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Abstract—Touchless fingerprint recognition systems do not Touchless fingerprint recognition systems are emerginky-tec
require contact of the finger with any acquisition surface and noplogies designed to overcome these problems by avoiding
thus provide an increased level of hygiene, usability and user contact of the fingertip with any acquisition surface. More-

acceptability of fingerprint-based biometric technologies. The touchl t . th alilit
most accurate touchless approaches compute three-dimensidna over, touchless systems can increase the user accegtaili

models of the fingertip. However, a relevant drawback of these fingerprint biometrics, which is currently limited by culal
systems is that they usually require constrained and highly coop- factors and fears related to the transmission of skin déseas

erative acquisition methods. We present a novel, fully touchless Touchless technologies can also reduce acquisition tinde an
fingerprint recognition system based on the computation of three user training requirements

dimensional models. It adopts an innovative and less-constrained H th iti d int bility of
acquisition setup compared with other previously reported three- owever, the recognition accuracy and interoperabiiity o

dimensional systems, does not require contact with any surface o touchless systems are usually lower than those of touckebas

a finger placement guide, and simultaneously captures multiple systems and are technologies based on more constrained,
images while the finger is moving. To compensate for possible expensive and bulkier acquisition devices. Recent workis t
differences in finger placement, we propose novel algorithms for field aims to reduce such limitations.

computing three-dimensional models of the shape of a finger. Touchl t based th di . | del
Moreover, we present a new matching strategy based on the ouchiess systems based on three-aimensional models usu-

computation of multiple touch-compatible images. We evaluated ally obtain better accuracy compared with techniques based
different aspects of the biometric system: acceptability, usability on single images because they are more robust to perspective
recognition performance, robustness to environmental conditios  distortions and can extract additional features from three
and finger misplacements, compatibility and interoperability with dimensional shapes.

touch-based technologies. The proposed system proved to bemo . . . .
acceptable and usable than touch-based techniques. Moreover, Recent work has examined biometric techniques based on

the system displayed satisfactory accuracy, achieving an Equal touchless achiSitionS and three-dimensional modelsdndh
Error Rate (EER) of 0.06% on a dataset of 2,368 samples based traits, such as: hand geometry [6,7], palmprint [B-11
acquired in a single session and 0.22% on a dataset of 2,368finger geometry [12], and knuckle-print [13,14]. Other séisd
samples acquired over the course of one year. The system was,,ye jnvestigated the reduction of acquisition constsaint

also robust to environmental conditions and to a wide range t based traits traditi I ired i towshl
of finger rotations. The compatibility and interoperability with Systems based on traits tracdiionally acquired in a to e

touch-based technologies was greater or comparable to thosemanner, such as face [15-19], iris [20-22], gait [23], and

reported in public tests using commercial touchless devices. ear [24].
Index Terms—Fingerprint, 3D reconstruction, touchless, con- In touchless syst_ems b_ased on fmge_r and hand characteris-
tactless, biometrics, less-constrained, on the move. tics, samples acquired without controlling the user’s piest

may exhibit low quality, perspective distortions, and non-
uniform resolution. Therefore, most biometric systems use
guides to place the body part. A few studies on techniques
INGERPRINT recognition systems are biometric techthat do not use placement guides have been performed on
nologies that are widely used in a variety of applicatiotraits such as fingerprints [25-27], hand surface [7] ancefing
scenarios [1,2]. These typically feature touch-basediattoin  shape [28]. Studies of fingerprint recognition with movemen
devices, such as optical and solid-state sensors. Howbese have been limited to two-dimensional acquisitions [29].
systems suffer from various problems [3-5]: The present study presents a novel fully touchless finger-
« distortions in the acquired samples due to elastic defgrtint recognition system based on the computation of three-
mations resulting from friction with the skin of the finger;dimensional models from two-view images captured during
« low-contrast regions in the fingerprint images due to skimovement. The system is less-constrained [30] than the-thre
conditions, humidity, and dirt on the sensor plate; dimensional recognition technologies reported in thediigre,
« release of latent fingerprints. and it requires only a minimum level of user cooperation
because the acquisitions are performed while the finger is
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orientations as long as a sufficient area of the ridge pattern L
S Moving finger
is visible by the cameras. The proposed system also presents

important advantages in usability and user acceptance.1Fig . Photocell

shows an example of the biometric acquisition process.

We used a multiple-view technique because it permits e el
to capture of the information needed to compute a three- %
dimensional model in a single instant of time, thus reducing
constraints in finger positioning. Other methods, such as
structured light and photometric stereo techniques, captu Cameras
multiple frames and require placement guides to avoid plEssi k
artifacts due to micro movements of the finger. .

Our system cannot compute the three-dimensional depih. 1. Example of the biometric acquisition process. The Bitipn is
of ridges and valleys but reconstructs a metric representatbased on two-view images captured simultaneously during rfimgezement
(in mm) of the finger's shape that is invariant to the ang¥'d Without support guides.
and distance of the finger to the cameras. Next, it computes
a touch-compatible image from the three-dimensional model . PREVIOUS WORK
and reduces non-idealities due to less-constrained atiguss
using novel strategies for feature extraction and matching

In contrast to three-dimensional technologies reported inThe simplest acquisition techniques adopted by touchless
the literature, which have the main goal of increasing tH#gerprint recognition systems use a low-cost digital came
accuracy of fingerprint recognition technologies, our eyst in uncontrolled light conditions [38—40]. The obtained ges,
aims to increase the usability and user acceptability of fihowever, display poor contrast between ridges and valfeys.
gerprint biometric techniques by performing less-comsé@ this reason, specific illumination techniques (e.qg., a plaght
acquisitions and providing recognition accuracy complaratsource) are frequently adopted to improve the visibilityttod
to touch-based technologies. Our goal is to move towafitigertip details [41-44]. However, white and infrared ligh
the creation of technologies for fingerprint recognitioratth wavelengths tend to penetrate the skin and be absorbed by the
are able to perform identity verifications on-the move witkpidermis, producing relatively low-contrast images $.,4A
high usability. These technologies should also be intdgratblue light with a wavelength of 500 nm permits better-qyalit
in ambient intelligence applications [31,32] that requiie- images [46,47]. Other acquisition systems use illumimatio
metrics to verify the identity of the users [33] or requirenethods that exploit the optical characteristics insidehef
accurate identity verification before performing contingo finger [48].
identity recognition [34]. Fingerprint images obtained by performing single-view ac-

Because the proposed biometric system avoids any contagtsitions typically display non-uniform resolution anch-u
with the sensor, it also presents advantages in hygiene dodused regions. To reduce these problems, some systems
privacy [35] compared with touch-based fingerprint bioriestr compute a mosaic of multiple views [49,50] or use ring
because no latent fingerprints are left during the acqaisitimirrors [47].
process. Our system can therefore be considered an alernat Images captured by touchless sensors cannot be directly
to touch-based technologies for application contexts iickvh used by recognition methods designed for touch-based fin-
usability, privacy and hygiene are important concerns.(e.gerprint samples [40,51]. Consequently, most previously r
hospitals, stadiums and public buildings). ported systems compute touch-compatible images by agplyin

The contributions of the present study are twofold. Firgt, wenhancement algorithms and resolution normalization-tech
propose an innovative acquisition setup and new processimgues. These methods usually perform background subtrac-
algorithms that introduce important novelties comparethwition, noise reduction [38,41-43,52], and enhancement ®f th
previous studies [25,36]. Second, we present direct compddge pattern [53]. In some cases, the focal length and the
isons between the proposed fully touchless systems, tesehldistance between the finger and camera are used to normalize
approaches in the literature, and touch-based technslogle the image resolution [4,44], but estimating these pararsete
performed extensive tests on new extended scenario-dekighecomes critical for the final accuracy. Unconstrained estqu
databases [37] in which results from the same users were @gn systems only perform an approximated normalization by
quired using both touch-based and touchless technoldbies. evaluating the finger’s silhouette [38]. Preprocessinghods
comparative evaluations encompass different charatitsrist  for touchless images captured by mobile devices are rediewe
the systems: recognition accuracy under different opmratiin [54].
conditions; computational time; compatibility and intpeo- Most systems perform matching of touchless fingerprint
ability between biometric systems, and user acceptance. samples using methods based on the distance between minutia

