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Abstract 

Renalase is a flavoprotein recently discovered in humans, preferentially expressed in the proximal tubules of the kidney 

and secreted in blood and urine. It is highly conserved in vertebrates, with homologs identified in eukaryotic and 

prokaryotic organisms. Several genetic, epidemiological, clinical and experimental studies show that renalase plays a 

role in the modulation of the functions of the cardiovascular system, being particularly active in decreasing the 

catecholaminergic tone, in lowering blood pressure and in exerting a protective action against myocardial ischemic 

damage. Deficient renalase synthesis might be the cause of the high occurrence of hypertension and adverse cardiac 

events in kidney disease patients. Very recently, recombinant human renalase has been structurally and functionally 

characterized in vitro. Results show that it belongs to the p-hydroxybenzoate hydroxylase structural family of 

flavoenzymes, contains non-covalently bound FAD with redox features suggestive of a dehydrogenase activity, and is 

not a catecholamine-degrading enzyme, either through oxidase or NAD(P)H-dependent monooxygenase reactions. The 

biochemical data now available will hopefully provide the basis for a systematic and rational quest toward the 

identification of the reaction catalyzed by renalase and of the molecular mechanism of its physiological action, which in 

turn are expected to favor the development of novel therapeutic tools for the treatment of kidney and cardiovascular 

diseases. 

 

Keywords: chronic kidney disease; end-stage renal disease; blood pressure; myocardial ischemia; sympathetic nervous 

system; catecholamines; oxidoreductase; nicotinamide dinucleotides.  
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1. Introduction 

Renalase was discovered in 2005, through an in silico screen of the human genome aimed at identifying genes 

encoding previously uncharacterized proteins, predicted to be soluble and secreted, which yielded, among others, a gene 

preferentially expressed in the kidneys [1]. The hypothesis underlying this effort was that kidney endocrine functions 

possibly included still unknown signaling proteins [2-7]. Over the last six years, an increasing amount of clinical and 

experimental evidence has been accumulating supporting the idea that renalase is a primary player in the pathogenesis 

of the cardiovascular events that usually follow renal dysfunctions. While the link between renalase and the 

pathophysiology of the cardiovascular system seems now to be clear, the molecular mechanism underlying its actions is 

still obscure in most respects. Several excellent reviews have recently been published on the consequences of renalase 

deficiency in diabetes, hypertension, cardiac hypertrophy, myocardial ischemia, and stroke [8-13]. This article will 

mainly focus on the molecular and biochemical properties of mammalian renalase through a critical survey of the often 

contradictory results published to date on the possible catalytic properties of this protein, with the purpose of 

discriminating between solid achievements and the many inconsistent observations. 

 

2. The discovery of renalase 

Renalase was identified in 2005 by the research team of Gary V. Desir [1], and the story of its discovery is an 

instructive demonstration of the power of a rationally-designed data mining strategy in the post-genomic era [2,3]. The 

seminal idea that prompted the search of a still unknown signaling protein released by the kidneys was that traditional 

pathophysiological mechanisms were insufficient to fully account for the increased risk of cardiovascular adverse 

events in patients with chronic kidney disease [4,5,14]. Indeed, besides eliminating waste products and maintaining 

water and electrolyte homeostasis, the kidney also exerts well known endocrine functions (e.g. it secretes erythropoietin 

and calcitriol) and plays a pivotal role in the renin-angiotensin-aldosterone system by releasing the proteinase renin. 

However, in end stage renal disease, replacement therapy and renal transplant fail to fully restore the functions of the 

natural organ. Thus, Desir and coworkers concluded that it would be no surprise that “the current endocrine function of 

kidney was incomplete and that the organ might secrete additional proteins with important biological roles” [1]. To 

identify them, the Mammalian Gene Collection Project database was screened in silico for cDNA encoding proteins 

predicted to possess these three features: to be uncharacterized, to have a signal peptide for secretion and to lack 

transmembrane segments. This a priori selection yielded 114 hits out of 12,563 distinct open reading frames considered 

[1]. The candidate genes were then experimentally validated by Northern blot analysis and observing the actual 

secretion of their products. Just one open reading frame survived these a posteriori criteria, showing a robust expression 
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in the kidney and producing a protein secreted in the medium when transiently expressed in mammalian cultured cells. 

Finally, the gene product, named renalase by its discoverers, was found in blood plasma and urine of healthy 

individuals. To date, various research groups have confirmed the presence of renalase in plasma, and solid evidence has 

accumulated that circulating renalase predominantly originates from the kidneys. However, its discovery has been at 

least partly serendipitous, since renalase tissue distribution is much wider than initially reported (see Chapter 4), and the 

peptide originally predicted to represent a secretion signal probably does not serve this role (see Chapter 6). 

 

3. Structure of the renalase gene 

The human renalase gene (gene symbol: RNLS, formerly C10orf59) spans about 300,000 nucleotides from 

position 90,043,859 to 90,343,082 of the minus strand of chromosome 10 at q23.33. Mapping full-length cDNA 

sequences to the genome identifies eleven exons, which encode different splicing variants of the protein (Fig. 1). The 

main isoform (renalase 1, NP_001026879) is composed of 342 residues, with a theoretical molecular mass of 37,847 Da 

[7,8,15]. The orthologous mouse gene is annotated on chromosome 19C1 [16] and, as detailed in Chapter 7.1, it has 

been recently inactivated by homologous recombination, providing important experimental clues about its role in the 

modulation of the cardiovascular system [8,17]. 

The renalase gene and its main protein product are highly conserved in vertebrates, with amino acid sequence 

identity above 60% [7,16]. The evident homology between renalase and the vertebrate monoamine oxidase (MAO) A 

and B genes [1,15] (as well as the intermittent use of the term MAO C to describe the renalase gene product [16]) 

implicitly suggest a close evolutionary relationship between these three genes. However, neither comparative genomic 

nor phylogenetic analyses lend support to this hypothesis. The human MAO genes show high levels of overall 

colinearity and similarity to a family of prokaryotic MAOs (typified by the aofH flavin-containing MAO gene product 

of Mycobacterium tuberculosis H37Rv over 85% of its length). Renalase however, shares extensive colinearity with 

members of a distinct and widely distributed FAD dependent oxidoreductase family (e.g. 27% identity and 46% 

similarity with Cyanothece sp. ADN1670 over 95% of its length). Indeed, the human MAO A and renalase protein 

sequences share only 38% identity in the 10% of the renalase sequence that aligns well with the human MAO A 

polypeptide. These observations immediately suggest that, rather than deriving from a eukaryotic specific gene 

duplication, the ancestor of the MAO genes on one hand and renalase on the other were independently acquired by 

eukaryotes from prokaryotic forbearers. 

