanical, Residual stress

Introduction
Additive Manufacturing (AM) offers nearly unlimited design freedom during the con-
struction process. One of the most widely used metal additive manufacturing techniques
is Powder Bed Fusion (PBF) [1,2]. During this manufacturing process, powder material
is applied to a solid building platform and subsequently melted by a laser beam. This is
repeated in a layer-wise fashion until the desired geometry is created. The final part is
obtained after removing the solidified material from the building platform.
Major challenges in the AM process are the dimensional accuracy, the quality and the
reproducibility of the manufactured part. Due to high thermal gradients in the beam
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vicinity residual stresses emerge which can lead to distortions, especially after remov-
ing the part from the building platform, and result in additional post-processing steps.
Detailed explanations of the build-up of residual stresses can be found in [1] and [3]. In
order to investigate these effects and to optimize PBF processes, thermo-mechanical finite
element simulations have proven to be very beneficial.
In this manuscript a macroscopic thermo-mechanical process simulation of PBF of

Ti-6Al-4V is introduced. This process simulation belongs to the intermediate-fidelity
approaches, which consider the powder as a homogenized material and neglect melt pool
dynamics, but explicitly represent the moving laser beam and the scan strategy. Even
on this intermediate-fidelity level, the models and assumptions being made in literature
differ. In [4–7] the coupling of thermal and mechanical quantities is considered in an
one-way fashion neglecting the influence of deformation on the thermal response. In
each time step the thermal problem is solved first and the obtained temperature field
serves as input for the mechanical solution. In [8] the thermo-mechanical dissipation is
taken into account, and in [9,10] an operator-split approach is used. Riedlbauer et al.
[11] investigated the performance of the monolitic and the adiabatic split approach for
the nonlinear thermo-mechanical problem, whereby the adiabatic split was three times
faster.
It is often assumed that geometrically linearized mechanical models are sufficient [5,12–
14]. These reduce the computational effort as compared to finite strain formulations
[9,15], but are limited to small strains. For deformations exceeding this limitation the
obtained results show large deviations to its geometrically exact counterpart.
For the powder material and its properties different assumptions are made in literature.
While some contributions include the surrounding powder to full extend in the simulation
[16], others account for removed powder only by convection boundary conditions [12,17].
Chiumenti et al. [18] compared the temperature differences of fully modeled powder to
a substitute heat flux resulting in a maximum deviation of 10%. In [19] the surrounding
powder was omitted without compensation. The mechanical properties of powder are
usually taken to be those of the solid material with a scaling factor. For the yield stress and
the Young’s modulus scaling factors of 0.01 to−0.1 are widely used [9,20,21]. The scaling
factor of the thermal expansion coefficient ranges from 0.0 to 1.0 [13,22].
The constitutive laws used to represent the mechanical behavior of metal alloys, e.g. Ti-

6Al-4V, also differ. Elastoplasticmodels are usedwhich are either rate-dependent [8,9,14]
or rate-independentwithouthardening [23,24],with isotropic [25] or kinematichardening
[20]. In [8,9] a temperature-dependent viscosity parameter is used which increases the
rate-dependency with increasing temperature. In [8] a sensitivity analysis for different
material properties of Ti-6Al-4V is carried out and the thermal expansion coefficient and
the yield stress had the greatest influence. Denlinger et al. [24] presented an approach
where stress relaxation above a critical temperature is accounted for by resetting certain
quantities to zero. In [26] a transformation strain is introduced that accounts for this reset.
In [9] the plastic strains are reset to zero and an increased viscosity accounts for stress
relaxation when entering the mushy zone above 80% of the melting temperature. The
evaluation of the material model is conducted in an incremental [23] or non-incremental
fomulation [14].
Information about the finite element types used are rarely given. Lindgren [27] stated for
welding simulations that the polynomial degree of the finite element shape functions used
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for themechanical simulationmodel shall be one order higher than the one of the thermal
element shape functions, since temperature increments directly become thermal strains
but total strains are derivatives of the displacements. In [28] linear and quadratic shape
functions are compared in terms of accuracy and run time for the simulation of selective
laser melting processes using the finite cell method. A study on time integration schemes
for thermal additive manufacturing simulations is conducted in [29]. For the spatially
adaptive simulations in [14], correction terms are introduced to account for information
loss during coarsening of the mesh. In [30], thermal and mechanical errors are estimated
for single layer applications. Further spatial adaptivity techniques that adapt themeshnear
the heat source are introduced in [4,23,31]. In [32] different time step sizes are used in
different areas of the simulation domain for thermal selective laser sintering simulations
of polymers.
In this manuscript, a detailed numerical analysis of various assumptionsmade in literature
is performed. Influences of themodeling assumptions, as geometrically linear or nonlinear
setting or the influence of the surrounding powder, are examined as well as the numerical
setting including the element type, mesh size and time step size. This detailed analysis
is made possible through the use of a highly parallelized simulation framework based
on the C++ open source library deal.II [33,34]. Spatial and temporal error indicators are
introduced as adaptivity criteria. For a single wall example different settings are compared
in termsof accuracy and computational effort. The insights gained are then transferred to a
larger example and evaluated in detail. This paper is structured as follows. In section 2, the
thermo-mechanical model is introduced, including all governing equations and material
properties of Ti-6Al-4V. In the next section the numerical implementation, including the
adaptive discretization in space and time is outlined. Validation and numerical results
are presented in section 4, which compare the accuracy and computational effort of the
various modeling and simulation settings. Finally, a conclusion is given and future steps
are defined.

Thermomechanical process modeling
In the following, the thermo-mechanical equations, the constitutivemodels and themate-
rial properties of Ti-6Al-4V are summarized. The thermal and mechanical equations are
weakly coupled and solved in a staggered approach, neglecting heat generated by defor-
mation and plastic dissipation.

Thermal model

The unknown temperature field ϑ [◦C] in the thermal domain ∂Bϑ is obtained by solving
the nonlinear heat equation in an enthalpy form

ḣ(ϑ )ρ = −div q + Q with q = −λ(ϑ )∇ϑ . (1)

Here, ˙{•} denotes the time derivative, ρ

[
kg
m3

]
the constant density, q

[
W
m2

]
the heat

flux and λ
[
W
mK

]
the temperature-dependent thermal conductivity. Latent heat that

is generated or absorbed during phase changes is accounted for by the change of the

temperature-dependent specific enthalpy h(ϑ )
[
J
kg

]
, see Fig. 1(a). The heat input Q[

W
m3

]
introduced by the laser beam is approximated by a volumetric Gaussian distribution
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following the Goldak heat input model [35]

Q (ξ, t) = 2
AP
r3

(√
3√
π

)3

exp
(

−3
(

ξ21
r2 + ξ22

r2 + ξ23
r2

))
, (2)

where the beam radius is denoted by r [m], the beam power by P [W] and the absorption
coefficient by A. The coordinates ξi belong to a local coordinate system with the origin in
the center of the beam.
The boundary of the body Bϑ can be subdivided in the disjunct Dirichlet ∂Bϑ

ϑ and Neu-
mann ∂Bq

ϑ parts, where either the temperature or the heat flux due to radiation and
convection is prescribed

ϑ = ϑ̄ on ∂Bϑ
ϑ , (3)

−q · n = q̄ = H [ϑconv − ϑ
]

︸ ︷︷ ︸
q̄ conv

+ σSBε
[
ϑ rad4 − ϑ4

]
︸ ︷︷ ︸

q̄ rad

on ∂Bq
ϑ . (4)

Here,ndenotes theoutwardnormal vector, anoverbar ¯{•}prescribedquantities,H
[

W
m2K

]

the convection coefficient, ϑconv the gas temperature, σSB
[

W
m2K4

]
the Stefan Boltzmann

constant, ε the emission coefficient and ϑ rad the ambient temperature.