The paper is structured as follows. Section Il presentspaints [4,38,49], which requires samples with constant and
literature review of touchless fingerprint recognitiontsyss. known resolution. Other systems use matching methods based
Section Ill details the proposed system. Section IV dessribon adimensional features [55,56] and use matchers based on
the experiments performed and the obtained results. Finatomputational intelligence techniques [57]. Studies cdliy
Section V summarizes the work. assessment methods [26,27], core detection algorithmis [58

A. Two-dimensional systems



techniques designed for multiple fingers [59], compressi@two-dimensional space by applying a distortion correctio
of touchless fingerprint images [60], acquisition systenith w algorithm based on the analysis of the distances between
vitality checks [47,61], and recognition techniques fowd{o adjacent points.
resolution images of fingers [62,63] have been reported. Some biometric systems [70,71,76] use the non-parametric
Both commercial two-dimensional touchless devices thatiwrapping technique described in [84]. This method aims to
use finger placement guides [64-67] and commercial tegbreserve the inter-point surface distances as much asbpmssi
nologies that do not use any guide [68,69] exist. Howevet, divides the fingerprint model into slices along the veitic
their accuracy has not yet been documented. direction. A resampling algorithm applied to preserve tiee d
tances between the points pertaining to the slice then dsfol
each slice. The non-parametric method presented in [86] fits
the plane for each local region of the model and then unwraps
All previously reported methods for computing threethe points for each fitted plane, minimizing a cost functioatt
dimensional fingerprint models use finger placement guidefsscribes the movement exerted between each point and its
These methods are based on multiple views [70-73], stre@ttuheighbors. The method presented in [87] includes a sinmulati
light approaches [74-77], photometric stereo system&@]8, of the finger pressure on a sensor plate with the aim of
depth from focus methods [80], or acoustic imaging [81].. increasing the similarity between touch-compatible insaayed
The system described in [70-72] uses an acquisition setgich-based images.
composed of five cameras and a set of green LEDs located iMechniques for simulating touchless fingerprint mod-
a semicircle around the finger. It estimates the finger volurets [88,89] and quality assessment methods for touch-
using a shape from silhouette technique. It then appliescampatible images obtained by unwrapping three-dimeasion
triangulation algorithm to corresponding pairs of points tmodels [90] have also been reported. Recent studies have
compute the three-dimensional shape of the finger. A deptfeated synthetic three-dimensional fingerprint phantositsg
map and a grayscale image of the ridge pattern compose theee-dimensional printers [91], these phantoms may be par
three-dimensional model describing the fingerprint. Sinfyl  ticularly useful for designing both touch-based and toessl
the system presented in [73] uses a multiple-view setggpstems.
comprising three cameras and three LEDs to reconstruct 8Commercial biometric systems based on three-dimensional
three-dimensional model of the finger shape volume. touchless acquisition devices are also available. TBS 3D
A system based on a structured light technique is presenfeminal is based on a multiple-view acquisition method][92
in [74,75]. The system is capable of estimating both thehile Flashscan 3D [93] uses a structured light technique.
three-dimensional depths of ridges and valleys and thertext These systems use finger placement guides.
of the ridge pattern. The three-dimensional reconstraciso  The literature also includes performance evaluations of-co
performed by projecting a sine-wave pattern shifted séveraercial technologies for three-dimensional fingerprirdore
times and by evaluating the phase shift of the projecte@patt struction. The work presented in [94] evaluated the acguoéc
in every captured frame. The texture of the ridge pattethe biometric recognition software Neurotechnology VeriF
is computed as the albedo image [82]. The structured ligier [95] using a dataset of 1,800 samples acquired from 150
techniques presented in [76,77] compute three-dimenisioiradividuals with the touchless device TBS S120 and a dataset
models of the finger shape with a superimposed texture aff 1,800 touch-based images acquired from the same fingers
the ridge pattern. with the touch-based sensor Crossmatch Verifier 300 [963. Th
Other systems are based on photometric stereo teelaluated touchless device presented usability issuesubec
niques [78,79], which estimate the three-dimensional shaijp required many trials to acquire good-quality samples i&nd
of the ridges by evaluating the reflectance of the illuminas not possible to collect samples from relatively sharg ri
nated surface according to the position of the LEDs. Depfimgers and little fingers due to the shape of the acquisition
from focus methods [80] are also used to compute thredevice [94]. Moreover, the touchless acquisition techgglo
dimensional models of the finger volume. Recent work hgsesented a low level of interoperability with touch-based
also examined the resonance-based analysis of A-scanssigegstems.
for designing a multi-transducer acoustic imaging system f
three-dimensional fingerprint imaging [81]. I1l. THE PROPOSEDSYSTEM
Three-dimensional models can be directly used by specifi-The proposed system aims to obtain a recognition accuracy
cally designed feature extraction and matching technifg@s comparable to that of touch-based technologies while using
or can be converted to touch-compatible fingerprint imagédly touchless acquisition procedure that is less-caiséd,
using parametric or non-parametric unwrapping techniqguesmore usable, and more accepted by users than touch-based
The parametric method described in [84] approximates thed three-dimensional fingerprint recognition systemshi t
finger's shape to a cylindrical model. The obtained imagdggerature. In particular, our system performs the acdoisi
however, exhibit horizontal distortions. To overcome thiautomatically in a single instant of time as soon as the siser’
limitation, the method described in [74] approximates thinger moves inside the field of view and focus region of the
finger's shape as a set of rings with different radii and aenteameras.
coordinates. The algorithm described in [85] approxim#tes  The performed metric three-dimensional reconstruction is
finger as a sphere and then performs a linear mapping imwariant to finger position. In fact, the three-dimensiona

B. Three-dimensional systems



reconstruction method computes the actual position of eact
point in the three-dimensional space (expressed in mm). The
size of the three-dimensional model only depends on the
dimension of the real finger, thus avoiding possible prolslem
due to scale variations typically present in two-dimenalon
acquisition systems. To compensate for possible rotatidns
the finger in the yaw, roll and pitch directions (Fig. 2),
the proposed system includes a method that reduces finge
placement differences between two acquisitions by sinmgat 290
rotations of the three-dimensional finger shape.

In the enrollment phase, our system computes a three-
dimensional model and rotates the three-dimensional finger
print ng times in three-dimensional space. Then, a “multi-
template” composed ofr two-dimensional templates is com-
puted and stored in the database. In the verification and x (mm)
identification phases, the system creates a single templat
from the three-dimensional model of the finger. The identity
comparison strategy consists of applying a fusion algorith  rig. 2. Rotations of the finger with respect to the opticalteenf Camera .
the similarity scores obtained by matching the fresh tetepla
with all of the templates that compose the multi-template.

We use two-dimensional feature extraction and matchirfigr a short timet;, chosen to produce a light impulse almost
algorithms designed for touch-based images because theyiamisible to the eye and able to reduce any blur effect due
able a demonstration of the compatibility and interopditgbi to movement of the user in front of the sensor. Moreover,
of the proposed system using current biometric recognitidhe intensity of the light makes environmental illuminatio
methods as well as direct comparison of the performance ragligible. To simplify finger positioning, we projected edr
the proposed system with that of touch-based technologiescross light in the center of the acquisition area.

