Skyrmions as Models for Nuclei

Nicholas S. Manton

DAMTP, University of Cambridge

N.S.Manton@damtp.cam.ac.uk

Ischia, May 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Skyrme Field and Dynamics

- Skyrme model is nonlinear, effective field theory (EFT) of pions [T.H.R. Skyrme, 1961]. Its field equations have topological soliton solutions – Skyrmions – with surprising shapes.
- Skyrmions represent nucleons and larger nuclei. No explicit nucleon fields appear.
- Skyrme field

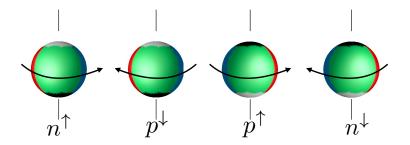
$$U(x) = \sigma(x) \mathbf{1}_2 + i\pi(x) \cdot \boldsymbol{\tau}$$

requires $\sigma^2 + \pi \cdot \pi = 1$, so $U \in SU(2)$. Field is smooth and needs no short-distance cutoff.

▶ $U \rightarrow \mathbf{1}_2$ asymptotically, and $U \simeq -\mathbf{1}_2$ in core of nucleons.

- Topological charge the topological degree of U over space – is identified with baryon number B (atomic mass number).
- Skyrme field Lagrangian

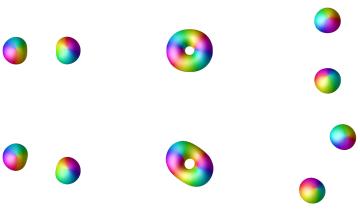
$$L = \int -\frac{1}{2} \operatorname{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) d^{3}x + \text{higher order derivative terms} + \text{pion mass term}$$


- Solve field equations to determine Skyrmion shapes and symmetries, energies, moments of inertia, vibrational frequencies. Analytic approximations are helpful.
- Can also couple ρ-meson and ω-meson fields affects Skyrmion core structure and forces.

Skyrmions

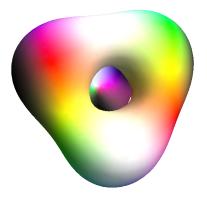
B = 1 Skyrmion in two orientations. These attract, clump together and slightly merge to form larger *B* Skyrmions.
(Colours indicate pion field values on constant energy density surface.)

(日) (日) (日) (日) (日) (日) (日)



Classically spinning B = 1 Skyrmions, modelling quantised spin/isospin $\frac{1}{2}$ nucleons [D. Foster and NSM]. Spin/isospin $\frac{3}{2}$ delta resonances spin faster. Wavefunctions change sign under 2π rotation [Skyrme].

B = 2 Skyrmion


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

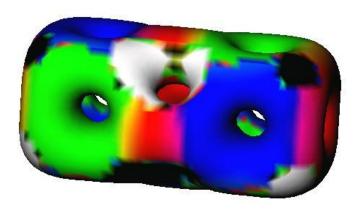
Scattering *B* = 1 Skyrmions [D. Foster and S. Krusch]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- ► Interaction between B = 1 Skyrmions is projected onto spin $\frac{1}{2}$ states to obtain nucleon-nucleon potentials.
- Need second-order perturbation theory to find central attraction and spin-orbit coupling [D. Harland and C.J. Halcrow].
- Larger B Skyrmions rotate and vibrate. Quantise to find spin/isospin of larger nuclei, and spectrum of excitations.
- S.B. Gudnason and C. Halcrow have website "Database of Skyrmion Vibrations", showing vibrational modes up to B = 8.

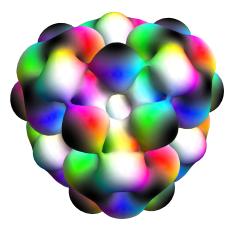
B = 3 Skyrmion [Braaten et al.]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

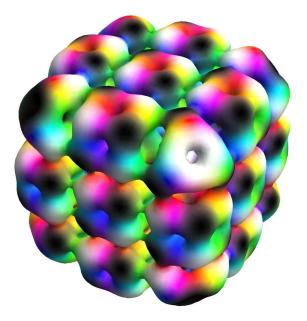


B = 4 Skyrmion

Skyrmions with Larger Baryon Numbers

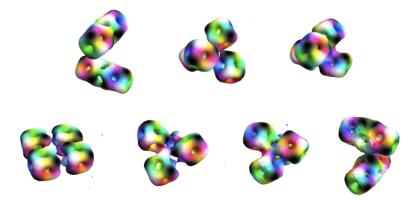

- (i) Glue B = 4 cubes with colours touching on faces. Dynamical B = 4 cubes give Skyrmion version of α-particle model.
- (ii) Tetrahedrally-symmetric Skyrmion clusters correspond to doubly-magic N = Z nuclei (e.g. Oxygen-16 and Calcium-40). Have low-lying 0⁺, 3⁻ states.
- (iii) Skyrmion crystal is cubic. Has exceptionally low energy per Skyrmion [Castillejo et al., Kugler and Shtrikman].
 B = 32, 100, 108 Skyrmions are cubic crystal chunks.