Mechanical model

In this subsection, the governing equations of the mechanical problem are presented. The
linearized total strain is the symmetric gradient of the unknowndisplacements ε = ∇symu.
The balance of linear momentum is formulated in the mechanical domain Bu and given
with the required boundary conditions as

div σ = 0 with u = ū on ∂Bu
u and t = σ · n = t̄ on ∂Bt

u. (5)

Body forces and inertia terms are neglected. The mechanical Dirichlet and Neumann
boundaries are denoted as ∂Bu

u and ∂Bt
u. ū [m] and t̄ [Pa] are the prescribed displacements

and tractions. A thermo-elasto-viscoplastic material model is applied. The total strain is
decomposed into elastic εel, viscoplastic εvp and thermal εth parts

ε = εel + εvp + εth with εth(ϑ ) =
ϑ∫

ϑ0

αCTE (ϑ ) dϑ I. (6)

The thermal strain is obtained from the temperature-dependent coefficient of thermal
expansion αCTE

[
1
K

]
, the reference temperature ϑ 0 and the second-order unit tensor

I = δijei ⊗ ej . Neglecting thermal coupling, the free energy density �
[ J
m3

]
reads

�
(
εel,β

)
= 1

2
κ
[
εel : I

]2 + μ
[
εel

2
: I
]

+ 1
2
Kβ2, (7)

with the internal hardening variable β , the temperature-dependent bulk modulus κ(ϑ)
[Pa], shear modulus μ(ϑ) [Pa] and hardening modulus K (ϑ ) [Pa]. The Cauchy stress σ
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[Pa] and the hardening stress R [Pa] are obtained as

σ = ∂�

∂εel
= 3κεel,vol + 2μεel,dev and R = −∂�

∂β
= −Kβ , (8)

where {•}vol and {•}dev give the volumetric and deviatoric part of the second order tensor
{•}, respectively. The von Mises yield criterion with isotropic hardening is applied

� (σ , R) = ||σdev|| −
√
2
3
[
σ y − R

] ≤ 0, (9)

with the temperature-dependent yield stress σ y(ϑ ) [Pa]. The evolutions of the viscoplastic
strain εvp and the internal variable β follow an associative flow rule of Perzyna type [36]

˙εvp = γ
∂� (σ , R)

∂σ
β̇ = γ

∂� (σ , R)
∂R with γ = 〈� (σ , R)〉

η
, (10)

with the temperature-dependent viscosity parameter η [Pas], the plastic multiplier γ and
the Macauley brackets 2〈•〉 = • + | • |. In order to investigate the simplification error
that is made while using this geometrically linear model, a corresponding geometrically
nonlinear model based on the logarithmic strain space approach presented by Miehe in
[37,38] is introduced. Further information can be found in Appendix A.

Material properties

The thermal and thermo-mechanical properties of Ti-6Al-4V from [7,39] are approxi-
mated by hyperbolic tangent functions as depicted in Fig. 1. The simulation introduces
a one-way conversion from powder to melt and a bidirectional conversion between solid
and melt. During these transformations latent heat is released or absorbed as indicated
by the sudden increase of the specific enthalpy depicted in Fig. 1 (a). The latent heat is
considered within a phase-change interval between the solidus and melting temperature.
The thermal conductivities at room temperature of the two material phases solid/melt
and powder differ significantly as shown in Fig. 1 (b). The material shows rather high
values for the solid/melt phase which increase with temperature. In the powder phase,
a low thermal conductivity of the material results in a stronger insulating effect. The
yield stress and Young’s modulus decrease towards the melting temperature, and are held
constant above. Following [9,20] a scaling factor between the solid and powder Young’s
modulus at room temperature of s = 0.1 is used. While the powder material is modeled
to behave fully elastic, solid material and melt are modeled to be viscoplastic with a
hardening coefficientK [Pa] of≈ 5.0% of the respective Young’s modulus [40]. As Ti-6Al-
4V shows rate-independent behavior for lower temperatures the viscosity parameter is set
to η ≈ 0, resulting in the rate-independent limit case for the constitutive law presented in
subsection 2.2. The rate-dependency increases with temperature, which is accounted for
by an increase of the viscosity parameter. The subsequent decrease towards the melting
temperature has to be seen in context with the stress relaxation where the relaxation
temperature for Ti-6Al-4V is set to ϑ relax = 0.8 ϑmelt= 1339.0◦, indicated by the red
dashed lines in the diagrams of Fig. 1. Further details on the stress and plastic strain
relaxation are presented in subsection 3.3.
The isotropic thermal expansion coefficient αCTE for solid and melt material increases

with temperature. Temperature-related expansion and contraction of powder is neglected
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(a)

(d)

(g)

(e) (f)

(b) (c)

Fig. 1 Thermophysical and thermo-mechanical material properties of Ti-6Al-4V: specific enthalpy (a) and heat
conductivity (b) [39], Young’s modulus (c), Poisson’s ratio (d), yield stress (e), viscosity parameter (f) and thermal
expansion coefficient (g). The red and blue dashed lines indicate the pre-defined relaxation temperature
ϑ relax = 1339.0◦ and melting temperature ϑmelt = 1674.0◦ . Red crosses indicate points taken from [7]

with regard to its porous structure. Therefore the reference temperatureϑ0 for the thermal
strain computation in Eq. (6) is set to the melting temperature ϑmelt during phase change
from powder to melt.

Numerical implementation
In the following, thediscretizations in time and space of both the thermal and themechani-
cal problemarepresented.The thermal andmechanical equations are solved in a staggered
way. The discretizations in time and space are adaptive and various criteria, in particular
to control the adaptivity in space, are introduced. Finally, the numerical integration of the
material model including the consideration of stress and plastic strain relaxation in high
temperature regions is described.

Discretization

In a first step the strong form of the nonlinear heat equation Eq. (1) is multiplied by an
arbitrary test function δϑ that satisfies the homogeneous Dirichlet boundary conditions,
i.e. δϑ = 0 on ∂Bϑ

ϑ , and is integrated over the entire body Bϑ . After integrating by parts
and applying the boundary conditions the so called weak form results
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∫
Bϑ

δϑ ḣρ dV

︸ ︷︷ ︸
→ f ϑ ,cap

−
∫

∂Bq
ϑ

δϑ q̄ dA

︸ ︷︷ ︸
→ f ϑ ,ext

+
∫
Bϑ

∇δϑ · q dV

︸ ︷︷ ︸
→ f ϑ ,con

−
∫
Bϑ

δϑQ dV

︸ ︷︷ ︸
→ f ϑ ,scr

!= 0 ∀ δϑ ,

(11)

including capacity, external, conduction and source parts. Following the same procedure
for the balance of linearmomentum (5)with themechanical test functions δu, with δu = 0
on ∂Bu

u, one obtains the weak form of the balance of linear momentum∫
Bu

∇symδu : σ dV

︸ ︷︷ ︸
→ f u,int

−
∫

∂Bt
u

δu · t̄ dA

︸ ︷︷ ︸
→ f u,ext

!= 0 ∀ δu,

(12)

with the internal and external parts.
Theweak formof the nonlinear heat equation is discretized in time using finite differences
with a two-stage S-DIRK scheme as presented in [41]. The time step size �t indicates
the time between two successive time steps tn and tn+1. The discretization in space is
done with the finite element method, using scalar-valued Nϑ and vector-valued ansatz
functionsNu for the unknown temperatures and displacements. The dimensionless factor
τ is introduced which relates the length that the laser beam travels within one time step
to the beam radius r

τ = v�t
r , (13)

with the beam velocity v
[m
s
]
. More details on the discretization in time and space can be

found in Appendix B.
After discretization in time and space, Eq. (11) is represented by a scalar residual equation
for each global degree of freedom I , the current time step tn+1 and Runge–Kutta stage k

R
ϑ
I,n+1,k = fϑ ,int

I,n+1,k − fϑ ,ext
I,n+1,k + fϑ ,con

I,n+1,k − fϑ ,src
I,n+1,k = 0 for k = 1, 2. (14)

The terms fϑ are specified in the appendix, Eq. (35). Discretizing the mechanical Eq. (12)
in space results in the discrete equilibrium of forces for each degree of freedom J

R
u
J,n+1 = fu,intJ,n+1 − fu,extJ,n+1 = 0, (15)

with the internal and external forces defined in the appendix, Eq. (36). The nonlinear Eqs.
(14) and (15) are solved by means of a Newton-Raphson scheme in a staggered-fashion.
The temperature field ϑn+1 from Eq. (14) serves as input for Eq. (15) to compute the
temperature-dependent material properties and the thermal strain following the latter
part of Eq. (6).