Fig. 3 outlines the biometric recognition process, which ca Fig. 4 presents examples of images captured by Camera

200

z (mm)
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be divided into the following steps: and Camerg.
1) acquisition,
2) three-dimensional fingerprint reconstruction, B. Three-dimensional fingerprint reconstruction

3) computation of touch-compatible images,
4) template computation,
5) matching.

The proposed method computes a three-dimensional model
of the finger with a superimposed texture representing the
ridge pattern. The method uses a correlation-based taahniq
that is more computationally efficient and accurate than the
A. Acquisition one described in [36] and can be divided into the following

The acquisition setup is based on two calibrated CCBSKS:
cameras (Camefaand Camerg) placed with an upward 1) image preprocessing;
orientation. The calibration was performed off-line onsing ~ 2) segmentation;
a chessboard captured in different positions. This taskegpp 3) extraction and matching of the reference points;
the algorithms described in [97,98] to compute the intdnsi 4) refinement of the pairs of corresponding points;
and extrinsic parameters of the two-view setup. 5) three-dimensional surface computation and image wrap-
The acquisition setup does not use any finger placement Ping.
guide, and the fingerprint is oriented downward, accordmg t 1) Image preprocessingBecause a green light is used
the most natural position of the hand. As soon as the movitg illuminate the finger, the details of the ridge pattern are
finger is placed in the fields of view of the cameras, Camergarticularly visible in the green channel of the RGB color
and Camerg simultaneously capture the two-view imagesspace of the captured images. Consequently, we consider the
We use a photocell and a trigger mechanism to capture imagésnnelG of the captured imagé (Fig. 5 a) as the matrix
at the same instant of time, thus reducing possible variatiorepresenting the ridge patteit (Fig. 5 b).
of the finger position in the two-view images. The distance of 2) SegmentationThis task estimates the region of interest
the photocell from the cameras corresponds to the best fo¢R®I) of each image, which corresponds to the finger skin. The
plane. segmentation task also removes the fingernail from the ROI;
The acquisition setup permits unconstrained finger pladde fingernail can cause deformations in the three-dimeasio
ments with high rotations in the yaw, roll and pitch direa8p finger shape and introduce artifacts in the ridge pattermgur
as long as a sufficient area of the ridge pattern is visible subsequent computational steps.
both captured images. The images are captured with the fingerprint oriented down-
To enhance the visibility of the ridge pattern, we used mard, and the background is the ceiling of the room. Thus,
uniform green light. The light is triggered by the photocelihe background is out of focus due to its considerable distan
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Fig. 4. Example of a two-view acquisition: (a) imagdg captured by Camerg (b) imagels captured by Camepa

(@) (b)

Fig. 5. Example of a fingerprint image before and after the pegssing step: (a) input imade (b) ridge pattern imagé”, computed as the green channel
of I.

from the cameras and is mostly dark due to the large differerthe datasetB is then refined using a morphological filling
in radiation between the green LED light and the ambientligtoperator and eroded using a circular structural elemert wit

The segmentation task can be divided into two main taskgdiusr. that is empirically estimated for the dataset.
rough estimation of the finger shape and fingernail removal. The subsequent task is the removal of any potential finger-
The last task estimates the fingernail as the image regioail regions from the segmented area. The proposed fingernai
exceeding a line perpendicular to the yaw angle of the fingemmoval technique can be divided into the following tasks:
and representing the termination of the skin region. Fig. @®mpensation of the yaw angle, search for finger termination
presents a schema of the overall segmentation process. and skin region segmentation.

To estimate the finger shape, we use a simple thresholdingn the first task,” and B are rotated by an angle efa to
technique. The binary image of the finger shapis computed make the finger's major axis vertical, resulting in the immge
from P using a threshold, that is empirically estimated for P_, andB_,, respectively. The variable is computed as the



Next, a set of regularly spaced poini§), is selected by
downsampling the ROI of; with a step ofs, pixels. In the
Finger shape Compensation of following, we refer to these points as reference points.

estimation the yaw angle

‘

For eachz’y € X/, the corresponding pointp in Pp
is estimated using a block matching technique. The method
searches for the best normalized cross-correlation betwee
a ! x | squared window centered in the coordinai€g of

= the imageP’, and al x [ squared window sliding in the
Skin region Search of finger corresponding epipolar line d?z. We searched corresponding
segmentation termination . . . . . .
‘ points only in the horizontal direction because the image
rectification made the pairs of conjugate epipolar lineshef t
Fig. 6. Schema of the proposed segmentation method. two-view images collinear and parallel to the axis. The

search range is limited ta-w pixels along ther axis. For
_ ) _ each reference point of the imag¥, the corresponding point
angle of an approximated line of symmefky.(y) of B, which ;. of py, is considered as the pixel with the best correlation
corresponds to the barycenter of the ROI of every coordingfg|,e in the search range of the second view,
Y- Fmally, the coordinates of the matched pomztg are

y coordinate ofB, the points X.(y) are computed as the

barycenter of the ROI: xa=H"2) . (4)
X,(y) = (argmin(B(z, y)) + argmax(B(z,y)))/2 , (1)  The studied acquisition setup achieves a good maximization
r=1..X r=1...X of the small local variations of finger skin characteristics

whereX is the size ofB in the z direction.« is then estimated allowing the matching algorithm to identify a large number
as the angle of the first-order polynomial approximating thef robust pairs of corresponding points.
vector X... Fig. 7 depicts a visual representation of the proposed
A line representing the finger termination is then assignédgorithm for estimating corresponding pairs of pointg.F8
by evaluating features describing the presence of ridges a@#10ws portions of two-view images and the computed pairs of
valleys. To find they coordinate corresponding to the fingergorresponding points.
terminationy,, an imageG, is then computed as the grad|ent 4) Refinement of the pairs of corresponding poirifs: ob-
of P_, along they direction. A binary edge imagé, tain a smooth and accurate representation of the fingercayrfa
obtained fromG,, using threshold.., which is computed as we applied a thin plate spline to the set of corresponding
the fixedp, percentile ofG,. The value ofp, is empirically points. Fig. 9 presents examples of point clouds obtainéd wi
estimated for the used dataset and without the refinement step.
The tomography ofz, is subsequently computed. For each 5) Three-dimensional surface computation and image

coordinate of they axis, T'(y) is obtained by the following: Wrapping: This task creates a three-dimensional mogiél
as the depth map corresponding to the view of Camémp

computing the three-dimensional shape of the fingerand
T(y) = ZEy(ifay) . (2) wraéotimg an image of the ridge pattefd, on the estimated
r= model.
A binary vector B., describing the presence of ridges, is The three-dimensional reconstruction method computes the
computed froml'(y) by using the threshold.. This parameter depth coordinate of every three-dimensional point usirg th

has been empirically estimated for the used dataset. following triangulation formula:
The y coordinatey,. of the line corresponding to the end of T
the finger’s skin is then estimated by the following: = ()
ye = argmax(T(y)) , (3) where f is the focal length of the two camera®, is the
y=1..Y baseline distance between the two cameras, zanénd x5
whereY is the size byB_,, in the y direction. are the two matched points.

