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Abstract—Touchless fingerprint recognition systems do not
require contact of the finger with any acquisition surface and
thus provide an increased level of hygiene, usability and user
acceptability of fingerprint-based biometric technologies. The
most accurate touchless approaches compute three-dimensional
models of the fingertip. However, a relevant drawback of these
systems is that they usually require constrained and highly coop-
erative acquisition methods. We present a novel, fully touchless
fingerprint recognition system based on the computation of three-
dimensional models. It adopts an innovative and less-constrained
acquisition setup compared with other previously reported three-
dimensional systems, does not require contact with any surface or
a finger placement guide, and simultaneously captures multiple
images while the finger is moving. To compensate for possible
differences in finger placement, we propose novel algorithms for
computing three-dimensional models of the shape of a finger.
Moreover, we present a new matching strategy based on the
computation of multiple touch-compatible images. We evaluated
different aspects of the biometric system: acceptability, usability,
recognition performance, robustness to environmental conditions
and finger misplacements, compatibility and interoperability with
touch-based technologies. The proposed system proved to be more
acceptable and usable than touch-based techniques. Moreover,
the system displayed satisfactory accuracy, achieving an Equal
Error Rate (EER) of 0.06% on a dataset of 2,368 samples
acquired in a single session and 0.22% on a dataset of 2,368
samples acquired over the course of one year. The system was
also robust to environmental conditions and to a wide range
of finger rotations. The compatibility and interoperability with
touch-based technologies was greater or comparable to those
reported in public tests using commercial touchless devices.

Index Terms—Fingerprint, 3D reconstruction, touchless, con-
tactless, biometrics, less-constrained, on the move.

I. I NTRODUCTION

F INGERPRINT recognition systems are biometric tech-
nologies that are widely used in a variety of application

scenarios [1,2]. These typically feature touch-based acquisition
devices, such as optical and solid-state sensors. However,these
systems suffer from various problems [3–5]:

• distortions in the acquired samples due to elastic defor-
mations resulting from friction with the skin of the finger;

• low-contrast regions in the fingerprint images due to skin
conditions, humidity, and dirt on the sensor plate;

• release of latent fingerprints.
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Touchless fingerprint recognition systems are emerging tech-
nologies designed to overcome these problems by avoiding
contact of the fingertip with any acquisition surface. More-
over, touchless systems can increase the user acceptability of
fingerprint biometrics, which is currently limited by cultural
factors and fears related to the transmission of skin diseases.
Touchless technologies can also reduce acquisition time and
user training requirements.

However, the recognition accuracy and interoperability of
touchless systems are usually lower than those of touch-based
systems and are technologies based on more constrained,
expensive and bulkier acquisition devices. Recent work in this
field aims to reduce such limitations.

Touchless systems based on three-dimensional models usu-
ally obtain better accuracy compared with techniques based
on single images because they are more robust to perspective
distortions and can extract additional features from three-
dimensional shapes.

Recent work has examined biometric techniques based on
touchless acquisitions and three-dimensional models for hand-
based traits, such as: hand geometry [6,7], palmprint [8–11],
finger geometry [12], and knuckle-print [13,14]. Other studies
have investigated the reduction of acquisition constraints in
systems based on traits traditionally acquired in a touchless
manner, such as face [15–19], iris [20–22], gait [23], and
ear [24].

In touchless systems based on finger and hand characteris-
tics, samples acquired without controlling the user’s posture
may exhibit low quality, perspective distortions, and non-
uniform resolution. Therefore, most biometric systems use
guides to place the body part. A few studies on techniques
that do not use placement guides have been performed on
traits such as fingerprints [25–27], hand surface [7] and finger
shape [28]. Studies of fingerprint recognition with movement
have been limited to two-dimensional acquisitions [29].

The present study presents a novel fully touchless finger-
print recognition system based on the computation of three-
dimensional models from two-view images captured during
movement. The system is less-constrained [30] than the three-
dimensional recognition technologies reported in the literature,
and it requires only a minimum level of user cooperation
because the acquisitions are performed while the finger is
moving, in a single instant of time and without contact with
any acquisition surface or finger placement guide. Moreover,
the finger can be placed with different three-dimensional
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orientations as long as a sufficient area of the ridge pattern
is visible by the cameras. The proposed system also presents
important advantages in usability and user acceptance. Fig. 1
shows an example of the biometric acquisition process.

We used a multiple-view technique because it permits
to capture of the information needed to compute a three-
dimensional model in a single instant of time, thus reducing
constraints in finger positioning. Other methods, such as
structured light and photometric stereo techniques, capture
multiple frames and require placement guides to avoid possible
artifacts due to micro movements of the finger.

Our system cannot compute the three-dimensional depth
of ridges and valleys but reconstructs a metric representation
(in mm) of the finger’s shape that is invariant to the angle
and distance of the finger to the cameras. Next, it computes
a touch-compatible image from the three-dimensional model
and reduces non-idealities due to less-constrained acquisitions
using novel strategies for feature extraction and matching.

In contrast to three-dimensional technologies reported in
the literature, which have the main goal of increasing the
accuracy of fingerprint recognition technologies, our system
aims to increase the usability and user acceptability of fin-
gerprint biometric techniques by performing less-constrained
acquisitions and providing recognition accuracy comparable
to touch-based technologies. Our goal is to move toward
the creation of technologies for fingerprint recognition that
are able to perform identity verifications on-the move with
high usability. These technologies should also be integrable
in ambient intelligence applications [31,32] that requirebio-
metrics to verify the identity of the users [33] or require
accurate identity verification before performing continuous
identity recognition [34].

Because the proposed biometric system avoids any contact
with the sensor, it also presents advantages in hygiene and
privacy [35] compared with touch-based fingerprint biometrics
because no latent fingerprints are left during the acquisition
process. Our system can therefore be considered an alternative
to touch-based technologies for application contexts in which
usability, privacy and hygiene are important concerns (e.g.,
hospitals, stadiums and public buildings).

The contributions of the present study are twofold. First, we
propose an innovative acquisition setup and new processing
algorithms that introduce important novelties compared with
previous studies [25,36]. Second, we present direct compar-
isons between the proposed fully touchless systems, touchless
approaches in the literature, and touch-based technologies. We
performed extensive tests on new extended scenario-designed
databases [37] in which results from the same users were ac-
quired using both touch-based and touchless technologies.The
comparative evaluations encompass different characteristics of
the systems: recognition accuracy under different operation
conditions; computational time; compatibility and interoper-
ability between biometric systems, and user acceptance.

The paper is structured as follows. Section II presents a
literature review of touchless fingerprint recognition systems.
Section III details the proposed system. Section IV describes
the experiments performed and the obtained results. Finally,
Section V summarizes the work.

Fig. 1. Example of the biometric acquisition process. The acquisition is
based on two-view images captured simultaneously during finger movement
and without support guides.

II. PREVIOUS WORK

A. Two-dimensional systems

The simplest acquisition techniques adopted by touchless
fingerprint recognition systems use a low-cost digital camera
in uncontrolled light conditions [38–40]. The obtained images,
however, display poor contrast between ridges and valleys.For
this reason, specific illumination techniques (e.g., a point light
source) are frequently adopted to improve the visibility ofthe
fingertip details [41–44]. However, white and infrared light
wavelengths tend to penetrate the skin and be absorbed by the
epidermis, producing relatively low-contrast images [4,45]. A
blue light with a wavelength of 500 nm permits better-quality
images [46,47]. Other acquisition systems use illumination
methods that exploit the optical characteristics inside ofthe
finger [48].

Fingerprint images obtained by performing single-view ac-
quisitions typically display non-uniform resolution and un-
focused regions. To reduce these problems, some systems
compute a mosaic of multiple views [49,50] or use ring
mirrors [47].

Images captured by touchless sensors cannot be directly
used by recognition methods designed for touch-based fin-
gerprint samples [40,51]. Consequently, most previously re-
ported systems compute touch-compatible images by applying
enhancement algorithms and resolution normalization tech-
niques. These methods usually perform background subtrac-
tion, noise reduction [38,41–43,52], and enhancement of the
ridge pattern [53]. In some cases, the focal length and the
distance between the finger and camera are used to normalize
the image resolution [4,44], but estimating these parameters
becomes critical for the final accuracy. Unconstrained acquisi-
tion systems only perform an approximated normalization by
evaluating the finger’s silhouette [38]. Preprocessing methods
for touchless images captured by mobile devices are reviewed
in [54].

Most systems perform matching of touchless fingerprint
samples using methods based on the distance between minutia
points [4,38,49], which requires samples with constant and
known resolution. Other systems use matching methods based
on adimensional features [55,56] and use matchers based on
computational intelligence techniques [57]. Studies of quality
assessment methods [26,27], core detection algorithms [58],
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techniques designed for multiple fingers [59], compression
of touchless fingerprint images [60], acquisition systems with
vitality checks [47,61], and recognition techniques for low-
resolution images of fingers [62,63] have been reported.

Both commercial two-dimensional touchless devices that
use finger placement guides [64–67] and commercial tech-
nologies that do not use any guide [68,69] exist. However,
their accuracy has not yet been documented.

B. Three-dimensional systems

All previously reported methods for computing three-
dimensional fingerprint models use finger placement guides.
These methods are based on multiple views [70–73], structured
light approaches [74–77], photometric stereo systems [78,79],
depth from focus methods [80], or acoustic imaging [81]..

The system described in [70–72] uses an acquisition setup
composed of five cameras and a set of green LEDs located in
a semicircle around the finger. It estimates the finger volume
using a shape from silhouette technique. It then applies a
triangulation algorithm to corresponding pairs of points to
compute the three-dimensional shape of the finger. A depth
map and a grayscale image of the ridge pattern compose the
three-dimensional model describing the fingerprint. Similarly,
the system presented in [73] uses a multiple-view setup
comprising three cameras and three LEDs to reconstruct a
three-dimensional model of the finger shape volume.

A system based on a structured light technique is presented
in [74,75]. The system is capable of estimating both the
three-dimensional depths of ridges and valleys and the texture
of the ridge pattern. The three-dimensional reconstruction is
performed by projecting a sine-wave pattern shifted several
times and by evaluating the phase shift of the projected pattern
in every captured frame. The texture of the ridge pattern
is computed as the albedo image [82]. The structured light
techniques presented in [76,77] compute three-dimensional
models of the finger shape with a superimposed texture of
the ridge pattern.