Adaptivity in time and space

The discrete points in time for which the systems of Eqs. (14) and (15) described above
are solved are set adaptively. To capture the high process dynamics during exposure small
time step sizes are chosen. In the cooling phase, starting as soon as the beam finishes
scanning the current layer and ending when the next layer is applied, the temperature
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gradients decrease and the time step size is increased. This increase is accomplished
based on the error measure obtained by the temporal integration in Eq. (31). From the
spatially distributed errors at every Gauss point e�t

i a single scalar quantity is obtained for
each time step

e�t =

√√√√√ 1
nϑ
a

nϑ
a∑

i=1

e�t
i

εrhi,n+1 + εa
, (16)

where the total number of Gauss points in the thermal simulation is denoted by nϑ
a and

the values for the relative and absolute tolerances are set to εr = 0.001 and εa = 0.001,
respectively. The time step size is adjusted based on this error measure as

�tnew = �t

⎧⎪⎪⎨
⎪⎪⎩
max

(
fmin, fs e�t−

1
q+1
)

if e�t > 1

min
(
fmax, fs e�t−

1
q+1
)

if e�t ≤ 1.
(17)

The increase and decrease of the time step size are limited by the damping factors fmax =
2.0, which results in a maximum doubling of the time step size, and fmin = 0.3. In order
to prevent oscillating time step sizes, a safety factor of fs = 0.85 is used. The order of
accuracy of the embedded Runge–Kutta scheme for the used two stage S-DIRK scheme
equals q = 1. For further details on the choice of these values the reader is referred to
[41].
For the spatial discretization adaptive hexahedral octree-basedmeshes are used. Conse-

quently a preferably coarse initial mesh is chosen and refined in the desired regions. The
element edge length in building direction of the initial mesh must be a 2x-multiple of the
process layer height to enable the application of exactly one layer after x refinement steps.
In octree meshes the refinement level difference of adjacent cells must not exceed 1.
During the manufacturing process, the laser beam moves within the building chamber,
constantly changing the locationwhere the largest gradients occur.An adaptive discretiza-
tion in space is used to capture the high gradients in the region close to the energy input
as accurately as possible while maintaining a similar computational effort throughout
the simulation. The refinement and coarsening of the mesh for the thermo-mechanical
simulation is carried out based on the following three criteria as depicted in Fig. 2.
In the first step, during exposure periods all elements inside a radius of 2r around the

current beam location which are known a-priori are refined. Secondly, the Kelly error
indicator eϑ as presented in [42] and implemented in the deal.II library is used, which
returns a single scalar value for each cell that is a measure of the jump of the temperature
gradient over the element faces. The error in the mechanical fields is approximated by
the error indicator em, taking into account the stresses and plastic strains. The error
indicator is similarly computed as the well known superconvergent patch recovery (SPR)
[43,44], where the superconvergence of certain points inside the finite element mesh is
exploited. For each element the difference of a smoothed L2-projection {•}L2 and the
values computed at the quadrature points {•}∗ are evaluated for the stress and plastic
strain. For efficiency the L2-projection is carried out using a lumped mass-matrix. The
scalar product of these differences builds the mechanical error indicator
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Schematic representation of the spatial adaptivity. The coarse initial mesh (a) is first adapted based on the
beam position (b). With the temperature distribution (c) the Kelly error indicator (d) is obtained. The equivalent
viscoplastic strain distribution (e) is used for the mechanical error indicator (f). The indicators (d, f) are used for
further refinement and coarsening. The elements with mechanical error indicator values ≥ 0.8 em,max are
highlighted by a red outline

em =
∫
Be
u

[[
σL2 − σ*] : [εvp,L2 − εvp,*

]]2 dV, (18)

for an element Be
u. Elements are flagged for refinement and coarsening based on the

thermal error and sequentially for refinement based on the mechanical error indicator.
The flagging is executed if a threshold of 80.0% or 20.0% of the maximum error indicator
is either exceeded or undercut. The refinement and coarsening procedure is carried out
at every time step during exposure and every second time step when the beam is inactive.
Figure. 2 (d, f) show the result of the Kelly and mechanical error indicator during the scan
of a single line over three layers. The vicinity of the current beam location is refined. High
values for the thermal Kelly error indicator eϑ are especially obtained in coarse elements
at themelt pool boundary, lower values are obtained for themore refined elements around
the beam center and regions with a uniform temperature distribution. For themechanical
error indicator em high values are obtained at the boundaries between the first solidified
layer and the building platform and between further solidified layers. Due to the stress
relaxation at higher temperatures, small values for the mechanical error indicator are
obtained in the vicinity of the beam center.
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During refinement a predefined maximum refinement level of r must not be exceeded,
limiting the smallest element edge length.

Stress relaxation for high temperatures

In order to account for the softening and annealing behavior in high temperature regions,
stress relaxation as presented in [24] is used. The mechanical constitutive model requires
the time integration of the evolution equations of the internal variables (10) to compute
the stresses in Eq. (8).Due to the layer-wisematerial application and the pronounced stress
relaxation for temperatures close to the melting temperature, an incremental procedure
to compute the stresses is applied. The resulting stresses in each time step tn+1 can be
obtained by the stresses of the previous time step tn and an updating term

σn+1 = σn + �σ = σn + ∂σ

∂ε
: �ε + ∂σ

∂ϑ
�ϑ . (19)

The latter consists of two contributions that can be viewed as an update due to the change
of strain and a temperature-related change of the underlying material properties.
For high temperatures, i.e. if the temperature of the solid material exceeds a predefined

relaxation temperature ϑ relax, the stresses and plastic strains of the previous time step are
reset to zero

σn → 0, εeln → 0, ε
vp
n → 0, εthn → 0, βn → 0. (20)

As the total strain is unaltered, the current state at time step n is stress-free while main-
taining the prevailing deformation. In [26] a similar approach is presented for a non-
incremental formulation using a transformation strain that accounts for the relaxation.

Results and discussion
In the following section the numerical framework is first validated using experimental data
obtained from literature. This includes the comparison of melt pool dimensions as width
and depth [45] and maximum temperatures [46] for the thermal problem and residual
von Mises stresses for the mechanical problem [47]. Further, two numerical examples
are discussed, a simple wall-like geometry with 6 layers and a larger rectangular profile
as depicted in Fig. 6. The small wall-like example is used to analyze the influences of
numerical and modeling aspects, as time step size, element size and type, geometrically
linear or nonlinear mechanical models and modeling of the powder material. Based on
these results, an efficient simulation set-up is identified which is then compared in terms
of accuracy and computational costs with a very accurate reference set-up by means of
the larger example.