The skin region segmentation is finally performed by setting We compute)M, and 1, from the obtained point cloud
the points of B_, below y. to 0, and the final ROIB; is using an interpolation approach. Two matrices and M,
obtained by rotatingB_,, of o« degrees. representing the: andy coordinates of the three-dimensional

3) Extraction and matching of the reference poinfBo model, are computed as equally spaced grids with a sampling
reduce both the computational complexity and the likelthocstep equal ta;. The values; is empirically estimated with the
of false matches, the image, (captured by the Camegq aim of obtaining a good tradeoff between the computational
is first rectified such that corresponding epipolar linesPaf efficiency and quality of the three-dimensional modals, is
(captured by the Camega lie along horizontal scan-lines [99]. obtained by a linear interpolation of the estimatedialues
This task produces the imag®, and is performed using thein the coordinates described hy/, and M,. M, and the
homography matrix{ obtained from the calibration step.  binary map of the ROIM, are obtained by applying the
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Fig. 7. Representation of the proposed algorithm for esthgatorrespond-

ing pairs of points: (a) selected point, in the rectified imageP’, and

boundaries of the correspondig [ local region; (b)z’, in the imagePg,

boundaries of the correspondihg [ local region, search region dfw pixels To increase the visibility of the ridge pattern, a nonlinear
along thex axis (corresponding to an epipolar line Bf;), and matched point N .

z; (c) correlation values in the search region. Because thgerpattern is equalization is performed a§(xz,y) = log (I,(z,y)).

highly repetitive, we studied the illumination system and ttharacteristics An 8-order Butterworth low-pass filter [100] with a fre-

of the cameras used by the acquisition setup to maximize the socall : ; ;
variations of the finger skin characteristics. The searatoafesponding points quency f and sized; x dy is then used to reduce noise.

in the acquired images can therefore obtain high differeircéise normalized We have selected a Butterworth filter instead of other types
correlation values, and properly match the great majorityhef ¢onsidered of low-pass filters because it experimentally obtained srar

points. images with higher contrast between ridges and valleys. The
values of fy andd; were then empirically estimated.

same interpolation technique to the points Bf and B;,  The enhanced textur/, is finally obtained by applying a

respectively. histogram equalization td,.

Fig. 19 shows an example of a_dense three-dimensionap) Two-dimensional mapping:This task computesnp

model with a superimposed texture image. touch-compatible images from a single three-dimensional
model of the finger surface. It compensates for the acqorisiti

C. Computation of touch-compatible images angle along the yaw direction and simulates acquisitions

Starting from a three-dimensional model of the finger superformed with known rotation angles in the roll and pitch
face, the proposed method computes touch-compatible snagéfections. In the enroliment phase, a value /o equal
that represent the ridge pattern of acquisitions performigl {0 Or greater thanl is applied to compensate for possible
arbitrary finger rotations. We refer to these images as toudRiSplacements of the finger during future acquisitions of
compatible because we have experimentally demonstrased fprobe samples. In the verification and identification phases
these images can be processed using algorithms designedM@compute a single touch-compatible image: (= 1) from
touch-based images. the fresh sample.

The results are gray-scale images with a standard resolutio To obtain the same number of roll and pitch rotations,
of 500 DPI. Images with a standard fixed resolution can lecluding the null rotation, the possible values of are
obtained because three-dimensional models are computedchgsen as squares of integer odd numbers.
performing a metric reconstruction. Therefore, the sizeaath To compensate the finger placement angle along the yaw
three-dimensional model corresponds to the real size of thigection ¢, we apply the same algorithm used to remove the
corresponding finger (expressed in mm). finger nail to M, and then compute the rotation matt,,

The method can be divided into the following tasks: which is obtained as follows:

« enhancement;

« two-dimensional mapping.

1) EnhancementThe method computes an enhanced tex- R B (1) 0 . 0 6
ture M, from M, using algorithms similar to those presented =(9) = CO.S(¢) sin(e) |, (©)
0 —sin(¢) cos(o)

in [25].

A background imagdl, is estimated by applying a mor-
phological opening operation (with a structuring elemeht o Then, a set of,/nr equally spaced roll angle®(i) and
s. pixels) to M,,. Then, the background is subtracted fronthe corresponding rotation matricés,(©(i)) are computed
M, resulting inI,. as follows:
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Fig. 9. Application of the method for refining the pairs of @sponding points: (a) an example of an input point cloud; (iplieation of the refinement
step.

For each roll angl® (i) and pitch anglel (i), we rotate the
coordinatesM,,, M, and M, of the three-dimensional model
M, in the three-dimensional space with a rotation matrix
R(©(i), ¥(j)), which is obtained as follows:

R(O(i),¥(j)) = RaRy(O(0))R=(T(5)) - (11)

Every rotated touch-compatible imag€e ;) v(;)) iS ob-
tained by applying a re-sampling with a constant step equal
of 1/500 inch to the enhanced texture imag# in the newz,

y and z coordinates. This computation is based on a bilinear
interpolation.

To remove regions of the images that do not pertain to the
last phalanx, we crop the touch-compatible images at a fixed
length ofl. mm from the finger end in the direction.

Fig. 10. Example of a dense three-dimensional model with a supesed Fig. 11 presents examples of touch-compatible images ob-
texture image obtained by the proposed method. tained from the three-dimensional model shown in Fig. 10,
and computed with an angular stép; = 15°. As shown in

Fig. 11, small rotations in the three-dimensional spaceyxe
substantial changes in the touch-compatible images.

y (mm) 10

O(i) =iAgr D. Template computation

1=—[((vnr)/2)|...+ |((V/nRr)/2)| ,ieZ , (@) To demonstrate the full compatibility with standard bio-
metric recognition technologies for fingerprint recogpriti we
have adopted well-known methods designed for touch-based

cos(O(i)) 0 —sin(O(4)) images. Minutiae templatéls are computed using the software
R,(0(i)) = 0 1 0 . (8) Neurotechnology VeriFinger [95]. As an example, Fig. 12
sin(©(7)) 0 cos(©(7)) shows a binarized touch-compatible image and the extracted

. ] ) minutia coordinates.
where Ay is the constant angle rotation step ahd is the

floor operator. E. Matching

In a similar manner, a set of/nr equally spaced pitch  The enrollment phase creates a multi-template composed by
angles¥ (j) and the corresponding rotation matrid@s(¥(j)) nz minutiae templateq’, from ny touch-compatible images
are computed as follows: obtained by applying the proposed two-dimensional mapping

technique. The verification phase computes a single miautia
templateT’; from the touch-compatible imagg s o).

V(j) =JjAr The matching score represents the similarity of the fresh
i=-l((vnr)/2)]...+ [(Vnr)/2)] ,j€Z , (9) template with a multi-template. This score is computed as
follows:

cos(T(j))  sin(T(j) 0 matching score= max (match(T, (i) ,Ty)) . (12)
R.(¥()) = | —sin(¥(j)) cos(¥(j)) 0 |. (10) where matchj represents the matching function, which is
0 0 1 performed using Neurotechnology VeriFinger software.



Fig. 12. Example of a binary image and minutiae coordinatesradaising
the proposed system and the software Verifinger. Notablg, tcammercial
feature extractor properly identified the coordinates ef thinutiae obtained
by the proposed touchless method.

A. Experimental design

In the following, we describe the experimental setup, the
parameters used by the proposed algorithms, and the @allect
datasets.

1) Acquisition setup:Fig. 13 a presents the setup con-
. figuration. Acquisitions were performed at a mean distance
"";‘/ ';;'/1./:/(/,_ \ T Apy = 220 mm between the finger and the CCD of every

NN ' ’/ A camera. The angle of the cameras with respect to the hoailzont
support wasd = 85°, with a baseline distance between the
Fig. 11. Examples of touch-compatible gray-scale imafggs, ) obtained  camerasAp = 65 mm (from the centers of the CCDs). The
%;1 (:tuejg;;??gd Es;gs;en_qlv:w)hR(d:) JgE(a_nioAURo)::(E)) E (:? 0E<;1(?)]§(1155)0(?) light source was placed at a distance/of = 150 mm.
(@) E(—150,150); (?1) E(go.150); (i) E(15o:15a).8maﬁl rotations in the three- ~ The cameras captured images at a resolutio 280 x
dimensional space produce large changes in the touch-cdriepatiages. In - 96() pixels. The optics were Tamron 20HC with a 25-mm focal
contrast to other methods _presented in the Ilteratur_e inlwtiese differences Iength. Images were captured with apertdfe= 3, a focal
are critical, the proposed is unaffected by these diffezenc !
length of0.25 m, a shutter time 0529 us, and an acquisition
gain of 100. The light impulse had a duratioh = 500 ps.
The illumination system consisted of an LED lamp with
contiguous green light sources.