Other systems are based on photometric stereo tech-
niques [78,79], which estimate the three-dimensional shape
of the ridges by evaluating the reflectance of the illumi-
nated surface according to the position of the LEDs. Depth
from focus methods [80] are also used to compute three-
dimensional models of the finger volume. Recent work has
also examined the resonance-based analysis of A-scan signals
for designing a multi-transducer acoustic imaging system for
three-dimensional fingerprint imaging [81].

Three-dimensional models can be directly used by specifi-
cally designed feature extraction and matching techniques[83]
or can be converted to touch-compatible fingerprint images
using parametric or non-parametric unwrapping techniques.

The parametric method described in [84] approximates the
finger’s shape to a cylindrical model. The obtained images,
however, exhibit horizontal distortions. To overcome this
limitation, the method described in [74] approximates the
finger’s shape as a set of rings with different radii and center
coordinates. The algorithm described in [85] approximatesthe
finger as a sphere and then performs a linear mapping into

a two-dimensional space by applying a distortion correction
algorithm based on the analysis of the distances between
adjacent points.

Some biometric systems [70,71,76] use the non-parametric
unwrapping technique described in [84]. This method aims to
preserve the inter-point surface distances as much as possible.
It divides the fingerprint model into slices along the vertical
direction. A resampling algorithm applied to preserve the dis-
tances between the points pertaining to the slice then unfolds
each slice. The non-parametric method presented in [86] fits
the plane for each local region of the model and then unwraps
the points for each fitted plane, minimizing a cost function that
describes the movement exerted between each point and its
neighbors. The method presented in [87] includes a simulation
of the finger pressure on a sensor plate with the aim of
increasing the similarity between touch-compatible images and
touch-based images.

Techniques for simulating touchless fingerprint mod-
els [88,89] and quality assessment methods for touch-
compatible images obtained by unwrapping three-dimensional
models [90] have also been reported. Recent studies have
created synthetic three-dimensional fingerprint phantomsusing
three-dimensional printers [91], these phantoms may be par-
ticularly useful for designing both touch-based and touchless
systems.

Commercial biometric systems based on three-dimensional
touchless acquisition devices are also available. TBS 3D
Terminal is based on a multiple-view acquisition method [92],
while Flashscan 3D [93] uses a structured light technique.
These systems use finger placement guides.

The literature also includes performance evaluations of com-
mercial technologies for three-dimensional fingerprint recon-
struction. The work presented in [94] evaluated the accuracy of
the biometric recognition software Neurotechnology VeriFin-
ger [95] using a dataset of 1,800 samples acquired from 150
individuals with the touchless device TBS S120 and a dataset
of 1,800 touch-based images acquired from the same fingers
with the touch-based sensor Crossmatch Verifier 300 [96]. The
evaluated touchless device presented usability issues because
it required many trials to acquire good-quality samples andit
was not possible to collect samples from relatively short ring
fingers and little fingers due to the shape of the acquisition
device [94]. Moreover, the touchless acquisition technology
presented a low level of interoperability with touch-based
systems.

III. T HE PROPOSEDSYSTEM

The proposed system aims to obtain a recognition accuracy
comparable to that of touch-based technologies while usinga
fully touchless acquisition procedure that is less-constrained,
more usable, and more accepted by users than touch-based
and three-dimensional fingerprint recognition systems in the
literature. In particular, our system performs the acquisition
automatically in a single instant of time as soon as the user’s
finger moves inside the field of view and focus region of the
cameras.

The performed metric three-dimensional reconstruction is
invariant to finger position. In fact, the three-dimensional
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reconstruction method computes the actual position of each
point in the three-dimensional space (expressed in mm). The
size of the three-dimensional model only depends on the
dimension of the real finger, thus avoiding possible problems
due to scale variations typically present in two-dimensional
acquisition systems. To compensate for possible rotationsof
the finger in the yaw, roll and pitch directions (Fig. 2),
the proposed system includes a method that reduces finger
placement differences between two acquisitions by simulating
rotations of the three-dimensional finger shape.

In the enrollment phase, our system computes a three-
dimensional model and rotates the three-dimensional finger-
print nR times in three-dimensional space. Then, a “multi-
template” composed ofnR two-dimensional templates is com-
puted and stored in the database. In the verification and
identification phases, the system creates a single template
from the three-dimensional model of the finger. The identity
comparison strategy consists of applying a fusion algorithm to
the similarity scores obtained by matching the fresh template
with all of the templates that compose the multi-template.

We use two-dimensional feature extraction and matching
algorithms designed for touch-based images because they en-
able a demonstration of the compatibility and interoperability
of the proposed system using current biometric recognition
methods as well as direct comparison of the performance of
the proposed system with that of touch-based technologies.

Fig. 3 outlines the biometric recognition process, which can
be divided into the following steps:

1) acquisition,
2) three-dimensional fingerprint reconstruction,
3) computation of touch-compatible images,
4) template computation,
5) matching.

A. Acquisition

The acquisition setup is based on two calibrated CCD
cameras (CameraA and CameraB) placed with an upward
orientation. The calibration was performed off-line once using
a chessboard captured in different positions. This task applies
the algorithms described in [97,98] to compute the intrinsic
and extrinsic parameters of the two-view setup.

The acquisition setup does not use any finger placement
guide, and the fingerprint is oriented downward, according to
the most natural position of the hand. As soon as the moving
finger is placed in the fields of view of the cameras, CameraA

and CameraB simultaneously capture the two-view images.
We use a photocell and a trigger mechanism to capture images
at the same instant of time, thus reducing possible variations
of the finger position in the two-view images. The distance of
the photocell from the cameras corresponds to the best focus
plane.

The acquisition setup permits unconstrained finger place-
ments with high rotations in the yaw, roll and pitch directions,
as long as a sufficient area of the ridge pattern is visible in
both captured images.

To enhance the visibility of the ridge pattern, we used a
uniform green light. The light is triggered by the photocell

Fig. 2. Rotations of the finger with respect to the optical center of CameraA.

for a short timetl, chosen to produce a light impulse almost
invisible to the eye and able to reduce any blur effect due
to movement of the user in front of the sensor. Moreover,
the intensity of the light makes environmental illumination
negligible. To simplify finger positioning, we projected a red
cross light in the center of the acquisition area.

Fig. 4 presents examples of images captured by CameraA

and CameraB .

B. Three-dimensional fingerprint reconstruction

The proposed method computes a three-dimensional model
of the finger with a superimposed texture representing the
ridge pattern. The method uses a correlation-based technique
that is more computationally efficient and accurate than the
one described in [36] and can be divided into the following
tasks:

1) image preprocessing;
2) segmentation;
3) extraction and matching of the reference points;
4) refinement of the pairs of corresponding points;
5) three-dimensional surface computation and image wrap-

ping.

1) Image preprocessing:Because a green light is used
to illuminate the finger, the details of the ridge pattern are
particularly visible in the green channel of the RGB color
space of the captured images. Consequently, we consider the
channelG of the captured imageI (Fig. 5 a) as the matrix
representing the ridge patternP (Fig. 5 b).

2) Segmentation:This task estimates the region of interest
(ROI) of each image, which corresponds to the finger skin. The
segmentation task also removes the fingernail from the ROI;
the fingernail can cause deformations in the three-dimensional
finger shape and introduce artifacts in the ridge pattern during
subsequent computational steps.

The images are captured with the fingerprint oriented down-
ward, and the background is the ceiling of the room. Thus,
the background is out of focus due to its considerable distance
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(a)

(b)

Fig. 3. Schema of the proposed system: (a) enrollment; (b) verification.

(a) (b)

Fig. 4. Example of a two-view acquisition: (a) imageIA captured by CameraA; (b) imageIB captured by CameraB .

(a) (b)

Fig. 5. Example of a fingerprint image before and after the preprocessing step: (a) input imageI; (b) ridge pattern imageP , computed as the green channel
of I.

from the cameras and is mostly dark due to the large difference
in radiation between the green LED light and the ambient light.

The segmentation task can be divided into two main tasks:
rough estimation of the finger shape and fingernail removal.
The last task estimates the fingernail as the image region
exceeding a line perpendicular to the yaw angle of the finger
and representing the termination of the skin region. Fig. 6
presents a schema of the overall segmentation process.

To estimate the finger shape, we use a simple thresholding
technique. The binary image of the finger shapeB is computed
from P using a thresholdto that is empirically estimated for

the dataset.B is then refined using a morphological filling
operator and eroded using a circular structural element with
radiusre that is empirically estimated for the dataset.

The subsequent task is the removal of any potential finger-
nail regions from the segmented area. The proposed fingernail
removal technique can be divided into the following tasks:
compensation of the yaw angle, search for finger termination,
and skin region segmentation.

In the first task,P andB are rotated by an angle of−α to
make the finger’s major axis vertical, resulting in the images
P−α andB−α, respectively. The variableα is computed as the
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Fig. 6. Schema of the proposed segmentation method.

angle of an approximated line of symmetryXc(y) of B, which
corresponds to the barycenter of the ROI of every coordinate
y.

The estimation ofα is performed as follows. For each
y coordinate ofB, the pointsXc(y) are computed as the
barycenter of the ROI:

Xc(y) = (argmin
x=1...X

(B(x, y)) + argmax
x=1...X

(B(x, y)))/2 , (1)

whereX is the size ofB in thex direction.α is then estimated
as the angle of the first-order polynomial approximating the
vectorXc.

A line representing the finger termination is then assigned
by evaluating features describing the presence of ridges and
valleys. To find they coordinate corresponding to the finger’s
terminationye, an imageGy is then computed as the gradient
of P−α along they direction. A binary edge imageEy is
obtained fromGy using thresholdte, which is computed as
the fixedpe percentile ofGy. The value ofpe is empirically
estimated for the used dataset.

