Supplement to: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation and historical and projected changes by Lamarque et al.

This supplement contains

Table S1: Model description, adapted from Lamarque et al. (2013) Table S2: Regional mean and standard deviation (amongst models) of dry deposition, wet deposition and associated NO_x emissions over the 1850-2000 (Table S2a), 2030 (Table S2b) and 2100 (Table S2c)

Table S3: Regional mean and standard deviation (amongst models) of dry deposition, wet deposition and associated NH_x emissions over the 1850-2000 (Table S3a), 2030 (Table S3b) and 2100 (Table S3c)

Table S4: Regional mean and standard deviation (amongst models) of dry deposition, wet deposition and associated SO_x emissions over the 1850-2000 (Table S4a), 2030 (Table S4b) and 2100 (Table S4c)

Table S5: Contribution of each model to deposition diagnostics for each time-slice Table S6: Geographical information on ice-core locations used in this study

Figure S1a. Change (2000-1980) in anthropogenic emissions of NO over the United States and Europe.

Figure S1b. Change (2000-1980) in anthropogenic emissions of NH_3 over the United States and Europe.

Figure S1c. Change (2000-1980) in anthropogenic emissions of SO_2 over the United States and Europe.

Only the anthropogenic portion of the emissions is shown in Fig.1 since that is the largest contributor to changes over the 1980-2000 period.

Figure S2. Comparison of the precipitation change in the ACCMIP MMM and in the CMAP precipitation dataset (Xie and Arkin, 1997).

Figure S3. Comparison of annual total precipitation in the ACCMIP MMM against the gauge-based precipitation measurements that are available for the period of 1995 to 2004 and cover large areas in the Arctic (Yang et al., 2005), available http://ine.uaf.edu/werc/people/yang/yang_files/MonthlySum/

Figure S4. Inter-model standard deviation (in %) of the NO_y wet deposition. The standard deviation is only shown for regions where deposition is larger than 50 mg(N)/m²/year (see Fig. 5a). The number of models used for each time slice is shown in Table S2.

Figure S5. Multi-model mean evolution of a) total nitrogen and b) sulfur deposition (in mg(N or S)/ m^2 /yr) relative to year 2000.

References

Josse, B., Simon, P., Peuch, V. H.: Radon global simulations with the multiscale chemistry and transport model MOCAGE, *Tellus-B*, 56, 339-356, 2004.

Koch, D., G.A. Schmidt, and C.V. Field. Sulfur, sea salt and radionuclide aerosols in GISS ModelE. *J. Geophys. Res.*, **111**, D06206, doi:10.1029/2004JD005550, 2006.

Lamarque, J.-F., G. P. Kyle, M. Meinshausen. K. Riahi, S. J. Smith, D. P. van Vuuren, A. Conley, F. Vitt. Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Climatic Change, doi:10.1007/s10584-011-0155-0, 2011.

Lamarque, J.-F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I., Eyring, V., Bergmann, D., Cameron-Smith, P., Collins, W. J., Doherty, R., Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S. J., Horowitz, L. W., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Naik, V., Plummer, D., Righi, M., Rumbold, S., Schulz, M., Skeie, R. B., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S., Voulgarakis, A., and Zeng, G.: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics, Geosci. Model Dev., 6, 179-206, doi:10.5194/gmd-6-179-2013, 2013.

Lamarque, J.-F, L. K. Emmons, P. G. Hess, D. E. Kinnison, S. Tilmes, F. Vitt, C. L. Heald, E. A. Holland, P. H. Lauritzen, J. Neu, J. J. Orlando, P. Rasch, G. Tyndall. CAM-chem: description and evaluation of interactive atmospheric chemistry in CESM. Geosci. Mod. Dev., 5, 369-411, doi:10.5194/gmd-5-369-2012, 2012.

Lee, Y. H., and Adams, P. J.: A Fast and Efficient Version of the TwO-Moment Aerosol Sectional (TOMAS) Global Aerosol Microphysics Model, Aerosol Science and Technology, 46, 678-689, 10.1080/02786826.2011.643259, 2011.

Liu, X., R. C. Easter, S. J. Ghan, R. Zaveri, P. Rasch, X. Shi, J.-F. Lamarque, A. Gettelman, H. Morrison, F. Vitt, A. Conley, S. Park, R. Neale, C. Hannay, A. M. L. Ekman, P. Hess, N. Mahowald, W. Collins, M. J. Iacono, C. S. Bretherton, M. G. Flanner, and D. Mitchell, 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709–739, doi:10.5194/gmd-5-709-2012.

Oman, L.D., J. R. Ziemke, A. R. Douglass, D.W. Waugh, C. Lang, J.M. Rodriguez, and J.E. Nielsen, The response of tropical tropospheric ozone to ENSO, Geophys. Res. Lett., 38, L13706, doi:10.1029/2011GL047865, 2011.

Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li and D. Plummer, Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere, Atmos. Chem. Phys., 8, 7055–7074, doi:10.5194/acp-8-7055-2008, 2008.