Unfortunately, contemporaneous, cross kingdom phylogenetic analyses of MAO-like and renalase-like genes 

are impossible due to low numbers of unambiguously aligned residues. However, MAO-like genes are found in 

mycetozoa, many fungi, plants and some protists. Among non-metazoan eukaryotes, gene products displaying overall 
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similarity with renalase are observed in plants and some stramenopiles but not in fungi (although the N-terminal region 

of renalase shows significant similarity to portions of fungal prenylcysteine lyase proteins). Phylogenetic 

reconstructions of selected MAO-like protein sequences lend moderate support to the monophyly of eukaryotic genes, 

but fail to identify a well-supported prokaryotic sister group, suggesting that such genes have been present within 

eukaryotes since their origin, but not affording insight into the nature of their prokaryotic donor. The evolutionary 

history of eukaryotic renalase genes is even less clear, with animal, plant and oomycete genes potentially deriving from 

independent acquisitions from prokaryotes. In any case, these considerations indicate that inferences regarding the role 

of renalase should be derived from studies of MAOs only with great caution as these amine-oxidase-like subfamilies are 

only distantly related to one another (not shown). 

 

4. Renalase isoforms and gene expression pattern  

Different mRNA transcripts of RNLS have been detected and sequenced, highlighting the existence of protein 

variants originating from alternative splicing [8,18,19]. Besides the aforementioned renalase1 (NP_001026879), a 

second annotated protein isoform exists (renalase 2, NP_060833), with a slightly shorter polypeptide chain (315 

residues) and a different sequence in its C-terminal region. The other two characterized RNLS transcripts (AK296262 

and BX648154) encode much shorter deduced polypeptides (233 and 138, respectively). The comparison of the primary 

structures of the alternatively spliced renalase isoforms in the light of the crystal structure of renalase 1 [20] suggests 

that, while renalase 2 would probably be a compact globular protein similar to its larger isoform, the other two 

polypeptides would be unlikely to yield flavin-containing proteins, since they lack essential structural elements for FAD 

binding (see Chapter 6). Thus, the potential physiological significance of such shortest variants is uncertain. In the case 

of the mouse orthologous gene, two transcript isoforms are annotated: the first (NM_001146342) has intron-exon 

structure identical to human NP_001026879 and its translation product has been partly characterized [16]; the second 

lacks exons 2 and 3 (as does human transcript AK296262) (see Fig. 1), but encodes a protein whose deduced C-terminal 

region is identical to that of NP_001026879. This suggests that isoform sampling in human tissues is still incomplete, 

and further alternative transcripts might exist. 

In the most comprehensive study on the pattern of RNLS expression published so far, autoptic human tissues 

samples known to express MAOs have been analyzed both by immunoblotting using an anti-renalase monoclonal 

antibody and by reverse transcriptase polymerase chain reaction [19]. In addition to kidney and myocardium [1], 

renalase was found in forearm vein and artery, renal vein and artery, ureter, median nerve, hypothalamus, pons, medulla 

oblongata, cerebellum, pituitary grand, cortex, and spinal cord [19]. In the kidneys, renalase was shown to be present in 

glomeruli and proximal tubules [1]. Widespread transcription of the human relanase gene is also confirmed by 
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microarray data [21] and Whole Transcriptome Next-Generation Sequencing (RNA-Seq) [22]. Renalase 1 is the only 

isoform apparently detected in blood plasma and urine and it represents the major isoform in all tissues tested (kidney, 

heart, skeletal muscle, liver, testicle, hypothalamus, adrenal gland) [1,19]. Transcripts encoding renalase 2 and the two 

shortest variants (AK296262 and BX648154), although at lower levels than renalase 1 mRNA, were observed in all 

samples examined, while no renalase 2 transcript was detected in the hypothalamus [19]. A renalase concentration of 

0.1 mg per gram wet tissue has been estimated in the kidneys by immunoblotting [10]. Data on the absolute 

concentration of renalase in human blood plasma have been explicitly reported only recently, as determined by ELISA, 

showing that it is about 4 g/ml in healthy individuals, corresponding to 0.1 M [23-28]. Murine renalase gene 

expression was observed by reverse transcriptase PCR in kidney, testicle, liver, heart, 12.5-days whole embryo, brain, 

and skeletal muscle [16]. 

Several hundred single nucleotide polymorphisms (SNPs) of RNLS are known, most of which are located in the 

flanking regions, within the introns or the untranslated regions of the gene and thus do not result in missense mutations, 

although they could possibly affect gene expression and mRNA splicing. The twenty-four SNPs resulting in amino acid 

replacements are shown in Table 1. Interestingly, most of the mutated residues are located on the molecular surface of 

renalase 1, at sites where the replacements are expected to have little impact on protein conformational stability. Several 

of the SNPs mapping in the interior of the renalase molecule maintain the hydrophobic character of the residue side 

chain, with the exceptions of Ile111Thr, Ala195Ser, Ile226Thr and Pro240Ser. The only allelic variant involving a 

residue interacting with FAD carries the Met161Ile replacement, in which the substitution of the side chain, which 

stacks on the FAD adenine ring, does not seem to put at risk the binding of the cofactor. As reported in Chapter 7.3, for 

a few RNLS SNPs (listed in Table 2) the possible association of a specific allele or genotype to some pathological 

conditions has been studied (see Chapter 7.3).  

Bioinformatics analysis, physiological and clinical evidence, and experimental data indicate that renalase is at 

least partially secreted. First of all, as mentioned above, renalase 1 was detected in body fluids such as blood plasma 

and urine [1,10,29,30]. Secondly, in patients suffering from chronic kidney disease and primary glomerulonephritis, as 

well as in animal model of kidney failure, extracellular renalase was absent or present at lower concentrations, 

indicating the kidneys as the main source of the secreted protein [1,30-32]. Finally, mammalian cells transfected with 

constructs expressing either human or mouse renalase were shown to secrete the protein into the culture medium [1,16]. 

