
WASSA 2018

The 9th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis

Proceedings of the Workshop

October 31, 2018
Brussels, Belgium

c©2018 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-948087-80-3

ii

Introduction

Research in automatic Subjectivity and Sentiment Analysis (SSA), as subtasks of Affective Computing
and Natural Language Processing (NLP), has flourished in the past years. The growth in interest in
these tasks was motivated by the birth and rapid expansion of the Social Web that made it possible for
people all over the world to share, comment or consult content on any given topic. In this context,
opinions, sentiments and emotions expressed in Social Media texts have been shown to have a high
influence on the social and economic behaviour worldwide. SSA systems are highly relevant to many
real-world applications (e.g. marketing, eGovernance, business intelligence, social analysis) and also to
many tasks in Natural Language Processing (NLP) - information extraction, question answering, textual
entailment, to name just a few. The importance of this field has been proven by the high number of
approaches proposed in research in the past decade, as well as by the interest that it raised from other
disciplines (Economics, Sociology, Psychology, Marketing, Crisis Management disciplines (Economics,
Sociology, Psychology, Marketing, Crisis Management, and Behavioral Studies, Digital Humanities) and
the applications that were created using its technology.

Next to the growth in the diversity of applications, task definitions change towards more complex
challenges: Subjectivity, polarity recognition and opinion mining has been enriched with fine-grained
aspect and target level predictions. Polarity as a concept is complemented by emotion models as defined
from psychological research.

In spite of the growing body of research in the area in the past years, dealing with affective phenomena
in text has proven to be a complex, interdisciplinary problem that remains far from being solved. Its
challenges include the need to address the issue from different perspectives and at different levels,
depending on the characteristics of the textual genre, the language(s) treated and the final application
for which the analysis is done.

The aim of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media
Analysis (WASSA 2018) was to continue the line of the previous editions, bringing together researchers
in Computational Linguistics working on Subjectivity and Sentiment Analysis and researchers working
on interdisciplinary aspects of affect computation from text.

This year, we also organized a track on implicit emotion recognition:
http://implicitemotions.wassa2018.com/

Participants were given a tweet from which a certain emotion word is removed. That word is one of the
following: "sad", "happy", "disgusted", "surprised", "angry", "afraid" or a synonym of one of them. The
task was to predict the emotion the excluded word expresses: Sadness, Joy, Disgust, Surprise, Anger, or
Fear.

With this formulation of the task, we provided data instances which are likely to express an emotion.
However, the emotion needs to be inferred from the causal description, which is typically more implicit
than an emotion word.

For the main workshop, we accepted 15/60 papers as long (25%) and another 17 as short, giving a total
of 32/60 papers accepted - 53%. For the Implicit Emotions Shared Task, we got 19 system description
paper submissions, out of which we accept 17. 49 papers in total will be presented at the workshop,
together with the additional contribution from the invited speaker, Dr. Ellen Riloff.

Accepted papers deal with overcoming issues like language and domain dependence of sentiment
analysis, irony and sarcasm and adaptation of sentiment and emotion detection systems to work in real-
life scenarios.

iii

We would like to thank the EMNLP 2018 Organizers and Workshop Chairs for the help and support at
the different stages of the workshop organization process. We are also especially grateful to the Program
Committee members and the external reviewers for the time and effort spent assessing the papers. We
would like to extend our thanks to our invited speaker – Dr. Ellen Riloff - for accepting to deliver the
keynote talks, opening new horizons for research and applications of sentiment and emotion detection
from text.

Alexandra Balahur, Saif Mohammad, Veronique Hoste, Roman Klinger

WASSA 2018 Chairs

iv

Organizers:

Alexandra Balahur - European Commission Joint Research Centre

Saif M. Mohammad - National Research Council Canada

Veronique Hoste - University of Ghent, Belgium

Roman Klinger - University of Stuttgart, Germany

Program Committee:

Muhammad Abdul-Mageed - University of British Columbia, Canada

Hassan Alhuzali - University of British Columbia, Canada

Jorge Balazs - University of Tokyo, Japan

Jeremy Barnes - University Pompeu Fabra, Spain

Sabine Bergler - Concordia University, Canada

Cristina Bosco - University of Torino, Italy

Felipe Bravo-Marquez - University of Waikato, New Zealand

Nicoletta Calzolari - CNR Pisa, Italy

Erik Cambria - Nanyang Technological University, Singapore

Alexandra Chronopoulou, University of Illinois at Urbana Champaign, U.S.A.

Montse Cuadros - Vicomtech, Spain

Lingjia Deng - University of Pittsburg, U.S.A.

Yunxia Ding - Yunnan University, China

Daniel Fleischer - Amobee Inc., Tel Aviv, Israel

Lorenzo Gatti - University of Twente, The Netherlands
v

Vachagan Gratian - University of Stuttgart, Germany

Carlos Iglesias - Universidad Politecnica de Madrid, Spain

Aditya Joshi - CSIRO Data61

Manfred Klenner - University of Zuerich, Switzerland

Isa Maks - Vrije Universiteit Amsterdam, The Netherlands

Edison Marrese-Taylor - University of Tokyo, Japan

Jiří Martínek - University of West Bohemia, Czech Republic

Maite Martin Valdivia – University of Jaen, Spain

Diana Maynard - University of Sheffied, U.K.

Karo Moilanen - University of Oxford, U.K.

Behzad Naderalvojoud - Hacettepe University, Turkey

Günter Neumann - DFKI, Germany

Malvina Nissim - University of Groningen, The Netherlands

Constantin Orasan - University of Wolverhampton, U.K.

Gustavo Paetzhold - Universidade Tecnológica Federal do Parana, Brazil

Samuel Pecar - Slovak University of Technology in Bratislava, Slovakia

Viktor Pekar - University of Wolverhampton, U.K.

Flor Miriam Plaza del Arco - University of Jaén, Spain

Daniel Preotiuc-Pietro - University of Pennsylvania, U.S.A.

Thomas Proisl - Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Pavel Přibáň - University of West Bohemia, Czech Republic

Prabod Rathnayaka - University of Moratuwa, Sri Lanka

vi

Esteban Rissola - USI, Switzerland

Mike Thelwall - University of Wolverhampton, U.K

Lyle Ungar - University of Pennsylvania, U.S.A.

Alfonso Ureña - University of Jaén, Spain

Piek Vossen - Vrije Universiteit Amsterdam, The Netherlands

Bin Wang - Yunnan University, China

WenTing Wang - Alibaba Group, Hangzhou City, China

Michael Wiegand - Saarland University, Germany

Wojciech Witon - Disney Research Los Angeles, U.S.A.

Taras Zagibalov - Brantwatch, U.K.