Thermal andmechanical validation

Thermal validation

Simulated melt pool dimensions for various process parameters and for single scan lines
are compared to experimental results from [45]. The single scan lines are done on a 30µm
thick powder layer on top of a solid plate of Ti-6Al-4V. The beam radius is r = 50µm,
the beam velocity is varied from v = 0.8 m

s to 1.2ms and the laser power from P = 150W
to 300W. The material parameters for Ti-6Al-4V are defined as in subsection 2.3. The
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Fig. 3 Measured and simulated melt pool widths and depths for beam velocities of v = 0.8ms (a) and v = 1.2ms
(b)

initial and ambient temperature for radiation and convection are ϑ0 = ϑconv = ϑ rad =
35◦. Convection and radiation are considered on top of the exposed powder layer. The
absorption coefficient is set to A = 0.77 [48]. For further details on the experimental
setup the reader is referred to [45]. The experimentally determined and simulated melt
pool dimensions are compared in Fig. 3. For themelt pool width a good overall agreement
can be observed for both velocities and all investigated powers. Only in the cases with the
highest line energies El = P

v does the simulation overestimate the melt pool width. The
largest deviations in the melt pool depth are also obtained for the highest investigated
line energy at v = 0.8ms and P = 250W. For this parameter combination the melt pool
depth and width are almost equal and thus the transition zone between the conduction
and keyhole mode begins [49,50]. Therefore, the presented simulation underestimates
themelt pool depth and overestimates its width.Minor deviations can be observed for the
melt pool depth for the lowest line energies of both examined velocities. The simulations
overestimate the melt pool depth. This is attributed to the neglect of melt pool dynamics
phenomena, recoil pressure andMarangoni convection in the model. A better agreement
with the experiments would require an adjustment of the heat input model by adapting its
size to the process parameters [51] or applying an anisotropic heat conduction coefficient
as in [52].
In a second validation step, the maximum temperatures for single line experiments

conducted in [46] are compared to simulation results. Single lines are scanned on a solid
building plate made of Ti-6Al-4V, without powder. The experimental measurements of
the maximum temperatures were conducted using a CCD camera and further postpro-
cessed as described in [46] for various process parameters. The beam radius is r = 35µm,
the initial temperature is ϑ0 = 25◦ and convection and radiation are again considered on
the top surface of the powder with ϑconv = ϑ rad = 25◦. The same material parameter
as described in subsection 2.3 are used. To account for the reduced absorptivity of solid
material compared to the previous powder case, the absorption coefficient is reduced to
A = 0.32 [53]. The experimentally determined and simulated maximum temperatures
are compared for different line energies in Fig. 4. The corresponding process parameter
laser power and velocity are specified in Table 1. A good agreement (error in temperature
≤ 10%) between the numerically predicted and the measured maximum temperatures
can be observed for all investigated parameter settings, except for the cases with a laser
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Fig. 4 Measured and simulated maximum temperatures for different line energies

Table1 Parameter settings for the evaluation of maximum temperatures

El in J
m P in W v in m

s
200 20 0.1

300 30 0.1

500 50 0.1

100 20 0.2

150 30 0.2

250 50 0.2

66.7 20 0.3

100 30 0.3

166.7 50 0.3

power of 50W. These cases result in the three highest maximum temperatures, which are
overestimated in the simulation. For this laser power, the maximum temperatures during
exposure exceed the evaporation temperature of pure aluminum. Evaporation phenom-
ena are neglected in the model, which might explain, that the maximum temperatures
are overestimated in the simulations. In the postprocessing of the experimental results, it
is assumed that the emissivity of the material is constant (calibrated at the solidification
temperature). However, it is also mentioned that it changes with temperature [46]. This
is not taken into account in the measurements and leads to larger uncertainties in the
temperaturemeasurements at higher temperatures. The red dashed line indicates the line
energy of 200 J

m which is used in the numerical analysis in subsection 4.2.

Mechanical validation

For mechanical validation blind-hole-drilling measurements as conducted in [47] are
compared to residual von Mises stresses obtained in the simulations. The measurements
in [47] are performed in themiddle of the top surface of a cube with side lengths of 15mm
that was scanned with a beam power of P = 240W and a velocity of v = 1.0ms . The
layer thickness is lh = 40µm and the hatch distance h = 100µm. With these process
parameters, the laser covers a scan path of more than 280m during the exposure. To
reduce the computational effort the scanning of a smaller cross section of 1.2 × 1.2mm2

over 10 layers is simulated. This simplification is also applied in the simulations done in
[47] and is justifiable since the simulation results show an almost uniform stress distri-
bution in the center cross section of the geometry, see Fig. 5(b). In the simulations the
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(b)(a)

Fig. 5 Comparison of the simulated residual von Mises stress with the simulated and experimentally determined
stresses from [47] (a). Von Mises stress distribution on top of the fifth layer (b). The black rectangle indicates the
evaluation area

material parameters as given in subsection 2.3 are used without any adaptation. The initial
temperature was set to ϑ0 = 130◦ and radiation and convection was considered on the
top surface of the powder with ϑconv = ϑ rad = 130◦. The bottom plate was mechanically
constrained at the bottom surface. To reduce the influence of boundary effects due to the
building plate and the free top surface the residual von Mises stresses on top of the fifth
layer are averaged in a 0.2 × 0.2mm2 area around the center of the cross section. The
comparison of the simulated stresses with the experimental ones from [47] is given in Fig.
5(a). The numerically determined von Mises stress of 381MPa is sufficiently close to the
measured value of 421 MPa and within the experimental tolerance range from 340MPa -
495MPa. For comparison, the simulation results from [47] are also shown in Fig. 5. In that
work no stress relaxation at high temperatures is conducted which results in the strong
overestimation of the residual stress values.

Numerical analysis of accuracy and efficiency

In the following subsection twonumerical examples are used to investigate the influence of
numerical andmodeling aspects. Based on the findings of the first small wall-like example,
a parameter set is determined which finds a good compromise between accuracy and
computational effort. This is further illustrated in the open rectangular profile example.
For both numerical examples the thermal process parameters are listed in Table 2.

Small wall-like geometry

In the first example the build of a wall consisting of a single line over six layers is simulated
to study the displacement and von Mises stress evolution over the building process for
various numerical settings and modeling assumptions. The scan path length is 1.0mm
and the layer height is given in Table 2. The wall is build on top of a 1.3mm thick building
platformwith a total domain of 1mm×2mm in the x-y plane, as depicted in Fig. 6(a). The
scanning direction is the same for each layer. The cooling times for each layer before and
after layer deposition are 15ms and 1ms, respectively. Then the exposure starts again.
The simulation is terminated after a final cooling time of 100ms.
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Table 2 Thermal and geometrical process parameters used in the examples presented in
Section 4.2.1 and 4.2.2

Initial temperature ϑ0 = 200◦

Temperature of deposited powder ϑp = 250◦

Laser power P = 85W

Laser radius r = 100µm

Laser velocity v = 0.5 m
s

Absorption coefficient A = 0.77

Layer height lh = 50µm

(a) (b)

Fig. 6 Schematic illustration of both considered examples, where gray represents the solid building platform,
red the applied powder layers and blue the geometry to be manufactured, e.g. the wall (a) and open rectangular
profile (b), respectively. For the wall, the evaluation line Y denoted by the dotted orange line runs parallel to the
y-axis on top of the second last layer. Point A is on top of the second layer in the middle of the wall. For the
rectangular profile, point D is located at the end of the first scanning line on top of the first layer

The plate is mechanically constrained at the bottom and zero thermal fluxes at all
boundaries are prescribed. Radiation and convection are neglected in the current example.
The time step size is given by the factor τ , see Eq. (13), relating the process parameters
velocity and laser beam radius to the time step size. Its value is held constant until the last
of the six layers is scanned and successively increased based on the criterion discussed in
subsection 3.2. This represents a rather conservative approach as adaptive time stepping
between successive layers might lead to reduced time step numbers. In order to study the
influence of the numerical setting, the time step size, the maximum spatial refinement
level and the polynomial degree of the elements are varied. Further, the geometrically
linear and nonlinearmechanical models and the powdermodel are altered. All considered
cases are summarized in Table 3. The simulation run times and the von Mises stresses
and displacements at the evaluation points after final cooling obtained for all numerical
settings and modeling assumptions are compared to the most accurate reference setting,
which is the computationally most expensive. Tables 7, 8, 9, 10, 11 and 12 in the in
Appendix C summarize the results. Therefore, a relative error measure is introduced, that
compares the result (stress, displacement) of the particular simulation {•}with that of the
accurate reference setting {•�} at a certain point at the end of the cooling phase in the
following way

e (•) = {•} − {•�}
{•�} . (21)
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Table 3 Summary of all investigated numerical settings and modeling assumptions and definition
of the accurate reference setting used

Reference Options

Numerical setting Time step size τ = 0.5
[
0.125, 0.25, 0.5, 1.0, 2.0, 5.0

]
Max refinement level R = 5

[
3, 4, 5

]
Poly degree mech elements p = 2

[
1, 2
]

Modeling assumption Geometrical setting nonlinear
[
Linear, nonlinear

]