The tomography ofEy is subsequently computed. For each
coordinate of they axis,T (y) is obtained by the following:

T (y) =
X
∑

x=1

Ey(x, y) . (2)

A binary vector Be, describing the presence of ridges, is
computed fromT (y) by using the thresholdtr. This parameter
has been empirically estimated for the used dataset.

They coordinateye of the line corresponding to the end of
the finger’s skin is then estimated by the following:

ye = argmax
y=1...Y

(T (y)) , (3)

whereY is the size byB−α in the y direction.
The skin region segmentation is finally performed by setting

the points ofB−α below ye to 0, and the final ROIBf is
obtained by rotatingB−α of α degrees.

3) Extraction and matching of the reference points:To
reduce both the computational complexity and the likelihood
of false matches, the imagePA (captured by the CameraA)
is first rectified such that corresponding epipolar lines ofPB

(captured by the CameraB) lie along horizontal scan-lines [99].
This task produces the imageP ′

A and is performed using the
homography matrixH obtained from the calibration step.

Next, a set of regularly spaced pointsX ′

A is selected by
downsampling the ROI ofP ′

A with a step ofsd pixels. In the
following, we refer to these points as reference points.

For eachx′

A ∈ X ′

A, the corresponding pointxB in PB

is estimated using a block matching technique. The method
searches for the best normalized cross-correlation between
a l × l squared window centered in the coordinatesx′

A of
the imageP ′

A, and a l × l squared window sliding in the
corresponding epipolar line ofPB . We searched corresponding
points only in the horizontal direction because the image
rectification made the pairs of conjugate epipolar lines of the
two-view images collinear and parallel to they axis. The
search range is limited to±w pixels along thex axis. For
each reference point of the imageP ′

A, the corresponding point
xB of PB is considered as the pixel with the best correlation
value in the search range of the second view.

Finally, the coordinates of the matched pointsx′

A are
mapped into the space of the imagePA as follows:

xA = HTx′

A . (4)

The studied acquisition setup achieves a good maximization
of the small local variations of finger skin characteristics,
allowing the matching algorithm to identify a large number
of robust pairs of corresponding points.

Fig. 7 depicts a visual representation of the proposed
algorithm for estimating corresponding pairs of points. Fig. 8
shows portions of two-view images and the computed pairs of
corresponding points.

4) Refinement of the pairs of corresponding points:To ob-
tain a smooth and accurate representation of the finger surface,
we applied a thin plate spline to the set of corresponding
points. Fig. 9 presents examples of point clouds obtained with
and without the refinement step.

5) Three-dimensional surface computation and image
wrapping: This task creates a three-dimensional modelMA

as the depth map corresponding to the view of CameraA by
computing the three-dimensional shape of the fingerMz and
wrapping an image of the ridge patternMp on the estimated
model.

The three-dimensional reconstruction method computes the
depth coordinate of every three-dimensional point using the
following triangulation formula:

z =
fT

xA − xB

, (5)

where f is the focal length of the two cameras,T is the
baseline distance between the two cameras, andxA and xB

are the two matched points.
We computeMz and Mp from the obtained point cloud

using an interpolation approach. Two matricesMx andMy,
representing thex andy coordinates of the three-dimensional
model, are computed as equally spaced grids with a sampling
step equal tosi. The valuesi is empirically estimated with the
aim of obtaining a good tradeoff between the computational
efficiency and quality of the three-dimensional models.Mz is
obtained by a linear interpolation of the estimatedz values
in the coordinates described byMx and My. Mp and the
binary map of the ROIMb are obtained by applying the
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(a) (b)

(c)

Fig. 7. Representation of the proposed algorithm for estimating correspond-
ing pairs of points: (a) selected pointx′

A in the rectified imageP ′

A and
boundaries of the correspondingl× l local region; (b)x′

A in the imagePB ,
boundaries of the correspondingl×l local region, search region of±w pixels
along thex axis (corresponding to an epipolar line ofPA), and matched point
xB ; (c) correlation values in the search region. Because the ridge pattern is
highly repetitive, we studied the illumination system and the characteristics
of the cameras used by the acquisition setup to maximize the smalllocal
variations of the finger skin characteristics. The search ofcorresponding points
in the acquired images can therefore obtain high differencesin the normalized
correlation values, and properly match the great majority of the considered
points.

same interpolation technique to the points ofPA and Bf ,
respectively.

Fig. 10 shows an example of a dense three-dimensional
model with a superimposed texture image.

C. Computation of touch-compatible images

Starting from a three-dimensional model of the finger sur-
face, the proposed method computes touch-compatible images
that represent the ridge pattern of acquisitions performedwith
arbitrary finger rotations. We refer to these images as touch-
compatible because we have experimentally demonstrated that
these images can be processed using algorithms designed for
touch-based images.

The results are gray-scale images with a standard resolution
of 500 DPI. Images with a standard fixed resolution can be
obtained because three-dimensional models are computed by
performing a metric reconstruction. Therefore, the size ofeach
three-dimensional model corresponds to the real size of the
corresponding finger (expressed in mm).

The method can be divided into the following tasks:
• enhancement;
• two-dimensional mapping.
1) Enhancement:The method computes an enhanced tex-

tureMe from Mp using algorithms similar to those presented
in [25].

A background imageIb is estimated by applying a mor-
phological opening operation (with a structuring element of
se pixels) to Mp. Then, the background is subtracted from
Mp, resulting inIr.

(a) (b)

Fig. 8. Portions of two-view images and the corresponding matched points:
(a) portion of the rectified imageP ′

A; (b) portion of the imagePB . The
images are cropped starting from the same coordinates. The horizontal lines
correspond to epipolar lines. The horizontal lines and vertical dashed lines
in image (a) represent the used sampling strategy and are separated bysd
pixels. Markers lying on the same epipolar lines represent matched pairs of
points. The proposed matching method overcomes illumination differences
and perspective deformations due to the placement of the cameras, accurately
estimating pairs of corresponding points in the two-view images.

To increase the visibility of the ridge pattern, a nonlinear
equalization is performed asIl(x, y) = log (Ir(x, y)).

An 8-order Butterworth low-pass filter [100] with a fre-
quencyff and sizedf × df is then used to reduce noise.
We have selected a Butterworth filter instead of other types
of low-pass filters because it experimentally obtained sharper
images with higher contrast between ridges and valleys. The
values offf anddf were then empirically estimated.

The enhanced textureMe is finally obtained by applying a
histogram equalization toIl.

2) Two-dimensional mapping:This task computesnR

touch-compatible images from a single three-dimensional
model of the finger surface. It compensates for the acquisition
angle along the yaw direction and simulatesnR acquisitions
performed with known rotation angles in the roll and pitch
directions. In the enrollment phase, a value ofnR equal
to or greater than1 is applied to compensate for possible
misplacements of the finger during future acquisitions of
probe samples. In the verification and identification phases,
we compute a single touch-compatible image (nR = 1) from
the fresh sample.

To obtain the same number of roll and pitch rotations,
including the null rotation, the possible values ofnR are
chosen as squares of integer odd numbers.

To compensate the finger placement angle along the yaw
directionφ, we apply the same algorithm used to remove the
finger nail toMb and then compute the rotation matrixRx,
which is obtained as follows:

Rx(φ) =





1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)



 , (6)

Then, a set of
√
nR equally spaced roll anglesΘ(i) and

the corresponding rotation matricesRy(Θ(i)) are computed
as follows:
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(a) (b)

Fig. 9. Application of the method for refining the pairs of corresponding points: (a) an example of an input point cloud; (b) application of the refinement
step.

Fig. 10. Example of a dense three-dimensional model with a superimposed
texture image obtained by the proposed method.

Θ(i) = i∆R

i = −⌊((√nR)/2)⌋...+ ⌊((√nR)/2)⌋ , i ∈ Z , (7)

Ry(Θ(i)) =





cos(Θ(i)) 0 − sin(Θ(i))
0 1 0

sin(Θ(i)) 0 cos(Θ(i))



 , (8)

where∆R is the constant angle rotation step and⌊·⌋ is the
floor operator.

In a similar manner, a set of
√
nR equally spaced pitch

anglesΨ(j) and the corresponding rotation matricesRz(Ψ(j))
are computed as follows:

Ψ(j) = j∆R

j = −⌊((√nR)/2)⌋...+ ⌊((√nR)/2)⌋ , j ∈ Z , (9)

Rz(Ψ(i)) =





cos(Ψ(j)) sin(Ψ(j)) 0
− sin(Ψ(j)) cos(Ψ(j)) 0

0 0 1



 . (10)

For each roll angleΘ(i) and pitch angleΨ(i), we rotate the
coordinatesMx, My andMz of the three-dimensional model
MA in the three-dimensional space with a rotation matrix
R(Θ(i),Ψ(j)), which is obtained as follows:

R(Θ(i),Ψ(j)) = RxRy(Θ(i))Rz(Ψ(j)) . (11)

Every rotated touch-compatible imageE(Θ(i),Ψ(j)) is ob-
tained by applying a re-sampling with a constant step equal
of 1/500 inch to the enhanced texture imageMe in the newx,
y and z coordinates. This computation is based on a bilinear
interpolation.

To remove regions of the images that do not pertain to the
last phalanx, we crop the touch-compatible images at a fixed
length of le mm from the finger end in they direction.

Fig. 11 presents examples of touch-compatible images ob-
tained from the three-dimensional model shown in Fig. 10,
and computed with an angular step∆R = 15◦. As shown in
Fig. 11, small rotations in the three-dimensional space produce
substantial changes in the touch-compatible images.

D. Template computation

To demonstrate the full compatibility with standard bio-
metric recognition technologies for fingerprint recognition, we
have adopted well-known methods designed for touch-based
images. Minutiae templatesT are computed using the software
Neurotechnology VeriFinger [95]. As an example, Fig. 12
shows a binarized touch-compatible image and the extracted
minutia coordinates.

E. Matching

The enrollment phase creates a multi-template composed by
nR minutiae templatesTe from nR touch-compatible images
obtained by applying the proposed two-dimensional mapping
technique. The verification phase computes a single minutiae
templateTf from the touch-compatible imageE(0◦,0◦).