Additional Reviewers:

Luna De Bruyne; Orphée De Clercq; Bart Desmet; Michal Farkas; Aitor Garcia Pablos; Salud
maria Jímenez-Zafra; Zohar Kelrich; Sergei Kulikov; Els Lefever; Cui Leyang; Eugenio Martínez
Cámara; Alon Rozental; Toh Zhiqiang

Invited Speaker:

Ellen Riloff, University of Utah, U.S.A.

vii

Table of Contents

Identifying Affective Events and the Reasons for their Polarity
Ellen Riloff . 1

Deep contextualized word representations for detecting sarcasm and irony
Suzana Ilić, Edison Marrese-Taylor, Jorge Balazs and Yutaka Matsuo . 2

Implicit Subjective and Sentimental Usages in Multi-sense Word Embeddings
Yuqi Sun, Haoyue Shi and Junfeng Hu . 8

Language Independent Sentiment Analysis with Sentiment-Specific Word Embeddings
Carl Saroufim, Akram Almatarky and Mohammad AbdelHady . 14

Creating a Dataset for Multilingual Fine-grained Emotion-detection Using Gamification-based Annota-
tion

Emily Öhman, Kaisla Kajava, Jörg Tiedemann and Timo Honkela . 24

IEST: WASSA-2018 Implicit Emotions Shared Task
Roman Klinger, Orphee De Clercq, Saif Mohammad and Alexandra Balahur 31

Amobee at IEST 2018: Transfer Learning from Language Models
Alon Rozental, Daniel Fleischer and Zohar Kelrich .43

IIIDYT at IEST 2018: Implicit Emotion Classification With Deep Contextualized Word Representations
Jorge Balazs, Edison Marrese-Taylor and Yutaka Matsuo . 50

NTUA-SLP at IEST 2018: Ensemble of Neural Transfer Methods for Implicit Emotion Classification
Alexandra Chronopoulou, Aikaterini Margatina, Christos Baziotis and Alexandros Potamianos . 57

Sentiment analysis under temporal shift
Jan Lukeš and Anders Søgaard . 65

Not Just Depressed: Bipolar Disorder Prediction on Reddit
Ivan Sekulic, Matej Gjurković and Jan Šnajder .72

Topic-Specific Sentiment Analysis Can Help Identify Political Ideology
Sumit Bhatia and Deepak P . 79

Saying no but meaning yes: negation and sentiment analysis in Basque
Jon Alkorta, Koldo Gojenola and Mikel Iruskieta . 85

Leveraging Writing Systems Change for Deep Learning Based Chinese Emotion Analysis
Rong Xiang, Yunfei Long, Qin Lu, Dan Xiong and I-Hsuan Chen . 91

Ternary Twitter Sentiment Classification with Distant Supervision and Sentiment-Specific Word Embed-
dings

Mats Byrkjeland, Frederik Gørvell de Lichtenberg and Björn Gambäck . 97

Linking News Sentiment to Microblogs: A Distributional Semantics Approach to Enhance Microblog
Sentiment Classification

Tobias Daudert and Paul Buitelaar . 107

Aspect Based Sentiment Analysis into the Wild
Caroline Brun and Vassilina Nikoulina . 116

ix

The Role of Emotions in Native Language Identification
Ilia Markov, Vivi Nastase, Carlo Strapparava and Grigori Sidorov . 123

Self-Attention: A Better Building Block for Sentiment Analysis Neural Network Classifiers
Artaches Ambartsoumian and Fred Popowich . 130

Dual Memory Network Model for Biased Product Review Classification
Yunfei Long, Mingyu Ma, Qin Lu, Rong Xiang and Chu-Ren Huang . 140

Measuring Issue Ownership using Word Embeddings
Amaru Cuba Gyllensten and Magnus Sahlgren . 149

Sentiment Expression Boundaries in Sentiment Polarity Classification
Rasoul Kaljahi and Jennifer Foster . 156

Exploring and Learning Suicidal Ideation Connotations on Social Media with Deep Learning
Ramit Sawhney, Prachi Manchanda, Puneet Mathur, Rajiv Shah and Raj Singh 167

UTFPR at IEST 2018: Exploring Character-to-Word Composition for Emotion Analysis
Gustavo Paetzold . 176

HUMIR at IEST-2018: Lexicon-Sensitive and Left-Right Context-Sensitive BiLSTM for Implicit Emotion
Recognition

Behzad Naderalvojoud, Alaettin Ucan and Ebru Akcapinar Sezer . 182

NLP at IEST 2018: BiLSTM-Attention and LSTM-Attention via Soft Voting in Emotion Classification
Qimin Zhou and Hao Wu . 189

SINAI at IEST 2018: Neural Encoding of Emotional External Knowledge for Emotion Classification
Flor Miriam Plaza del Arco, Eugenio Martínez-Cámara, Maite Martin and L. Alfonso Urena Lopez

195

EmoNLP at IEST 2018: An Ensemble of Deep Learning Models and Gradient Boosting Regression Tree
for Implicit Emotion Prediction in Tweets

Man Liu . 201

HGSGNLP at IEST 2018: An Ensemble of Machine Learning and Deep Neural Architectures for Implicit
Emotion Classification in Tweets

wenting wang . 205

DataSEARCH at IEST 2018: Multiple Word Embedding based Models for Implicit Emotion Classifica-
tion of Tweets with Deep Learning

Yasas Senarath and Uthayasanker Thayasivam . 211

NL-FIIT at IEST-2018: Emotion Recognition utilizing Neural Networks and Multi-level Preprocessing
Samuel Pecar, Michal Farkaš, Marian Simko, Peter Lacko and Maria Bielikova 217

UWB at IEST 2018: Emotion Prediction in Tweets with Bidirectional Long Short-Term Memory Neural
Network

Pavel Přibáň and Jiří Martínek . 224

USI-IR at IEST 2018: Sequence Modeling and Pseudo-Relevance Feedback for Implicit Emotion Detec-
tion

Esteban Rissola, Anastasia Giachanou and Fabio Crestani . 231

x

EmotiKLUE at IEST 2018: Topic-Informed Classification of Implicit Emotions
Thomas Proisl, Philipp Heinrich, Besim Kabashi and Stefan Evert . 235

BrainT at IEST 2018: Fine-tuning Multiclass Perceptron For Implicit Emotion Classification
Vachagan Gratian and Marina Haid . 243

Disney at IEST 2018: Predicting Emotions using an Ensemble
Wojciech Witon, Pierre Colombo, Ashutosh Modi and Mubbasir Kapadia 248

Sentylic at IEST 2018: Gated Recurrent Neural Network and Capsule Network Based Approach for
Implicit Emotion Detection

Prabod Rathnayaka, Supun Abeysinghe, Chamod Samarajeewa, Isura Manchanayake and Malaka
Walpola . 254

Fast Approach to Build an Automatic Sentiment Annotator for Legal Domain using Transfer Learning
Viraj Salaka, Menuka Warushavithana, Nisansa de Silva, Amal Shehan Perera, Gathika Ratnayaka

and Thejan Rupasinghe . 260

What Makes You Stressed? Finding Reasons From Tweets
Reshmi Gopalakrishna Pillai, Mike Thelwall and Constantin Orasan . 266

EmojiGAN: learning emojis distributions with a generative model
Bogdan Mazoure, Thang DOAN and Saibal Ray . 273

Identifying Opinion-Topics and Polarity of Parliamentary Debate Motions
Gavin Abercrombie and Riza Theresa Batista-Navarro . 280

Homonym Detection For Humor Recognition In Short Text
Sven van den Beukel and Lora Aroyo . 286

Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
Peng Xu, Andrea Madotto, Chien-Sheng Wu, Ji Ho Park and Pascale Fung 292

Learning representations for sentiment classification using Multi-task framework
Hardik Meisheri and Harshad Khadilkar . 299

Super Characters: A Conversion from Sentiment Classification to Image Classification
Baohua Sun, Lin Yang, Patrick Dong, Wenhan Zhang, Jason Dong and Charles Young.309

Learning Comment Controversy Prediction in Web Discussions Using Incidentally Supervised Multi-
Task CNNs

Nils Rethmeier, Marc Hübner and Leonhard Hennig . 316

Words Worth: Verbal Content and Hirability Impressions in YouTube Video Resumes
Skanda Muralidhar, Laurent Nguyen and Daniel Gatica-Perez . 322

Predicting Adolescents’ Educational Track from Chat Messages on Dutch Social Media
Lisa Hilte, Walter Daelemans and Reinhild Vandekerckhove . 328