Powder domain mechanical 1mm × 2mm

⎡
⎢⎣
0.25mm × 1.2mm

0.375mm × 1.3mm

1mm × 2mm

⎤
⎥⎦

Scaling factor Young’s modulus s = 0.1
[
0.1, 0.01, 0.005

]

(a)

(b) (c)

(d) (e)

Fig. 7 Temperature evolution (a), comparison of the displacements uy (b, d) and the von Mises stress σ vM (c, e)
for the geometrically nonlinear (black) and the geometrically linear setting (brown). The evaluation is carried out
along the line Y as depicted in Fig. 6(a) after the final cooling (b, c) and over time at point A (a, d, e) where the
curves start as soon as the melting temperature is firstly exceeded (conversion from powder to melt). The
temperature distribution is the same for both settings

In a first step the difference between the geometrically linear and nonlinear mechanical
models is investigated. Therefore, the results obtained for the geometrically linear setting
are compared to the reference setting, while leaving all other parameters unchanged. As
we are interested in the final deformation and residual stresses, we investigate the evolu-
tion of the vonMises stress and the displacements over time at point A, as depicted in Fig.
7 and Table 7. The curves of all presented plots start as soon as the temperature at the
evaluated point exceeds the melting temperature for the first time, i.e. at the conversion
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(a)

(b) (c)

(d) (e)

Fig. 8 Comparison of the temperature (a), displacements uy (b, d) and the von Mises stress σ vM (c, e) for
different time step sizes. The evaluation is carried out along the line Y as depicted in Figure 6(a) after the final
cooling (b, c) and over time (a, d, e) at point A

from powder to melt. It is visible that the von Mises stress is reduced to zero when the
relaxation temperature is exceeded, based on the procedure presented in section 3.3. In
the subsequent exposure phases, the von Mises stress decreases due to the temperature-
dependent material parameters. The displacements in y-direction (scanning direction)
show that especially the phases in which the relaxation temperature is exceeded have the
greatest influence on the final deformation due to stress relaxation. The influences of the
exposure of the upper layers and the associated heating respectively thermal expansion
are also visible in the displacement curves. The results for the displacements and stresses,
depicted in Fig. 7 for the geometrically linear and nonlinear setting, show a maximum
deviation of e

(
uy
) = 0.7%, e (uz) = 4.0% and e

(
σ vM) = 2.3% evaluated at point A. As the

maximum total strains for the current example are below 5%, the small strain assumption
is valid. This might not hold true for different geometries and powder modeling assump-
tions as will be shown at the end of the subsection. The computational saving for the
geometrically linearized approach is in the order of 30%.
In the following, the increase of the time step size is investigated as a possible approach

to reduce the computational effort. Six different time step sizes are considered here,
τ = 0.125, 0.25, 0.5, 1.0, 2.0, 5.0. Further increasing the time step size would result in
the melting temperature no longer being exceeded due to large errors in the predicted
maximum temperature at each material point. In Fig. 8 (a), the temperature evolutions at
point A are compared for the different time step sizes. For larger time steps the maximum
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temperatures are reduced, in particular for τ = 5. For small time steps τ ≤ 1.0 similar
temperatures are obtained. The vonMises stresses evaluated along line Y and over time at
pointA (Fig. 8 (c) and (e)) show that increasing time step sizes lead to increasingdeviations,
but for τ = 0.5 the final values at point A differ by just e

(
σ vM) = 0.2% to the smallest

time step size. The displacements in y-direction evaluated along Y and at point A over
time (Fig. 8 (b) and (d)) are most sensitive to larger time step sizes and show the strongest
deviations. They are increasingly underestimated in comparison to the reference result.
Time step sizes of τ > 0.5 (which is equivalent to 0.1ms) yield unsatisfactory results with
errors of e

(
uy
)

> 45% evaluated at point A after cooling. The differences occur during
the processing of the current and the following layer. Afterwards, the evolutions of the
displacements are similar for all time step sizes, but shifted by the amount of the previous
deviation. Evaluations of stresses and displacements at other points of the wall show the
samebehavior.When looking at the vonMises stress distribution in the y-z-plane depicted
in Fig. 9, the stresses are not correctly captured anymore for values of τ ≥ 2.0. These
deviations can be explained by the discrepancy between the temperature evolutions for
these large time step sizes. The maximum temperatures are increasingly underestimated
reducing the time span duringwhichmaterial points are above the relaxation temperature.
The deviations of the displacements and stresses for small variations in the temperature
evolutions (for τ ≤ 1.0) are due to the changing mechanical boundary conditions during
solidification. These differences result from the transition from melt to solid at slightly
different points in times for different time discretizations (even if the temperatures are
equal). With a smaller time step size this phase change is more accurately captured. This
has a large influence on the residual stresses and also on the displacements in scanning
direction. Due to the significant differences stresses and displacements, a time step size
of τ ≤ 0.5 is recommended. With τ = 0.5 a reduction in computing time by 65.9%
can be achieved compared to the smallest time step size, with marginal deviations in the
temperatures and von Mises stress. For all further simulations a step size of τ = 0.5 is
used.
In the next part, the spatial discretization is investigated. Hereby the effect of the refine-

ment level R and the usage of elements with polynomial shape functions of degree p = 1
or p = 2 for the mechanical problem are investigated. The refinement level is directly
coupled to the smallest element edge length of 12.5µm, 25.0µm and 50.0µm for values
of R = 5, R = 4 and R = 3, respectively.
The temperatures at point A (Fig. 10 (a)) for all refinement levels are captured well,

expect for minor deviations in the maximum temperatures during the initial melting
cycle. The y-displacements and the von Mises stresses, evaluated at point A over time
and along the line Y after the scanning process, are shown in Fig. 10 and Table 10. The
results for meshes with linear elements, refinement level R = 5, and with quadratic
elements, refinement level R = 4, are in close agreement with the reference setting.
Deviations of about e

(
uy
) = 11.0% to the reference case are obtained for linear elements

with R = 4 for the displacements in y at point A after cooling. The largest deviations of
e
(
uy
) = −16.0% and e

(
uy
) = −34.0% are obtained for the displacements in y-direction

for linear and quadratic elements with the coarsest mesh, R = 3. The von Mises stress
values at point A after cooling for all considered spatial refinement levels and polynomial
degrees of the mechanical elements show just minor deviations of e

(
σ vM) < 7.0% to the

reference setting. All investigatedmeshes are sufficient to capture the general distribution
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Fig. 9 Distribution of the von Mises stress after the final cooling in the y-z-plane for values of τ = 0.125 (a),
τ = 0.25 (b), τ = 0.5 (c), τ = 1.0 (d), τ = 2.0 (e) and τ = 5.0 (f). Powder material is excluded in the presentation

(a)

(b) (c)

(d) (e)

R
R
R

Fig. 10 Comparison of the temperature (a), displacements uy (b, d) and the von Mises stress σ vM (c, e) for
different refinement levels and polynomial degrees of the mechanical finite elements. The evaluation is carried
out along the line Y as depicted in Fig. 6(a) after the final cooling (b, c) and over time at point A (a, d, e)
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R

R

R

Fig. 11 Distribution of the von Mises stress after the final cooling in the y-z-plane for refinements levels of 5 (a,
b), 4 (c, d) and 3 (e, f) for elements with linear p = 1 (a, c, e), and quadratic p = 2 (b, d, f) shape functions. Powder
material is excluded in the presentation

of stresses, as depicted in Fig. 11 for the y-z plane. With increasing element size more
details of the stress distribution get suppressed, e.g. inter-layer details are lost for R = 3,
leading to blurred results as opposed to the reference. While the stress distribution for
refinement level R = 4 and quadratic elements is similar as the reference solution, linear
elements with the same spatial refinement seem to slightly underestimate the maximum
von Mises stress at the building platform. For R = 3 the melted geometry differs from its
more refined counterpart leading to differences in the stress distribution, especially in the
vicinity of the powder-solid interface. A good compromise between accuracy and effort is
obtained for a mesh with linear elements p = 1 and refinement levels of R = 5 and R = 4.
For R = 5, the displacement in scanning direction uy and von Mises stress at point A
differ from the reference solution by only e

(
uy
) = 0.8% and e

(
σ vM) = 0.4%, respectively.