Shindell, D. T., Pechony, O., Voulgarakis, A., Faluvegi, G., Nazarenko, L., Lamarque, J.-F., Bowman, K., Milly, G., Kovari, B., Ruedy, R., and Schmidt, G.: Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations, Atmos. Chem. Phys., 13, 2653-2689, doi:10.5194/acp-13-2653-2013, 2013.

Skeie, R. B., Berntsen, T. K., Myhre, G., Tanaka, K., Kvalevag, M. M. et al.: Anthropogenic radiative forcing time series from pre-industrial times until 2010, Atmospheric Chemistry and Physics, 11(22), 11827-11857, 2011.

Stevenson, D. S., R. M. Doherty, M. G. Sanderson, W. J. Collins, C. E. Johnson, and R. G. Derwent, Radiative forcing from aircraft NOx emissions: Mechanisms and seasonal dependence, J. Geophys. Res., 109, D17307, doi:10.1029/2004JD004759, 2004.

Teyssèdre, H., Michou, M., Clark, H. L., Josse, B., Karcher, F., Olivié, D., Peuch, V.-H., Saint-Martin, D., Cariolle, D., Attié, J.-L., Nédélec, P., Ricaud, P., Thouret, V., van der A, R. J., Volz-Thomas, A., and Chéroux, F.: A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat for multi-year studies: evaluation of the present-day climatology and sensitivity to surface processes, *Atmos. Chem. Phys.*, 7, 5815-5860, doi:10.5194/acp-7-5815-2007, 2007.

Xie, P., and P.A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539 - 2558.

Yang, D., D. Kane, Z. Zhang, D. Legates and B. Goodison. Bias-corrections of long-term (1973-2004) daily precipitation data over the northern regions, Geophysical Research Letters, vol. 32, L19501, doi:10.1029/2005GL024057, 2005.

Zeng, G., Pyle, J. A., and Young, P. J.: Impact of climate change on tropospheric ozone and its global budgets, Atmos. Chem. Phys., 8, 369–387, doi:http://dx.doi.org/10.5194/acp-8-369-200810.5194/acp-8-369-2008, 2008.

Zeng, G., Morgenstern, O., Braesicke, P., and Pyle, J. A.: Impact of stratospheric ozone recovery on tropospheric ozone and its budget, Geophys. Res. Lett., 37, L09805, doi:http://dx.doi.org/10.1029/2010GL04281210.1029/2010GL042812, 2010.

Model	Modelling Center	Model Contact	Resolution (lat/lon/lev), Top Level	NOy deposition	NHx deposition	SOx deposition	Reference
CESM-CAM- Superfast	LLNL, USA	Dan Bergmann, Philip Cameron-Smith	1.875/2.5/L26, 3.5hPa	x		х	Lamarque et al, 2012
CICERO- OsloCTM2	CICERO, Norway	Stig Dalsoren, Ragnhild Skeie	2.8/2.6/L60, 0.11 hPa	x	х	х	Skeie et al., 2011
СМАМ	CCCMA, Environment Canada, Canada	David Plummer	3.75/3.75/L71, 0.00081hPa	x			Scinocca et al, 2008
GEOSCCM	NASA GSFC, USA	Sarah Strode	2/2.5/L72, 0.01hPa	х			Oman et al, 2011
GISS-E2-R	NASA- GISS,USA	Drew Shindell, Greg Faluvegi,	2/2.5/L40, 0.14hPa	х	х	х	Koch et al, 2006 ; Shindell et al, 2013
GISS-E2-R- TOMAS	NASA- GISS,USA	Drew Shindell, Greg Faluvegi, Yunha Lee	2/2.5/L40, 0.14hPa	x			Shindell et al, 2013; Lee and Adams, 2011
MOCAGE	GAME/CNRM, MéteoFrance, France	Béatrice Josse	2.0/2.0/L47, 6.9 hpa	x			Josse et al, 2004 Teyssèdre et al, 2007
NCAR-CAM3.5	NCAR ESL, USA	Jean-François Lamarque	1.875/2.5/L26, 3.5hPa	х	х	х	Lamarque et al, 2011 Lamarque et al, 2012
NCAR-CAM5.1	PNNL, USA	Steven Ghan	1.875/2.5/L30, 3.5hPa			х	Liu et al, 2012
STOC-HadAM3	University of Edinburgh, United Kingdom	Ian McKenzie, David Stevenson, Ruth Doherty	5.0/5.0/L19 50hPa	x	х	х	Stevenson et al, 2004
UM-CAM	NIWA, New Zealand	Guang Zeng	2.5/3.75/L19, 4.6hPa	х			Zeng et al, 2008, 2010

Table S1. Model description summary, adapted from Lamarque et al. (2013).