Arabizi sentiment analysis based on transliteration and automatic corpus annotation
Imane GUELLIL, Ahsan Adeel, Faical AZOUAOU, fodil benali, Ala-eddine Hachani and Amir

Hussain . 335

UBC-NLP at IEST 2018: Learning Implicit Emotion With an Ensemble of Language Models
Hassan Alhuzali, Mohamed Elaraby and Muhammad Abdul-Mageed . 342

xi

Workshop Program

Wednesday, October 31, 2018

08:30–08:45 Opening Remarks

08:45–09:20 Invited talk

08:45–09:20 Identifying Affective Events and the Reasons for their Polarity
Ellen Riloff

09:20–10:35 Session 1: Resources and representations for affect detection from text

09:20–09:40 Deep contextualized word representations for detecting sarcasm and irony
Suzana Ilić, Edison Marrese-Taylor, Jorge Balazs and Yutaka Matsuo

09:40–10:00 Implicit Subjective and Sentimental Usages in Multi-sense Word Embeddings
Yuqi Sun, Haoyue Shi and Junfeng Hu

10:00–10:20 Language Independent Sentiment Analysis with Sentiment-Specific Word Embed-
dings
Carl Saroufim, Akram Almatarky and Mohammad AbdelHady

10:20–10:35 Creating a Dataset for Multilingual Fine-grained Emotion-detection Using
Gamification-based Annotation
Emily Öhman, Kaisla Kajava, Jörg Tiedemann and Timo Honkela

10:35–11:00 Tea/Coffee Break

xiii

Wednesday, October 31, 2018 (continued)

11:00–12:30 Session 2: The WASSA Shared Task on Emotion Intensity

11:00–11:25 IEST: WASSA-2018 Implicit Emotions Shared Task
Roman Klinger, Orphee De Clercq, Saif Mohammad and Alexandra Balahur

11:25–11:50 Amobee at IEST 2018: Transfer Learning from Language Models
Alon Rozental, Daniel Fleischer and Zohar Kelrich

11:50–12:10 IIIDYT at IEST 2018: Implicit Emotion Classification With Deep Contextualized
Word Representations
Jorge Balazs, Edison Marrese-Taylor and Yutaka Matsuo

12:10–12:30 NTUA-SLP at IEST 2018: Ensemble of Neural Transfer Methods for Implicit Emo-
tion Classification
Alexandra Chronopoulou, Aikaterini Margatina, Christos Baziotis and Alexandros
Potamianos

12:30–14:00 Lunch Break

14:00–15:30 Session 3: Affect detection: issues and applications (I)

14:00–14:20 Sentiment analysis under temporal shift
Jan Lukeš and Anders Søgaard

14:20–14:40 Not Just Depressed: Bipolar Disorder Prediction on Reddit
Ivan Sekulic, Matej Gjurković and Jan Šnajder

14:40–15:00 Topic-Specific Sentiment Analysis Can Help Identify Political Ideology
Sumit Bhatia and Deepak P

15:00–15:15 Saying no but meaning yes: negation and sentiment analysis in Basque
Jon Alkorta, Koldo Gojenola and Mikel Iruskieta

15:15–15:30 Leveraging Writing Systems Change for Deep Learning Based Chinese Emotion
Analysis
Rong Xiang, Yunfei Long, Qin Lu, Dan Xiong and I-Hsuan Chen

xiv

Wednesday, October 31, 2018 (continued)

15:30–16:00 Tea/Coffee Break

16:00–17:15 Session 4: Affect detection: issues and applications (II)

16:00–16:20 Ternary Twitter Sentiment Classification with Distant Supervision and Sentiment-
Specific Word Embeddings
Mats Byrkjeland, Frederik Gørvell de Lichtenberg and Björn Gambäck

16:20–16:40 Linking News Sentiment to Microblogs: A Distributional Semantics Approach to
Enhance Microblog Sentiment Classification
Tobias Daudert and Paul Buitelaar

16:40–17:00 Aspect Based Sentiment Analysis into the Wild
Caroline Brun and Vassilina Nikoulina

17:00–17:15 The Role of Emotions in Native Language Identification
Ilia Markov, Vivi Nastase, Carlo Strapparava and Grigori Sidorov

17:15–17:20 Break

17:20–18:30 Session 5: Posters

Self-Attention: A Better Building Block for Sentiment Analysis Neural Network
Classifiers
Artaches Ambartsoumian and Fred Popowich

Dual Memory Network Model for Biased Product Review Classification
Yunfei Long, Mingyu Ma, Qin Lu, Rong Xiang and Chu-Ren Huang

Measuring Issue Ownership using Word Embeddings
Amaru Cuba Gyllensten and Magnus Sahlgren

Sentiment Expression Boundaries in Sentiment Polarity Classification
Rasoul Kaljahi and Jennifer Foster

xv

Wednesday, October 31, 2018 (continued)

Exploring and Learning Suicidal Ideation Connotations on Social Media with Deep
Learning
Ramit Sawhney, Prachi Manchanda, Puneet Mathur, Rajiv Shah and Raj Singh

UTFPR at IEST 2018: Exploring Character-to-Word Composition for Emotion
Analysis
Gustavo Paetzold

HUMIR at IEST-2018: Lexicon-Sensitive and Left-Right Context-Sensitive BiLSTM
for Implicit Emotion Recognition
Behzad Naderalvojoud, Alaettin Ucan and Ebru Akcapinar Sezer

NLP at IEST 2018: BiLSTM-Attention and LSTM-Attention via Soft Voting in Emo-
tion Classification
Qimin Zhou and Hao Wu

SINAI at IEST 2018: Neural Encoding of Emotional External Knowledge for Emo-
tion Classification
Flor Miriam Plaza del Arco, Eugenio Martínez-Cámara, Maite Martin and L. Al-
fonso Urena Lopez

EmoNLP at IEST 2018: An Ensemble of Deep Learning Models and Gradient
Boosting Regression Tree for Implicit Emotion Prediction in Tweets
Man Liu

HGSGNLP at IEST 2018: An Ensemble of Machine Learning and Deep Neural
Architectures for Implicit Emotion Classification in Tweets
wenting wang

DataSEARCH at IEST 2018: Multiple Word Embedding based Models for Implicit
Emotion Classification of Tweets with Deep Learning
Yasas Senarath and Uthayasanker Thayasivam

NL-FIIT at IEST-2018: Emotion Recognition utilizing Neural Networks and Multi-
level Preprocessing
Samuel Pecar, Michal Farkaš, Marian Simko, Peter Lacko and Maria Bielikova

UWB at IEST 2018: Emotion Prediction in Tweets with Bidirectional Long Short-
Term Memory Neural Network
Pavel Přibáň and Jiří Martínek

USI-IR at IEST 2018: Sequence Modeling and Pseudo-Relevance Feedback for Im-
plicit Emotion Detection
Esteban Rissola, Anastasia Giachanou and Fabio Crestani

EmotiKLUE at IEST 2018: Topic-Informed Classification of Implicit Emotions
Thomas Proisl, Philipp Heinrich, Besim Kabashi and Stefan Evert

xvi

Wednesday, October 31, 2018 (continued)

BrainT at IEST 2018: Fine-tuning Multiclass Perceptron For Implicit Emotion Clas-
sification
Vachagan Gratian and Marina Haid

Disney at IEST 2018: Predicting Emotions using an Ensemble
Wojciech Witon, Pierre Colombo, Ashutosh Modi and Mubbasir Kapadia

Sentylic at IEST 2018: Gated Recurrent Neural Network and Capsule Network
Based Approach for Implicit Emotion Detection
Prabod Rathnayaka, Supun Abeysinghe, Chamod Samarajeewa, Isura Man-
chanayake and Malaka Walpola