The real acquisition system was covered by a box (Fig. 13 b)

The performed experiments aim to evaluate different chde protect the hardware components, simplify the searcheof t
acteristics of the proposed biometric system by performir&gquisition area during the acquisition process, and geoul
technology and scenario evaluations [101]. We performed aimple prototype of a possible industrial implementatidn o
analysis of the accuracy of the proposed three-dimensiotia¢ system.
reconstruction method using both quantitative and quadta 2) Parameters of the implemented algorithm® achieve
measurements [1,102]. Next, we evaluated the performarmsrect behavior under the largest range of operative con-
of the biometric system on a dataset of more than 2,30@ions, the parameters of the implemented methods were
samples. We also conducted tests to evaluate the robustrezspirically focused on the separate dataset Datagetasion
of the system to different environmental light conditionsyf samples representing very different acquisitions imtef
its sensitivity, its robustness to intentional misplacateeof finger positioning. The parameters of the segmentation step
the finger during the acquisition process, and the compwere t, = 45, r. = 20 pixels, p. = 80%, ¢, = 0.1.
tational time required by the proposed algorithms. Theithe parameters used to compute three-dimensional models
the resulting figures of merit were compared with those fovere s; = 20 pixels, [ = 21 pixels, w = 70 pixels. The
traditional touch-based technologies and the most acsurataximum length of the cropped touch-compatible images was
touchless fingerprint recognition systems in the litemtWe [. = 230 mm. The sampling step used for computing the dense
also evaluated the performance of the proposed system tlaree-dimensional models was= 0.025 mm, corresponding
data acquisition over one year. Moreover, we examined tt@ a spatial resolution of approximately)00 PPI. The pa-
compatibility and interoperability of the proposed systeith rameters of the image enhancement method wegre= 15,
touch-based samples. Finally, we evaluated user acciftabil; = 20, and f; = 0.1.
by analyzing the results of evaluation forms completed by 3) Created datasets:To analyze the robustness of the
volunteers after using both the proposed touchless systeim aystem to different environmental light conditions ancemt
touch-based sensors. tional finger misplacement, the performance of the proposed

IV. EXPERIMENTAL RESULTS
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Fig. 13. The acquisition setup: (a) schema of the acquisisietup; (b)
photograph of the setup and finger positioning. We coveredattquisition
system with a box to protect the hardware components and $intipéi search
of the acquisition area during the acquisition process.

biometric system was evaluated using different datasetged

in our laboratory. As a reference, we collected touch-based
samples from the same volunteers who provided touchless

samples.
Biometric data were collected from a set 3if volunteers

including both men and women. The volunteers included grad-

uate students, workers, and retirees ranging in age f@no

10

Most of the samples were intentionally misplaced to
be reasonably considered as failures to acquire (FTA)
in commercial touch-based scanners. The dataset was
composed ofl, 200 samples acquired in a single session.
The two index fingers of each volunteer were captured
8 times without asking to perform rotations addimes

for each of the6 considering orientation: leftward yaw
rotation, rightward yaw rotation, counterclockwise roll
rotation, clockwise roll rotation, downward pitch rotatjo
upward pitch rotation. A total 020 acquisitions for each
index finger andi0 acquisitions for each volunteer were
performed. A visual analysis of the samples captured
asking for finger rotations indicated a variability of the
orientation from approximatel20° to approximately
45°. Fig. 15 presents examples of images captured with
different finger placements. The exaggerated rotations of
the samples in Datasgtare apparent.

Datasety was created as a reference touch-based dataset
to compare the implemented touchless system with state-
of-the-art touch-based technologies. The dataset was
composed of1,184 images acquired in a single ses-
sion using the touch-based sensor Crossmatch Verifier
300 [96]. The ten fingers of each volunteer were captured
4 times. It was impossible to capture samplesl aff the
fingers due to cuts or amputations.

64 years old. We acquired data during two sessions performed
over the course of a year. A trained operator supervised'
the acquisition of both touch-based and touchless samples.
The hardware setup was disassembled after the first session
and then assembled again to perform the second acquisition
session. For each session, a setup calibration was pedorme
The acquisition procedure required very little trainingtbé
volunteers: they were only trained on where to place the finge
to be acquired by both of the cameras. A description of every

Datasetyy was created to evaluate the accuracy of the
system over a time interval of one year. The dataset was
composed of2,368 samples acquired in two sessions.
Images from ten fingers df5 volunteers were collected.

Each finger was imageth times § samples in Datasgt

total of 160 images for each volunteer. It was impossible
to capture samples &f of the fingers because of cuts or

and8 samples acquired in the second session) to obtain a

dataset is reported in the following.

o Datasety was created to evaluate the accuracy of the
implemented touchless recognition system for samples
acquired with standard finger placements under differ-
ent light conditions. We performed the acquisitions at
different hours of the day (fron% am to 8 pm) both
with and without artificial illumination of the room. The
dataset was composed 2f368 samples acquired in a
single session. Images of the ten fingers@fvolunteers
were collected. Each finger was imagetimes ¢ times

amputations.

Datasetry was created as a reference touch-based dataset
to compare the performance of touch-based and touchless
technologies over a time interval of one year. The dataset
was composed ofi, 184 images acquired during two
sessions using a Crossmatch Verified. For each volun-
teer, the ten fingers were captured 8 timés&mples in
Dataset and4 samples acquired in the second session).
It was impossible to capture samples2bf the fingers

due to cuts or amputations.

light conditions) to obtain a total 0 images for each

We performed both visual and numerical analyses to eval-

volunteer. It was not possible to capture samples flfomuate the accuracy of the proposed three-dimensional recon-
fingers because of cuts or amputations. Fig. 14 presestaiction method. The results confirmed that the proposed

examples of images pertaining to Dataset

less-constrained acquisition technique and three-diroealk

o Datasetz was created to evaluate the robustness of theconstruction method achieved sufficient accuracy for use
implemented touchless recognition system to intentionia biometric systems. Fig. 16 presents examples of recon-
misplacements and finger rotations. Because it is likegtructed three-dimensional point clouds, the correspandi
impossible to place a finger with a known angle withounterpolated surfaces, and superimposed texture imades. T
using finger guides, we asked the users to place ttieee-dimensional reconstruction method effectively eted

finger with high rotations (approximateB°) in the yaw,

the finger's shape. We evaluated the accuracy of the system

roll, and pitch directions. Users considered the requestedibration using the method described in [103] and obthine
finger rotations exaggerated with respect to the naturah error of 0.03 mm. This method computes the three-
position of the finger on the proposed acquisition systemimensional reconstruction error by triangulating theneor
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Fig. 14. Examples of acquisitions of Datageperformed with and without artificial illumination of the roonta-c) fingers captured without artificial

illumination; (d-f) the same fingers captured with artificitimination. The light used to enhance the visibility of thége pattern is sufficiently intense to

make the environmental illumination negligible. Moreoveg impulse duration is sufficiently short to be nearly invigiltd the eye and to reduce any blur
effects due to the movements of the user in front of the sensor.