(日) (日) (日) (日) (日) (日) (日)

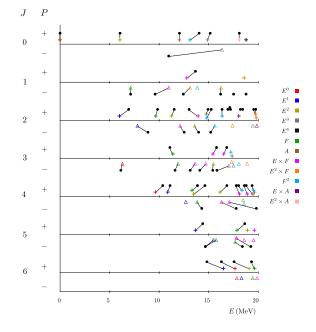

B = 8 Skyrmion ($m_{\pi} = 1$)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

B = 40 Skyrmion


(ロ)、

B = 100 Skyrmion [C. Lau and NSM]


B = 16 Skyrmion and ¹⁶O

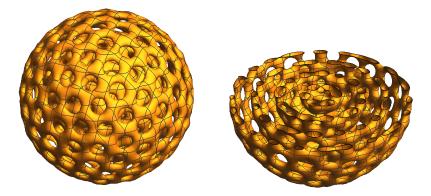
B = 16 Skyrmion is a tetrahedral cluster of four B = 4 Skyrmions. The square cluster is a saddle point.

Cluster dynamics through tetrahedron, square and dual tetrahedron

- Tetrahedral rotational states have spin/parity 0⁺, 3⁻, 4⁺, 6[±], ... (¹⁶O ground state band).
- Tetrahedral vibrations are A-mode (breather), E-mode (towards square) and F-mode (asymmetric break-up).
 E-mode has lowest frequency.
- Nonlinear, vibrational E-manifold of configurations permits tunnelling from tetrahedron to dual tetrahedron. Explains energy-splitting of 2⁺ and 2⁻ E-phonon states [C.J. Halcrow, C. King and NSM].
- Inclusion of A- and F-phonons, and Coriolis effect of F-mode angular momentum gives ¹⁶O spectrum up to 20 MeV. Parameters fitted as in other rovibrational models [e.g. D. Robson, R. Bijker and F. lachello].



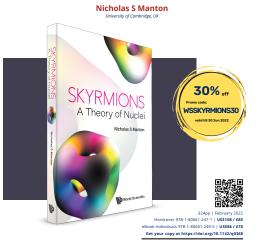
¹⁶O energy spectrum – theory (colours), observed (black dots)


Icosahedral Skyrmions

- ► Icosahedrally-symmetric Skyrmions rather rare, but known for B = 7, 17, 37, ... They can be combined in multi-layer structures.
- Icosahedral B = 208 Skyrmion has layers 7+37+67+97. A. Heusler models selected high-spin states of ²⁰⁸Pb as icosahedral rotational band (spin/parity 0⁺, 6⁺, 10⁺, 12⁺, 15⁺, ...). Maybe 44 neutrons in two inner layers; 82 neutrons + 82 protons in outer layers.

▶ ⁴⁴Ti may also have icosahedral band.

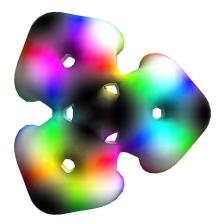
B = 7 Skyrmion and its deformation into clusters. Lowest spin/parity of icosahedral Skyrmion is $\frac{7}{2}^{-}$. Deformed Skyrmion models $\frac{3}{2}^{-}$ ground states of $^{7}\text{Be}/^{7}\text{Li}$.

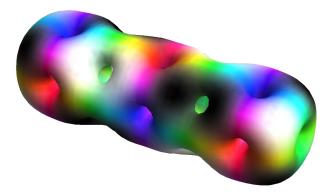

Icosahedral B = 208 Skyrmion [C.J. Halcrow]

<ロ> <四> <四> <三> <三> <三> <三> <三

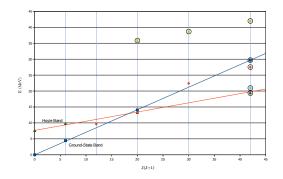
Summary

- Skyrmions are known for many baryon numbers *B*. They model how protons and neutrons change shape and partially merge into nuclei. Some Skyrmions have Platonic symmetry. Some resemble chunks of the cubic Skyrmion crystal.
- Rotational and vibrational quantisation of Skyrmions leads to nuclear spectra. Good spectra obtained for small *B*, for *B* = 12 (Carbon-12) [C. Lau and NSM, J. Rawlinson], *B* = 16 (Oxygen-16) and *B* = 40 (Calcium-40).
- Isobars less well modelled so far. Beryllium-8 is OK but spin of Lithium-8 is problematic (two closely-related Skyrmions). Coulomb energy needs further study.
- Recently, spin-orbit coupling better understood.

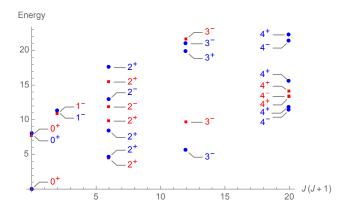



< E > < E > E - ∽ Q @

Extra Slides on Carbon-12


B = 12 Skyrmion with D_{3h} symmetry

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ


B = 12 Skyrmion with D_{4h} symmetry

・ロト・(四)・(日)・(日)・(日)・(日)

Carbon-12 states in the ground state band and Hoyle band

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Carbon-12 Energy Levels, allowing for interpolation between Skyrmions: Experiment, Skyrme model