Fast Approach to Build an Automatic Sentiment Annotator for Legal Domain using
Transfer Learning
Viraj Salaka, Menuka Warushavithana, Nisansa de Silva, Amal Shehan Perera,
Gathika Ratnayaka and Thejan Rupasinghe

What Makes You Stressed? Finding Reasons From Tweets
Reshmi Gopalakrishna Pillai, Mike Thelwall and Constantin Orasan

EmojiGAN: learning emojis distributions with a generative model
Bogdan Mazoure, Thang DOAN and Saibal Ray

Identifying Opinion-Topics and Polarity of Parliamentary Debate Motions
Gavin Abercrombie and Riza Theresa Batista-Navarro

Homonym Detection For Humor Recognition In Short Text
Sven van den Beukel and Lora Aroyo

Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
Peng Xu, Andrea Madotto, Chien-Sheng Wu, Ji Ho Park and Pascale Fung

Learning representations for sentiment classification using Multi-task framework
Hardik Meisheri and Harshad Khadilkar

Super Characters: A Conversion from Sentiment Classification to Image Classifica-
tion
Baohua Sun, Lin Yang, Patrick Dong, Wenhan Zhang, Jason Dong and Charles
Young

Learning Comment Controversy Prediction in Web Discussions Using Incidentally
Supervised Multi-Task CNNs
Nils Rethmeier, Marc Hübner and Leonhard Hennig

xvii

Wednesday, October 31, 2018 (continued)

Words Worth: Verbal Content and Hirability Impressions in YouTube Video Resumes
Skanda Muralidhar, Laurent Nguyen and Daniel Gatica-Perez

Predicting Adolescents’ Educational Track from Chat Messages on Dutch Social
Media
Lisa Hilte, Walter Daelemans and Reinhild Vandekerckhove

Arabizi sentiment analysis based on transliteration and automatic corpus annota-
tion
Imane GUELLIL, Ahsan Adeel, Faical AZOUAOU, fodil benali, Ala-eddine
Hachani and Amir Hussain

UBC-NLP at IEST 2018: Learning Implicit Emotion With an Ensemble of Language
Models
Hassan Alhuzali, Mohamed Elaraby and Muhammad Abdul-Mageed

xviii

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, page 1
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Identifying Affective Events and the Reasons for their Polarity

Ellen Riloff
University of Utah

riloff@cs.utah.edu

1 Abstract of invited talk

Many events have a positive or negative impact on
our lives (e.g., “I bought a house” is typically good
news, but ”My house burned down” is bad news).
Recognizing events that have affective polarity is
essential for narrative text understanding, conver-
sational dialogue, and applications such as sum-
marization and sarcasm detection. We will discuss
our recent work on identifying affective events and
categorizing them based on the underlying reasons
for their affective polarity. First, we will describe
a weakly supervised learning method to induce
a large set of affective events from a text corpus
by optimizing for semantic consistency. Second,
we will present models to classify affective events
based on Human Need Categories, which often ex-
plain people’s motivations and desires. Our best
results use a co-training model that consists of
event expression and event context classifiers and
exploits both labeled and unlabeled texts. We will
conclude with a discussion of interesting direc-
tions for future work in this area.

1

https://doi.org/10.18653/v1/P17

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 2–7
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Deep contextualized word representations for detecting sarcasm and irony

Suzana Ilić1, Edison Marrese-Taylor2, Jorge A. Balazs2, Yutaka Matsuo2

University of Innsbruck, Austria1

suzana.ilic@student.uibk.ac.at
Graduate School of Engineering, The University of Tokyo, Japan2

{emarrese,jorge,matsuo}@weblab.t.u-tokyo.ac.jp

Abstract

Predicting context-dependent and non-literal
utterances like sarcastic and ironic expres-
sions still remains a challenging task in NLP,
as it goes beyond linguistic patterns, encom-
passing common sense and shared knowl-
edge as crucial components. To capture com-
plex morpho-syntactic features that can usu-
ally serve as indicators for irony or sarcasm
across dynamic contexts, we propose a model
that uses character-level vector representations
of words, based on ELMo. We test our model
on 7 different datasets derived from 3 different
data sources, providing state-of-the-art perfor-
mance in 6 of them, and otherwise offering
competitive results.

1 Introduction

Sarcastic and ironic expressions are prevalent in
social media and, due to the tendency to invert
polarity, play an important role in the context of
opinion mining, emotion recognition and senti-
ment analysis (Pang and Lee, 2006). Sarcasm and
irony are two closely related linguistic phenom-
ena, with the concept of meaning the opposite of
what is literally expressed at its core. There is
no consensus in academic research on the formal
definition, both terms are non-static, depending on
different factors such as context, domain and even
region in some cases (Filatova, 2012).

In light of the general complexity of natural lan-
guage, this presents a range of challenges, from
the initial dataset design and annotation to com-
putational methods and evaluation (Chaudhari and
Chandankhede, 2017). The difficulties lie in cap-
turing linguistic nuances, context-dependencies
and latent meaning, due to richness of dynamic
variants and figurative use of language (Joshi et al.,
2015).

The automatic detection of sarcastic expres-
sions often relies on the contrast between posi-

tive and negative sentiment (Riloff et al., 2013).
This incongruence can be found on a lexical level
with sentiment-bearing words, as in ”I love be-
ing ignored”. In more complex linguistic settings
an action or a situation can be perceived as neg-
ative, without revealing any affect-related lexical
elements. The intention of the speaker as well
as common knowledge or shared experience can
be key aspects, as in ”I love waking up at 5 am”,
which can be sarcastic, but not necessarily. Simi-
larly, verbal irony is referred to as saying the op-
posite of what is meant and based on sentiment
contrast (Grice, 1975), whereas situational irony is
seen as describing circumstances with unexpected
consequences (Lucariello, 1994; Shelley, 2001).

Empirical studies have shown that there are spe-
cific linguistic cues and combinations of such that
can serve as indicators for sarcastic and ironic ex-
pressions. Lexical and morpho-syntactic cues in-
clude exclamations and interjections, typographic
markers such as all caps, quotation marks and
emoticons, intensifiers and hyperboles (Kunne-
man et al., 2015; Bharti et al., 2016). In the case of
Twitter, the usage of emojis and hashtags has also
proven to help automatic irony detection.

We propose a purely character-based architec-
ture which tackles these challenges by allowing
us to use a learned representation that models fea-
tures derived from morpho-syntactic cues. To do
so, we use deep contextualized word representa-
tions, which have recently been used to achieve the
state of the art on six NLP tasks, including senti-
ment analysis (Peters et al., 2018). We test our
proposed architecture on 7 different irony/sarcasm
datasets derived from 3 different data sources, pro-
viding state-of-the-art performance in 6 of them
and otherwise offering competitive results, show-
ing the effectiveness of our proposal. We make
our code available at https://github.com/
epochx/elmo4irony.

2

https://doi.org/10.18653/v1/P17

2 Related work

Apart from the relevance for industry applications
related to sentiment analysis, sarcasm and irony
detection has received great traction within the
NLP research community, resulting in a variety
of methods, shared tasks and benchmark datasets.
Computational approaches for the classification
task range from rule-based systems (Riloff et al.,
2013; Bharti et al., 2015) and statistical methods
and machine learning algorithms such as Support
Vector Machines (Joshi et al., 2015; Tungthamthiti
et al., 2010), Naive Bayes and Decision Trees
(Reyes et al., 2013) leveraging extensive feature
sets, to deep learning-based approaches. In this
context, Tay et al. (2018). delivered state-of-the-
art results by using an intra-attentional component
in addition to a recurrent neural network. Previ-
ous work such as the one by Veale (2016) had
proposed a convolutional long-short-term memory
network (CNN-LSTM-DNN) that also achieved
excellent results. A comprehensive survey on au-
tomatic sarcasm detection was done by Joshi et al.
(2016), while computational irony detection was
reviewed by Wallace (2015).