	historical								
	18	50	19	80	20	00			
dry deposition	mean	sdev	mean	sdev	mean	sdev			
North America	0.5	0.2	2.8	0.8	2.9	0.8			
Central + South America	0.5	0.3	0.9	0.4	1.0	0.4			
Africa	1.3	0.6	2.6	0.7	2.7	0.7			
Europe	0.2	0.1	1.6	0.5	1.4	0.4			
Former USSR + Middle East	0.4	0.1	2.8	0.8	2.4	0.6			
Asia	0.6	0.3	2.1	0.6	3.6	1.1			
Oceania	0.2	0.1	0.3	0.1	0.3	0.1			
Continents	3.8	1.6	13.1	3.5	14.4	3.8			
Ocean	1.4	0.6	5.3	2.0	6.4	2.3			
Global	5.2	1.8	18.4	5.1	20.7	5.6			
wet deposition	mean	sdev	mean	sdev	mean	sdev			
North America	0.6	0.2	2.7	0.5	2.9	0.6			
Central + South America	0.9	0.4	1.3	0.5	1.5	0.6			
Africa	1.6	0.4	2.7	0.5	2.8	0.5			
Europe	0.2	0.0	1.4	0.4	1.3	0.3			
Former USSR + Middle East	0.5	0.1	2.9	0.7	2.5	0.6			
Asia	1.1	0.3	2.6	0.5	4.0	0.8			
Oceania	0.3	0.1	0.4	0.1	0.4	0.1			
Continents	5.3	1.4	14.0	2.9	15.4	3.0			
Ocean	5.8	2.4	12.3	3.2	14.5	3.9			
Global	11.1	2.8	26.3	4.3	30.0	4.7			
	•			-					
emissions	mean	sdev	mean	sdev	mean	sdev			
North America	1.6	0.3	7.7	0.4	7.9	0.4			
Central + South America	2.4	1.0	3.5	1.0	3.9	0.9			
Africa	4.0	1.2	6.4	1.0	6.5	1.0			
Europe	0.4	0.1	4.7	0.2	4.1	0.2			
Former USSR + Middle East	1.0	0.3	5.8	0.3	4.8	0.3			
Asia	2.3	0.9	5.9	0.9	9.8	1.0			
Oceania	0.8	0.2	1.1	0.2	1.2	0.2			
Continents	12.5	3.9	35.0	3.4	38.2	3.5			
Ocean	1.4	0.8	6.0	1.3	8.1	1.7			
Global	13.9	4.5	41.0	3.9	46.3	4.2			
Number of models	1	0	1	.0	1	.0			

Table S2a. Multi-model mean and standard deviation regional deposition and emission (Tg(N)/yr) from NO_x emissions for the historical period. Note that the emissions are not fully consistent with Table 2 or the deposition fields as several models only provided global numbers for lightning and/or natural emissions.

	2030								
	RCI	P26	RCI	P45	RCI	P85			
dry deposition	mean	sdev	mean	sdev	mean	sdev			
North America	1.3	0.4	1.4	0.4	1.8	0.5			
Central + South America	0.6	0.3	0.9	0.5	1.0	0.5			
Africa	2.4	0.6	3.2	0.9	3.1	0.8			
Europe	0.9	0.3	0.9	0.3	1.0	0.3			
Former USSR + Middle East	1.7	0.4	2.2	0.7	2.8	0.8			
Asia	4.2	1.5	5.4	1.9	6.4	1.9			
Oceania	0.2	0.1	0.3	0.1	0.3	0.1			
Continents	11.3	3.4	14.3	4.5	16.3	4.6			
Ocean	5.7	1.9	6.0	2.1	6.8	2.0			
Global	17.0	5.1	20.3	6.3	23.1	6.3			
wet deposition	mean	sdev	mean	sdev	mean	sdev			
North America	1.4	0.2	1.4	0.3	1.8	0.2			
Central + South America	1.0	0.3	1.1	0.4	1.2	0.3			
Africa	2.5	0.2	2.7	0.1	2.8	0.3			
Europe	0.7	0.2	0.8	0.2	0.8	0.2			
Former USSR + Middle East	1.6	0.3	1.9	0.4	2.3	0.4			
Asia	4.2	0.8	4.9	0.6	5.6	0.8			
Oceania	0.3	0.1	0.3	0.1	0.3	0.1			
Continents	11.8	1.3	13.1	1.3	14.9	1.5			
Ocean	13.7	4.1	14.5	5.4	15.0	4.4			
Global	25.4	5.0	27.6	6.6	29.9	5.4			
	-								
emissions	mean	sdev	mean	sdev	mean	sdev			
North America	3.6	0.5	3.4	0.5	4.3	0.5			
Central + South America	3.0	1.1	3.3	1.0	3.6	1.1			
Africa	6.5	1.4	6.8	1.2	7.1	1.3			
Europe	2.3	0.2	2.1	0.2	2.4	0.3			
Former USSR + Middle East	3.3	0.3	4.0	0.3	5.4	0.4			
Asia	11.4	1.6	12.2	1.8	15.3	1.3			
Oceania	0.8	0.2	0.8	0.3	0.9	0.2			
Continents	30.9	5.0	32.6	5.1	39.0	4.9			
Ocean	8.2	1.3	8.6	0.6	9.1	1.3			
Global	39.1	5.9	41.1	5.3	48.1	5.8			
Number of models	(5	4	4		7			

Table S2b. Multi-model mean and standard deviation regional deposition and emission (Tg(N)/yr) from NO_x emissions for 2030. Note that the emissions are not fully consistent with deposition fields as several models only provided global numbers for lightning and/or natural emissions.