The matching score represents the similarity of the fresh
template with a multi-template. This score is computed as
follows:

matching score= max
i=1...nR

(match(Te (i) , Tf )) , (12)

where match(·) represents the matching function, which is
performed using Neurotechnology VeriFinger software.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. Examples of touch-compatible gray-scale imagesE(Θ,Ψ) obtained
by the proposed system withnR = 9 and∆R = 15◦: (a)E(−15◦,−15◦); (b)
E(0◦,−15◦); (c) E(15◦,−15◦); (d) E(−15◦,0◦); (e)E(0◦,0◦); (f) E(15◦,0◦);
(g) E(−15◦,15◦); (h) E(0◦,15◦); (i) E(15◦,15◦). Small rotations in the three-
dimensional space produce large changes in the touch-compatible images. In
contrast to other methods presented in the literature in which these differences
are critical, the proposed is unaffected by these differences.

IV. EXPERIMENTAL RESULTS

The performed experiments aim to evaluate different char-
acteristics of the proposed biometric system by performing
technology and scenario evaluations [101]. We performed an
analysis of the accuracy of the proposed three-dimensional
reconstruction method using both quantitative and qualitative
measurements [1,102]. Next, we evaluated the performance
of the biometric system on a dataset of more than 2,300
samples. We also conducted tests to evaluate the robustness
of the system to different environmental light conditions,
its sensitivity, its robustness to intentional misplacements of
the finger during the acquisition process, and the compu-
tational time required by the proposed algorithms. Then,
the resulting figures of merit were compared with those for
traditional touch-based technologies and the most accurate
touchless fingerprint recognition systems in the literature. We
also evaluated the performance of the proposed system for
data acquisition over one year. Moreover, we examined the
compatibility and interoperability of the proposed systemwith
touch-based samples. Finally, we evaluated user acceptability
by analyzing the results of evaluation forms completed by
volunteers after using both the proposed touchless system and
touch-based sensors.

Fig. 12. Example of a binary image and minutiae coordinates obtained using
the proposed system and the software Verifinger. Notably, this commercial
feature extractor properly identified the coordinates of the minutiae obtained
by the proposed touchless method.

A. Experimental design

In the following, we describe the experimental setup, the
parameters used by the proposed algorithms, and the collected
datasets.

1) Acquisition setup:Fig. 13 a presents the setup con-
figuration. Acquisitions were performed at a mean distance
∆H = 220 mm between the finger and the CCD of every
camera. The angle of the cameras with respect to the horizontal
support wasθ = 85◦, with a baseline distance between the
cameras∆D = 65 mm (from the centers of the CCDs). The
light source was placed at a distance of∆L = 150 mm.

The cameras captured images at a resolution of1280 ×
960 pixels. The optics were Tamron 20HC with a 25-mm focal
length. Images were captured with apertureF = 3, a focal
length of0.25 m, a shutter time of529 µs, and an acquisition
gain of 100. The light impulse had a durationtl = 500 µs.
The illumination system consisted of an LED lamp with7
contiguous green light sources.

The real acquisition system was covered by a box (Fig. 13 b)
to protect the hardware components, simplify the search of the
acquisition area during the acquisition process, and provide a
simple prototype of a possible industrial implementation of
the system.

2) Parameters of the implemented algorithms:To achieve
correct behavior under the largest range of operative con-
ditions, the parameters of the implemented methods were
empirically focused on the separate dataset DatasetCalibration

of samples representing very different acquisitions in term of
finger positioning. The parameters of the segmentation step
were to = 45, re = 20 pixels, pe = 80%, tr = 0.1.
The parameters used to compute three-dimensional models
were sd = 20 pixels, l = 21 pixels, w = 70 pixels. The
maximum length of the cropped touch-compatible images was
le = 230 mm. The sampling step used for computing the dense
three-dimensional models wassi = 0.025 mm, corresponding
to a spatial resolution of approximately1000 PPI. The pa-
rameters of the image enhancement method weresE = 15,
df = 20, andff = 0.1.

3) Created datasets:To analyze the robustness of the
system to different environmental light conditions and inten-
tional finger misplacement, the performance of the proposed
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(a) (b)

Fig. 13. The acquisition setup: (a) schema of the acquisitionsetup; (b)
photograph of the setup and finger positioning. We covered the acquisition
system with a box to protect the hardware components and simplify the search
of the acquisition area during the acquisition process.

biometric system was evaluated using different datasets created
in our laboratory. As a reference, we collected touch-based
samples from the same volunteers who provided touchless
samples.

Biometric data were collected from a set of30 volunteers
including both men and women. The volunteers included grad-
uate students, workers, and retirees ranging in age from20 to
64 years old. We acquired data during two sessions performed
over the course of a year. A trained operator supervised
the acquisition of both touch-based and touchless samples.
The hardware setup was disassembled after the first session
and then assembled again to perform the second acquisition
session. For each session, a setup calibration was performed.
The acquisition procedure required very little training ofthe
volunteers: they were only trained on where to place the finger
to be acquired by both of the cameras. A description of every
dataset is reported in the following.

• DatasetA was created to evaluate the accuracy of the
implemented touchless recognition system for samples
acquired with standard finger placements under differ-
ent light conditions. We performed the acquisitions at
different hours of the day (from9 am to 8 pm) both
with and without artificial illumination of the room. The
dataset was composed of2, 368 samples acquired in a
single session. Images of the ten fingers of30 volunteers
were collected. Each finger was imaged8 times (4 times
with artificial environmental light and4 under natural
light conditions) to obtain a total of80 images for each
volunteer. It was not possible to capture samples from4
fingers because of cuts or amputations. Fig. 14 presents
examples of images pertaining to DatasetA.

• DatasetB was created to evaluate the robustness of the
implemented touchless recognition system to intentional
misplacements and finger rotations. Because it is likely
impossible to place a finger with a known angle without
using finger guides, we asked the users to place the
finger with high rotations (approximately30◦) in the yaw,
roll, and pitch directions. Users considered the requested
finger rotations exaggerated with respect to the natural
position of the finger on the proposed acquisition system.

Most of the samples were intentionally misplaced to
be reasonably considered as failures to acquire (FTA)
in commercial touch-based scanners. The dataset was
composed of1, 200 samples acquired in a single session.
The two index fingers of each volunteer were captured
8 times without asking to perform rotations and2 times
for each of the6 considering orientation: leftward yaw
rotation, rightward yaw rotation, counterclockwise roll
rotation, clockwise roll rotation, downward pitch rotation,
upward pitch rotation. A total of20 acquisitions for each
index finger and40 acquisitions for each volunteer were
performed. A visual analysis of the samples captured
asking for finger rotations indicated a variability of the
orientation from approximately20◦ to approximately
45◦. Fig. 15 presents examples of images captured with
different finger placements. The exaggerated rotations of
the samples in DatasetB are apparent.

• DatasetT was created as a reference touch-based dataset
to compare the implemented touchless system with state-
of-the-art touch-based technologies. The dataset was
composed of1, 184 images acquired in a single ses-
sion using the touch-based sensor Crossmatch Verifier
300 [96]. The ten fingers of each volunteer were captured
4 times. It was impossible to capture samples of4 of the
fingers due to cuts or amputations.

• DatasetAY was created to evaluate the accuracy of the
system over a time interval of one year. The dataset was
composed of2, 368 samples acquired in two sessions.
Images from ten fingers of15 volunteers were collected.
Each finger was imaged16 times (8 samples in DatasetA

and8 samples acquired in the second session) to obtain a
total of 160 images for each volunteer. It was impossible
to capture samples of2 of the fingers because of cuts or
amputations.

• DatasetTY was created as a reference touch-based dataset
to compare the performance of touch-based and touchless
technologies over a time interval of one year. The dataset
was composed of1, 184 images acquired during two
sessions using a Crossmatch Verifier300. For each volun-
teer, the ten fingers were captured 8 times (4 samples in
DatasetT and4 samples acquired in the second session).
It was impossible to capture samples of2 of the fingers
due to cuts or amputations.

B. Evaluation of the three-dimensional reconstruction

We performed both visual and numerical analyses to eval-
uate the accuracy of the proposed three-dimensional recon-
struction method. The results confirmed that the proposed
less-constrained acquisition technique and three-dimensional
reconstruction method achieved sufficient accuracy for use
in biometric systems. Fig. 16 presents examples of recon-
structed three-dimensional point clouds, the corresponding
interpolated surfaces, and superimposed texture images. The
three-dimensional reconstruction method effectively modeled
the finger’s shape. We evaluated the accuracy of the system
calibration using the method described in [103] and obtained
an error of 0.03 mm. This method computes the three-
dimensional reconstruction error by triangulating the corner
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(a) (b) (c)

(d) (e) (f)

Fig. 14. Examples of acquisitions of DatasetA performed with and without artificial illumination of the room:(a-c) fingers captured without artificial
illumination; (d-f) the same fingers captured with artificial illumination. The light used to enhance the visibility of the ridge pattern is sufficiently intense to
make the environmental illumination negligible. Moreover, the impulse duration is sufficiently short to be nearly invisible to the eye and to reduce any blur
effects due to the movements of the user in front of the sensor.

(a) (b) (c)

(d) (e) (f)

Fig. 15. Examples of images in DatasetB captured with exaggerate finger orientations: (a) leftwardyaw rotation; (b) counterclockwise roll rotation; (c)
downward pitch rotation; (d) rightward yaw rotation; (e) clockwise roll rotation; (f) upward pitch rotation.

coordinates of the chessboard images used to calibrate the
system and by interpolating a plane passing from the ob-
tained three-dimensional coordinates. The final result is the
standard deviation of the Euclidean distance between the three-
dimensional corners and the three-dimensional plane.

We also examined the accuracy of the algorithm used to
search the corresponding points in the two-view images. The
performed test included computing the absolute distance along
the z axis between the three-dimensional points obtained

before and after the noise reduction step by assuming the
continuity of the finger surface. A mean error of0.17 mm was
obtained. This value is satisfactory because three-dimensional
models obtained by multiple-view systems typically present
outliers.