The computational effort is reduced by 95.1% due to the use of linear elements (p = 1
and R = 5) as opposed to quadratic elements (p = 2 and R = 5). A further reduction
in run time of 59.8% is reached for R = 4, where the von Mises stress evolution shows
similar deviations as the more refined case and the displacement error in y increases to
e
(
uy
) = 11.0% compared to the reference setting at point A. For the numerical settings

studied, the influence of the temporal discretization outweighs that of the spatial one.
While larger time steps result in strong deviations, the results for all spatial discretizations
generally correspond to the reference solution. The reduction of computational effort is
remarkable for elements with linear shape functions as opposed to quadratic ones. As
long as adaptive coarsening is conducted, h-refinement is computationally cheaper than
an overall higher polynomial degree for the mechanical elements.
To analyze the effects of the adaptive discretizations in time and space introduced

in subsection 3.2, a reference simulation with a fixed time step size and a static spatial
discretizationusing the geometrically non-linear settingwas performed.The element edge
length of the linear hexahedral elements is chosen to be equal to the smallest element edge
length for the refinement level of R = 4. A finer spatial discretization corresponding to
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Table 4 Displacement in y and von Mises stress at points A for simulation runs with and without
spatial and temporal adaptivity for the with geometrically nonlinear setting, full powder domain,
τ = 0.5, R = 4, p = 1 and s = 0.1

Spatial adaptivity Temporal adaptivity Run time e (uy
)
at A e (

σvM
)
at A

Between layers Final cooling

No N No 100.0% 0.0% 0.0%

No No Yes 35.4% 0.0% 0.1%

No Yes Yes 17.4% −1.0% −0.4%

Yes No No 8.3% −4.1% −3.3%

Yes No Yes 2.6% −4.4% −3.1%

Yes Yes Yes 1.3% −4.7% −3.0%

As reference the geometrically nonlinear setting, full powder domain, s = 0.1, τ = 0.5 and p = 1, with a static mesh of
uniform element size corresponding to R = 4 is used

(a)

(b) (c)

(d) (e)

Fig. 12 Mechanical computation domain for studying the powder model (a). The evaluation points B and C are
on top of the third powder layer on the front and right edges of the melted cross section. The displacements in
scan direction at Point B (b) and transverse to the scan direction at point C (d) and the von Mises stress over time
(c, e) for different mechanical computational domains are shown
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the element edge length of R = 5 in the whole computational domain would lead to a
total number of elements of above 1.6 million. A static time step size of �t = 0.0001 s is
used to match τ = 0.5. The results for simulations with and without spatial and temporal
adaptivity are compared to the reference setting as summarized in Table 4. For all settings
the maximum errors in displacement in y and von Mises stress at point A are smaller
than ±5.0%. Introducing an adaptive discretization in time results in a smaller increase
in the error than the adaptive spatial discretization. One reason is that the time step size
is only adaptively increased during cooling, but is similar during the scanning phase in all
cases. Furthermore, spatial adaptivity requires the repeatedprojectionof solution variables
if the mesh is adapted, which leads to some inaccuracies. For the investigated simple
geometry spatial adaptivity leads to greater time savings but for a different geometry or
different process parameters with longer waiting times, the adaptive discretization in time
might also reduce the computation time more strongly. To summarize, with the adaptive
discretizations huge computational savings can be achieved, whileminor deviations in the
results of < ±5.0% are observed.
In the last study the influence of the powder model is evaluated. The powder is modeled

as linear elastic with a small Young’s modulus. This is a very simplified assumption, espe-
cially during the cooling of the manufactured component. Therefore, the modeling of the
surrounding powder is changed in two different ways: (i) the surrounding powder is partly
omitted in themechanical simulation or (ii) the elastic stiffness of the powder is decreased.
The sensitivity of the results with respect to the powder model is analyzed and discussed.
In the thermal simulation, the surrounding powder is completely taken into account,
since the thermal conduction into the powder is not negligible [17], although it has a
smaller conduction coefficient than the solid material. Partly excluding the surrounding
powder in the mechanical simulation significantly reduces the number of elements and
consequently the computing time. For both, the thermal and mechanical domain the size
of the building platform remains unchanged, only the region of powder elements having
mechanical degrees of freedom is varied. Simulations are conducted with a mechanical
powder domain of xm = 0.375mm, ym = 1.30mm and xm = 0.25mm, ym = 1.20mm
and compared to the reference setting (xm = 1.0mm, ym = 2.0mm), see Fig. 12(a). The
Young’s modulus of the powder is obtained by a scaling factor of s = 0.1 to the Young’s
modulus of solid material at room temperature and increases to the value of solid/melt
material at melting temperature. Additional evaluation points B and C are introduced
which are located on the front and right edges of the wall to be built and on top of the
third powder layer, in order to study effects at the boundary between solid and powder
elements. In Fig. 12, the displacements in x and y and the von Mises stress at the points B
and C are depicted over time for the three different mechanical simulation domains. The
relative error after cooling and the run times are summarized in Table 11.
For both settings with reduced surrounding powder, the displacements at the points

B and C increase slightly compared to the reference setting. Due to the lack of powder,
during the heat expansion phase, the movement of the powder is less restricted and it can
expand further. The subsequent contraction due to cooling is also stronger due to less
powder preventing the contraction of the melt or solid. During the heat expansion phase,
both reduced powder settings reach the same maximum displacement values.
The decrease of the von Mises stress values at the points B and C for a smaller powder

region can be attributed, analogously to the displacements, to the absence of powder
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(a) (b)

(c) (d)

(e) (f)

Fig. 13 Displacements (a, c, e) and von Mises stresses (b, d, f) for points A (a, b), B (c, d) and C (e, f) over time for
different scaling factors s

obstructing the thermal contraction of the wall during cooling. The final vonMises stress
values for both settings with less surrounding powder are about e

(
σ vM) = −16.7% and

e
(
σ vM) = −23.5% smaller than those of the reference setting at point B.
Similar results can be observed for simulations with the full powder domain but with

a smaller scaling factor s for the Young’s modulus of powder, see Fig. 13 and Table 12.
The results for s = 0.01 and s = 0.005 are compared to those of the reference setting
with s = 0.1. For all evaluation points the final von Mises stresses decrease significantly
compared to the reference setting. Especially thepointsB andC, that arenear theboundary
of solid/melt and powder elements, show large differences up to e

(
σ vM) = 74.4%, for

s = 0.005.The thermal contraction of the cooling solidmaterial is not so strongly hindered
by powderwith a lowerYoung’smoduli, leading to larger displacements in y, as can be seen
in Fig. 13(c). This effect can also be observed for the points A and C but less prominent
in Fig. 13(a) and (e). Since the maximum total strains increase with a decreasing scaling
factor, for example to εyy = 7.4% for s = 0.005, the validity of the geometrically linear
mechanical model is reevaluated. Figure 14 and Table 8 compare the displacement in y
and the von Mises stress over time at point B for s = 0.005. The displacement values
at points A, B and C show small deviations of ≤ 2.0% between the geometrically linear
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(a) (b)

Fig. 14 Displacement in y (a) and von Mises stress (b) for point B over time with a scaling factor of s = 0.005 for
the geometrically nonlinear and linear setting

and nonlinear setting. For the von Mises stresses at point B larger deviations of up to
e
(
σ vM) = 10.1% are visible.
It can be summarized that the modeling assumptions for the powder have a large influ-

ence on the mechanical results. Further a correlation of the validity of the geometrically
linear assumption and the modeling assumption of the powder can be observed. For a
scaling factor of s ≤ 0.01 and for reduced surrounding powder domains total strain values
≥ 5% were obtained. Further studies and experimental validation have to be carried out
to model the powder behavior more accurately.