	2100								
	RCI	P26	RCI	P45	RCI	P85			
dry deposition	mean	sdev	mean	sdev	mean	sdev			
North America	0.5	0.2	0.8	0.3	1.1	0.4			
Central + South America	0.6	0.3	0.7	0.4	0.8	0.4			
Africa	2.4	0.7	2.7	1.0	2.9	1.0			
Europe	0.3	0.1	0.5	0.2	0.6	0.2			
Former USSR + Middle East	1.0	0.3	1.0	0.4	1.6	0.5			
Asia	2.0	0.8	1.9	0.8	2.5	0.8			
Oceania	0.1	0.1	0.2	0.1	0.2	0.1			
Continents	6.8	2.2	7.8	2.9	9.7	3.2			
Ocean	2.6	1.0	3.3	1.1	4.7	1.5			
Global	9.4	3.2	11.1	3.8	14.4	4.4			
	-		-						
wet deposition	mean	sdev	mean	sdev	mean	sdev			
North America	0.7	0.2	1.0	0.2	1.4	0.2			
Central + South America	0.9	0.3	0.9	0.3	1.1	0.3			
Africa	2.7	0.3	2.5	0.1	3.0	0.4			
Europe	0.3	0.1	0.5	0.1	0.5	0.1			
Former USSR + Middle East	0.9	0.2	1.1	0.2	1.6	0.3			
Asia	2.2	0.5	2.2	0.4	3.0	0.5			
Oceania	0.2	0.1	0.3	0.1	0.3	0.1			
Continents	7.9	1.0	8.4	1.0	11.0	1.3			
Ocean	8.8	3.4	10.2	4.5	12.4	4.1			
Global	16.7	4.2	18.6	5.5	23.4	4.9			
	-		-						
emissions	mean	sdev	mean	sdev	mean	sdev			
North America	1.5	0.4	2.2	0.5	3.0	0.7			
Central + South America	2.8	1.1	2.4	1.1	3.0	1.3			
Africa	7.3	1.4	6.1	1.4	7.2	1.7			
Europe	0.8	0.2	1.2	0.2	1.4	0.3			
Former USSR + Middle East	2.1	0.3	1.9	0.4	3.3	0.5			
Asia	5.9	1.4	5.0	1.6	6.9	1.6			
Oceania	0.6	0.2	0.7	0.3	0.8	0.3			
Continents	21.1	4.9	19.5	5.4	25.6	6.1			
Ocean	2.9	1.1	5.3	0.6	7.8	1.3			
Global	24.0	5.8	24.8	5.8	33.4	7.1			
Number of models		5	4	4	-	7			

Table S2c. Multi-model mean and standard deviation regional deposition and emission (Tg(N)/yr) from NO_x emissions for 2100. Note that the emissions are not fully consistent with deposition fields as several models only provided global numbers for lightning and/or natural emissions.

	historical								
	18	50	19	80	20	00			
dry deposition	mean	sdev	mean	sdev	mean	sdev			
North America	0.9	0.3	1.4	0.5	1.6	0.5			
Central + South America	0.6	0.2	1.9	0.3	1.8	0.3			
Africa	1.1	0.3	2.5	0.4	2.2	0.4			
Europe	0.2	0.1	1.0	0.3	1.4	0.4			
Former USSR + Middle East	0.6	0.2	1.6	0.7	1.8	0.7			
Asia	1.5	0.3	4.5	1.1	5.5	1.4			
Oceania	0.2	0.1	0.3	0.1	0.3	0.1			
Continents	5.2	1.2	13.3	3.1	14.6	3.4			
Ocean	3.0	1.2	4.5	1.9	4.9	2.0			
Global	8.2	2.2	17.8	4.6	19.5	5.0			
wet deposition	mean	sdev	mean	sdev	mean	sdev			
North America	0.9	0.2	2.1	0.5	2.2	0.4			
Central + South America	0.7	0.3	1.8	0.6	1.7	0.6			
Africa	0.9	0.4	2.1	0.7	1.9	0.6			
Europe	0.3	0.0	1.3	0.3	1.4	0.2			
Former USSR + Middle East	0.7	0.2	2.6	0.8	2.8	0.7			
Asia	1.3	0.5	4.5	1.8	6.0	2.1			
Oceania	0.2	0.1	0.3	0.1	0.3	0.1			
Continents	4.9	1.5	14.8	3.2	16.3	3.6			
Ocean	7.2	1.5	11.9	2.4	13.2	2.6			
Global	12.1	2.3	26.7	4.3	29.5	4.8			
emissions	mean	sdev	mean	sdev	mean	sdev			
North America	2.3	0.0	4.0	0.1	4.3	0.1			
Central + South America	0.9	0.3	4.3	0.3	3.9	0.3			
Africa	2.1	0.3	5.5	0.3	4.7	0.3			
Europe	0.6	0.0	3.3	0.1	4.1	0.1			
Former USSR + Middle East	1.4	0.1	4.0	0.2	4.5	0.2			
Asia	3.4	0.1	12.5	0.3	16.0	0.4			
Oceania	0.5	0.0	0.9	0.0	0.8	0.0			
Continents	1.2	0.9	34.6	0.8	38.3	0.9			
Ocean	8.3	0.7	10.1	1.3	10.6	1.5			
Global	9.5	1.1	44.6	1.3	48.9	1.5			
Number of models		5	[5	[5			

