@inproceedings{ravishankar-etal-2019-probing,
title = "Probing Multilingual Sentence Representations With {X}-Probe",
author = "Ravishankar, Vinit and
{\O}vrelid, Lilja and
Velldal, Erik",
editor = "Augenstein, Isabelle and
Gella, Spandana and
Ruder, Sebastian and
Kann, Katharina and
Can, Burcu and
Welbl, Johannes and
Conneau, Alexis and
Ren, Xiang and
Rei, Marek",
booktitle = "Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4318/",
doi = "10.18653/v1/W19-4318",
pages = "156--168",
abstract = "This paper extends the task of probing sentence representations for linguistic insight in a multilingual domain. In doing so, we make two contributions: first, we provide datasets for multilingual probing, derived from Wikipedia, in five languages, viz. English, French, German, Spanish and Russian. Second, we evaluate six sentence encoders for each language, each trained by mapping sentence representations to English sentence representations, using sentences in a parallel corpus. We discover that cross-lingually mapped representations are often better at retaining certain linguistic information than representations derived from English encoders trained on natural language inference (NLI) as a downstream task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ravishankar-etal-2019-probing">
<titleInfo>
<title>Probing Multilingual Sentence Representations With X-Probe</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vinit</namePart>
<namePart type="family">Ravishankar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lilja</namePart>
<namePart type="family">Øvrelid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Velldal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spandana</namePart>
<namePart type="family">Gella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Ruder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katharina</namePart>
<namePart type="family">Kann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Burcu</namePart>
<namePart type="family">Can</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Welbl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Conneau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Rei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper extends the task of probing sentence representations for linguistic insight in a multilingual domain. In doing so, we make two contributions: first, we provide datasets for multilingual probing, derived from Wikipedia, in five languages, viz. English, French, German, Spanish and Russian. Second, we evaluate six sentence encoders for each language, each trained by mapping sentence representations to English sentence representations, using sentences in a parallel corpus. We discover that cross-lingually mapped representations are often better at retaining certain linguistic information than representations derived from English encoders trained on natural language inference (NLI) as a downstream task.</abstract>
<identifier type="citekey">ravishankar-etal-2019-probing</identifier>
<identifier type="doi">10.18653/v1/W19-4318</identifier>
<location>
<url>https://aclanthology.org/W19-4318/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>156</start>
<end>168</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Probing Multilingual Sentence Representations With X-Probe
%A Ravishankar, Vinit
%A Øvrelid, Lilja
%A Velldal, Erik
%Y Augenstein, Isabelle
%Y Gella, Spandana
%Y Ruder, Sebastian
%Y Kann, Katharina
%Y Can, Burcu
%Y Welbl, Johannes
%Y Conneau, Alexis
%Y Ren, Xiang
%Y Rei, Marek
%S Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F ravishankar-etal-2019-probing
%X This paper extends the task of probing sentence representations for linguistic insight in a multilingual domain. In doing so, we make two contributions: first, we provide datasets for multilingual probing, derived from Wikipedia, in five languages, viz. English, French, German, Spanish and Russian. Second, we evaluate six sentence encoders for each language, each trained by mapping sentence representations to English sentence representations, using sentences in a parallel corpus. We discover that cross-lingually mapped representations are often better at retaining certain linguistic information than representations derived from English encoders trained on natural language inference (NLI) as a downstream task.
%R 10.18653/v1/W19-4318
%U https://aclanthology.org/W19-4318/
%U https://doi.org/10.18653/v1/W19-4318
%P 156-168
Markdown (Informal)
[Probing Multilingual Sentence Representations With X-Probe](https://aclanthology.org/W19-4318/) (Ravishankar et al., RepL4NLP 2019)
ACL