The number of corresponding points in the input images
is due to the sampling stepsd. We observedsd = 20 pixels
was a good tradeoff between three-dimensional reconstruction
quality and required computational time. The mean number of
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(a) (b)

(c) (d)

(e) (f)

Fig. 16. Examples of point clouds describing the three-dimensional shape of the finger and the corresponding dense three-dimensional models with
superimposed texture images: (a, c, e) point clouds; (b, d, f) dense three-dimensional models. The experiments demonstrated that the proposed method can
obtain accurate three-dimensional reconstructions for all10 fingers.

obtained three-dimensional points computed without applying
interpolation algorithms was768, and the distance between
three-dimensional points along thex andy axes was0.63 mm.

C. Performance of the proposed system

This subsection presents tests performed to evaluate differ-
ent aspects of the proposed system under different operating
conditions. First, we evaluated the accuracy under standard
operating conditions. Second, we analyzed the accuracy under
different light conditions. Third, we examined the robustness
to intentional misplacements of the finger. Finally, we analyzed
the computational efficiency of the proposed algorithms.

1) Accuracy under standard operating conditions:We eval-
uated the performance of the proposed method under standard
operating conditions using the samples from DatasetA.

The tests primarily focused on the rotation angle∆R and the
number of three-dimensional rotationsnR simulated in the en-
rollment phase because these variables can significantly affect
the performance of the biometric system. The evaluated pa-
rameters were Receiver Operating Characteristic (ROC) curves
[1], Equal Error Rate (EER) [104] and FMR1000 (the lowest
False Non-Match Rate for False Match Rate0.1%) [105].

We found thatnR = 9 permitted satisfactory results from
samples captured with correct finger placements, with an EER
of 0.06%.
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To study the effect of the number of three-dimensional rota-
tions in the enrollment step, we tested different configurations
of nR. For convenience, we report the results in terms of
computational time:nR = 1 (no rotations along the pitch
and roll axes performed during the enrollment step);nR = 9
(iterative rotation of the three-dimensional finger modelsalong
the pitch and roll axes in all combinations of the angles
[−15◦, 0◦,+15◦] in the enrollment step).

Fig. 17 presents the ROC curves obtained using DatasetA,
and Table I provides the numerical error values. Because the
matcher is non-symmetrical, every test regarded16, 576 (296×
8 × 7) genuine identity comparisons and5, 588, 480 (296 ×
295× 8× 8) impostor identity comparisons.

Fig. 17 and Table I indicate that the accuracy obtained
for DatasetA by enrolling multi-templates corresponding to
single templates (nR = 1) is satisfactory for many biometric
applications, with EER= 0.17%.

Multi-templates composed ofnR = 9 templates yielded the
best performance, with EER= 0.06%. These results demon-
strate that multiple three-dimensional rotations can increase
the accuracy of the biometric system and the robustness to
uncontrolled finger orientations.

In the considered dataset, however, higher numbers of rota-
tions (nR) did not result in significant accuracy improvements.
For example, the proposed system achieved EER= 0.05% for
nR = 9.

2) Robustness to environmental illumination:Samples in
DatasetA were collected under different environmental light
conditions (with artificial illumination and natural lightat
different hours of the day). The results presented in Fig. 17
and Table I show that the accuracy of the proposed method
is not affected by changes in environmental light conditions.
These variations, in fact, did not reduce the quality of the
captured images and, consequently, the recognition accuracy
of the proposed biometric system.

3) Sensitivity analysis:we performed a sensitivity analysis
of the most relevant parameters of the proposed system on
DatasetA. Results showed that the system is robust to small
variations of the parameters.

An important parameter consists in the angle∆R used
to compute touch-compatible images. Small values require
high numbers of rotationsnR to overcome differences in
the finger’s placement, therefore increasing the computational
time. High values can reduce the final accuracy of the system.
We found that a good tradeoff is∆R = 15◦ and we performed
the sensitivity analysis around this value. As an example, with
nR = 9, a small variation of5◦ (∆R = 20◦) increased the
EER from0.06% to 0.07%.

The second set of parameters that relevantly influence the
system accuracy are the ones used to compute the three-
dimensional finger shape. We varied the valuessd and l of
±20% of their optimal configuration and the valuew of
+20% and+40%. We did not reduce the value ofw since we
empirically estimated that a value of±70 pixels represents the
minimum search range usable with the proposed acquisition
setup. Within the tested range of parameters, the worst EER
achieved withnR = 1 is 0.20% and the worst EER with
nR = 9 is 0.07%.

Fig. 17. ROC curves representing the accuracy of the proposed touchless
system under standard operating conditions (DatasetA). The results represent
different numbers of three-dimensional rotationsnR performed during the
enrollment step. Every test included5, 605, 056 identity comparisons. The
configuration that yielded the best accuracy wasnR = 9, with EER= 0.06%.

TABLE I
ACCURACY OF THE PROPOSED BIOMETRIC SYSTEM USING SAMPLES

ACQUIRED UNDER STANDARD OPERATING CONDITIONS(DatasetA).

nR FMR1000 (%) EER (%)
1 0.34 0.17
9 0.12 0.06

4) Robustness to intentional misplacements and rotations:
We evaluated the robustness of the proposed system in critical
applications and uncollaborative contexts using samples ap-
positely acquired with strong finger rotations (DatasetB). The
system was able to properly compensate a great number of
poor-quality acquisitions performed with high finger rotations.
However, very high rotations in the roll and pitch directions
reduced the capability of matching genuine samples due to
the presence of out-of-focus regions, perspective deformations,
and a reduced size of the ROI (central area of the finger-
tip). However, for intentional misplacements and rotations,
the proposed system achieved EER≤ 2% in its standard
configuration.

In this test, we simulated an application scenario in which
the enrollment phase is supervised and the verification phase
is based on wrongly performed acquisitions. We therefore
divided DatasetB in two subsets.

• DatasetB enrollment: For each finger,8 samples acquired
with standard finger placements were used to compute the
enrolled multi-templates.

• DatasetB probe: For each finger,12 samples acquired
with intentional misplacements and rotations of the finger
were used to compute the probe templates.

For each of the considered configurations, we performed5, 760
(12×8×60) genuine identity comparisons and339, 840 (12×
8 × 60 × 59) impostor identity comparisons. The results are
presented in Table II.
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TABLE II
ACCURACY OF THE PROPOSED BIOMETRIC SYSTEM FOR SAMPLES

ACQUIRED WITH INTENTIONAL MISPLACEMENTS AND ROTATIONS OF THE

FINGER (DatasetB ).

nR FMR1000 (%) EER (%)
1 7.95% 3.98%

9 4.13% 2.07%

25 2.87% 1.43%

49 2.40% 1.20%

As shown in Table II, high numbers of three-dimensional
rotationsnR effectively reduced the effects of misplacements
and rotations on system accuracy. The EER achieved with
nR = 1 was3.98%, and the EER achieved withnR = 49 was
1.20%. These results also suggest that the three-dimensional
reconstruction approach produces accurate results for a wide
range of finger rotations.

The results reported in Table II are not comparable to
those reported in Fig. 17 and Table I because the results
reported in Table II reflect data that were acquired with
intentionally performed misplacements and rotations of the
finger. By contrast, the results reported in Fig. 17 and TableI
reflect acquisitions performed under standard conditions.

Rotations along different axes (Fig. 2) do not contribute in
the same manner to decreased performance of the biometric
system. Therefore, we analyzed the matching scores obtained
using samples acquired with different rotations. Fig. 18 a
presents boxplots of the matching scores obtained with the
standard system configuration (nR = 9). As a reference,
Fig. 18 b presents the boxplots of the matching scores obtained
under standard application conditions (DatasetA).

Fig. 18 shows that roll and pitch rotations decrease the
matching scores in genuine comparisons. This decrease is due
to the presence of out-of-focus regions, perspective deforma-
tions, and the reduced size of the ROI, which could only be
mitigated by using more cameras to obtain three-dimensional
models representing a wider area of the fingertip. The match-
ing scores obtained by impostor identity comparisons were
not significantly altered, and most were equal to0 when the
Neurotechnology VeriFinger matching algorithm was used.
The acquisitions of DatasetB were obtained by attempting to
rotate the finger on a single axis and controlling the rotations
in the other two axes to separately evaluate the effect of every
possible rotation on performance.

5) Computational time:We evaluated the computational
time required by every software module of the proposed
system. With high probability, an optimized industrial imple-
mentation should permit the use of the proposed approach in
real-time live applications.

We wrote the proposed algorithms for preprocessing,
three-dimensional reconstruction and computation of touch-
compatible images using Matlab (R2011b64 bit), and the
feature extraction and matching methods were written in C#
using the SDK provided by Neurotechnology. Tests were
performed on an Intel Xeon3.60 GHz workstation with
Windows7 Professional64 bit. Our implementations were not
optimized in terms of computational complexity, and they did
not use parallel computing strategies.

(a) (b)

Fig. 18. Boxplot of the matching scores for samples acquired with intentional
misplacements of the finger and samples captured under standardconditions:
(a) matching scores reported for the considered finger rotation directions
on samples acquired with intentional misplacements and rotations of the
finger (DatasetB); (b) matching scores for samples captured under standard
application conditions (DatasetA).

The proposed touchless technique first computes a touch-
compatible fingerprint image and then performs the feature
extraction and matching steps. The total time needed to
compute a three-dimensional finger shape, a single touch-
compatible image and a minutia template was24.13 seconds.
A large amount of this time (27.99%) was devoted to matching
pairs of corresponding points in the input images. FornR = 1,
the matching algorithm required0.11 seconds. FornR = 9,
the matching algorithm required1.07 seconds.

At enrollment, the system simulated rotations of the three-
dimensional shape of the finger, which is a computationally
expensive task. Each rotation required4.32 seconds. Because
the enrollment is performed once, this task does not influence
the computational efficiency of the system during its normal
use.

All of the implemented algorithms are designed to be
easily portable to parallel architectures. For example, a par-
allel implementation of these methods based on CUDA tech-
niques [106] would drastically decrease the required compu-
tational time.

D. Accuracy comparison with reference methods

The accuracy of the proposed system was compared with
that of touch-based systems and the most accurate touchless
technologies reported in the literature. The results indicated
better or similar performance compared with the considered
biometric systems, with the advantage of using a fully touch-
less, on-the-move, less-constrained acquisition method.More-
over, the system achieved slightly better accuracy with respect
to the reference touch-based technology for data acquired over
a time period of one year; the proposed system achieved
EER = 0.22%, while the touch-based technology achieved
EER= 0.23%.