Table S3a. Multi-model mean and standard deviation regional deposition and emission (Tg(N)/yr) from NH_x emissions for the historical period. Note that the CICERO-OsloCTM2 emissions are excluded from the emissions table since their natural emissions were only provided for this study as a global integral.

	2030								
	RCI	P26	RC	P45	RCI	P85			
dry deposition	mean	sdev	mean	sdev	mean	sdev			
North America	2.7	0.3	2.4	0.0	2.7	0.3			
Central + South America	2.6	0.3	2.0	0.2	2.8	0.3			
Africa	3.2	0.3	2.5	0.1	3.2	0.3			
Europe	1.7	0.4	1.5	0.2	2.2	0.5			
Former USSR + Middle East	2.7	0.7	2.0	0.1	3.1	0.8			
Asia	8.8	1.9	6.5	0.5	7.7	1.8			
Oceania	0.5	0.1	0.3	0.0	0.5	0.1			
Continents	22.2	3.6	17.2	0.4	22.1	3.9			
Ocean	7.8	3.2	6.0	2.7	7.6	2.9			
Global	30.0	5.6	23.1	2.3	29.7	5.6			
wet deposition	mean	sdev	mean	sdev	mean	sdev			
North America	2.0	0.4	2.2	0.2	2.2	0.3			
Central + South America	2.0	0.9	1.9	0.7	2.2	1.0			
Africa	2.4	0.9	2.2	0.6	2.4	0.8			
Europe	1.0	0.3	1.2	0.3	1.3	0.4			
Former USSR + Middle East	2.2	0.5	2.7	0.1	2.8	0.7			
Asia	7.3	3.5	7.0	2.5	6.9	2.6			
Oceania	0.3	0.1	0.3	0.1	0.3	0.1			
Continents	17.3	6.4	17.6	4.5	18.2	5.5			
Ocean	12.8	1.4	12.8	0.9	13.2	1.5			
Global	30.0	6.3	30.4	3.6	31.4	5.7			
	-		-	-					
emissions	mean	sdev	mean	sdev	mean	sdev			
North America	5.1	0.1	5.1	0.1	5.4	0.0			
Central + South America	5.3	0.3	4.4	0.3	5.8	0.3			
Africa	6.7	0.3	5.2	0.3	6.7	0.3			
Europe	3.8	0.1	4.1	0.0	5.0	0.1			
Former USSR + Middle East	5.1	0.2	4.7	0.1	6.2	0.2			
Asia	22.1	0.6	19.5	0.1	19.9	0.5			
Oceania	1.0	0.0	0.9	0.0	1.0	0.0			
Continents	49.0	0.9	43.9	0.9	50.0	0.9			
Ocean	11.4	2.0	9.7	0.6	11.8	2.0			
Global	60.4	1.5	53.6	0.4	61.7	1.5			
Number of models		3		2		3			

Table S3b. Multi-model mean and standard deviation regional deposition and emission (Tg(N)/yr) from NH_x emissions for 2030.