Open rectangular profile

The insights gained from the previous small scale example are now transferred to a larger
geometry as presented in Fig. 6(b). This open rectangular profile consists of 20 scan lines
over 21 layers. A cross-snake hatching pattern with a hatching space of h = 100µm
is chosen. In contrast to the previous example, radiation and convection are no longer
neglected on the top surface. The temperature at the bottom of the building platform is
fixed to ϑD = 200◦.
The manufacturing process is simulated using two different simulation settings as pre-

sented in Table 5. For reference the geometrically nonlinear setting is used with tri-
quadratic shape functions for the mechanical simulation. The maximum refinement level
is set to R = 5 resulting in a smallest element edge length of 15µm. For the efficient
setting linear elements with a maximum refinement level R = 4 (minimum element edge
length of 30µm) are chosen. The time step size τ = 0.5 is applied for both settings, as it
was shown in the previous example that larger values have a strong negative influence on
the accuracy of the results. The powder scaling factor is set to s = 0.1 for both settings.
The resulting temperature, von Mises stress and displacements in x and y are depicted

in Fig. 15 for point D, see Fig. 6(b) for its position.
The temperatures except for themaximum temperatures in the first threemelting cycles

are captured very well with the efficient setting when compared to the reference setting,
which is in agreement with the findings of the small scale example. A similar trend can be
observed for the displacements in and perpendicular to scanning direction, ux and uy with
deviations in the final displacements of e (ux) = −0.6% and e

(
uy
) = 7.9%, respectively.

The displacements in the scanning direction are more sensitive than those perpendicular
to it, as it was also observed for the previous example.While the vonMises stresses during
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Table 5 Overview of the numerical settings and the mechanical assumptions for the reference and
efficient case

Reference Efficient

Numerical setting Time step size τ = 0.5 τ = 0.5

Max refinement level R = 5 R = 4

Poly degree mech elements p = 2 p = 1

Modeling assumption Geometrical setting nonlinear linear

Powder domain mechanical 4.8mm × 4.8mm 4.8mm × 4.8mm

Scaling factor Young’s modulus s = 0.1 s = 0.1

The thermal parameters are the same for both settings

(a) (b)

(c) (d)

Fig. 15 Comparison of the temperature (a), von Mises stress (b), displacement in x (c) and y (d) at Point D for the
two different computational settings described in Table 5 for the open rectangular profile illustrated in Fig. 6(b)

the exposure of the first few layers are overestimated for the efficient setting, the final von
Mises stress is slightly smaller e

(
σ vM) = −3.4%. The results at other points are similar.

To summarize, the overall agreement of the final results of the efficient setting and the
reference setting is fairly good, while the run time for the efficient setting was just ≈ 2%
of that of the reference case.

Conclusion
In this contribution a highly parallelized and adaptive finite element framework based on
the open source C++ library deal.II was validated and utilized to simulate PBF processes.
The effects of the numerical discretization and various modeling assumptions on the
accuracy of the temperatures, displacements and stresses and on the computational effort
are analyzed and discussed. The framework supports geometrically linear and nonlinear
formulations. The latter makes use of the logarithmic strain space model introduced by
Miehe [38]. In summary, the numerical study yielded the following results:

• For the studied examples the geometrically linear setting was sufficient (differences
of all compared quantities were less than 4% compared to the nonlinear setting).
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• The time step size was shown to be a sensitive parameter, especially for the dis-
placements in scanning direction. A time step size of �t = 0.5 r

v was used for the
thermal and mechanical problem. Doubling the time step size led to errors in the
displacements of up to ≈ 45%.

• A finite element mesh with six linear hexahedral elements over the melt pool width
gave the most efficient and sufficiently accurate solution (reduction of computation
time by ≈ 97%, error in von Mises stresses of ≈ −0.7%).

• A strong influence of the powder parameters of the elastic powder model on the
resulting displacements and stresses was observed. A lower Young’s modulus for the
powder and the omission of the powder led to significantly lower stresses (up to
≈ 70% lower).

Further steps include the extension of the presented parallelized and adaptive finite ele-
ment framework by validated agglomeration approaches to bridge the gap to whole com-
ponent simulations. This includes layer lumping techniques as well as powder substitute
models. A hierarchical simulation environment for the PBF process is sought to gain a
deeper process understanding.

A. Geometrically nonlinear setting
In the geometrically nonlinear setting, the deformation gradient is computed from the
displacement field u as F = I+ ∇u. The right Cauchy–Green strain C = F� · F is used to
compute the logarithmic Hencky strain

E = 1
2
ln (C) = 1

2

3∑
i=1

ln
(
λCi
) [

nC
i ⊗ nC

i
]
, (22)

where λCi and nC
i denote the eigenvalues and the eigenvectors of the right Cauchy-Green

strain, respectively. The logarithmic nature inherent to the Hencky strain allows to use
the same additive constitutive laws for the geometrically nonlinear setting as for the
geometrically linear one. Therefore Eq. (6) can be rewritten in terms of the Hencky strain
as

E = Eel + Evp + Eth. (23)

The free energy density� as presented in Eq. (7) is redefined in terms of theHencky strain

�
(
Eel,β

)
= 1

2
κ
[
Eel : I

]2 + μ
[
Eel2 : I

]
+ 1

2
Kβ2. (24)

The stress measure work conjugate to the Hencky strain is obtained as follows

T = ∂�

∂Eel = 3κEel,vol + 2μEel,dev. (25)

The yield function (9) is re-expressed in terms of the logarithmic stress measure T and
the evolution equations for the viscoplastic Hencky strain and the internal variable are
similar and are integrated in the same manner as for the geometrically linear setting (10).
Subsequently, the stress measure T has to be transferred back from the logarithmic space



Burkhardt et al. AdvancedModeling and Simulation in Engineering Sciences           (2022) 9:18 Page 26 of 31

Table 6 General Butcher tableau for embedded Runge–Kutta methods (left) and Butcher tableau
for the embedded two-stage S-DIRK scheme after [41] (right)

c1 a11 a12

c2 a21 a22

b1 b2

b̂1 b̂2

α α

1 1 − α α

1 − α α

1 − α̂ α̂

α = 1 −
√
2
2

α̂ = 2 − 5
4

√
2

to the ’real world’ by multiplication with a fourth-order projection tensor. The resulting
Piola–Kirchhoff stress S is pushed forward to obtain the Cauchy stress σ

S = T : P with P = 2
∂E
∂C

, σ = 1
det (F)

F · S · F�. (26)

A similar transformation has to be applied to the tangent operator, for details see Miehe
[38].

B. Discretization in time and space
In the following the discretization in time and space of the weak form is described inmore
detail. The weak form of the nonlinear heat equation given in (11) is discretized in time
using finite differences. For each time step Eq. (11) is solved using a two-stage (s = 2)
S-DIRK scheme as presented in [41]. For each stage k the time derivative of the specific
enthalpy is therefore approximated in the following way

ḣn+1,k ≈ hn+1,k − h∗
n+1,k

�t akk
. (27)

The specific enthalpy at Runge–Kutta stage k is denoted by hn+1,k and the starting value
at stage k is given by

h∗
n+1,k = hn + �t

k−1∑
j=1

akjḣn+1,j . (28)

For s = 2 and taking Eq. (27) into account these starting values are derived as

h∗
n+1,1 = hn and h∗

n+1,2 = hn + a21
a11

[
hn+1,1 − h∗

n+1,1
]
, (29)

where hn denotes the specific enthalpy value obtained in the previous time step and the
coefficientsa11 anda21 are taken from theButcher tableaudepicted in table 6. In summary,
one obtains the following temporally discretized form of Eq. (11)

R
ϑ
n+1,k =

∫
Bϑ

δϑ
hn+1,k − h∗

n+1,k
�t akk

dV +
∫
Bϑ

∇δϑ · λn+1,k ∇ϑn+1,k dV

+
∫

∂Bq
ϑ

δϑ q̄n+1,k dA +
∫
Bϑ

δϑ Q̄n+1 dV = 0 for k = 1, 2,
(30)

which is solved for the unknown temperature ϑn+1,k , and from this the enthalpy hn+1,k is
derived. For the here applied stiffly accurate approach with a2i = bi and aij = 0 for i < j
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Table 7 Run time, displacement in y and z and von Mises stress at point A for varying geometrical
setting with full powder domain, s = 0.1, τ = 0.5, R = 5 and p = 2