(@) (b) (©)

Fig. 15. Examples of images in Datagetaptured with exaggerate finger orientations: (a) leftwgaa rotation; (b) counterclockwise roll rotation; (c)
downward pitch rotation; (d) rightward yaw rotation; (epckwise roll rotation; (f) upward pitch rotation.

coordinates of the chessboard images used to calibrate llefore and after the noise reduction step by assuming the
system and by interpolating a plane passing from the obentinuity of the finger surface. A mean error@i7 mm was
tained three-dimensional coordinates. The final resulhé tobtained. This value is satisfactory because three-diineals
standard deviation of the Euclidean distance between theth models obtained by multiple-view systems typically presen
dimensional corners and the three-dimensional plane. outliers.

We also examined the accuracy of the algorithm used toThe number of corresponding points in the input images
search the corresponding points in the two-view images. Tisedue to the sampling steq;. We observeds; = 20 pixels
performed test included computing the absolute distarmegal was a good tradeoff between three-dimensional reconairuct
the z axis between the three-dimensional points obtainegiality and required computational time. The mean number of
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Fig. 16. Examples of point clouds describing the three-dinoera$ shape of the finger and the corresponding dense tlimgendional models with

superimposed texture images: (a, c, e) point clouds; (b, derise three-dimensional models. The experiments demonsttetethe proposed method can
obtain accurate three-dimensional reconstructions fot@lfingers.

obtained three-dimensional points computed without @pgly 1) Accuracy under standard operating condition&e eval-
interpolation algorithms wag68, and the distance betweenuated the performance of the proposed method under standard
three-dimensional points along theandy axes wa$).63 mm. operating conditions using the samples from Dataset

The tests primarily focused on the rotation anglg and the
number of three-dimensional rotationg simulated in the en-
C. Performance of the proposed system

rollment phase because these variables can significariéigt af
This subsection presents tests performed to evaluata-dififie performance of the biometric system. The evaluated pa-

ent aspects of the proposed system under different opgratidmeters were Receiver Operating Characteristic (ROQpsur
conditions. First, we evaluated the accuracy under stand&k], Equal Error Rate (EER) [104] and FMRy (the lowest
operating conditions. Second, we analyzed the accuracgrunalse Non-Match Rate for False Match Rate%) [105].
different light conditions. Third, we examined the robests  We found thatny = 9 permitted satisfactory results from

to intentional misplacements of the finger. Finally, we gpatl samples captured with correct finger placements, with an EER
the computational efficiency of the proposed algorithms.  of 0.06%.
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To study the effect of the number of three-dimensional rote T

tions in the enrollment step, we tested different configanet 999 -
of ng. For convenience, we report the results in terms ¢ g |
computational timenmr = 1 (no rotations along the pitch
and roll axes performed during the enrollment step);= 9
(iterative rotation of the three-dimensional finger modgtsng & 996
the pitch and roll axes in all combinations of the angle:S
[—15°,0°,+15°] in the enroliment step). T

Fig. 17 presents the ROC curves obtained using Da;ase@
and Table | provides the numerical error values. Because t 93
matcher is non-symmetrical, every test regart@d 76 (296 x
8 x 7) genuine identity comparisons arsg588,480 (296 x
295 x 8 x 8) impostor identity comparisons.

Fig. 17 and Table | indicate that the accuracy obtaine o : . ' ' : ‘ )

99.7 |

2 905 |
[T

99.4 -

99.2 -

oY 0 [ TUNNNE AR 1A R 4 41 1+ N N 44+ NS 21 P PTTT ng=1

for Datasefi by enrolling multi-templates corresponding to oooot - oon O'O}MR(%) o 1 ° 1
single templatesn(z = 1) is satisfactory for many biometric
applications, with EER= 0.17%. Fig. 17. ROC curves representing the accuracy of the praptmechless

‘- _ : system under standard operating conditions (Datgséthe results represent
Multi templates Composed ofp =9 templates ylelded the different numbers of three-dimensional rotationg performed during the

best performance, with EER 0.06%. These results demon-enroliment step. Every test included 605, 056 identity comparisons. The
strate that multiple three-dimensional rotations candase configuration that yielded the best accuracy was= 9, with EER = 0.06%.
the accuracy of the biometric system and the robustness to

uncontrolled finger orientations.

In the considered dataset, however, higher numbers of rota- TABLE |
ACCURACY OF THE PROPOSED BIOMETRIC SYSTEM USING SAMPLES

tions (u) did not result in significant accuracy improvements. . irep UNDER STANDARD OPERATING CONDITIONYDataset ).
For example, the proposed system achieved EER05% for
ng = 9. nr  FMRigoo (%) EER (%)
2) Robustness to environmental illuminatioBamples in 1 0.34 0.17
Datasel; were collected under different environmental light 9 012 0.06
conditions (with artificial illumination and natural lighat
different hours of the day). The results presented in Fig. 17

and Table | show that the accuracy of the proposed methody) o stness to intentional misplacements and rotations:

|shnot aﬁegtgd by pha;nges dl'z enwror:jmentarll light (’ipndﬁflonWe evaluated the robustness of the proposed system iratritic
These \éarlatlons, md act, did not Ire lrj]ce the qgglty 0 thgpplications and uncollaborative contexts using sampfes a
captured images and, consequently, the recognition agcurﬁositely acquired with strong finger rotations (DatagefThe

of the prOP‘?S_ed b|or|ne_tr|c syste;m. q o s system was able to properly compensate a great number of
f3)h Sensmvm; analysiswe per orm;a ha sensmwtﬁ analysiS,,or-quality acquisitions performed with high finger radas.
of the most relevant parameters of the proposed System 9f\,ver. very high rotations in the roll and pitch directon

Datasef;. Results showed that the system is robust to sm duced the capability of matching genuine samples due to

variations of the parameters. the presence of out-of-focus regions, perspective defioms

An important parameter consists in the anglg, used and a reduced size of the ROI (central area of the finger-

to compute touch-compatible images. Small values requifsy - oever, for intentional misplacements and rotagion
high numbers of rotationsi.g to overcome differences in

! ) X " the proposed system achieved EER 2% in its standard
the finger's placement, therefore increasing the computati configuration.

time. High values can reduce the final accuracy of the system1n this test, we simulated an application scenario in which

we founc_i_that a gooo_l tradeoff KS’? = 15° and we performed the enrollment phase is supervised and the verificationgohas

the sensitivity analysis around this value. As an exampith Wis based on wrongly performed acquisitions. We therefore

ng = 9, a small variation of5° (Ar = 20°) increased the divided Datase$ in two subsets

EER from0.06% to 0.07%. _ :
The second set of parameters that relevantly influence the Dataseg enroliment: For each finges, samples acquired

system accuracy are the ones used to compute the three- with standard finger placements were used to compute the

dimensional finger shape. We varied the valsgsand ! of enrolled multi-templates. _
+20% of their optimal configuration and the value of - Dataseg probe: For each fingerl2 samples acquired
+920% and-+40%. We did not reduce the value af since we with intentional misplacements and rotations of the finger

empirically estimated that a value f70 pixels represents the ~ Were used to compute the probe templates.

minimum search range usable with the proposed acquisitibar each of the considered configurations, we perform&do
setup. Within the tested range of parameters, the worst EER x 8 x 60) genuine identity comparisons af#l9, 840 (12 x
achieved withnyp = 1 is 0.20% and the worst EER with 8 x 60 x 59) impostor identity comparisons. The results are
ng = 9is 0.07%. presented in Table II.
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TABLE I (@) (b)

ACCURACY OF THE PROPOSED BIOMETRIC SYSTEM FOR SAMPLES 2000 2000

ACQUIRED WITH INTENTIONAL MISPLACEMENTS AND ROTATIONS OF HE
FINGER (Dataseg).

