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Abstract—A speed up technique for the non-local means
(NLM) image denoising algorithm based on probabilistic early
termination (PET) is proposed. A significant amount of com-
putation in the NLM scheme is dedicated to the distortion
calculation between pixel neighborhoods. The proposed PET
scheme adopts a probability model to achieve early termination.
Specifically, the distortion computation can be terminated and
the corresponding contributing pixel can be rejected earlier, if
the expected distortion value is too high to be of significance in
weighted averaging. Performance comparative with several fast
NLM schemes is provided to demonstrate the effectiveness of the
proposed algorithm.

Index Terms—Non-local means (NLM) algorithm, image de-
noising, probabilistic algorithm, early termination, fast algo-
rithm.

I. INTRODUCTION

Image denoising is a fundamental yet challenging problem
that has been studied for decades. A thorough review of state-
of-the-art denoising algorithms is given in [1]. One emerging
image denoising technique developed within the last five
years is the non-local means (NLM) algorithm [1]. Unlike
most denoising algorithms that rely on the local regularity
assumption, the NLM algorithm estimates an unknown pixel
by a weighted average of local and non-local pixels throughout
the entire image. The weight decreases exponentially with
an increased distortion between the neighborhoods of pixels
under consideration. The NLM algorithm has been shown to
outperform many contemporary denoising techniques in both
PSNR and visual quality improvement.

However, the superior performance of the NLM algorithm
is achieved at the cost of higher computational complexity.
That is, for a given pixel of interest (POI), the standard NLM
algorithm computes the distortion between the block around
the pixel and every other block in the image. Consequently, a
lot of computation is needed to calculate the distortion between
pixel neighborhoods. Various NLM speed-up schemes with
limited performance degradation were studied in [2]-[6].

Since the number of pixels with a large weight in computing
the restored POI value is limited, one may speed up the NLM
algorithm by eliminating dissimilar pixels in the distortion
computation. This idea has been adopted in [2]-[5]. The elim-
ination in most previous work was based on a hard decision.
For instance, only pixels with their patch means close to that of
the POI were considered in [2]. However, it cannot eliminate

all insignificant patches thoroughly since patches with the
same mean can be quite different in their neighborhoods. In
[3], similar patches are grouped into a cluster, and only pixels
in the same cluster are considered for averaging. Although
the clustering scheme works well for textured images with a
strong repeated pattern, its performance is not efficient for real-
world images. In this letter, we propose a fast NLM scheme
that selects patches using a soft decision, where the elimi-
nation criterion varies with the structural difference between
patches under consideration. The distortion computation can
be terminated and the corresponding block can be rejected
earlier, if the expected distortion value is too high to be of
significance in weighted averaging. The expected distortion
value is estimated at each stage of distortion computation by
a probability model based on patch features. Thus, it is called
the probabilistic early termination (PET) scheme.

The use of early termination to increase the speed of
block matching has been considered in the context of vector
quantization [7] and motion estimation [8]. In particular, a
probabilistic model for early termination was proposed in
[8], which searches the best matching block in terms of the
smallest sum of absolute differences (SAD). However, the fast
NLM computation problem is different from that in [7], [8].
Here, instead of finding the best match, we have to choose
multiple similar blocks and determine their similarity degree
that determines the weights in the averaging process to denoise
the POI. For this reason, we need a more accurate mechanism
to determine which blocks to discard so that the ultimate
denoising performance is not severely sacrificed. Besides, our
selection criterion is not based on the SAD but the Gaussian
weighted sum of the squared distance between the patch
around the POI and a non-local block.

The rest of this letter is organized as follows. The basic
NLM algorithm for image denoising is briefly reviewed in
Sec. II. The proposed fast NLM scheme is introduced in
Sec. III. Experimental results are provided to demonstrate the
performance of the proposed algorithm in Sec. IV. Finally,
concluding remarks are given in Sec. V.