However, as discussed in Chapter 6, it is unlikely that the N-terminal region of renalase, initially proposed as a 

secretion signal [1], could be processed by the conventional cell secretory pathway, because the cleavage of this peptide 

would dramatically destabilize the native conformation of the protein. 
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5. Biochemical properties of renalase 

5.1. Purification of endogenous and recombinant renalase forms 

Any proposal about the mechanism of the physiopathological action of a newly discovered protein needs to be 

verified in the context of its functional and structural properties. In the case of renalase, the application of this general 

rule had to wait several years until sufficient amounts of stable recombinant holoprotein became available for 

biochemical characterization, which eventually led also to the characterization of its crystal structure. The only attempt 

to characterize endogenous human renalase was carried out on the protein isolated from the urine of healthy volunteers 

[1]. Excreted renalase was purified by ammonium sulfate precipitation followed by immunoaffinity chromatography 

using antibodies against the recombinant protein. Unfortunately, essentially no biochemical characterization was 

performed on the purified material, except for electrophoretic analysis and catalytic activity assays (see Chapter 5.2). 

Thus, although SDS-PAGE provided a molecular mass (35,000 Da) slightly lower than that predicted for the full length 

342-residue polypeptide (37,847 Da), the accuracy of the estimate did not allow definitive conclusions about the 

presence or absence of the signal peptide after post-translational processing of urine renalase. Even more surprisingly, 

the possible presence of a bound flavin cofactor was not verified in the purified protein [1].  

The production of recombinant mammalian renalase in different hosts using various expression strategies has 

been described by four independent groups. Desir’s group reported the production of two recombinant forms of human 

renalase in Escherichia coli. Initially, the protein was expressed as an N-terminal fusion with glutathione S-transferase 

(GST) and purified in soluble form by affinity chromatography on a Glutathione Sepharose column [1,17]. GST-

renalase was used to raise anti-renalase polyclonal antibodies and to study its catalytic activity in vitro. Later, two 

recombinant allelic isoforms of human renalase were synthesized with no tag or fusion partners, extracted from E. coli 

inclusion bodies by chaotropic agents and refolded in vitro in the presence of FAD [17,33]. Wang and coworkers 

produced human renalase in E. coli as a fusion protein containing at the N-terminus the pelB leader sequence for 

localization in the cell periplasm, and a C-terminal His-tag. The abundant 38 kDa product was purified (although it was 

not specified whether under denaturing or non-denaturing conditions) and used for monoclonal antibody production 

[34]. Zhang’s group reported the synthesis of Mus musculus renalase in E. coli as an N-terminal fusion with GST, with 

no purification attempt [16].  

Recombinant renalase has also been produced in eukaryotic cells, although its isolation from this source has 

never been reported. Mouse renalase has been successfully synthetized in human embryonic kidney cells as a C-

terminally enhanced green fluorescent protein (EGFP)-tagged fusion [16]. The expression of human renalase in insect 

cells by a baculovirus-based system was described, although many details of the cloning procedure are missing and no 
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explanation is given of the very large apparent molecular mass of the expression product (85 kDa) [35]. The same 

authors also reported the synthesis of human renalase in embryonic kidney cells [36]. Finally, the production of human 

renalase in the yeast Pichia pastoris has been described in a patent by Desir and coworkers [37]. Gene expression was 

obtained using the pPICZα (Invitrogen) vector, which promotes its integration in the host genome and secretion of the 

resulting translation product in the growth medium, where it was detected immunochemically.  

Despite the ability of renalase to incorporate a flavin nucleotide being an absolute prerequisite for its initially 

proposed enzymatic action, the actual presence of FAD or FMN in the mentioned recombinant renalase forms was not 

reported. Since the presence of flavin nucleotides is difficult to miss due to its intense yellow color, we suspect that no 

purification procedure yielded a stable flavoprotein. Using the pGEX-4T-2/mMAO-C plasmid kindly provided by Dr. 

Shu-Ping Zhang [16], we obtained the synthesis in E. coli of limited amounts of soluble mouse GST-renalase, which, 

after successful isolation by affinity chromatography, contained no flavin cofactor (Aliverti, unpublished results). 

Apparently, the only observation (reported in its first article on this subject) that led Desir to conclude that human 

renalase is a flavoprotein was that inclusion of 0.1 M FAD in the bacterial culturing medium was required in order to 

isolate a recombinant protein that demonstrated oxidoreductase active [1]. This is an inconsistent observation, since it 

has long been known that FMN or FAD biosynthesis by E. coli is not a limiting factor in flavoprotein production, even 

when expression levels exceed 25 mg of target protein per gram of bacterial cells [38,39]. Indeed, Medvedev and 

coauthors clearly stated that a conclusive proof that renalase contains FAD was still lacking [9]. This proof was 

obtained in the same year, when after several expression trials in both E. coli [40] and Saccharomyces cerevisiae 

[Aliverti, unpublished results], we finally obtained limited amounts of highly purified human flavin-containing renalase 

spontaneously folded in vivo in the bacterial host [40]. Both Glu37 and Asp37 allelic isoforms of renalase were found to 

contain 1 mol FAD per mol protein, which, at variance with MAO enzymes, was tightly but not covalently bound to the 

apoprotein. The fluorescence of the bound cofactor was found completely quenched, and circular dichroism 

spectrophotometry indicated that its isoalloxazine ring is embedded in a highly asymmetrical environment, markedly 

different from that of MAOs [40]. Dynamic light scattering, far ultraviolet circular dichroism, sulfhydryl titration and 

mass spectrometry predicted a globular, highly packed conformation in solution, with no disulfide bonds and an  and  

secondary structure content of 23% and 21-25%, respectively [40]. By thermal denaturation at low ionic strength and 

neutral pH, an apparent melting temperature of 54 °C was determined for recombinant renalase, indicating that its 

native conformation is particularly stable [Aliverti, unpublished results]. Under non-denaturing conditions, renalase was 

also very resistant to the action of a variety of proteases, indicating the absence of large flexible surface loops. The 

protein was digested only in the presence of urea at concentrations above 1.5 M, without detectable transient 

intermediate polypeptides, indicating a global native conformation stabilized by highly cooperative tertiary contacts 
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[Aliverti, unpublished results]. Production of renalase in E. coli with either an N-terminal His-tag, C-terminal His-tag, 

or a N-terminal cleavable SUMO polypeptide did not affect its biochemical properties, suggesting that the recombinant 

protein was not altered in any way by the fusion strategy [40, Aliverti, unpublished results]. All the above indirect 

conclusions about the structural properties of renalase are in full agreement with the crystal structure of the protein (see 

Chapter 6).  