	2100								
	RCI	P26	RC	P45	RCI	P85			
dry deposition	mean	sdev	mean	sdev	mean	sdev			
North America	3.6	0.5	2.8	0.2	4.0	0.4			
Central + South America	3.7	0.6	2.1	0.4	3.6	0.6			
Africa	4.6	0.6	2.8	0.3	5.1	0.7			
Europe	1.8	0.3	1.3	0.1	2.7	0.5			
Former USSR + Middle East	3.7	0.7	2.1	0.1	4.4	1.0			
Asia	13.5	2.8	6.9	0.5	10.1	1.9			
Oceania	0.6	0.1	0.4	0.0	0.7	0.1			
Continents	31.4	4.5	18.4	0.3	30.7	4.5			
Ocean	11.3	5.8	7.2	4.0	11.0	5.4			
Global	42.7	8.4	25.6	4.3	41.6	7.7			
wet deposition	mean	sdev	mean	sdev	mean	sdev			
North America	2.3	0.9	2.2	0.6	2.7	0.9			
Central + South America	2.7	1.6	2.0	0.9	2.7	1.6			
Africa	3.1	1.5	2.2	1.0	3.9	2.3			
Europe	1.0	0.5	1.0	0.4	1.4	0.8			
Former USSR + Middle East	2.3	0.8	2.0	0.3	3.0	0.9			
Asia	9.5	7.0	6.6	4.2	7.3	4.4			
Oceania	0.4	0.2	0.4	0.1	0.4	0.2			
Continents	21.3	12.0	16.4	7.5	21.5	11.0			
Ocean	13.7	1.6	11.6	0.7	14.0	1.8			
Global	34.9	12.0	28.0	6.9	35.6	11.0			
			-	-					
emissions	mean	sdev	mean	sdev	mean	sdev			
North America	6.2	0.1	5.3	0.1	7.2	0.1			
Central + South America	7.2	0.4	4.4	0.3	7.3	0.3			
Africa	9.1	0.2	5.8	0.3	11.4	0.3			
Europe	3.3	0.0	3.2	0.0	5.4	0.1			
Former USSR + Middle East	6.4	0.2	4.4	0.1	8.0	0.2			
Asia	30.6	0.8	18.4	0.0	23.2	0.5			
Oceania	1.3	0.0	1.0	0.0	1.4	0.0			
Continents	64.0	1.1	42.4	0.8	63.8	1.1			
Ocean	12.6	2.5	9.6	0.6	12.7	2.3			
Global	76.6	1.7	52.0	0.3	76.5	1.7			
Number of models		3		2		3			

Table S3c. Multi-model mean and standard deviation regional deposition and emission (Tg(N)/yr) from NH_x emissions for 2100.

	historical								
	18	50	19	80	20	00			
dry deposition	mean	sdev	mean	sdev	mean	sdev			
North America	0.4	0.3	6.2	1.1	4.1	1.0			
Central + South America	0.3	0.1	1.3	0.3	1.1	0.3			
Africa	0.5	0.1	2.4	0.4	2.1	0.4			
Europe	0.4	0.2	8.9	1.3	2.7	0.6			
Former USSR + Middle East	0.3	0.2	5.2	0.5	3.7	0.7			
Asia	0.5	0.2	4.7	1.0	6.8	1.6			
Oceania	0.2	0.1	0.5	0.1	0.6	0.1			
Continents	2.7	1.1	29.2	4.3	21.0	4.6			
Ocean	8.4	3.9	17.7	6.6	15.7	5.8			
Global	11.1	4.8	46.8	9.7	36.7	9.5			
wet deposition	mean	sdev	mean	sdev	mean	sdev			
North America	0.8	0.3	4.7	0.8	4.1	0.8			
Central + South America	1.3	0.4	2.1	0.5	2.2	0.5			
Africa	0.7	0.2	2.3	0.4	2.3	0.4			
Europe	0.5	0.2	3.3	0.7	1.8	0.5			
Former USSR + Middle East	0.8	0.2	6.0	1.6	4.4	1.0			
Asia	1.7	0.3	5.1	0.9	8.0	1.8			
Oceania	0.4	0.0	0.6	0.1	0.6	0.1			
Continents	6.3	0.9	24.1	4.7	23.3	4.7			
Ocean	16.7	2.3	27.7	4.2	27.6	3.6			
Global	22.9	3.0	51.8	8.5	51.0	7.1			
				-					
emissions	mean	sdev	mean	sdev	mean	sdev			
North America	1.1	1.3	14.0	1.3	10.2	1.1			
Central + South America	2.1	1.3	4.3	1.2	4.1	1.3			
Africa	0.5	0.3	3.9	0.3	3.4	0.3			
Europe	1.2	0.7	18.9	0.5	6.4	0.5			
Former USSR + Middle East	0.3	0.3	9.6	0.3	8.1	0.3			
Asia	1.8	1.0	10.2	1.0	16.7	1.1			
Oceania	0.5	0.3	1.2	0.3	1.5	0.3			
Continents	7.5	3.6	62.1	3.3	50.4	3.3			
Ocean	21.0	10.0	30.2	11.0	30.2	10.0			
Global	28.5	12.0	92.4	14.0	80.6	13.0			
Number of models		7	(5		7			

Table S4a. Multi-model mean and standard deviation regional deposition and emission (Tg(S)/yr) from SO_x emissions for the historical period.