1800 1800

+
1600 1600 %
|
|
1
|
|
|

nr  FMRigoo (%) EER (%) 1400 1400
1 7.95% 3.98% 200 i o0
9 4.13% 2.07% ;
25 2.87% 1.43% . L 1000
49 2.40% 1.20% 800 ! ! 800
600 E| i | 600
I

400 l—:| ! 400 i

As shown in Table II, high numbers of three-dimensional ** Q . 0 i .

rotationsnp effectively reduced the effects of misplacements — ° .o sneor rorce mposion O Genines impostors

and rotations on system accuracy. The EER achieved wiFth 18, Boxolot of the matchi . | ot imtentional
o : . . ig. 18. Boxplot of the matching scores for samples acquir entiona

ngr =1 was3.98%, and the EER achieved withz = 4(‘_) was . misplacements of the finger and samples captured under stacmfaddions:

1.20%. These results also suggest that the three-dimensiopg!matching scores reported for the considered finger cotatirections

reconstruction approach produces accurate results foda w?n samples acquitr)ed Witf':_intentionalfmiSplaC?ments anddmﬂatbf thed ’
range of finger rotations. inger (Dataset); (b) matching scores for samples captured under standar

. application conditions (Datasg}.
The results reported in Table Il are not comparable to

those reported in Fig. 17 and Table | because the results
reported in Table Il reflect data that were acquired with The proposed touchless technique first computes a touch-
intentionally performed misplacements and rotations @& tltompatible fingerprint image and then performs the feature
finger. By contrast, the results reported in Fig. 17 and Tableextraction and matching steps. The total time needed to
reflect acquisitions performed under standard conditions. compute a three-dimensional finger shape, a single touch-
Rotations along different axes (Fig. 2) do not contribute ipompatible image and a minutia template asl3 seconds.
the same manner to decreased performance of the biomefri@rge amount of this time2(.99%) was devoted to matching
system. Therefore, we analyzed the matching scores odtaipairs of corresponding points in the input images. #pr= 1,
using samples acquired with different rotations. Fig. 18 the matching algorithm require@11 seconds. Fongr = 9,
presents boxplots of the matching scores obtained with tie matching algorithm requiretl07 seconds.
standard system configuratiom# = 9). As a reference, At enrollment, the system simulated rotations of the three-
Fig. 18 b presents the boxplots of the matching scores aatairflimensional shape of the finger, which is a computationally
under standard application conditions (Datajet expensive task. Each rotation required2 seconds. Because
Fig. 18 shows that roll and pitch rotations decrease tftlee enroliment is performed once, this task does not infleenc
matching scores in genuine comparisons. This decreaseis Hig¢ computational efficiency of the system during its normal
to the presence of out-of-focus regions, perspective defer USE.
tions, and the reduced size of the ROI, which could only be All of the implemented algorithms are designed to be
mitigated by using more cameras to obtain three-dimenkio®asily portable to parallel architectures. For exampleaa p
models representing a wider area of the fingertip. The matcilel implementation of these methods based on CUDA tech-
ing scores obtained by impostor identity comparisons wefégues [106] would drastically decrease the required compu
not significantly altered, and most were equaltvhen the tational time.
Neurotechnology VeriFinger matching algorithm was used.
The acquisitions of Datasgtwere obtained by attempting toD. Accuracy comparison with reference methods
rotate the finger on a single axis and controlling the rotestio The accuracy of the proposed system was compared with
in the other two axes to separately evaluate the effect af/evehat of touch-based systems and the most accurate touchless
possible rotation on performance. technologies reported in the literature. The results ieid
5) Computational time:We evaluated the computationalpetter or similar performance compared with the considered
time required by every software module of the proposdsiometric systems, with the advantage of using a fully teuch
system. With high probability, an optimized industrial il@p less, on-the-move, less-constrained acquisition methkiade-
mentation should permit the use of the proposed approachoifer, the system achieved slightly better accuracy witpees
real-time live applications. to the reference touch-based technology for data acquired o
We wrote the proposed algorithms for preprocessing, time period of one year; the proposed system achieved
three-dimensional reconstruction and computation of HeucEER = 0.22%, while the touch-based technology achieved
compatible images using Matlab (R2018d bit), and the EER= 0.23%.
feature extraction and matching methods were written#h C 1) Comparison with touch-based methods compare the
using the SDK provided by Neurotechnology. Tests weggerformance of the proposed biometric recognition system
performed on an Intel Xeor8.60 GHz workstation with with traditional touch-based technologies, we performed a
Windows7 Professionab4 bit. Our implementations were notscenario evaluation that considered a recognition agjita
optimized in terms of computational complexity, and theg difor access control in a laboratory. The accuracy of the pego
not use parallel computing strategies. system was comparable to that of touch-based technologies.
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TABLE Il
We compared the performance of our touchless system coyparison oF THE PROPOSED TOUCHLESS SYSTEM AND THE

on Datasef and the accuracy of the biometric recognition REFERENCE TOUCHBASED TECHNOLOGIES ON THE SAME USERS
software VeriFinger on DatasetWe used the operative con-

> : System FMRooo (%) EER (%)
figuration of the systemn(r = 9). The test performed on Proposed method 0.12 0.06
Datasef included 16,576 (296 x 8 x 7) genuine identity Touch-based system 0.06 0.03

comparisons and, 588,480 (296 x 295 x 8 x 8) IMPOStOr Notes: Implemented system = results with configuratign— 9 on Datase
identity comparisons, while the test performed on Datasefouch-based system = results of the software VeriFinger ataget.

included3, 552 (296 x 4 x 3) genuine identity comparisons and

1,397,120 (296 x 295 x 4 x 4) impostor identity comparisons TABLE IV
related to samples captured from the same individuals dieclu COMPARISON OF THE PROPOSED TOUCHLESS SYSTEM AND THE
. D tase,ﬁ REFERENCE TOUCH BASED TECHNOLOGIES ON SAMPLES ACQUIRED IN A
n a ' TIME LAPSE OF ONE YEAR

The results present_ed in Table .II.I demonstrate that the System FMRooo (%)  EER (%)
proposed system obtained a recognition accuracy comparabl Proposed method 0.43 0.22
to that of the reference touch-based recognition methohen t Touch-based system 0.46 0.23
considered scenario. Moreover, the accuracy of the prapos@te: Implemented system = results with configuratiop, = 9 on

system could be increased if the users became more proficieatgset 4; Touch-based system = results of the software VeriFinger on
in using the proposed system. Experience in the use of sendgtasety
increases the recognition accuracy of biometric techrietog

We also evaluated the performance of the proposed tough- User acceptability
less system and the reference touch-based technology USINge performed a preliminary analysis of user acceptability
data acquired over one year. The proposed system exhlblg% obtained satisfactory results
stable performance during the considered time period,rebta '

ing slightly better accuracy than the reference tOUChmaSSroposed touchless fingerprint recognition system and the

technology. reference touch-based technology, each volunteer wasl aske
We tested the proposed system on Datasefperforming to complete an evaluation form. Table V summarizes relevant
148 x 16 x 15 = 35,520 genuine identity comparisons andresults for questions related to acceptability and usee-exp
148 x 147 x 16 x 16 = 5,569,536 impostor identity compar- rience. Student’s t test indicated that the differenceshim t
isons) and the touch-based system on Dafgséperforming evaluations were very significant.
148 x 8 x 7 = 8,288 genuine identity comparisons and Table V shows a positive response to the proposed system
148 x147x8x8 = 1, 392, 384 impostor identity comparisons). for most of the questions. In particul@6.7% of the volunteers
Table IV summarizes the results. prefer the proposed touchless system to touch-based teehno

Table IV indicates that the performances of the compar@es, and100% of the volunteers considered the proposed
biometric systems were similar. In particular, the progbsé&ystem more hygienic.
system achieved EER 0.22% and the reference touch-based Moreover, we observed that users considered the proposed
system achieved EER 0.23%. system more privacy-compliant. This perception may be due
. . . to the fact that no latent fingerprint can be left. In addition