 

5.2. Functional properties of renalase 

Only two groups have published data on the biochemical in vitro properties of renalase to date. In their seminal 

2005’s paper, Desir and coworkers reported that both recombinant GST-renalase fusion and the natural protein isolated 

from urine possessed amine oxidase activity with a substrate preference profile different from those of either MAO A or 

MAO B [1]. Dopamine was described as the best renalase substrate, followed by epinephrine and then norepinephrine, 

whereas its activity towards other biogenic amines was negligible. Moreover, renalase activity was unaffected by 

clorgyline and pargyline, specific inhibitors of MAO A and B, respectively [1]. Based on this observations, mammalian 

renalase was proposed to represent a new type of MAO [1,7,15], which was later named MAO C [16], a term under 

which is currently classified in some databases. These conclusions were strongly questioned by Frans Boomsma and 

Keith F. Tipton [41], who pointed out that copper enzyme semicarbazide-sensitive amine oxidase is the only enzyme 

responsible for the degradation of catecholamines in mammalian blood plasma. The supposed activity of purified 

renalase, measured only as H2O2 production, might be due to catecholamine outoxidation, which is known to be 

relevant at pH above 7 in the absence of antioxidants. Alternatively, since the reaction was followed for just 0.25% of 

the expected total amine conversion, this activity might be due to the oxidation of contaminant(s) that are common in 

commercial catecholamines. Finally, they argued that, even if renalase were actually able to degrade biogenic amines, 

its reported turnover number is so low (> 0.25 min
-1

) [1], that it would hardly affect blood catecholamine concentration 

[41]. 

Subsequently, Desir’s group proposed a catecholamine-triggered activation mechanism for circulating 

renalase, which would exist in inactive form under normal condition [29]. These authors reported that, while amine 

oxidase activity is undetectable in rat plasma under basal conditions, a 2 min infusion with epinephrine or dopamine 

determined the rapid (<1 min) onset of renalase activity (assayed as H2O2 production specifically inhibited by an anti-

renalase antibody) that lasted for several minutes. Since the plasma concentration of renalase did not follow the same 

time course, increasing only ca. 10 min after perfusion, they concluded that the rapid rise of amine oxidation activity 

was due to the conversion of an inactive prorenalase form to the functional enzyme. Consistent with this finding, they 

also observed that urine human renalase displays a much higher turnover rate than the plasma form. Since blood plasma 
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was found to have a strong inhibitory effect on purified urine renalase, they concluded that circulating prorenalase 

might represents a resting enzyme form, possibly complexed with a specific inhibitor [8,18,29]. 

As reported in Chapter 5.1, recently we obtained a recombinant in vivo-folded FAD-containing human 

renalase. At variance with previous reports, we found that our protein, although eliciting the expected effects on blood 

pressure when injected into rats, was completely devoid of any amine oxidase activity [40]. At the same time, Desir and 

coauthors reasoned that, since the renalase sequence contains the dinucleotide binding motif GXGXXG, which is the 

hallmark of the Rossmann fold, it could bind either NAD or NADP [17,33,42]. Indeed, they found that in vitro refolded 

recombinant human renalase possesses NADH-oxidase activity, with a Km
NADH

 of 15 ± 1 M, and a Vmax of 15 ± 0.1 

nmol/min/mg, corresponding to a kcat of 0.40 min
-1

 [17]. The enzyme was inactive towards NADPH. When epinephrine 

was included in the reaction mixture, it was degraded at a rate 18-fold faster than in the absence of NADH through a 

reaction that was abolished by superoxide dismutase but not by catalase. NADH-dependent epinephrine degradation by 

renalase displayed a Km
epinephrine

 of 17 ± 4 M, and a Vmax of 22 ± 0.1 nmol/min/mg, corresponding to a kcat of 0.58 min
-1

 

[42]. On these bases, the authors stated that renalase is a new type of FAD-containing, NADH-dependent, 

catecholamine degrading enzyme, although no explanation was given of how the same Rossmann fold domain could 

bind both FAD and NADH.  

Serious doubts over the putative amine-degrading activity of renalase were again raised by Nina Eikelis and 

coauthors [43], who pointed out that: (i) the supposed renalase catecholamine-degrading rate was too low to be ascribed 

to a real enzyme activity, (ii) a structurally sound recombinant renalase produced by others did not metabolize 

catecholamines [40], and (iii) renalase gene inactivation was studied in a mouse strain (C57BL/6 [17]) that synthetized 

a shortened form of renalase, which lacks the FAD/NAD-binding motif, and thus expected to be enzymatically inactive. 

Desir replied that the renalase knock out was maintained in a mixed mouse background (129Sv/J and C5BL/6), where 

the former wild-type strain produces a full-length renalase, and the reason for the discrepancy between enzyme activity 

data obtained in different laboratories depends on the fact that Aliverti’s group omitted NADH in the assays [43]. 

Another intriguing aspect of renalase function is the role played by the residue 37 side-chain in catalysis. As 

mentioned in Chapter 4, the RNLS rs2296545 G allele, encoding the Asp37 variant of renalase, was found to be 

associated with cardiovascular pathologies [33,44,45]. The catalytic properties of both Asp37 and Glu37 renalase 

isoforms were compared by studying their NADH-diaphorase activity, measured with the water-soluble salt 2-(4-

iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1) as an artificial electron acceptor. The 

Glu37Asp replacement determined an increase in Km
NADH

 from 34 ± 4 to 820 ± 115 M, and a decrease in Vmax from 58 

± 1 to 25 ± 2 nmol/min/mg [33]. The effect of the conservative Glu37Asp mutation was interpreted on the basis of the 

critical role played by the corresponding residue in MAOs (Glu34 in MAO B) and other flavoenzymes sharing the same 
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FAD-binding motif [17]. In such enzymes the Glu -carboxylate interacts with the adenosyl ribose moiety of bound 

FAD, controlling their catalytic properties, as demonstrated by the large impact of the Glu34Asp mutation on activity 

[46,47]. 