	2030								
	RCI	P26	RCI	P45	RCI	P85			
dry deposition	mean	sdev	mean	sdev	mean	sdev			
North America	1.0	0.3	1.5	0.4	2.0	0.4			
Central + South America	1.1	0.3	1.0	0.4	0.9	0.2			
Africa	2.0	0.4	2.7	0.5	2.4	0.4			
Europe	0.6	0.2	1.0	0.3	0.8	0.2			
Former USSR + Middle East	1.8	0.3	2.7	0.5	3.2	0.5			
Asia	6.3	1.2	7.4	1.8	9.0	1.4			
Oceania	0.3	0.1	0.5	0.2	0.3	0.1			
Continents	13.0	2.6	16.9	4.1	18.6	3.1			
Ocean	10.7	5.2	14.5	7.8	12.5	5.7			
Global	23.8	7.4	31.3	12.0	31.1	8.1			
wet deposition	mean	sdev	mean	sdev	mean	sdev			
North America	1.3	0.4	1.9	0.2	2.2	0.4			
Central + South America	1.8	0.3	2.0	0.0	1.6	0.2			
Africa	1.9	0.2	2.6	0.2	2.2	0.2			
Europe	0.6	0.1	1.0	0.1	0.8	0.1			
Former USSR + Middle East	1.8	0.1	3.1	0.5	2.9	0.3			
Asia	6.7	1.1	8.4	1.3	8.4	1.5			
Oceania	0.5	0.1	0.6	0.1	0.5	0.1			
Continents	14.6	1.5	19.7	2.3	18.7	2.1			
Ocean	21.3	1.2	25.3	1.9	23.6	1.6			
Global	36.0	2.7	45.1	4.2	42.3	3.7			
	-	-	-	-	-				
emissions	mean	sdev	mean	sdev	mean	sdev			
North America	2.7	1.6	3.7	0.0	5.0	1.6			
Central + South America	3.8	1.1	4.6	0.4	3.0	1.1			
Africa	3.7	0.2	5.5	0.0	4.2	0.2			
Europe	1.6	0.6	2.5	0.3	2.1	0.6			
Former USSR + Middle East	3.7	0.3	5.9	0.0	6.9	0.3			
Asia	15.1	1.0	19.0	0.4	20.4	0.9			
Oceania	0.7	0.2	1.5	0.0	0.8	0.2			
Continents	31.3	3.1	42.7	0.2	42.5	3.0			
Ocean	28.5	5.6	35.2	5.8	30.8	5.6			
Global	59.8	7.9	77.9	5.6	73.3	7.6			
Number of models	4	4		2		4			

Table S4b. Multi-model mean and standard deviation regional deposition and emission (Tg(S)/yr) from SO_x emissions for 2030.

	2100							
	RCI	P26	RCI	P45	RCI	P85		
dry deposition	mean	sdev	mean	sdev	mean	sdev		
North America	0.4	0.3	0.5	0.2	0.5	0.3		
Central + South America	0.4	0.2	0.5	0.3	0.6	0.2		
Africa	1.5	0.3	1.5	0.4	1.6	0.3		
Europe	0.3	0.1	0.4	0.2	0.3	0.1		
Former USSR + Middle East	0.5	0.2	0.7	0.2	1.2	0.2		
Asia	1.0	0.3	1.4	0.5	1.8	0.4		
Oceania	0.2	0.1	0.4	0.1	0.2	0.1		
Continents	4.3	1.3	5.3	1.9	6.4	1.6		
Ocean	7.9	4.4	10.3	6.4	9.1	5.2		
Global	12.3	5.5	15.7	8.3	15.4	6.5		
wet deposition	mean	sdev	mean	sdev	mean	sdev		
North America	0.8	0.4	0.9	0.1	1.0	0.4		
Central + South America	1.1	0.2	1.5	0.1	1.3	0.2		
Africa	1.6	0.2	1.6	0.0	1.8	0.1		
Europe	0.4	0.1	0.6	0.0	0.5	0.1		
Former USSR + Middle East	0.9	0.1	1.1	0.1	1.4	0.1		
Asia	2.4	0.3	2.9	0.3	3.3	0.4		
Oceania	0.4	0.1	0.5	0.1	0.4	0.1		
Continents	7.7	0.4	9.1	0.4	9.7	0.4		
Ocean	16.6	0.6	18.6	0.7	18.6	1.0		
Global	24.4	0.9	27.8	1.1	28.3	1.4		
		-		-				
emissions	mean	sdev	mean	sdev	mean	sdev		
North America	1.4	1.7	1.2	0.0	1.7	1.7		
Central + South America	1.9	1.1	3.3	0.4	2.3	1.1		
Africa	2.9	0.3	2.9	0.0	3.2	0.3		
Europe	0.9	0.6	1.2	0.3	1.0	0.6		
Former USSR + Middle East	1.0	0.4	1.3	0.0	2.6	0.4		
Asia	3.2	0.9	4.7	0.5	5.2	0.9		
Oceania	0.5	0.2	1.1	0.0	0.6	0.2		
Continents	11.9	3.5	15.6	0.2	16.6	3.5		
Ocean	25.3	5.5	30.1	5.7	27.0	5.6		
Global	37.2	7.6	45.8	5.5	43.6	7.7		
Number of models		4		2	4	4		

Table S4c. Multi-model mean and standard deviation regional deposition and emission (Tg(S)/yr) from SO_x emissions for 2100.