2) Comparison with other touchless technlq_ueWe COM-  the proposed system is significantly different from toucisdul
pared the accuracy of the propo-sed- SyStem with that of Ptl?ﬁrvices used by the police or border control authoritiess th
touchless recognition technologies in the literature. Pecti reducing the feeling that the owner of the biometric systam ¢

performance comparison was not possible because all of g&%ociate biometric data with police records or prosanipti
considered technologies are based on different acquisitip.,. [107-109]

hardware and processing methods that would be difficult tOTherefore, we concluded that the proposed system is con-

_rep_llcate in our laboratory. The results reported in trmrayturt_a _Fidered more acceptable by the analyzed set of users.
indicate that the accuracy of the proposed system is similar

or superior to that of the most accurate touchless fingerprin o . 3 .
recognition technologies, and the proposed system petient F. Compatibility and interoperability with touch-basedssy
advantage of reducing acquisition constraints. tems

A few studies have reported the accuracy of touchless fin-We evaluated the compatibility of the proposed system
gerprint recognition technologies [39,50,55,59,75,8B,Blost with biometric software designed for touch-based fingeipri
of these studies describe tests performed on datasetsesm&fcognition and the interoperability of the computed teuch
than the datasets we used to evaluate our system. Moreogémpatible images with touch-based samples. In this paper,
most of the systems achieved an EER of approximatély the te_rms compatibility and interoperability have thedualing
Public tests of commercial devices [94] also report simildn€anings:
performance. [94] describes a test performed on a datase¢ Compatibility is the capability of biometric data to be
of 1,800 samples acquired from50 individuals using the processed by systems other than the one that created the
touchless device TBS S120, with a resultant EER of approxi- samples or templates. Specifically, we consider the term
mately 0.5%. compatibility as the capability of the fingerprint image

After performing the biometric acquisitions using both the
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TABLE V TABLE VI

RESULTS OF THE QUESTIONNAIRE EVALUATING THE USER COMPATIBILITY OF THE PROPOSED TOUCHLESS SYSTENWITHOUT
ACCEPTABILITY OF THE PROPOSED BIOMETRIC SYSTEM SIMULATING THREE-DIMENSIONAL ROTATIONS) WITH THE SOFTWARE
NIST NBIS. RESULTS ARE COMPARED WITH THAT OBTAINED BY THE
Question AnSwer REFERENCE TOUCHBASED TECHNOLOGY.
Touchless Touch Equivalent Software EER
Which is the most comfortable acquisition43.3% 30.0% 26.7% Datasey Datasef
system? - Neurotechnology VeriFinger  0.17% 0.03%
Which is the faster acquisition procedure?  76.7% 10.0% 13.3% NIST NBIS 1.48% 1.14%
Which system is better in terms of hygiend00.0% 0.0% 0.0%
issues? Note: the method has been applied on Datadatits simplest configuration,

Which is the most privacy compliant sys-60.0%  3.3%  36.7% with a single temple stored during the enrollment phasg & 1).
tem?

Do you prefer touchless systems to touch96.7%  3.3% 0.0%

based systems?

achieved EERs of approximately.67% by performing a
similar test on a dataset @f 800 samples acquired froms0

individuals using the touchless device TBS S120.
computed by the proposed system to be fully processed

by software from various vendors designed for touch-
based images (e.g., algorithms for feature extraction an
matching).

V. CONCLUSIONS
%e presented a novel touchless fingerprint recognition sys-

« Interoperability includes the concept of compatibility:iantem tba_sec:j opllthrfe-dr:Tensuf)na;I mo?;]als that perm!:; less-
is measured as the accuracy level obtained by matchi (ﬁls rained, Tully touchiess, fast, on-the-move acqurss
images captured with different devices, in our cas e system is b‘f"s.ed on a two-view set.up, SPeC'f'C algorithms
images captured with the proposed touchless system T able of obta|n|ng_ accurgte three-dimensional rec““'Stf
a state-of-the-art touch-based device. Specifically tgns O.f touthess fmgerprmts, method; for. cqmpensatmg
consider the term interoperability as the accuracy wi ree-dlmensmn_al rotations and_transla’uons n f|_nge[_:epla
which a fingerprint image® is matched against touch—ment’ and algorithms for computing touch-compatible insage

. . three-dimensional models.
il?;ggssamples using methods designed for touch-bagé){f;]e performed experiments aimed to analyze the acceptabil-

) ity and usability of the biometric recognition system, gsog-

Our results demonstrated that the system is effectiveition performance, the effect of environmental conditiamd
compatible with feature extraction and matching algor&hminger misplacements, compatibility with existing bionietr
designed for touch-based samples. In addition, the praposgcognition software, and interoperability with toucrsed
system exhibited similar or better interoperability wituth- ggmples.
based samples compared with commercial touchless systemshe results of questionnaires completed by volunteers who

To evaluate the compatibility of the proposed system witharticipated in the collection of biometric datasets demon
software designed for touch-based samples, we compared dfifited that users perceive the proposed touchless systeen t
applicability of the software NIST NBIS [110] and the softmore hygienic and privacy compliant with respect to touch-
ware Neurotechnology VeriFinger [95] to touchless sampfes hased systems. Moreovels.7% of the users preferred the
Datasef; and touch-based images of Datasethe proposed proposed system to touch-based technologies, indicating i
method was used in its simplest configuration, without simdyperior acceptability compared with traditional fingarpr
lating finger rotations during the enroliment phdsg; = 1). recognition systems. For these reasons, the biometriersyst
Table VI reports the EER achieved for each test. can be considered an alternative to touch-based fingerprint

Table VI shows that the performance of the NIST NBIS sofbiometrics for application contexts in which usabilityjvacy
ware was lower than that of the Neurotechnology VeriFingeihd hygiene are important concerns (e.g., hospitals, ustexi
software. The accuracy decreasing was comparable for bgi public buildings).
the touchless and touch-based fingerprint datasets. The accuracy of the proposed fingerprint recognition system

To evaluate the interoperability of touch-compatible imwas evaluated using multiple datasets and was compared with
ages with touch-based databases, we performed a verificatioat of state-of-the-art touch-based technologies in asoe
test in which the gallery database was composed only @faluation. Using a dataset af 368 samples acquired from
multi-templates computed from touchless samples and pral fingers in a single session, the proposed system achieved
templates were computed only from touch-based samples. EER of0.06%, and the compared touch-based technology
We used all of the samples from Datagseand Datasgt. achieved an EER 0f.03% for images acquired from the
The test consisted of, 803,712 identity comparisons§(x same users. Using a dataset composed,868 samples
296 x 4 x 296). The results indicated that the proposedcquired froml58 fingers over one year, the proposed system
method for simulating three-dimensional rotations insegh obtained slightly better accuracy than the reference touch
the interoperability of the biometric system. The EER aebit based technology, achieving an EER0d2% compared with
with np = 1 was4.62%, the EER achieved withr = 9 was an EER 0f0.23%.

2.23%, and the EER achieved withyp = 25 was2.00%. The performed tests also indicate that the implemented

These results should be compared with those reportedsiystem is robust to uncontrolled environmental illumioati
public tests on commercial touchless systems [94], whi@mnd can tolerate a wide range of finger orientations.



Finally, we evaluated the compatibility of the proposedi6]
system with minutia-based algorithms designed for touch-
based samples and its interoperability with sets of touch-
based templates. Our results demonstrated that the pibposer
algorithms generate touch-compatible images that are com-
patible with different software applications. Evaluatiohthe
interoperability with touch-based images demonstratatittie
proposed system achieved accuracy superior or comparable t
those of commercial touchless sensors.

Future work should include the study of optimized feature[
extraction and matching techniques and the ability to usk bo

three-dimensional and two-dimensional characteristics.
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