Very recently, we compared the functional properties of the Glu37 and Asp37 isoforms of recombinant in vivo 

folded renalase [20, Aliverti, unpublished results] and found no difference between them, in sharp contrast with the 

aforementioned report [33]. Moreover, we provided a solid confirmation that renalase slowly reacts with both NADH 

and NADPH, and weakly binds the oxidized forms of both dinucleotides. We found that renalase catalyzes NADH- and 

NADPH-dependent diaphorase reactions with various artificial electron acceptors (2-(4-iodophenyl)-3-(4-nitrophenyl)-

5-phenyl-2H-tetrazolium chloride (INT) being the preferred one), and determined the following steady-state kinetic 

parameters: kcat
NADH

 = 0.14 min
-1

, kcat
NADPH

 = 0.26 min
-1

, Km
NADH

 = 18 M, Km
NADPH

 = 175 M [20]. In addition to 

indicating that Glu37 has no role in the catalysis of these reactions, our steady-state kinetic data markedly differ from 

those published by Desir’s group in showing that renalase is not strictly specific for NADH [20]. Moreover, we 

demonstrated that protein-bound FAD is involved in these reactions, showing its reduction at rates compatible with 

catalysis, when renalase is incubated under anaerobiosis with either NADH or NADPH. By differential 

spectrophotometry we determined that the dissociation constants of the protein for NAD
+
, NADP

+
 and 2-phospho-AMP 

were all in the range of 1-2 mM. Taken together, the very low turnover numbers, the low affinity for nucleotides, and 

the poor selectivity in discriminating among them, strongly suggest that renalase is not a NAD(P)H-dependent enzyme, 

and that the observed diaphorase activity indicates a physiologically irrelevant side reaction [20]. Finally, we showed 

that renalase slightly stabilizes the neutral form of FAD and that is able to form a sulfite adduct [20]. These 

observations indicate that the reactivity of the FAD prosthetic group of renalase dramatically differs from that of MAO 

A and B, allowing us to conclude, in agreement with the phylogenetic data (see Chapter 3), that renalase is not a MAO-

like enzyme and likely is not even an oxidase.  

 

6. Three-dimensional structure of renalase 

The crystal structure of human renalase isoform 1 (PDB ID 3QJ4) was solved at 2.5 Å resolution by molecular 

replacement using a putative oxidoreductase from Pseudomonas syringae q888a4 (PDB ID 3KKJ) as starting model 

[20]. The renalase molecule has a compact, elongated, globular shape, with  and  secondary structure content of 26% 

and 25%, respectively. It is organized in two domains: one consisting of three non-adjacent polypeptide stretches, and 

the other by the two intervening segments. At the interface between the two domains, a wide and deep cleft runs 

perpendicularly to the longer axis of the molecule on the side opposite to the entrance of the active-site cavity described 
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below. The FAD cofactor is buried within the interior of the molecule, with the exception of a few small regions, 

including part of the isoalloxazine ring, and is firmly, but not covalently bound to the protein through several H-bonds 

and other contacts. The first domain, as predicted by the presence of the dinucleotide binding motif, adopts the classical 

Rossman fold, which is used to bind the FAD prosthetic group [48], thus excluding the possibility that it could provide 

a NADH-binding site, as proposed by other authors [33]. The second domain, based mainly on an antiparallel five-

stranded beta sheet surrounded by three helices and a  hairpin, is presumably involved in substrate binding. The 

overall fold unequivocally classifies renalase as a member of the p-hydroxybenzoate hydroxylase (PHBH) protein 

superfamily [49], which comprises several flavoenzymes catalyzing highly diverse reactions (Table 3). The oxidases of 

this superfamily belong either to the L-amino acid oxidase or to the D-amino acid oxidase structural families, renalase 

more closely resembling the former enzymes, which encompass also MAOs. In comparison to most of its structural 

homologs, renalase lacks a third domain, which in PHBH is named the interface domain [50], and which participates in 

substrate binding in MAOs and polyamine oxidase [51]. Due to the absence of this structural element, the polar, 

positively charged cavity of 224 Å
3
 that faces the re side of the flavin ring and presumably represents the active site is 

freely accessible to the solvent trough a large opening [20]. 

As renalase was claimed to degrade catecholamines by either oxidase or NADH-dependent reactions [1,33], 

these proposed catalytic activities have been considered in the light of its three-dimensional structure [20]. As shown in 

Fig. 2, the renalase active-site markedly differs from those of MAOs and related amine oxidases: the former lacks both 

the ‘aromatic cage’ that in the latter enzymes binds the substrate amine group and promotes its oxidation, and a lysine 

(Lys 305 and Lys296 in MAO A and MAO B, respectively) conserved in most of the oxidases of the superfamily [20]. 

These features refute the classification of renalase as a MAO, suggesting that probably it is not an oxidase at all. In 

principle, the observed NADH reactivity of renalase [33] is suggestive of a possible monooxygenase (i.e. hydroxylase) 

activity, substantiated by its structural similarity to PHBH, the prototype of flavin-dependent aromatic hydroxylases 

[52]. Such activity is compatible with the observed very slow reaction between renalase and NADH or NADPH [20], 

since in aromatic hydroxylases the reductive half-reaction (FAD reduction) is exceedingly slow in the absence of a 

hydroxylatable substrate [52]. Moreover, the lack of a typical NAD-binding site in renalase [20] is in line with this 

hypothesis, because PHBH binds NADPH at a site [53] that corresponds to the aforementioned interdomain cleft of 

renalase, which could play an equivalent role. However, control of FAD reduction and reactivity of the flavin-C4a-

hydroperoxide intermediate is obtained in aromatic hydroxylases through large conformational transitions occurring 

during the catalytic cycle, in which the isoalloxazine ring oscillates, alternating between ‘in’ and ‘out’ conformations 

[52]. When the flavin adopts the ‘in’ conformation, its N5 atom is strictly protected from the solvent to avoid H2O2 

release from the flavin peroxide, a reaction competing with substrate hydroxylation [52]. As reported elsewhere [20], 
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the swing of the flavin ring to the ‘out’ position is precluded in renalase by the obstructing presence of the 18 strand 

and particularly by the Trp288 side-chain (Fig. 2). Notably, in renalase the isoalloxazine N5 position is solvent exposed 

[20]. In addition to the Rossman fold GXGXXG signature, flavoprotein hydroxylases display two highly conserved 

consensus sequences: the ‘GD’ and the ‘DG’ motifs [54]. Whereas, the former polypeptide region participates in FAD 

binding and is conserved in renalase, the latter motif, critical for the interaction with the nicotinamide nucleotide, is 

absent. In particular, Gly160 and His162 of PHBH, which are very important for NADPH binding [54], in renalase are 

both replaced by Pro residues (Pro162 and Pro164), excluding the presence of a functional NAD(P)-binding site in this 

protein. These considerations, combined with the observation that the FAD structural environment is incompatible with 

the required chemistry (confirmed by the production of superoxide upon reaction with O2 [33] instead of hydrogen 

peroxide as typical in hydroxylases [52]), led to the logical conclusion that renalase cannot be a monooxygenase. We 

proposed that the slow NAD(P)H-dependent activity of renalase is a side reaction arising from non-physiological access 

of the nucleotides to the flavin ring, driven by the positive charge of the wide active-site cavity [20]. 