1) Comparison with touch-based methods:To compare the
performance of the proposed biometric recognition system
with traditional touch-based technologies, we performed a
scenario evaluation that considered a recognition application
for access control in a laboratory. The accuracy of the proposed
system was comparable to that of touch-based technologies.
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We compared the performance of our touchless system
on DatasetA and the accuracy of the biometric recognition
software VeriFinger on DatasetT . We used the operative con-
figuration of the system (nR = 9). The test performed on
DatasetA included 16, 576 (296 × 8 × 7) genuine identity
comparisons and5, 588, 480 (296 × 295 × 8 × 8) impostor
identity comparisons, while the test performed on DatasetT

included3, 552 (296×4×3) genuine identity comparisons and
1, 397, 120 (296× 295× 4× 4) impostor identity comparisons
related to samples captured from the same individuals included
in DatasetA.

The results presented in Table III demonstrate that the
proposed system obtained a recognition accuracy comparable
to that of the reference touch-based recognition method in the
considered scenario. Moreover, the accuracy of the proposed
system could be increased if the users became more proficient
in using the proposed system. Experience in the use of sensors
increases the recognition accuracy of biometric technologies.

We also evaluated the performance of the proposed touch-
less system and the reference touch-based technology using
data acquired over one year. The proposed system exhibited
stable performance during the considered time period, obtain-
ing slightly better accuracy than the reference touch-based
technology.

We tested the proposed system on DatasetAY (performing
148 × 16 × 15 = 35, 520 genuine identity comparisons and
148× 147× 16× 16 = 5, 569, 536 impostor identity compar-
isons) and the touch-based system on DatasetAT (performing
148 × 8 × 7 = 8, 288 genuine identity comparisons and
148×147×8×8 = 1, 392, 384 impostor identity comparisons).
Table IV summarizes the results.

Table IV indicates that the performances of the compared
biometric systems were similar. In particular, the proposed
system achieved EER= 0.22% and the reference touch-based
system achieved EER= 0.23%.

2) Comparison with other touchless techniques:We com-
pared the accuracy of the proposed system with that of other
touchless recognition technologies in the literature. A direct
performance comparison was not possible because all of the
considered technologies are based on different acquisition
hardware and processing methods that would be difficult to
replicate in our laboratory. The results reported in the literature
indicate that the accuracy of the proposed system is similar
or superior to that of the most accurate touchless fingerprint
recognition technologies, and the proposed system presents the
advantage of reducing acquisition constraints.

A few studies have reported the accuracy of touchless fin-
gerprint recognition technologies [39,50,55,59,75,83,85]. Most
of these studies describe tests performed on datasets smaller
than the datasets we used to evaluate our system. Moreover,
most of the systems achieved an EER of approximately1%.
Public tests of commercial devices [94] also report similar
performance. [94] describes a test performed on a dataset
of 1, 800 samples acquired from150 individuals using the
touchless device TBS S120, with a resultant EER of approxi-
mately0.5%.

TABLE III
COMPARISON OF THE PROPOSED TOUCHLESS SYSTEM AND THE

REFERENCE TOUCH-BASED TECHNOLOGIES, ON THE SAME USERS.

System FMR1000 (%) EER (%)
Proposed method 0.12 0.06
Touch-based system 0.06 0.03

Notes: Implemented system = results with configurationnR = 9 on DatasetA;
Touch-based system = results of the software VeriFinger on DatasetT .

TABLE IV
COMPARISON OF THE PROPOSED TOUCHLESS SYSTEM AND THE

REFERENCE TOUCH- BASED TECHNOLOGIES ON SAMPLES ACQUIRED IN A

TIME LAPSE OF ONE YEAR.

System FMR1000 (%) EER (%)
Proposed method 0.43 0.22
Touch-based system 0.46 0.23

Note: Implemented system = results with configurationnR = 9 on
DatasetTA; Touch-based system = results of the software VeriFinger on
DatasetTY .

E. User acceptability

We performed a preliminary analysis of user acceptability
and obtained satisfactory results.

After performing the biometric acquisitions using both the
proposed touchless fingerprint recognition system and the
reference touch-based technology, each volunteer was asked
to complete an evaluation form. Table V summarizes relevant
results for questions related to acceptability and user expe-
rience. Student’s t test indicated that the differences in the
evaluations were very significant.

Table V shows a positive response to the proposed system
for most of the questions. In particular,96.7% of the volunteers
prefer the proposed touchless system to touch-based technolo-
gies, and100% of the volunteers considered the proposed
system more hygienic.

Moreover, we observed that users considered the proposed
system more privacy-compliant. This perception may be due
to the fact that no latent fingerprint can be left. In addition,
the proposed system is significantly different from touch-based
devices used by the police or border control authorities, thus
reducing the feeling that the owner of the biometric system can
associate biometric data with police records or proscription
lists [107–109].

Therefore, we concluded that the proposed system is con-
sidered more acceptable by the analyzed set of users.

F. Compatibility and interoperability with touch-based sys-
tems

We evaluated the compatibility of the proposed system
with biometric software designed for touch-based fingerprint
recognition and the interoperability of the computed touch-
compatible images with touch-based samples. In this paper,
the terms compatibility and interoperability have the following
meanings:

• Compatibility is the capability of biometric data to be
processed by systems other than the one that created the
samples or templates. Specifically, we consider the term
compatibility as the capability of the fingerprint imageE
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TABLE V
RESULTS OF THE QUESTIONNAIRE EVALUATING THE USER

ACCEPTABILITY OF THE PROPOSED BIOMETRIC SYSTEM.

Question Answer
Touchless Touch Equivalent

Which is the most comfortable acquisition
system?

43.3% 30.0% 26.7%

Which is the faster acquisition procedure? 76.7% 10.0% 13.3%
Which system is better in terms of hygiene
issues?

100.0% 0.0% 0.0%

Which is the most privacy compliant sys-
tem?

60.0% 3.3% 36.7%

Do you prefer touchless systems to touch-
based systems?

96.7% 3.3% 0.0%

computed by the proposed system to be fully processed
by software from various vendors designed for touch-
based images (e.g., algorithms for feature extraction and
matching).

• Interoperability includes the concept of compatibility and
is measured as the accuracy level obtained by matching
images captured with different devices, in our case,
images captured with the proposed touchless system and
a state-of-the-art touch-based device. Specifically, we
consider the term interoperability as the accuracy with
which a fingerprint imageE is matched against touch-
based samples using methods designed for touch-based
images.

Our results demonstrated that the system is effectively
compatible with feature extraction and matching algorithms
designed for touch-based samples. In addition, the proposed
system exhibited similar or better interoperability with touch-
based samples compared with commercial touchless systems.

To evaluate the compatibility of the proposed system with
software designed for touch-based samples, we compared the
applicability of the software NIST NBIS [110] and the soft-
ware Neurotechnology VeriFinger [95] to touchless samplesof
DatasetA and touch-based images of DatasetT . The proposed
method was used in its simplest configuration, without simu-
lating finger rotations during the enrollment phase(nR = 1).
Table VI reports the EER achieved for each test.

Table VI shows that the performance of the NIST NBIS soft-
ware was lower than that of the Neurotechnology VeriFinger
software. The accuracy decreasing was comparable for both
the touchless and touch-based fingerprint datasets.

To evaluate the interoperability of touch-compatible im-
ages with touch-based databases, we performed a verification
test in which the gallery database was composed only of
multi-templates computed from touchless samples and probe
templates were computed only from touch-based samples.
We used all of the samples from DatasetA and DatasetT .
The test consisted of2, 803, 712 identity comparisons (8 ×
296 × 4 × 296). The results indicated that the proposed
method for simulating three-dimensional rotations increased
the interoperability of the biometric system. The EER achieved
with nR = 1 was4.62%, the EER achieved withnR = 9 was
2.23%, and the EER achieved withnR = 25 was2.00%.

These results should be compared with those reported in
public tests on commercial touchless systems [94], which

TABLE VI
COMPATIBILITY OF THE PROPOSED TOUCHLESS SYSTEM(WITHOUT

SIMULATING THREE-DIMENSIONAL ROTATIONS) WITH THE SOFTWARE

NIST NBIS. RESULTS ARE COMPARED WITH THAT OBTAINED BY THE

REFERENCE TOUCH-BASED TECHNOLOGY.

Software EER
DatasetA DatasetT

Neurotechnology VeriFinger 0.17% 0.03%
NIST NBIS 1.48% 1.14%

Note: the method has been applied on DatasetA in its simplest configuration,
with a single temple stored during the enrollment phase (nR = 1).

achieved EERs of approximately5.67% by performing a
similar test on a dataset of1, 800 samples acquired from150
individuals using the touchless device TBS S120.

V. CONCLUSIONS

We presented a novel touchless fingerprint recognition sys-
tem based on three-dimensional models that permits less-
constrained, fully touchless, fast, on-the-move acquisitions.
The system is based on a two-view setup, specific algorithms
capable of obtaining accurate three-dimensional reconstruc-
tions of touchless fingerprints, methods for compensating
three-dimensional rotations and translations in finger place-
ment, and algorithms for computing touch-compatible images
from three-dimensional models.

The performed experiments aimed to analyze the acceptabil-
ity and usability of the biometric recognition system, its recog-
nition performance, the effect of environmental conditions and
finger misplacements, compatibility with existing biometric
recognition software, and interoperability with touch-based
samples.

The results of questionnaires completed by volunteers who
participated in the collection of biometric datasets demon-
strated that users perceive the proposed touchless system to be
more hygienic and privacy compliant with respect to touch-
based systems. Moreover,96.7% of the users preferred the
proposed system to touch-based technologies, indicating its
superior acceptability compared with traditional fingerprint
recognition systems. For these reasons, the biometric system
can be considered an alternative to touch-based fingerprint
biometrics for application contexts in which usability, privacy
and hygiene are important concerns (e.g., hospitals, stadiums
and public buildings).