Further improvements both in terms of classic
and deep models came as a result of the SemEval
2018 Shared Task on Irony in English Tweets
(Van Hee et al., 2018). The system that achieved
the best results was hybrid, namely, a densely-
connected BiLSTM with a multi-task learning
strategy, which also makes use of features such as
POS tags and lexicons (Wu et al., 2018).

3 Proposed Approach

The wide spectrum of linguistic cues that can serve
as indicators for sarcastic and ironic expressions
has been usually exploited for automatic sarcasm
or irony detection by modeling them in the form
of binary features in traditional machine learning.

On the other hand, deep models for irony and
sarcasm detection, which are currently offer state-
of-the-art performance, have exploited sequential
neural networks such as LSTMs and GRUs (Veale,
2016; Zhang et al., 2016) on top of distributed
word representations. Recently, in addition to us-
ing a sequential model, Tay et al. (2018) proposed
to use intra-attention to compare elements in a
sequence against themselves. This allowed the
model to better capture word-to-word level inter-
actions that could also be useful for detecting sar-
casm, such as the incongruity phenomenon (Joshi

et al., 2015). Despite this, all models in the lit-
erature rely on word-level representations, which
keeps the models from being able to easily cap-
ture some of the lexical and morpho-syntactic cues
known to denote irony, such as all caps, quotation
marks and emoticons, and in Twitter, also emojis
and hashtags.

The usage of a purely character-based input
would allow us to directly recover and model these
features. Consequently, our architecture is based
on Embeddings from Language Model or ELMo
(Peters et al., 2018). The ELMo layer allows
to recover a rich 1,024-dimensional dense vec-
tor for each word. Using CNNs, each vector is
built upon the characters that compose the under-
lying words. As ELMo also contains a deep bi-
directional LSTM on top of this character-derived
vectors, each word-level embedding contains con-
textual information from their surroundings. Con-
cretely, we use a pre-trained ELMo model, ob-
tained using the 1 Billion Word Benchmark which
contains about 800M tokens of news crawl data
from WMT 2011 (Chelba et al., 2014).

Subsequently, the contextualized embeddings
are passed on to a BiLSTM with 2,048 hidden
units. We aggregate the LSTM hidden states us-
ing max-pooling, which in our preliminary exper-
iments offered us better results, and feed the re-
sulting vector to a 2-layer feed-forward network,
where each layer has 512 units. The output of this
is then fed to the final layer of the model, which
performs the binary classification.

4 Experimental Setup

We test our proposed approach for binary clas-
sification on either sarcasm or irony, on seven
benchmark datasets retrieved from different media
sources. Below we describe each dataset, please
see Table 1 below for a summary.

Twitter: We use the Twitter dataset provided
for the SemEval 2018 Task 3, Irony Detection in
English Tweets (Van Hee et al., 2018). The dataset
was manually annotated using binary labels. We
also use the dataset by Riloff et al. (2013), which
is manually annotated for sarcasm. Finally, we use
the dataset by Ptáček et al. (2014), who collected a
user self-annotated corpus of tweets with the #sar-
casm hashtag.

Reddit: Khodak et al. (2017) collected SARC,
a corpus comprising of 600.000 sarcastic com-
ments on Reddit. We use main subset, SARC 2.0,

3

Reference Dataset Train Valid Test Total Source
Van Hee et al., 2018 SemEval-2018 3,067 306 784 3,834 Twitter

Ptáček et al., 2014 Ptáček 48,007 6,858 13,717 68,582 Twitter

Riloff et al., 2013 Riloff 1,327 189 381 1,897 Twitter

Khodak et al., 2017 SARC 2.0 205,665 51,417 64,666 321,748 Reddit

Khodak et al., 2017 SARC 2.0 pol 10,934 2,734 3,406 17,074 Reddit

Oraby et al., 2016 SC-V1 1,396 199 400 1,995 Dialogues

Oraby et al., 2016 SC-V2 3,284 469 939 4,692 Dialogues

Table 1: Benchmark datasets: Tweets, Reddit posts and online debates for sarcasm and irony detection.

and the political subset, SARC 2.0 pol.

Online Dialogues: We utilize the Sarcasm Cor-
pus V1 (SC-V1) and the Sarcasm Corpus V2 (SC-
V2), which are subsets of the Internet Argument
Corpus (IAC). Compared to other datasets in our
selection, these differ mainly in text length and
structure complexity (Oraby et al., 2016).

In Table 1, we see a notable difference in terms
of size among the Twitter datasets. Given this cir-
cumstance, and in light of the findings by Van Hee
et al. (2018), we are interested in studying how
the addition of external soft-annotated data im-
pacts on the performance. Thus, in addition to the
datasets introduced before, we use two corpora for
augmentation purposes. The first dataset was col-
lected using the Twitter API, targeting tweets with
the hashtags #sarcasm or #irony, resulting on a to-
tal of 180,000 and 45,000 tweets respectively. On
the other hand, to obtain non-sarcastic and non-
ironic tweets, we relied on the SemEval 2018 Task
1 dataset (Mohammad et al., 2018). To augment
each dataset with our external data, we first filter
out tweets that are not in English using language
guessing systems. We later extract all the hash-
tags in each target dataset and proceed to augment
only using those external tweets that contain any
of these hashtags. This allows us to, for each class,
add a total of 36,835 tweets for the Ptáček cor-
pus, 8,095 for the Riloff corpus and 26,168 for the
SemEval-2018 corpus.

In terms of pre-processing, as in our case the
preservation of morphological structures is cru-
cial, the amount of normalization is minimal. Con-
cretely, we forgo stemming or lemmatizing, punc-
tuation removal and lowercasing. We limit our-
selves to replacing user mentions and URLs with
one generic token respectively. In the case of the
SemEval-2018 dataset, an additional step was to
remove the hashtags #sarcasm, #irony and #not, as
they are the artifacts used for creating the dataset.

For tokenizing, we use a variation of the Twok-
enizer (Gimpel et al., 2011) to better deal with
emojis.

Our models are trained using Adam with a
learning rate of 0.001 and a decay rate of 0.5 when
there is no improvement on the accuracy on the
validation set, which we use to select the best mod-
els. We also experimented using a slanted trian-
gular learning rate scheme, which was shown by
Howard and Ruder (2018) to deliver excellent re-
sults on several tasks, but in practice we did not
obtain significant differences. We experimented
with batch sizes of 16, 32 and 64, and dropouts
ranging from 0.1 to 0.5. The size of the LSTM
hidden layer was fixed to 1,024, based on our pre-
liminary experiments. We do not train the ELMo
embeddings, but allow their dropouts to be active
during training.

5 Results

Table 2 summarizes our results. For each dataset,
the top row denotes our baseline and the second
row shows our best comparable model. Rows with
FULL models denote our best single model trained
with all the development available data, without
any other preprocessing other than mentioned in
the previous section. In the case of the Twitter
datasets, rows indicated as AUG refer to our the
models trained using the augmented version of the
corresponding datasets.