As mentioned in Chapter 5.2, Glu37 was proposed to modulate the NADH-dependent activity of renalase by 

interacting with the FAD ribose moiety [17]. Structural data ruled out this hypothesis, by showing that Glu37 is part of 

a loop near the rim of the surface cleft [20], in agreement with our observation that the Glu37Asp replacement had no 

effect on the properties of the flavoprotein [20]. 

As reported in Chapter 4, a plausible N-terminal signal peptide for secretion (of 16-17 residues) was predicted 

in renalase [1], although SignalP 4.0 [55] assigns it just a borderline score. Inspection of the protein crystal structure 

shows that this region corresponds to the central 1 stand and half of the adjacent 1 helix that are integral part of the 

Rossmann fold [20] and whose removal would cause the collapse of the entire FAD-binding domain, as shown in Fig. 

3A. This consideration tends to exclude that the 1-16 peptide represents a signal for secretion, or that it is cleaved 

during protein processing. To reconcile this inference with the observation that renalase is actually present in blood 

plasma, a non-conventional secretion mechanism must be invoked [56].  

Finally, the availability of the three-dimensional structure of the isoform 1 (NP_001026879) of renalase allows 

the development of “educated guesses” about the possible structural features of the alternative splicing isoforms. 

Renalase 2 (NP_060833) originates from alternative splicing between exons 6 and 7, causing a frame shift that alters the 

C-terminal sequence and makes the polypeptide chains 27 residue shorter through the introduction of a premature stop 

codon (Fig. 1) [19]. This profoundly modifies the sequence of the region corresponding to the  hairpin 19-20 and 

precisely deletes the two C-terminal helices 2 and 11 of isoform 1 [20], as outlined in Fig. 3B. These structural 

modifications are expected to make FAD more exposed in renalase 2 than in renalase 1 and to significantly affect the 

features of its active-site cavity. In comparison to renalase 1, the splicing isoform AK296262 lacks the polypeptide 
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segments encoded by exons 2 and 3 (Fig. 1). As a result, the surface exposed 4 helix of the FAD-binding domain and 

the 3-4 hairpin and the 5-2-3-6-7 subregion of the substrate-binding domain are deleted [20]. The resulting 

protein would lack critical residues for the binding of the FAD isoalloxazine, suggesting that it would not be able to 

incorporate the cofactor and hence to be active as an oxidoreductase. In the variant BX648154 the FAD-binding domain 

is almost completely deleted, resulting in a polypeptide with unpredictable properties. 

 

7. Physiological roles of renalase and their impairment as possible pathogenic 

mechanisms of cardiovascular diseases 

Despite our appreciation of the probable molecular mechanism of its physiological activity, the nature of the 

catalyzed reaction, and the identity of its substrate(s) is very poor (see Chapter 5), there is quite solid and constantly 

accumulating evidence of the important roles played by renalase in the control of blood pressure and heart function. 

Since its discovery, two key observations were made about renalase pathophysiological actions: 1) its concentration in 

blood plasma is dramatically lowered in subjects suffering from severe kidney disease; and 2) the parenteral 

administration of the recombinant protein has a hypotensive effect in rats [1]. For clarity, the proofs of the relationship 

between renalase and cardiovascular system pathophysiology will be subdivided here in experimental, clinical and 

epidemiological aspects.  

 

7.1 Experimental evidence of renalase action on the cardiovascular and sympathetic systems. 

The finding by Desir’s group that intravenous injection of recombinant renalase in healthy rats decreases, in 

dose-dependent manner, systolic, diastolic, and mean arterial pressure, as well as heart rate and contractility [1] has 

been partially confirmed by us [40]. In addition, it was later shown that subcutaneous administration of the protein has a 

profound effect on blood pressure and heart rate in an animal model of hypertension (Dahl salt-sensitive and 5/6 

nephrectomized rats; [10,57]. Very interestingly, using an isolated heart model of acute coronary syndrome, perfusion 

with recombinant renalase was shown to exert a strong protective effect against ischemia, preserving ventricular 

function and reducing myocardial necrosis and infarct size [58]. A major breakthrough in the identification of renalase 

physiological role has been the inactivation of the RNLS gene in mouse by homologous recombination [17]. In 

comparison to littermates, KO mice displayed 25% lower body mass, tachycardia, hypertension, and higher circulating 

norepinephrine levels, while markers of endothelial function were unaffected. Moreover, gene inactivation was found to 

greatly increase the extent of myocardial damage following induced ischemia on isolated heart, an effect that was fully 

prevented by renalase infusion [17]. Since RNLS KO was also shown to be associated to a markedly decreased 
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NAD
+
/NADH ratio in the myocardium, it was proposed that the cardioprotective effect of renalase might be mediated 

by the control of both sympathetic activity and redox potential of the NAD
+
/NADH couple, which in turn is expected to 

affect energy metabolism and sirtuin-1 signaling [17]. However, the exceedingly low turnover of renalase measured in 

NADH-dependent reactions in vitro (see Chapter 5.2) would exclude direct effects on NADH and/or NAD
+
 

concentrations in vivo. Very recently, using an animal model of chronic kidney disease, i.e. 5/6 nephrectomized rats, 

Baraka and El Ghotny showed that prolonged renalase administration after the chirurgic procedure significantly 

controlled the plasma noradrenaline rise induced by nephrectomy, ameliorating the resulting cardiovascular 

complications, including hypertension, myocardial fibrosis and cardiac hypertrophy [59]. 

A link between renalase and catecholamine metabolism emerges from several studies. Downregulation of 

RNLS expression in healthy mice by antisense phosphorothioate oligonucleotides was found to produce both a rise in 

blood pressure and an increased sensitivity to norepinephrine injection [8,60]. In various rat models of chronic kidney 

disease, lower concentrations of renalase in kidneys, heart and blood were always accompanied by increased levels of 

epinephrine and norepinephrine in plasma and heart [30,32,61,62]. Furthermore, some of these studies together with 

other investigations on rodent models showed that renalase levels inversely correlate with the concentration of 

dopamine, which has hypotensive and cardioprotective actions at variance with other catecholamines [63], in kidneys 

and urine [32,64]. The known natriuretic action of dopamine and its recently proposed participation in the modulation 

of phosphate tubular reabsorption have also suggested a role for renalase in the control of sodium and phosphate ions 

homeostasis [64]. 

 

7.2 Clinical evidence for renalase actions on the cardiovascular and excretory systems. 

The involvement of renalase in the renal dopaminergic system was substantiated by a clinical report on eight 

kidney transplant recipients, showing a correlation between the increase in dopamine concentration and the decline of 

renalase excretion in urine [65]. Other reports highlighted the involvement of renalase in different forms of 

hypertension. First, in a study on neurogenic hypertensive subjects, where noradrenaline spillover from adrenergic 

nerves was significantly increased, renalase secretion by the kidneys was undetectable in most patients [66]. 