II. IMAGE DENOISING WITH NON LOCAL MEANS
The objective of image denoising is to restore the unknown
original image, X from a noisy image, Y given by

Y=X+N. (1)



The NLM algorithm restores the pixel of interest (POI) with a
weighted average of non-local pixels in the image which are
in a similar environment. The weight is computed based on
the similarity between the neighborhood patches of the POI
and contributing pixels.

Mathematically, the solution to Eq. (1) obtained by the
standard NLM scheme can be written as

X(Z) = sz‘jy(j)
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where w;; is a weight denoting the contribution from Y'(j) to
X (1), d is a distortion measure, N is a squared neighborhood
patch of pixel ¢ = (i1,42), h is the parameter of distortion
measure to adjust the decay of the weight, I is image space,
and Z; is the normalization factor such that > j Wij = 1. One
common distortion measure in Eq. (2) is chosen as

d(Y (N3),Y(N))) = Y Ga(b)(Y(i=k) =Y (i —k))*, 3)
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where K is a local neighborhood centered at the origin and
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is the Gaussian kernel with standard deviation a > 0.

By including all pixels in the image for the weighted average
computation in Eq. (3), which means that K is large enough
to cover all pixels in the image of interest, the complexity of
the NLM algorithm can go as high as O(M*) for an image
of size M x M. To lower the complexity, only a subset of
pixels within a local search window of size s X s (s < M)
around a POI is used in the computation [1] and, consequently,
the complexity is reduced to O(M?2s?). We call the latter the
standard NLM scheme in the experimental section.

Ga(k) =

III. PROBABILISTIC EARLY TERMINATION (PET) SCHEME

In this section, we propose a fast NLM computation scheme
by eliminating dissimilar blocks without full computation of
distortion. This is implemented with the help of probabilistic
early termination (PET). That is, based on the partial sum
of the distortion in Eq. (3), we determine the probability
of the distortion value exceeding a pre-determined threshold
and terminate the distortion computation if the probability is
greater than a fixed value P;.

A. Determination of Summation Order

We need to determine a summation order for points in K
so that the partial sum may reach the threshold as fast as
possible. It is natural to use the radial scanning order, where
we start from the inner-most regions and gradually move
towards outer regions. This is desirable since the inner position
has a larger weight due to the effect of the Gaussian kernel.
Mathematically, we decompose set K via

K=K U---UK,U---UK,, 4)

where
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corresponds to the ring-shaped region as illustrated in Fig. 1.
Then, the distortion sum for each K,, can be written as

dn(i, ) = Z Ga(k)(Y(i—k)=Y(j - k))Qa (5)
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and the partial sum of the distortion from K7 to K, is

Dn (i, j) = di(i, ) + -+ + du(i, J). (6)
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Fig. 1. Neighborhood decomposition into four ring-shaped regions

B. Statistical Characterization of Patch Differences

The distortion in Eq. (3) can be interpreted as the energy
of the following weighted patch-difference array:

Yii(k) = /Ga(k)(Y(i— k) = Y(j — k),

A probability model was used in [8] to describe the SAD distri-
bution over different block. Here, since the value of Dg(i, j)
is used to select suitable blocks in weighted averaging, we
attempt to estimate the total sum, Dy, from the partial sum,
D,,, by modeling Y;; with suitable parameters. Specifically, the
mean and variance of Y;; are chosen as the key parameters
to model Y;;, since they are the most prominent features
in a probabilistic model. The distance between two image
patches is modeled as a x? distribution to calculate adaptive
weights in [9]. The x? distribution is a direct consequence of
the assumption that the terms contributing to the weighted
difference between two patches are i.i.d. Gaussian random
variables. Following [9], we assume

keK. ()
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Then, the sum of Yg follows the non-central x? distribution.