For the case of the SemEval-2018 dataset we
use the best performing model from the Shared
Task as a baseline, taken from the task descrip-
tion paper (Van Hee et al., 2018). As the winning
system is a voting-based ensemble of 10 models,
for comparison, we report results using an equiva-
lent setting. For the Riloff, Ptáček, SC-V1 and SC-
V2 datasets, our baseline models are taken directly
from Tay et al. (2018). As their pre-processing
includes truncating sentence lengths at 40 and 80

4

Dataset Model Accuracy Precision Recall F1-Score

Twitter

SemEval-2018

Wu et al. (2018) 0.735 0.630 0.801 0.705
ELMo-BiLSTM 0.708 0.696 0.697 0.696
ELMo-BiLSTM-FULL 0.702 0.689 0.689 0.689
ELMo-BiLSTM-AUG 0.658 0.651 0.657 0.651

Riloff
Tay et al. (2018) 0.823 0.738 0.732 0.732
ELMo-BiLSTM 0.842 0.759 0.750 0.759
ELMo-BiLSTM-FULL 0.858 0.778 0.735 0.753
ELMo-BiLSTM-AUG 0.798 0.684 0.708 0.694

Ptáček
Tay et al. (2018) 0.864 0.861 0.858 0.860
ELMo-BiLSTM 0.876 0.868 0.869 0.869
ELMo-BiLSTM-FULL 0.872 0.872 0.872 0.872
ELMo-BiLSTM-AUG 0.859 0.859 0.858 0.859

Dialog

SC-V1
Tay et al. (2018) 0.632 0.639 0.637 0.632
ELMo-BiLSTM 0.646 0.650 0.646 0.644
ELMo-BiLSTM-FULL 0.633 0.633 0.633 0.633

SC-V2
Tay et al. (2018) 0.729 0.729 0.729 0.728
ELMo-BiLSTM 0.748 0.748 0.747 0.747
ELMo-BiLSTM-FULL 0.760 0.760 0.760 0.760

Reddit

SARC 2.0
Khodak et al. (2017) 0.758 - - -
ELMo-BiLSTM 0.773 - - -
ELMo-BiLSTM-FULL 0.702 0.760 0.760 0.760

SARC 2.0 pol
Khodak et al. (2017) 0.765 - - -
ELMo-BiLSTM 0.785 - - -
ELMo-BiLSTM-FULL 0.720 0.720 0.720 0.720

Table 2: Summary of our obtained results.

tokens for the Twitter and Dialog datasets respec-
tively, while always removing examples with less
than 5 tokens, we replicate those steps and re-
port our results under these settings. Finally, for
the Reddit datasets, our baselines are taken from
Khodak et al. (2017). Although their models are
trained for binary classification, instead of report-
ing the performance in terms of standard classi-
fication evaluation metrics, their proposed evalu-
ation task is predicting which of two given state-
ments that share the same context is sarcastic, with
performance measured solely by accuracy. We fol-
low this and report our results.

In summary, we see our introduced models are
able to outperform all previously proposed meth-
ods for all metrics, except for the SemEval-2018
best system. Although our approach yields higher
Precision, it is not able to reach the given Recall
and F1-Score. We note that in terms of single-
model architectures, our setting offers increased
performance compared to Wu et al. (2018) and
their obtained F1-score of 0.674. Moreover, our
system does so without requiring external features
or multi-task learning. For the other tasks we are
able to outperform Tay et al. (2018) without re-
quiring any kind of intra-attention. This shows

the effectiveness of using pre-trained character-
based word representations, that allow us to re-
cover many of the morpho-syntactic cues that tend
to denote irony and sarcasm.

Finally, our experiments showed that enlarg-
ing existing Twitter datasets by adding external
soft-labeled data from the same media source
does not yield improvements in the overall perfor-
mance. This complies with the observations made
by Van Hee et al. (2018). Since we have designed
our augmentation tactics to maximize the overlap
in terms of topic, we believe the soft-annotated na-
ture of the additional data we have used is the rea-
son that keeps the model from improving further.

6 Conclusions

We have presented a deep learning model based
on character-level word representations obtained
from ELMo. It is able to obtain the state of the
art in sarcasm and irony detection in 6 out of 7
datasets derived from 3 different data sources. Our
results also showed that the model does not bene-
fit from using additional soft-labeled data in any
of the three tested Twitter datasets, showing that
manually-annotated data may be needed in order
to improve the performance in this way.

5

References
S. K. Bharti, B. Vachha, R. K. Pradhan, K. S. Babu,

and S. K. Jena. 2016. Sarcastic sentiment detection
in tweets streamed in real time: a big data approach.
Digital Communications and Networks, 2(3):108–
121.

Santosh Kumar Bharti, Korra Sathya Babu, and San-
jay Kumar Jena. 2015. Parsing-based Sarcasm Sen-
timent Recognition in Twitter Data. Proceedings
of the 2015 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining
2015 - ASONAM ’15, pages 1373–1380.

Pranali Chaudhari and Chaitali Chandankhede. 2017.
Literature Survey of Sarcasm Detection. pages
2041–2046.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2014. One billion word benchmark for measur-
ing progress in statistical language modeling. Pro-
ceedings of the Annual Conference of the Interna-
tional Speech Communication Association, INTER-
SPEECH, pages 2635–2639.

Elena Filatova. 2012. Irony and Sarcasm: Corpus Gen-
eration and Analysis Using Crowdsourcing. Lrec,
pages 392–398.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flani-
gan, and Noah A. Smith. 2011. Part-of-speech tag-
ging for twitter: Annotation, features, and experi-
ments. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies, pages 42–47,
Portland, Oregon, USA. Association for Computa-
tional Linguistics.

H. Paul Grice. 1975. Logic and Conversation. In Pe-
ter Cole and Jerry L. Morgan, editors, Syntax and
Semantics, volume 3, pages 41–58. Academic Press,
New York.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339. Association for Com-
putational Linguistics.

Aditya Joshi, Pushpak Bhattacharyya, and Mark James
Carman. 2016. Automatic Sarcasm Detection: A
Survey. 50(5).

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015. Harnessing Context Incongruity
for Sarcasm Detection. Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Short Pa-
pers), 51(4):757–762.

Mikhail Khodak, Nikunj Saunshi, and Kiran Vodra-
halli. 2017. A Large Self-Annotated Corpus for Sar-
casm.

Florian Kunneman, Christine Liebrecht, Margotvan
Mulken, and Antalvan den Bosch. 2015. Signalling
sarcasm : From hyperbole to hashtag. Information
Processing & Management.

Joan Lucariello. 1994. Situational Irony: A Concept of
Events Gone Awry. Journal of Experimental Psy-
chology: General, 123(2):129–145.

Saif M. Mohammad, Felipe Bravo-Marquez, Salameh
Mohammad, and Svetlana Kiritchenko. 2018.
SemEval-2018 Task 1 : Affect in Tweets. In Pro-
ceedings of the 12th International Workshop on Se-
mantic Evaluation (SemEval-2018), pages 1–17.

Shereen Oraby, Vrindavan Harrison, Lena Reed,
Ernesto Hernandez, Ellen Riloff, and Marilyn
Walker. 2016. Creating and Characterizing a Di-
verse Corpus of Sarcasm in Dialogue. Proceedings
of the 17th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, (September):31–
41.

Bo Pang and Lillian Lee. 2006. Opinion Mining and
Sentiment Analysis. Foundations and Trends in In-
formation Retrieval, 1(2):91–231.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations.

Tomáš Ptáček, Ivan Habernal, and Jun Hong. 2014.
Sarcasm Detection on Czech and English Twitter.
Proceedings of the 25th International Conference on
Computational Linguistics: Technical Papers (COL-
ING 2014), Citeseer, pages 213–223.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013.
A multidimensional approach for detecting irony
in Twitter. Language Resources and Evaluation,
47(1):239–268.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as Contrast between a Positive Senti-
ment and Negative Situation. Emnlp, (Emnlp):704–
714.