Furthermore, biopsies from twenty-three patients affected by IgA nephropathy, the most common form of primary 

glomerulonephritis, displayed decreased renalase levels in tubular epithelial cells, correlating with both pathology 

chronicity indexes and hypertension [31]. Recent studies on the impact of kidney and heart transplantation on the level 

of circulating renalase led to the unexpected finding that plasma renalase concentration increases after organ 

implantation and the degree of increase correlates with the severity of kidney failure in the allograft recipients [23-25]. 

The same authors also investigated in chronic kidney disease patients the impact of hemodialysis and peritoneal dialysis 
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on blood serum renalase They concluded that impairment of renal function correlates with increased renalase levels [26-

28], which was found up to 10-fold higher in anuric patients that underwent bilater nephrectomy in comparison to 

healthy subjects [26]. Finally, it was reported that stroke and hypertensions were associated to lower serum renalase 

concentrations in a hemodialysis population [27]. 

 

7.3 Epidemiologic data implying renalase gene polymorphisms as disease risk factors. 

To date, four independent genetic studies have highlighted a correlation between four individual RNLS SNPs 

and the propensity to develop specific pathological conditions in different populations, as summarized in Table 2. In the 

first such study, carried out on 1317 hypertensive and 1269 normotensive subjects recruited from the International 

Collaborative Study of Cardiovascular Disease in Asia (InterASIA), RNLS was shown to represent a susceptibility gene 

for essential hypertension in the northern Han Chinese population [44]. In particular, the G and the C alleles of the 

rs2576178 and rs2296545 SNPs, respectively, displayed significant higher frequencies in the pathological group. 

Genotyping suggested a codominant model for the expression of both risk-associated alleles [44]. The association of 

rs2576178, which maps in the 5’ flanking region of the renalase transcript, with hypertension was confirmed by a case-

control study on 400 Caucasian end-stage renal disease patients of Polish origin under dialysis [67]. The same survey 

also found a significant correlation of the G allele of the rs10887800, mapping in intron 6, with increased incidence of 

hypertension. A similar study, carried out on 900 type 2 diabetic patients and control individuals from a population of 

Polish origin found a significant correlation between the rs2576178 G allele and type 2 diabetes, and a strong 

association of the rs10887800 G allele with stroke in hypertensive individuals, regardless of their diabetic status [45]. 

Interestingly, RNLS was recognized as a novel gene responsible for type-2 diabetes by a genome wide association scan 

in the Amish population, which identified rs2437871 as a disease-linked SNP [68]. Among the RNLS SNPs considered 

in the above studies, rs2296545 is the only resulting in variants of the encoded protein, which differs for the presence of 

a Glu (G allele) or an Asp (C allele) residue at position 37. The homozygous CC genotype was recently shown to be 

associated with cardiac hypertrophy, ventricular dysfunction, poor exercise capacity and higher susceptibility to induced 

ischemia [33], through genotyping 590 Caucasian individuals from the Heart and Soul Study [69], 

 

8. Concluding remarks 

As foreseen by Eberhard Ritz, who, soon after the discovery of renalase, wrote that “it is easy to predict that in 

the near future this novel endocrine product of the kidney will be intensely investigated experimentally and in renal 

patients” [2], this protein has been the subject of several studies that, over the last seven years, have considerably 
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strengthened its connection with the physiopathology of the cardiovascular and excretory systems. Moreover, the 

involvement of renalase in the modulation of the catecholaminergic system has become increasingly clear. Thus, human 

renalase is now regarded as a new player in the control of blood pressure and heart function, whose modulation could 

lead to promising new pharmacological treatments of various cardiovascular dysfunctions [3,8,13,23,24,70,71]. 

Renalase has been proposed as a drug for replacement therapy in end stage renal disease [12,17,59,70,72], as early 

biomarker of acute kidney ischemia [10] and essential hypertension [8], as well as prognostic factor for stroke [27,45], 

and even as possible target for the therapy of psychiatric disorders caused by altered catecholaminergic signaling in the 

central nervous system [19]. Obviously, development of effective tools for pharmacological intervention requires the 

mechanism of renalase action to be known at the molecular level. Unfortunately, this is not the case yet, since the 

supposed catalytic activity of renalase as a catecholamine-degrading enzyme has recently been proved wrong by the 

detailed biochemical characterization of the recombinant human protein [20,40]. However, the structural and functional 

data on renalase should provide the basis for a systematic and rational quest toward the identification of its substrates 

and the catalyzed reaction.  
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MAO, monoamine oxidase; GST, glutathione S-transferase; SNP, single nucleotide polymorphism; PHBH, p-

hydroxybenzoate hydroxylase. 
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Figure legends 

Figure 1. Schematic representation of the structure of the human renalase gene and its major expression 

products. The schematic intron/exon organization of the known splicing variants of the RNLS transcripts is shown. On 

the right, the deduced amino acid sequence of the RNLS exons is reported. 

Figure 2. Comparison between the active site of renalase and those of MAO A and MAO B. Stereo view of the 

putative active site of human renalase overlaid on those of MAO A (panel A) and MAO B (panel B). The FAD 

isoalloxazine ring and relevant amino acyl residues of renalase (PDB ID 3QJ4, chain A) are shown in blue (black in the 

printed version of the article), whereas the corresponding residues of MAO A (PDB ID 2BXR, chain A) and MAO B 

(PDB ID 1GOS, chain A), including the ‘aromatic cage’ (Tyr407 and Tyr444 in MAO A, and Tyr398 and Tyr435 in 

MAO B) are depicted in gold and pink, respectively (both white in the printed version of the article). 

Figure 3. Putative renalase signal peptide and structural differences between renalase 1 and 2. Ribbon model of 

the three-dimensional structure of human renalase (PDB ID 3QJ4, chain A). Panel A, Crystal structure of renalase 1, 

showing the 1−16 N-terminal peptide, proposed to represent a secretion signal, in orange (light grey in the printed 

version of the article). Panel B, Hypothetical model of renalase 2 (NP_060833), in which the shorter C-terminal peptide 

encoded by exon 7c replaces the longer one encoded by exon 7b (see Fig. 1). Renalase 2 is predicted to lack the 11 

helix of renalase 1 and to present a different amino acid sequence in the region highlighted in red (grey in the printed 

version of the article), which includes 19 and 20 strands. 
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Table 1. Known single nucleotide polymorphisms of the renalase gene that result in protein amino acyl substitutions. 