The accuracy of the proposed fingerprint recognition system
was evaluated using multiple datasets and was compared with
that of state-of-the-art touch-based technologies in a scenario
evaluation. Using a dataset of2, 368 samples acquired from
296 fingers in a single session, the proposed system achieved
an EER of0.06%, and the compared touch-based technology
achieved an EER of0.03% for images acquired from the
same users. Using a dataset composed of2, 368 samples
acquired from158 fingers over one year, the proposed system
obtained slightly better accuracy than the reference touch-
based technology, achieving an EER of0.22% compared with
an EER of0.23%.

The performed tests also indicate that the implemented
system is robust to uncontrolled environmental illumination
and can tolerate a wide range of finger orientations.
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Finally, we evaluated the compatibility of the proposed
system with minutia-based algorithms designed for touch-
based samples and its interoperability with sets of touch-
based templates. Our results demonstrated that the proposed
algorithms generate touch-compatible images that are com-
patible with different software applications. Evaluationof the
interoperability with touch-based images demonstrated that the
proposed system achieved accuracy superior or comparable to
those of commercial touchless sensors.

Future work should include the study of optimized feature
extraction and matching techniques and the ability to use both
three-dimensional and two-dimensional characteristics.

ACKNOWLEDGMENT

This work was supported in part by: the EC within the
7FP under grant agreement 312797 (ABC4EU); the EC
within the H2020 program under grant agreement 644597
(ESCUDOCLOUD); and the Italian Ministry of Research
within the project “GenData 2020” (2010RTFWBH).

REFERENCES

[1] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar,Handbook of
Fingerprint Recognition, 2nd ed. Springer Publishing Company,
Incorporated, 2009.

[2] R. Donida Labati and F. Scotti, “Fingerprint,” inEncyclopedia of
Cryptography and Security (2nd ed.), H. van Tilborg and S. Jajodia,
Eds. Springer, 2011, pp. 460 – 465.

[3] R. Donida Labati, V. Piuri, and F. Scotti,Touchless Fingerprint
Biometrics, ser. Series in Security, Privacy and Trust. CRC Press,
2015.

[4] G. Parziale, “Touchless fingerprinting technology,” inAdvances in
Biometrics, N. K. Ratha and V. Govindaraju, Eds. Springer London,
2008, pp. 25–48.

[5] R. Donida Labati, A. Genovese, V. Piuri, and F. Scotti, “Touchless
fingerprint biometrics: a survey on 2d and 3d technologies,”Journal
of Internet Technology, vol. 15, no. 3, pp. 325 – 332, May 2014.

[6] A. de Santos-Sierra, C. Sánchez-́Avila, G. B. del Pozo, and J. Guerra-
Casanova, “Unconstrained and contactless hand geometry biometrics,”
Sensors, vol. 11, no. 11, pp. 10 143–10 164, 2011.

[7] V. Kanhangad, A. Kumar, and D. Zhang, “Contactless and pose
invariant biometric identification using hand surface,”IEEE Trans. on
Image Processing, vol. 20, no. 5, pp. 1415–1424, May 2011.

[8] A. Genovese, V. Piuri, and F. Scotti,Touchless Palmprint Recognition
Systems, ser. Advances in Information Security. Springer, 2014.

[9] Y. Han, Z. Sun, F. Wang, and T. Tan, “Palmprint recognitionunder un-
constrained scenes,” inProc. of the 8th Asian Conference on Computer
Vision - Volume Part II, 2007, pp. 1–11.

[10] W. Li, D. Zhang, D. Zhang, G. Lu, and J. Yan, “3-D palmprint
recognition with joint line and orientation features,”IEEE Trans. on
Systems, Man, and Cybernetics, Part C: Applications and Reviews,
vol. 41, no. 2, pp. 274–279, March 2011.

[11] W. Jia, R.-X. Hu, Y.-K. Lei, Y. Zhao, and J. Gui, “Histogram of oriented
lines for palmprint recognition,”IEEE Trans. on Systems, Man, and
Cybernetics: Systems, vol. 44, no. 3, pp. 385–395, March 2014.

[12] S. Malassiotis, N. Aifanti, and M. Strintzis, “Personal authentication
using 3-D finger geometry,”IEEE Trans. on Information Forensics and
Security, vol. 1, no. 1, pp. 12–21, March 2006.

[13] M.-K. Kim and P. Flynn, “Finger-knuckle-print verification based on
vector consistency of corresponding interest points,” inProc. of the
IEEE Winter Conf. on Applications of Computer Vision, March 2014,
pp. 992–997.

[14] Q. Zhang, Y. Zhou, D. Wang, and X. Hu, “Personal authentication
using hand vein and knuckle shape point cloud matching,” inProc.
of the 2013 IEEE Sixth Int. Conf. on Biometrics: Theory, Applications
and Systems (BTAS), September 2013, pp. 1–6.

[15] G. Medioni, J. Choi, C.-H. Kuo, and D. Fidaleo, “Identifying non-
cooperative subjects at a distance using face images and inferred
three-dimensional face models,”IEEE Trans. on Systems, Man and
Cybernetics, Part A: Systems and Humans, vol. 39, no. 1, pp. 12–24,
January 2009.

[16] X. Zhao, G. Evangelopoulos, D. Chu, S. Shah, and I. Kakadiaris,
“Minimizing illumination differences for 3D to 2D face recognition
using lighting maps,”IEEE Trans. on Cybernetics, vol. 44, no. 5, pp.
725–736, May 2014.

[17] M. De Marsico, M. Nappi, D. Riccio, and H. Wechsler, “Robust face
recognition for uncontrolled pose and illumination changes,” IEEE
Trans. on Systems, Man, and Cybernetics: Systems, vol. 43, no. 1,
pp. 149–163, January 2013.

[18] R. Min, N. Kose, and J.-L. Dugelay, “KinectFaceDB: A kinect database
for face recognition,”IEEE Trans. on Systems, Man, and Cybernetics:
Systems, vol. 44, no. 11, pp. 1534–1548, November 2014.

[19] M. De Marsico, M. Nappi, and D. Riccio, “Faro: Face recognition
against occlusions and expression variations,”IEEE Trans. on Systems,
Man and Cybernetics, Part A: Systems and Humans, vol. 40, no. 1, pp.
121–132, January 2010.

[20] Y. Du, E. Arslanturk, Z. Zhou, and C. Belcher, “Video-based nonco-
operative iris image segmentation,”IEEE Trans. on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 41, no. 1, pp. 64–74, February
2011.

[21] R. Donida Labati and F. Scotti, “Noisy iris segmentationwith boundary
regularization and reflections removal,”Image and Vision Computing,
Iris Images Segmentation Special Issue, vol. 28, no. 2, pp. 270 – 277,
February 2010.

[22] R. Donida Labati, A. Genovese, V. Piuri, and F. Scotti,Iris segmenta-
tion: state of the art and innovative methods, ser. Intelligent Systems
Reference Library, C. Liu and V. Mago, Eds. Springer, 2012, vol. 37.

[23] G. Rogez, J. Rihan, J. Guerrero, and C. Orrite, “Monocular 3-D gait
tracking in surveillance scenes,”IEEE Trans. on Cybernetics, vol. 44,
no. 6, pp. 894–909, June 2014.

[24] J. Bustard and M. Nixon, “Toward unconstrained ear recognition
from two-dimensional images,”IEEE Trans. on Systems, Man and
Cybernetics, Part A: Systems and Humans, vol. 40, no. 3, pp. 486–
494, May 2010.

[25] R. Donida Labati, A. Genovese, V. Piuri, and F. Scotti, “Contactless
fingerprint recognition: a neural approach for perspectiveand rotation
effects reduction,” inProc. IEEE Symposium on Computational Intelli-
gence in Biometrics and Identity Management, April 2013, pp. 22–30.

[26] R. Donida Labati, V. Piuri, and F. Scotti, “Neural-based quality
measurement of fingerprint images in contactless biometric systems,”
in Proc. of the 2010 Int. Joint Conf. on Neural Networks, July 2010,
pp. 1–8.

[27] D. Lee, K. Choi, H. Choi, and J. Kim, “Recognizable-image selection
for fingerprint recognition with a mobile-device camera,”IEEE Trans.
on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 38, no. 1,
pp. 233–243, February 2008.

[28] W. Kang and Q. Wu, “Pose-invariant hand shape recognition based
on finger geometry,”IEEE Trans. on Systems, Man, and Cybernetics:
Systems, vol. 44, no. 11, pp. 1510–1521, November 2014.

[29] AFIS and I. Biometrics Consulting, “Fingerprint-on-the-move,”
http://www.afisandbiometrics.com.

[30] H. Proenca, E. Du, and J. Scharcanski, “Introduction tothe special issue
on unconstrained biometrics: advances and trends,”Signal, Image and
Video Processing, vol. 5, no. 4, pp. 399–400, 2011.

[31] G. Acampora and V. Loia, “A proposal of ubiquitous fuzzy computing
for ambient intelligence,”Information Sciences, vol. 178, no. 3, pp.
631–646, 2008.

[32] M. Hossain, A. Shirehjini, A. Alghamdi, and A. El Saddik,“Adaptive
interaction support in ambient-aware environments based on quality
of context information,”Multimedia Tools and Applications, vol. 67,
no. 2, pp. 409–432, 2013.

[33] G. Acampora, V. Loia, M. Nappi, and S. Ricciardi, “Ambientintelli-
gence framework for context aware adaptive applications,” in Proc. of
the 7th International Workshop on Computer Architecture for Machine
Perception, July 2005, pp. 327–332.

[34] P. K. Atrey, A. El-Saddik, and M. S. Kankanhalli, “Effective multi-
media surveillance using a human-centric approach,”Multimedia Tools
Appl., vol. 51, no. 2, pp. 697–721, 2011.

[35] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati,
“Theory of privacy and anonymity,” inAlgorithms and Theory of
Computation Handbook (2nd edition), M. Atallah and M. Blanton, Eds.
CRC Press, 2009.

[36] R. Donida Labati, A. Genovese, V. Piuri, and F. Scotti, “Fast 3-D
fingertip reconstruction using a single two-view structured light acqui-
sition,” in Proc. 2011 IEEE Workshop on Biometric Measurements and
Systems for Security and Medical Applications, September 2011, pp.
1–8.