The above idea can be used to reject dissimilar patches at
an earlier stage than a conventional early termination scheme,
which rejects patches when the n'* partial sum of distortion
exceeds a pre-determined threshold, 4, as

Dy, (i,5) > 6. 9)

In contrast, the proposed PET scheme estimates the probability
distribution of the distortion in the remaining regions given by

Rn(lvj) = dn+1(i7j) +ee dQ(Z’]) )
and rejects the patches when

P(Ry(i,j) + Dn(i,j) > 7| Dn(i, ) > Pr, (10)



where the evaluation of the probability in the left-hand-side
will be discussed in Sec. III-C. The criterion in (10) acts as
adaptive thresholding, which varies at each ring-shaped region
to decide which patch to reject in the NL computation. In the
experiments reported in Sec. IV, we choose 7 = 6h% and
P, =90%.

C. Determination of Mean and Variance

In this subsection, we find ways to determine the mean
(m;;) and variance (ofj) for Gaussian random variable Yj;
with minimum computation. The mean and variance are com-
puted for each individual block in the image. One simple
solution is the use of the sample mean and variance. However,
this computation would be high.

The mean of the patch-difference is equal to

Y

where m; and m; are pre-computed means of the weighted
patches centered at pixels ¢ and j given as
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where | - | denotes the cardinality of a set.
The variance o2, can be written as

1j
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where, E(.) represents the expectation of a variable. Due to the
i.i.d assumption, F (Yg) can be approximated as the average of

Y;(k), where k € Ky U---UK,,. Hence, we can approximate
o;; using the following relationship:
D (i, j)
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Since D, (i,7) is already computed, it demands a small
increase in complexity to determine afj. Note that the ap-
proximated Ufj varies for each ring-shaped region due to D,,.

The mean and variance for y2-distributed R,, is given by

E[R,]
VAR|R,] =
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Finally, the conditional probability in (10) can be determined
accordingly.

IV. EXPERIMENTAL RESULTS

For performance evaluation, we consider several test images
corrupted by additive white Gaussian noise with standard
deviation ¢ = 20. The value of h? in Eq. (2) is chosen to
be h? = 100 = 200 as suggested in [1]. We compare the per-
formance of the proposed PET scheme with the standard NLM
computation and two fast NLM computational schemes. The
two fast schemes are: 1) the pre-selection-by-mean scheme in
[2] and 2) the clustering scheme in [3].

For the pre-selection-by-mean scheme, we used the thresh-
old values given in [2]. For the clustering scheme, we adopted
clusters without overlapping since overlapping demands higher
complexity yet with little PSNR improvement for natural

images. For the proposed PET scheme, the threshold on the
distortion is set to 7 = 6h? while the value of P, in Eq.
(10) is set to 90%. A higher value of P; leads to rejection of
fewer blocks and the process becomes closer to a deterministic
approach as P, approaches 100%.

Tables 1 and II compare the computational complexity,
PSNR and the mean SSIM index [10] results of four schemes
with three search window sizes (23 x 23, 43 x 43 or 63 x 63)
and two neighborhood patch sizes (7 x 7 or 11 x 11) for Pepper
and Lena images of size 256 x 256. The computational com-
plexity is represented as the percentage of the total amount of
computations required by the standard NLM scheme. We see
that the proposed PET scheme achieves the lowest complexity
and the highest PSNR in most cases. Denoised Lena images of
the four schemes are shown in Fig. 2 for visual comparison.
The denoised image obtained by the proposed PET scheme
as shown in Fig. 2-(d) is perceptually similar to that obtained
by the standard NLM computation as shown in Fig. 2-(a). In
contrast, the clustering scheme has unpleasant visual artifacts.

V. CONCLUSION

A probabilistic early termination (PET) scheme for fast
NLM computation was presented in this work. The PET
scheme terminates the computation of the distortion term,
when the partial sum of the distortion term exceeds a pre-
defined threshold. The threshold value is decided by a prob-
ability model based on patch differences of the POI and the
pixel under consideration. It was shown experimentally that the
proposed PET scheme outperforms two benchmark schemes
by considering several performance metrics together, including
complexity reduction, PSNR quality improvement and visual
perception enhancement.
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TABLE 1

COMPARISON OF COMPUTATIONAL SPEED AND DENOISED IMAGE QUALITY OF SEVERAL NLM SCHEMES FOR THE PEPPERS TEST IMAGE. THE
COMPUTATION OF THE FASTEST SCHEME, THE BEST PSNR AND MEAN SSIM INDEX AMONG THE FAST NLM SCHEMES ARE HIGHLIGHTED.