Cameron Shelley. 2001. The bicoherence theory of sit-
uational irony. Cognitive Science, 25(5):775–818.

Yi Tay, Anh Tuan Luu, , Siu Cheung Hui, and Jian
Su. 2018. Reasoning with sarcasm by reading in-
between. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1010–1020. Asso-
ciation for Computational Linguistics.

Piyoros Tungthamthiti, Kiyoaki Shirai, and Masnizah
Mohd. 2010. Recognition of Sarcasm in Microblog-
ging Based on Sentiment Analysis and Coherence

6

Identification. Journal of Natural Language Pro-
cessing, 23(5):383–405.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in En-
glish Tweets. Proceedings of the 12th International
Workshop on Semantic Evaluation (SemEval-2018),
pages 39–50.

Tony Veale. 2016. Fracking Sarcasm using Neural Net-
work Fracking Sarcasm using Neural Network. Acl,
(May):161–169.

Byron C. Wallace. 2015. Computational irony: A sur-
vey and new perspectives. Artificial Intelligence Re-
view, 43(4):467–483.

Chuhan Wu, Fangzhao Wu, Sixing Wu, Junxin Liu,
Zhigang Yuan, and Yongfeng Huang. 2018. THU
NGN at SemEval-2018 Task 3 : Tweet Irony Detec-
tion with Densely THU NGN at SemEval-2018 Task
3 : Tweet Irony Detection with Densely Connected
LSTM and Multi-task Learning. (March):51–56.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2016.
Tweet sarcasm detection using deep neural network.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 2449–2460. The COLING
2016 Organizing Committee.

7

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 8–13
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Implicit Subjective and Sentimental Usages
in Multi-sense Word Embeddings

Yuqi Sun 1 Haoyue Shi 1,∗ Junfeng Hu1,2,†

1: School of EECS, Peking University, Beijing, China
2: MOE Key Lab of Computational Linguistics, School of EECS, Peking University

{sun yq, hyshi, hujf}@pku.edu.cn

Abstract

In multi-sense word embeddings, contextual
variations in corpus may cause a univocal
word to be embedded into different sense vec-
tors. Shi et al. (2016) show that this kind of
pseudo multi-senses can be eliminated by lin-
ear transformations. In this paper, we show
that pseudo multi-senses may come from a
uniform and meaningful phenomenon such as
subjective and sentimental usage, though they
are seemingly redundant.

In this paper, we present an unsupervised algo-
rithm to find a linear transformation which can
minimize the transformed distance of a group
of sense pairs. The major shrinking direction
of this transformation is found to be related
with subjective shift. Therefore, we can not
only eliminate pseudo multi-senses in multi-
sense embeddings, but also identify these sub-
jective senses and tag the subjective and senti-
mental usage of words in the corpus automati-
cally.

1 Introduction

Multi-sense word embeddings are popular choices
to represent polysemous words (Reisinger and
Mooney, 2010; Huang et al., 2012; Neelakantan
et al., 2014; Cheng and Kartsaklis, 2015; Lee and
Chen, 2017). These methods learn senses of words
automatically by clustering contexts they appear
in. However, contextual variation in corpus may
cause a univocal word be embedded into different
senses (Shi et al., 2016). For example, the context
of “another” in this sentence is normal and narra-
tive:

“South Trust, another large bank head-
quartered in Birmingham, was acquired
by Wachovia in 2004.”
∗Now at Toyota Technological Institute at Chicago,

freda@ttic.edu.
† Corresponding author.

sentimental context

normal context

std-sense
senti-sense

sentimental shift vector

Figure 1: The relation between sentimental sense
(senti-sense) and normal sense (std-sense) of a word.
The vector differences are considered as sentimental
shift vectors.

In the second sentence, the word “another” locates
in subjective and emotional context with intense
feelings:

“He committed suicide after the woman
he loved married another man.”

The word “another” in these two sentences have
the same meaning, but they are often embedded
into two different senses by existing multi-sense
word embedding models.

Shi et al. (2016) used linear transformation to
eliminate the vector differences between corre-
sponding sense pairs with the same meaning, and
improved the performance on downstream tasks
such as contextual word similarity (Huang et al.,
2012). Such pairs were called pseudo multi-sense
pairs. However, they did not give any explicit ex-
planation of the eliminated vector difference in a
pseudo multi-sense pair.

In this paper, we propose to explain the so-
called pseudo multi-senses by slightly modifying

8

https://doi.org/10.18653/v1/P17

the linear transformation proposed by Shi et al.
(2016). We find that a large number of pseudo
multi-senses can be viewed as pairs of i) a normal
sense and ii) a subjective or sentimental sense. In
addition, as shown in Figure 1, a group of words
may have similar normal-subjective/sentimental
difference vector, indicating subjectivity and sen-
timent are general sources of pseudo multi-senses.

In the first step of our approach, we identify the
multi-sense pairs that are generated by an uniform
contextual variation. Then we regress a linear
transformation which can minimize the average
Euclidean distance between two opposite groups
in embedding space. We analyze the major shrink-
ing directions in the embedding space w.r.t. the
linear transformation, and find it consistent that
one of such directions is relevant to subjective and
sentimental usage.

The motivation of our approach is that a group
of pseudo multi-senses is often generated sys-
tematically, i.e., pseudo multi-senses in the same
group come from the same reason. Therefore, a
linear transformation that eliminate the shift and
minimize distance between senses may reflect a
salient language phenomenon. In addition to giv-
ing explicit explanation to pseudo multi-senses,
experimental results also show that our approach
can contribute to some NLP tasks such as subjec-
tive and sentimental analysis.

In Section 2, we introduce some related work.
In Section 3, we present a method to mine a linear
transformation that eliminates semantic shift gen-
erating ‘pseudo multi-senses’. In Section 4, we an-
alyze the language phenomenon represented and
eliminated by that linear transformation, namely
subjective and sentimental usage, and do some
evaluations on the subjective shift. Finally in Sec-
tion 6 we draw conclusions and propose future
work left to be done.

2 Related Work

Subjectivity and sentiment analysis have been
investigated by many researches with different
methods(Turney, 2002; Wiebe, 2000; Pang and
Lee, 2004, 2008; Liu, 2010; Cambria et al., 2013;
Maas et al., 2011; Lin and He, 2009; Abdul-
Mageed et al., 2014; Dasgupta and Ng, 2009; Pak
and Paroubek, 2010). Many works contribute to
language resources for subjectivity and sentimen-
tal analysis. (Baccianella et al., 2010) Recent
works also provide many training methods to per-

fect the language models’ performance on bench-
mark datasets (Kouloumpis et al., 2011; Maas
et al., 2011; Taboada et al., 2011; Wang and Man-
ning, 2012; Labutov and Lipson, 2013; Lan et al.,
2016; Ren et al., 2016; Tang et al., 2016). Our
work provides a unsupervised method of subjec-
tivity analysis based on multi-sense word embed-
ding.

Multi-sense word embedding is also a popular
way to represent polysemous words(Reisinger and
Mooney, 2010; Huang et al., 2012; Neelakantan
et al., 2014; Guo et al., 2014; Li and Jurafsky,
2015; Iacobacci et al., 2015; Cheng and Kartsak-
lis, 2015; Lee and Chen, 2017). However, these
method using contextual difference for sense clus-
tering to decide senses are so sensitive to contex-
tual variation and usage of word, therefore may
embed a single sense into several vectors. We aim
to mine such contextual variations. While super-
vised methods rely on external knowledge with
manually definition of senses(Chen et al., 2014;
Cao et al., 2017).