18

[37] A. J. Mansfield and J. L. Wayman,Best Practices in Testing and
Reporting Performance of Biometric Devices: Version 2.01, ser. NPL
report. Centre for Mathematics and Scientific Computing, National
Physical Laboratory, 2002.

[38] V. Piuri and F. Scotti, “Fingerprint biometrics via low-cost sensors and
webcams,” inProc. of the 2nd IEEE Int. Conf. on Biometrics: Theory,
Applications and Systems, October 2008, pp. 1–6.

[39] M. O. Derawi, B. Yang, and C. Busch, “Fingerprint recognition
with embedded cameras on mobile phone,” inMobiSec, R. Prasad,
K. Farkas, A. U. Schmidt, A. Lioy, G. Russello, and F. L. Luccio,
Eds., vol. 94. Springer, 2011, pp. 136–147.

[40] F. Han, J. Hu, M. Alkhathami, and K. Xi, “Compatibility of pho-
tographed images with touch-based fingerprint verification software,”
in Proc. of the IEEE Conf. on Industrial Electronics and Applications,
June 2011, pp. 1034–1039.

[41] B. Hiew, A. Teoh, and D. Ngo, “Automatic digital camera based
fingerprint image preprocessing,” inProc. of the Int. Conf. on Computer
Graphics, Imaging and Visualisation, July 2006, pp. 182–189.

[42] B. Hiew, B. Andrew, and Y. Pang, “Digital camera based fingerprint
recognition,” in Proc. of the IEEE Int. Conf. on Telecommunications
and Malaysia Int. Conf. on Communications, May 2007, pp. 676–681.

[43] B. Hiew, A. Teoh, and D. Ngo, “Preprocessing of fingerprint images
captured with a digital camera,” inProc. of the Int. Conf. on Control,
Automation, Robotics and Vision, December 2006, pp. 1–6.

[44] Y. Song, C. Lee, and J. Kim, “A new scheme for touchless fingerprint
recognition system,” inProc. 2004 Int. Symposium on Intelligent Signal
Processing and Communication Systems, November 2004, pp. 524–
527.

[45] L. Wang, R. H. A. El-Maksoud, J. M. Sasian, and V. S. Valencia,
“Illumination scheme for high-contrast, contactless fingerprint images,”
in Novel Optical Systems Design and Optimization XII, R. J. Koshel
and G. G. Gregory, Eds., vol. 7429, no. 1. SPIE, 2009.

[46] C. Lee, S. Lee, and J. Kim, “A study of touchless fingerprint recognition
system,” inStructural, Syntactic, and Statistical Pattern Recognition,
ser. Lecture Notes in Computer Science, D.-Y. Yeung, J. Kwok,
A. Fred, F. Roli, and D. de Ridder, Eds. Springer Berlin / Heidelberg,
2006, vol. 4109, pp. 358–365.

[47] L. Wang, R. H. A. El-Maksoud, J. M. Sasian, W. P. Kuhn, K. Gee, and
V. S. Valencia, “A novel contactless aliveness-testing (CAT) fingerprint
sensor,” inNovel Optical Systems Design and Optimization XII, R. J.
Koshel and G. G. Gregory, Eds., vol. 7429, no. 1. SPIE, 2009.

[48] E. Sano, T. Maeda, T. Nakamura, M. Shikai, K. Sakata, M. Matsushita,
and K. Sasakawa, “Fingerprint authentication device basedon optical
characteristics inside a finger,” inProc. of the Conf. on Computer Vision
and Pattern Recognition Workshop, June 2006, pp. 27–32.

[49] H. Choi, K. Choi, and J. Kim, “Mosaicing touchless and mirror-
reflected fingerprint images,”IEEE Trans. on Information Forensics
and Security, vol. 5, no. 1, pp. 52–61, March 2010.

[50] F. Liu, D. Zhang, C. Song, and G. Lu, “Touchless multiviewfingerprint
acquisition and mosaicking,”IEEE Trans. on Instrumentation and
Measurement, vol. 62, no. 9, pp. 2492–2502, 2013.

[51] A. Pillai and S. Mil’shtein, “Can contactless fingerprints be compared
to existing database?” inProc. of the IEEE Conf. on Technologies for
Homeland Security, 2012, pp. 390–394.

[52] C. Lee, S. Lee, J. Kim, and S.-J. Kim, “Preprocessing of a fingerprint
image captured with a mobile camera,” inAdvances in Biometrics,
ser. Lecture Notes in Computer Science, D. Zhang and A. Jain, Eds.
Springer Berlin / Heidelberg, 2005, vol. 3832, pp. 348–355.

[53] L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement: algo-
rithm and performance evaluation,”IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 20, no. 8, pp. 777–789, August 1998.

[54] M. Khalil and F. Wan, “A review of fingerprint pre-processing using
a mobile phone,” inProc. of the 2012 Conf. on Wavelet Analysis and
Pattern Recognition, 2012, pp. 152–157.

[55] B. Y. Hiew, A. B. J. Teoh, and O. S. Yin, “A secure digital camera
based fingerprint verification system,”J. of Visual Communication and
Image Representation, vol. 21, no. 3, pp. 219–231, 2010.

[56] R. Donida Labati, V. Piuri, and F. Scotti, “A neural-based minutiae pair
identification method for touchless fingeprint images,” inProc. IEEE
Workshop on Computational Intelligence in Biometrics and Identity
Management, April 2011, pp. 96–102.

[57] Q. Xiao, “Technology review - biometrics-technology, application,
challenge, and computational intelligence solutions,”IEEE Computa-
tional Intelligence Magazine, vol. 2, no. 2, pp. 5–25, May 2007.

[58] R. Donida Labati, A. Genovese, V. Piuri, and F. Scotti, “Measurement
of the principal singular point in contact and contactless fingerprint
images by using computational intelligence techniques,” inProc. of

the IEEE Int. Conf. on Computational Intelligence for Measurement
Systems and Applications, September 2010, pp. 18–23.

[59] D. Noh, H. Choi, and J. Kim, “Touchless sensor capturing five finger-
print images by one rotating camera,”Optical Engineering, vol. 50,
no. 11, pp. 113 202–113 202–12, 2011.

[60] N. C. Francisco, A. Zaghetto, B. Macchiavello, E. A. B. da Silva,
M. Lima-Marques, N. M. M. Rodrigues, and S. M. M. de Faria,
“Compression of touchless multiview fingerprints,” inProc. IEEE
Workshop on Biometric Measurements and Systems for Security and
Medical Applications, September 2011, pp. 1–5.

[61] S. Mil’shtein, M. Baier, C. Granz, and P. Bustos, “Mobile system for
fingerprinting and mapping of blood - vessels across a finger,”in Proc.
of the IEEE Conf. on Technologies for Homeland Security, May 2009,
pp. 30–34.

[62] A. Kumar and Y. Zhou, “Human identification using finger images,”
IEEE Trans. on Image Processing, vol. 21, no. 4, pp. 2228–2244, April
2012.

[63] A. Kumar and Y. Zhou, “Contactless fingerprint identification using
level zero features,” inProc. of the IEEE Computer Society Conf. on
Computer Vision and Pattern Recognition Workshops, June 2011, pp.
114–119.

[64] IDAir, “ONEprint,” http://www.idairco.com/wp-content/uploads/2012/
11/ONEprint 1105.pdf.

[65] Mitsubishi, “Finger Identification Device By Penetrated Light,”
www.mitsubishielectric.com/company/rd/advance/pdf/vol115/vol115
np1.pdf.

[66] TST Biometrics, “BiRD 3,” http://www.bromba.com/tdbird3e.htm.
[67] NEC, “Contactless Hybrid Finger Scanner - HS100-10,”

http://www.nec.com/en/global/solutions/biometrics/products/hybrid
finger scanner.html.

[68] IDAir, “AIRprint,” http://www.idairco.com/wp-content/uploads/2012/
11/AIRprint 1112.pdf.

[69] Morpho, “Finger-On-The-Fly,” http://www.morpho.com/IMG/pdf/
EXT FOTF HD EN August 2014.pdf.

[70] G. Parziale and Y. Chen, “Advanced technologies for touchless finger-
print recognition,” inHandbook of Remote Biometrics, ser. Advances
in Pattern Recognition, M. Tistarelli, S. Z. Li, and R. Chellappa, Eds.
Springer London, 2009, pp. 83–109.

[71] G. Parziale, E. Diaz-Santana, and R. Hauke, “The surround imager: A
multi-camera touchless device to acquire 3D rolled-equivalent finger-
prints.” in Proc. of the Int. Conf. of Biometrics, 2006, pp. 244–250.

[72] G. Paar, M. d. Perucha, A. Bauer, and B. Nauschnegg, “Photogrammet-
ric fingerprint unwrapping,”J. of Applied Geodesy, vol. 2, pp. 13–20,
2008.

[73] F. Liu and D. Zhang, “3D fingerprint reconstruction system using
feature correspondences and prior estimated finger model,”Pattern
Recognition, vol. 47, no. 1, pp. 178–193, 2014.

[74] Y. Wang, L. G. Hassebrook, and D. L. Lau, “Data acquisition and
processing of 3-D fingerprints,”IEEE Trans. on Information Forensics
and Security, vol. 5, no. 4, pp. 750–760, December 2010.

[75] Y. Wang, L. G. Hassebrook, and D. L. Lau, “Noncontact, depth-detailed
3D fingerprinting,”SPIE Newsroom, November 2009.
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di Milano, Italy. His research interests include:
biometrics, signal and image processing, compu-
tational intelligence, and industrial applications.
Original results have been published in 30+ pa-
pers in international journals, proceedings of in-
ternational conferences, books, and book chapters.
http://www.di.unimi.it/donida

Angelo Genoveseis a Postdoctoral Research Assis-
tant at the Universit̀a degli Studi di Milano, Italy.
His research interests include signal and image pro-
cessing, three-dimensional reconstruction, computa-
tional intelligence technologies, biometric systems.
He published 15+ papers in international journals,
proceedings of international conferences, books, and
book chapters. http://www.di.unimi.it/genovese

Vincenzo Piuri is a Full Professor in computer engi-
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