Search Window = 23 x 23

Search Window = 43 x 43

Search Window = 63 X 63

Schemes NPS=7x7 NPS =11 x 11 NPS =7 x7 NPS =11 x 11 NPS =7 x7 NPS =11 x 11
Comp.| PSNR| SSIM| Comp.| PSNR| SSIM| Comp.| PSNR| SSIM| Comp.| PSNR| SSIM| Comp.| PSNR| SSIM| Comp.| PSNR| SSIM
(%) (%) (%) (%) (%) (%)
Standard 100 27.83| 0.829| 100 28.25| 0.856| 100 27.64| 0.828| 100 28.15| 0.844| 100 28.11| 0.848| 100 2791 0.864
NLM
Fast 46.89 | 27.78| 0.819| 49.31 | 28.11| 0.848| 37.55 | 27.37| 0.828| 38.68 | 27.83| 0.845| 35.08 | 28.25| 0.839| 35.80 | 27.84| 0.852
NLM [2]
Fast 37.32 | 27.51| 0.748| 38.13 | 28.25| 0.785| 19.14 | 27.21| 0.761| 20.22 | 28.01| 0.773| 12.84 | 28.04| 0.755| 14.74 | 27.78| 0.781
NLM [3]
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PET
TABLE I

COMPARISON OF COMPUTATIONAL SPEED AND DENOISED IMAGE QUALITY OF SEVERAL NLM SCHEMES FOR THE LENA TEST IMAGE. THE
COMPUTATION OF THE FASTEST SCHEME, THE BEST PSNR AND MEAN SSIM INDEX AMONG THE FAST NLM SCHEMES ARE HIGHLIGHTED .

Search Window = 23 x 23

Search Window = 43 x 43

Search Window = 63 X 63

Schemes NPS=7x7 NPS =11 x 11 NPS=7x7 NPS =11 x 11 NPS=7x7 NPS =11 x 11
Comp.| PSNR| SSIM| Comp.| PSNR| SSIM| Comp.| PSNR| SSIM| Comp.| PSNR| SSIM| Comp.| PSNR| SSIM| Comp.| PSNR| SSIM
(%) (%) (%) (%) (%) (%)
Standard 100 28.68| 0.821| 100 29.06| 0.838| 100 28.79| 0.812] 100 28.83| 0.831| 100 28.61| 0.810] 100 28.72| 0.827
NLM
Fast 40.71 | 28.44| 0.816| 41.32 | 28.93| 0.834| 30.32 | 28.62| 0.815| 31.98 | 28.70| 0.824| 30.11 | 28.42| 0.802| 29.62 | 28.36| 0.817
NLM [2]
Fast 3746 | 28.32| 0.757| 3851 | 29.05| 0.788| 20.14 | 28.58| 0.735| 22.23 | 28.66| 0.760| 16.84 | 28.53| 0.732| 15.19 | 28.82| 0.749
NLM [3]
Proposed | 20.12 | 28.54| 0.814| 17.36 | 29.03| 0.831| 12.79 | 28.74| 0.804| 8.40 28.71| 0.822| 5.16 28.63| 0.789| 2.80 28.68| 0.824
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Fig. 2. Denoised Lena Image results: (a) standard NLM (PSNR=28.68dB, SSIM=0.821), (b) the pre-selection-by-mean scheme in [3] (PSNR=28.44dB,

SSIM=0.816), (c) the clustering scheme in [4] (PSNR=28.32dB, SSIM=0.757) and (d) the proposed PET scheme (PSNR=28.54dB, SSIM=0.814).
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