Geometrical setting Run time e (uy
)
at A e (uz) at A e (

σvM
)
at A

Nonlinear (Reference) 100% 0.0% 0.0% 0.0%

Linear 70.6% 0.7% −4.0% 2.3%

Table 8 Displacement in z and von Mises stress at point A, displacement in y and von Mises stress
at point B and displacement in x and von Mises stress at point C for varying geometrical setting, full
powder domain, s = 0.005, τ = 0.5, R = 4 and p = 2

Geometrical setting e (uz) at A e (
σvM

)
at A e (uy

)
at B e (

σvM
)
at B e (ux) at C e (

σvM
)
at C

nonlinear 0.0% 0.0% 0.0% %0.0% 0.0% 0.0%

linear −1.9% 2.4% 2.0% 10.1% 0.6% 1.4%

As reference the geometrically nonlinear setting, full powder domain, s = 0.005, τ = 0.5, R = 4 and p = 2 is used

the solution at time tn+1 coincides with the solution of the last stage. Besides the second
order accurate solution of the presented 2-stage S-DIRK method, a first order accurate
solution is obtained via the embedded stage with new coefficients b̂i, see Table 6, and
the same weighting factors aij and ci. From the difference of the two solutions an error
measure e�t is obtained at each point in space and time

e�t = �t
s∑

i=1

[
b̂i − bi

]
ḣn+1,i , (31)

which is used to adjust the time step size during no exposure.
The continuousmoving heat input, as presented in Eq. (2), is analytically integratedwithin
each time step [54] to obtain the incrementally averaged value

Q̄ (ξ, t) = 1
�t

tn+1∫
tn

Q (ξ, t) dt. (32)

The local coordinates of the heat source term presented in Eq. (32) are substituted by
ξ1 = x1, ξ2 = x2 + v t and ξ3 = x3 for a beam traveling with the velocity v along the y-axis,
respectively. The heat source term for the time step starting at t = t0 with a time step size
�t is obtained by

Q̄ (x, t) = AP
r2v�t

3
π
exp

(
−3
(
x21
r2 + x23

r2

))
erf
(√

3 (x2 + v t)
r

) ∣∣∣∣∣
t0+�t

t=t0
, (33)

with the error function erf (•). This integration ensures that the entire region that is passed
along the scan path within the current time step is assigned with the corresponding heat
source without bypassing any points. The analytically integrated heat input is scaled [55]
such that its amount is independent of the spatial discretization.
Equations (30) and (12) are now discretized in space by means of the finite element

method. The temperature and displacement fields and their test functions are approxi-
mated elementwise by scalar-valued Nϑ or vector-valued ansatz functions Nu

ϑh =
nϑ∑
i=1

Nϑ
i ϑi uh =

nu∑
i=1

Nu
i ui δϑ h =

nϑ∑
i=1

Nϑ
i δϑ i δuh =

nu∑
i=1

Nu
i δui,
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Table 9 Run time, displacement in y and z and von Mises stress at point A for varying τ with
geometrically linear setting, full powder domain, s = 0.1, R = 5 and p = 2

Time step size Run time e (uy
)
at A e (uz) at A e (

σvM
)
at A

τ = 0.125 100.0% 0.0% 0.0% 0.0%

τ = 0.25 58.9% −7.0% −2.7% 0.4%

τ = 0.5 34.1% −23.3% −9.9% 0.2%

τ = 1.0 17.7% −45.9% −8.9% −5.4%

τ = 2.0 10.4% −75.7% −17.0% 2.6%

τ = 5.0 5.6% −116.5% −2.7% −3.1%

As reference the geometrically linear setting, full powder domain, s = 0.1, τ = 0.125, R = 5 and p = 2 is used

Table 10 Run time, displacement in y and z and von Mises stress at point A for varying R and p with
geometrically linear setting full powder domain, s = 0.1 and τ = 0.5

Max ref level Poly degree mech Run time e (uy
)
at A e (uz) at A e (

σvM
)
at A

R = 5 p = 2 100.0% 0.7% −4.0% 2.3%

R = 4 p = 2 40.7% −3.9% −13.3% 0.7%

R = 3 p = 2 15.8% −34.2% −17.3% 6.9%

R = 5 p = 1 4.9% −0.8% 10.8% 0.4%

R = 4 p = 1 2.9% 11.0% 8.7% −0.7%

R = 3 p = 1 1.8% −16.0% 59.8% 5.8%

As reference the geometrically linear setting, full powder domain, s = 0.1, τ = 0.125, R = 5 and p = 2 is used

(34)

with nϑ and nu denoting the number of thermal and mechanical degrees of freedom per
element, respectively. Following the Bubnov–Galerkin method, the same ansatz func-
tions are used for the approximation of the test functions. The fully discretized capacity,
external, conduction, and source parts of Eq. (11) can now be written as

fϑ ,cap
I,n+1,k =

nel

A
e=1

∫
Be

ϑ

Nϑ
i
hn+1,k − hsn+1,k

�t akk
dV fϑ ,ext

I,n+1,k =
nel

A
e=1

∫

∂Be,q
ϑ

Nϑ
i q̄n+1,k dA

fϑ ,con
I,n+1,k =

nel

A
e=1

∫
Be

ϑ

∇Nϑ
i · λn+1,k ∇ϑn+1,k dV fϑ ,src

I,n+1,k =
nel

A
e=1

∫
Be

ϑ

Nϑ
i Q̄n+1 dV.

(35)

The local contributions of the nel elements are assembled into a global systemof equations
with the assembly operatorA that assigns each contribution of the local degree of freedom
i to the global degree of freedom I . Analogously the discrete internal and external force
terms of the mechanical problem (12) are obtained

fu,intJ,n+1 =
nel
A
e=1

∫
Be
u

∇Nu
j : σn+1 dV fu,extJ,n+1 =

nel
A
e=1

∫

∂Be,t
u

Nu
j · t̄n+1 dA. (36)

Results of the simple wall-like geometry at evaluation points A, B and C
In the following, the run times and the results obtained at the evaluation points A, B and C
are summarized whereby each investigatedmodeling assumption and numerical setting is
presented in separate tables. The simulations were run on 35 cores of an Intel(R) Xeon(R)
CPU E5-2699 v4 @ 2.20GHz. The relative run times are always related to the numerically
most expensive option of the corresponding table, while the error is derived from Eq. (21)
with respect to the most accurate reference solution.
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Table 11 Run time, displacement in y and von Mises stress at point B and displacement in x and
von Mises stress at point C for varying powder domains with geometrically nonlinear setting, s = 0.1,
τ = 0.5, R = 5 and p = 2

Powder domain Run time e (uy
)
at B e (

σvM
)
at B e (ux) at C e (

σvM
)
at C

1.00mm × 2.00mm 100.0% 0.0% 0.0% 0.0% 0.0%

0.375mm × 1.30mm 97.1% 4.6% −8.6% −26.3% −16.7%

0.25mm × 1.20mm 91.0% 6.0% −7.2% −17.5% −23.5%

Table 12 Displacement in y and von Mises stress at points A and B and displacement in x and von
Mises stress at point C for varying s with geometrically nonlinear setting, full powder domain,
τ = 0.5, R = 4 and p = 2.

Scaling factor e (uy
)
at A e (

σvM
)
at A e (uy

)
at B e (

σvM
)
at B e (ux) at C e (

σvM
)
at C

s = 0.1 −4.3% −1.9% 3.4% −7.1% 3.6% 2.0%

s = 0.01 −28.5% −22.3% 60.9% −60.0% −4.2% −69.6%

s = 0.005 −29.5% −26.2% 72.0% −57.1% −6.4% −74.4%

As reference the geometrically nonlinear setting, full powder domain, s = 0.1, τ = 0.5, R = 5 and p = 2 is used
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