NOy		historica		RCF	2.6	RCF	94.5	RCF	°8.5
	1850	1980	2000	2030	2100	2030	2100	2030	2100
CESM-CAM-Superfast									
CICERO-OsloCTM2									
CMAM									
GEOSCCM									
GISS-E2-R									
GISS-E2-R-TOMAS									
MOCAGE									
NCAR-CAM3.5									
NCAR-CAM5.1									
STOC-HadAM3									
UM-CAM									
Total	10	10	10	6	6	4	4	7	7

NHx		historica		RCF	2.6	RCF	94.5	RCF	98.5
	1850	1980	2000	2030	2100	2030	2100	2030	2100
CESM-CAM-Superfast									
CICERO-OsloCTM2									
CMAM									
GEOSCCM									
GISS-E2-R									
GISS-E2-R-TOMAS									
MOCAGE									
NCAR-CAM3.5									
NCAR-CAM5.1									
STOC-HadAM3									
UM-CAM									
Total	5	5	5	3	3	2	2	3	3

SOx	historical		RCP2.6		RCP4.5		RCP8.5		
	1850	1980	2000	2030	2100	2030	2100	2030	2100
CESM-CAM-Superfast									
CICERO-OsloCTM2									
CMAM									
GEOSCCM									
GISS-E2-R									
GISS-E2-R-TOMAS									
MOCAGE									
NCAR-CAM3.5									
NCAR-CAM5.1									
STOC-HadAM3									
UM-CAM									
Total	7	6	7	4	4	2	2	4	4

Table S5. Compendium of models providing fields for deposition analysis. A filled rectangle indicates a time slice to which the specific model contributed.

Ice Core Site Name	Latitude	Longitude	Elevation (m)	
Antarctica				
W10	66° 44 S	112° 50' E	1390	
THW	76° 57′ S	121° 13′ W	2020	
DIV	76° 46′ S	101° 44' W	1329	
WD	79° 28′ S	112° 41′ W	1759	
PIG	77° 57′ S	95° 57' W	1593	
NUS Site8_7	74° 53 ' S	01° 36' E	2700	
NUS Site8_4	82° 49′ S	18° 54′ E	2552	
NUS Site8_5	82° 38′ S	17° 52′ E	2554	
NUS Site7_7	82° 04′ S	54° 53′ E	3725	
NUS Site7_5	78° 39′ S	35° 38′ E	3619	
NUS Site7_2	76° 04′ S	22° 28′ E	3582	
NUS Site7_1	73° 43′ S	7° 59′ E	3174	
Northern				
hemisphere				
ACT11d	66° 28′ N	46° 18' W	2296	
D4	71° 24′ N	43° 54' W	2766	
Zoe	72° 36′ N	38° 18' W	3258	
NEEMS3	77° 26′ N	51° 03' W	2454	
Tunu	78° 01' N	33° 59' W	2213	
McCall	69° 18′ N	143° 48' W	2400	
Akademii Nauk	80° 31' N	94° 49′ E	750	
Flade Isblink	81° 35′ N	15° 42′ W	618	

Table S6. Geographical information on the various ice-cores used in this study.

Figure S1a. Change in NO anthropogenic emissions (2000-1980) in 10^{-2} mg(N)/m²/year.

Figure S1b. Change in NH3 anthropogenic emissions (2000-1980) in 10^{-2} mg(N)/m²/year.

Figure S1c. Change in SO₂ anthropogenic emissions (2000-1980) in 10^{-2} mg(S)/m²/year.

Figure S2. Comparison of annual mean precipitation (mm/day) change (2000-1980) from the ACCMIP MMM (top) and from the CMAP database (bottom; Xie and Arkin, 1997). Note that a 6-year average on the CMAP data is used for both time slices.

Figure S3. Annual mean precipitation from the ACCMIP 2000 MMM (contours) and observations (filled circles) from Yang et al. (2005).

Figure S4. Inter-model standard deviation (in %) of the NO_y wet deposition. The standard deviation is only shown for regions where deposition is larger than 50 mg(N)/m²/year (see Fig. 5a). The number of models used for each time slice is shown in Table S2.

Figure S5a. Total (wet + dry) MMM NO_y deposition 1850-2100 (mg(N)m⁻²yr⁻¹) relative to year 2000. Top row shows 1850 and 1980. Middle row shows 2030 for RCP2.6, RCP4.5 and RCP8.5. Bottom row shows 2100 for RCP2.6, RCP4.5 and RCP8.5.

Figure S5b. Total (wet + dry) MMM NX_x deposition 1850-2100 (mg(N)m⁻²yr⁻¹) relative to year 2000. Top row shows 1850 and 1980. Middle row shows 2030 for RCP2.6, RCP4.5 and RCP8.5. Bottom row shows 2100 for RCP2.6, RCP4.5 and RCP8.5.

Figure S5c. Total (wet + dry) MMM SO_x deposition 1850-2100 (mg(S)m⁻²yr⁻¹) relative to year 2000. Top row shows 1850 and 1980. Middle row shows 2030 for RCP2.6, RCP4.5 and RCP8.5. Bottom row shows 2100 for RCP2.6, RCP4.5 and RCP8.5.