SNP accession no. 

Experimental 

evidence
a
 

Exon no.
a
 

Base 

change 

Amino acyl replacement 

rs2296545 genomic 1a C/G Asp37/Glu37 

rs147588689 cDNA 2 A/G Arg75/Cys75 

rs143513862 cDNA 3 C/T Val85/Ile85 

rs79981780 cDNA 3 C/T Ile93/Val93 

rs149825485 cDNA 3 C/G Asp102/Glu102 

rs140158928 cDNA 3 A/G Ile111/Thr111 

rs139294588 genomic 4 C/G Gln134/His134 

rs146646870 cDNA 4 C/T Glu143/Lys143 

rs77594193 genomic 4 A/G Pro151/Leu151 

rs41317260 genomic 4 A/C Met161/Ile161 

rs78525460 cDNA 5 G/T Gln181/Lys181 

rs112858030 genomic 5 A/G Ser191/Phe191 

rs183742907 genomic 5 A/C Ala195/Ser195 

rs116376263 cDNA 5 A/T Asp207/Glu207 

rs151245420 cDNA 5 C/T Ser217/Gly217 

rs191733133 genomic 5 C/T Arg222/His222 

rs188639368 genomic 5 A/G Ile226/Thr226 

rs143744963 genomic 5 C/T Ile226/Val226 

rs117446494 cDNA 5 C/T Asn232/Ser232 

rs148749882 cDNA 6 A/G Ser235/Pro235 

rs149300466 cDNA 6 A/G Pro240/Ser240 

rs138921267 cDNA 6 C/T Val243/Met243 

rs146268123 cDNA 6 A/G Phe250/Leu250 

rs148477675 cDNA 7b A/G Ala310/Val310 

 

a
 Exon numbering as shown in Fig. 1. 
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Table 2. Single nucleotide polymorphisms of the renalase gene characterized for their association with pathological 

conditions. 

SNP accession 

no. 

Location
a
 Alleles MAF

b
 Diseases and risk-associated allele Ref. 

rs2576178 

5’ flanking 

region 

G/A 0.46 

Essential hypertension (G); hypertension 

in end stage renal disease (G); type 2 

diabetes (G) 

[44,45,67] 

rs2296545 Exon 1a 

C/G 

Asp37/Glu37 

0.44 

Essential hypertension (C); hypertension 

in type 2 diabetes (C); cardiac 

hypertrophy, dysfunction and ischemia 

(C) 

[33,44,45] 

rs2765446 Intron 3-4 C/T 0.46 n. s.
c
 [44] 

rs2437871 Intron 3-4 A/C 0.46 Type 2 diabetes (A) [68] 

rs11202776 Intron 4-5 C/T 0.12 n. s.
c
 [44] 

rs1648512 Intron 5-6 A/G 0.32 n. s.
c
 [44] 

rs10887800 Intron 5-6 A/G 0.50 

Hypertension in end stage renal disease 

(G); stroke (G) 

[45,67] 

rs1035796 Intron 7a-7b C/T 0.47 n. s.
c
 [44] 

rs2114406 

3’ flanking 

region 

A/G 0.22 n. s.
c
 [44] 

 

a
 Intron number numbered according to adjacent exons as shown in Fig. 1. 

b
MAF, minor allele frequency; 

c
n. s., no 

significant correlation with the considered pathological conditions. 
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Table 3. Outline of the structural superfamily of p-hydroxybenzoate hydroxylase.
a 

Superfamily Family Representative members Flavin binding Catalyzed reaction Metabolic function Ref. 

PHBH PHBH-like 

enzymes 

PHBH Noncovalent Hydroxylation of p-

hydroxybenzoate to yield 

protocatechuate 

Catabolism of aromatic 

acids in Pseudomonas 

[50] 

Monooxygenase PhzS Noncovalent Hydroxylation of 5-methyl-

phenazine-1-carboxylate to yield 

pyocyanin 

Pyocyanin biosynthesis in 

Pseudomonas 

[73] 

Dihydroxypyridine hydroxylase Noncovalent Hydroxylation of 2,6-

dihydroxypyridine to yield 2,3,6-

trihydroxypyridine 

Nicotine degradation in 

Arthrobacter  

[74] 

L-amino acid 

oxidase-like 

enzymes  

L-amino acid oxidase Noncovalent Oxidation of L--amino acids to 

the corresponding -keto acids 

Amino acid catabolism [75] 

MAO Covalent bond between 

FAD 8-methyl and S of 

a Cys residue 

Oxidation of monoamines to the 

corresponding aldehydes 

Catabolism of 

catecholamines and other 

monoamines 

[76] 

N,N-dimethylglycine oxidase Covalent bond between 

FAD 8-methyl of and N 

of a His residue 

Oxidative demethylation of N,N-

dimethylglycine to yield sarcosine 

Choline and 1-carbon 

metabolism 

[77] 

Polyamine oxidase Noncovalent Oxidation of secondary amino 

groups of polyamines with 

hydrolysis of resulting imines 

Spermidine and spermine 

catabolism 

[78] 

Lysine-specific histone demethylase 1 Noncovalent Oxidative demethylation of 

histone mono and di-methylated 

Lys residues 

Regulation of gene 

expression by nucleosome 

demethylation 

[79] 
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D-amino acid 

oxidase-like 

enzymes 

D-amino acid oxidase Noncovalent Oxidation of D--amino acids to 

the corresponding -keto acids 

Amino acid catabolism [80] 

Monomeric sarcosine oxidase Covalent bond between 

FAD 8-methyl and S of 

a Cys residue 

Oxidative demethylation of 

sarcosine to yield glycine 

Choline and 1-carbon 

metabolism 

[81] 

Glycine oxidase Noncovalent Oxidation of D--amino acids to 

the corresponding -keto acids 

Amino acid catabolism  [82] 

UDP-

galactopyranose 

mutase-like 

enzymes 

UDP-galactopyranose mutase Noncovalent Interconversion between UDP-

galactopyranose and UDP-

galactofuranose 

Biosynthesis of cell wall 

precursors in Gram-

negative bacteria, fungi 

and protozoa 

[83] 

Poly-unsaturated fatty acid isomerase Noncovalent Double-bond isomerization of 

polyunsaturated 

fatty acid 

Biosynthesis of conjugated 

linoleic acids 

[84] 

 

a
 This classification of the members of the PHBH superfamily is adapted from that of SCOP, Structural Classification of Proteins [85]. 
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