Singular value decomposition is used on la-
tent semantic indexing by factorizing a term-
document matrix and constructing a ”semantic
space”(Deerwester et al., 1990). We use a sim-
ilar approach to extract language phenomena we
mine.

3 Methodology

The general framework of our method includes the
following four steps:

1. We start with random selected “pseudo multi-
senses” as initial seeds, training a linear
transformation to minimize transformed dis-
tance of these sense pairs.

Let M denote the transformation matrix and
(x,y) denote a vector pair of pseudo multi-
sense. Define the set of pairs sharing a uni-
form semantic shift as P. Ideally, we expect
M to transform x closer to y and keep y un-
moved for all (x,y) ∈ P. Therefore we de-
rive the following loss function:

L(M) =
∑

(x,y)∈P
‖Mx−y‖22+‖My−y‖22

2. Update pseudo multi-senses iteratively w.r.t.
the loss function.

9

According to the hypothesis that a systemati-
cal contextual variation may generate a group
of pseudo multi-senses, the linear transfor-
mation that eliminate this variation can be
used to pick out most typical pseudo multi-
senses. We define shrinking rate, which re-
veals the degree of a pair of senses being
combined by transformation M :

ρM (x,y) =
‖Mx−My‖2
‖x− y‖2

(1)

The smaller ρM (x,y) is, the more likely
(x,y) are generated by this contextual vari-
ation. Thus we optimize the set of pseudo
multi-senses, and use it to retrain transforma-
tion matrix. This algorithm can eventually
converge to an optimal solution.

3. Extract eigen-directions of linear transforma-
tion M with a singular value decomposition
algorithm.

The major shrinking directions are semantic
directions shrunk and eliminated by the lin-
ear transformation. If there exists an obvi-
ous explanation of such directions, they can
be viewed as the representative directions for
specific language phenomena (e.g., subjec-
tive or sentimental usage) in the embedding
space.

4. Observe KNN of major shrinking directional
vectors so as to reveal the language phenom-
ena corresponding to contextual variations.

The pseudo code of this procedure is shown in
Algorithm 1.

4 Intuitive Results

Our experiments are based on the multi-sense
skip-gram(MSSG) model (Neelakantan et al.,
2014) and Wikipedia Corpus, training a 50-
dimensional multi-sense embedding space.

With this method, we train a linear transforma-
tion with random seeds. Results show that trans-
formation will converge to a stable point, which
verifies the existence of systematical contextual
variation in corpus.

Furthermore, to understand the language phe-
nomena that generate ‘pseudo’ mutli-senses, we
observe nearest neighbours of eigen-directional
vectors. We find each eigen-direction is meaning-
ful. The eigenvalues of these eigen-directions are

Algorithm 1 Train a transformation matrix.
Require: The multi-sense embedding space V ;

Set of random selected sense pairs, S0; Loss
function, L(M); Shrinking rate function
ρM (x,y); Size of word set k.

Ensure: Transformation matrix, M ;
Set of candidate sense pairs, S

1: Initialize S with S0

2: while not converged do
3: Train transformation matrix M by mini-

mizing L(M) using gradient descent algo-
rithm

4: Choose the k-most shrunk pairs as S
5: end while
6: returnM,S

subj-vec’s KNN feelings, song, strange, love, every-
thing, emotional, never,something,
girlfriend, always, eyes, smell, dia-
logue, smile, really, movie, sounds,
things, sexual, mind, script

Reversed subj-
vec’s KNN

regional, administrative, township,
located, racial, lies, avenue, vir-
ginia, approximately, historic, reg-
ister, pennsylvania, municipality,
served, delaware, situated, politi-
cian, operates, terminus, unincor-
porated

Table 1: Top 20 KNN for subj-vec are shown in ‘subj-
vec’s KNN’. Top 20 KNN for reversed subj-vec are
shown in ‘Reversed subj-vec’s KNN’.

expansion multipliers of these dimensions. There-
fore the eigen-direction with smallest eigenvalue
represents the most salient language phenomenon.
Interestingly, nearest neighbours are words about
sentiments and emotions. Under our observation,
this major shrinking directional vector is likely to
be the vector representing subjective usage. We
denote this vector as subj-vec. The KNN of subj-
vec is shown in Table 1.

Therefore we found that the subjective usage of
words is a salient language phenomenon in multi-
sense embedding space. Interestingly, we also ob-
serve that the reversed direction of subj-vec is re-
lated to some regional and political topics, which
is matched with human intuition.

5 Evaluations

5.1 Sentence Classification
We take subjectivity and sentiment analysis tasks
to evaluate the function of subj-vec.

We take two text classification tasks: SUBJ

10

(Pang and Lee, 2004), a subjectivity status de-
tection task and MPQA (Wiebe et al., 2005),
an opinion polarity classification task. We use
the LR(logistic regression) classifier and sentence
level features to do the classification tasks. We use
word/sense embedding as encoder, and decide the
sense of every instance by Equation2 .

Sense(C(w)) = argmax
sense

cos(Vcontext, Vsense)

(2)
We express the sentence-level features with

contextual vector, denoted as context-vec, which
is the sum of sense embeddings in a sentence. We
provide four groups of evaluation results with dif-
ferent encoders:
1. context-vec with original embeddings.
2. context-vec with the embedding space whose
subjective direction is stretched. We stretch sub-
jective direction by Equation 3, in which embed-
ding of a sense s is denoted as v(s), and embed-
ding in the stretched space is denoted as v′(s).

v′(s) = v(s) + v(s) · subj-vec ∗ subj-vec (3)

In Equation 3, subj-vec is the directional vector of
subjective usage. Each embedding is added by a
bias in subjective direction.
3. context-vec with the embedding space whose
subjective direction is eliminated by Equation 4.

v′(s) = v(s)− v(s) · subj-vec ∗ subj-vec (4)

4. context-vec + context-vec · subj-vec ∗ subj-
vec. We extract information about subjective us-
age by combining context-vec and the dot product
of context-vec and subj-vec of every sentence.

The results are shown in Table 2.
Obviously subjective direction of embedding

space improves its performance on subjective and
sentimental analysis. Such improvement doesn’t
appear on single-sense embeddings. Meanwhile
eliminating subjective direction worsen the perfor-
mances on every listed tasks.

Li and Jurafsky (2015) argued that multi-senses
word embedding does not outperform single-sense
word embedding in several language tasks. In fact,
we found by add features on the sentimental di-
mension, multi-sense embeddings can achieve bet-
ter performance on subjectivity and sentimental
analysis tasks.

Sense Space SUBJ-multi SUBJ-single
Original Space 88.36 88.73
Subj-Stretched 88.39 88.72
Subj-Eliminated 87.22 88.35
Context + Subj 88.4 88.73
Sense Space MPQA-multi MPQA-single
Original Space 82.05 82.73
Subj-Stretched 82.07 82.23
Subj-Eliminated 81.79 82.13
Context + Subj 83.05 82.29

Table 2: The performance of the original MSSG50D
on Wiki Corpus embeddings(Original Space), the
sentimental-stretched space(‘Subj-stretched’), the
sentimental-eliminated space(‘Subj-eliminated’) and
the original contextual vector in combination with its
projection on sentimental direction(‘Context + Subj’)
on text classification tests including MPQA (Wiebe
et al., 2005), an opinion polarity classification task,
and SUBJ (Pang and Lee, 2004), a subjectivity status
detection task. We use equation 2 to decide the sense
of every instance.

words KNN
science astronomy, psychology, librarianship,

research, anthropology, sciences,
parapsychology, literature

+subj-vec science, literature, journalism, para-
psychology, photography, filmmak-
ing, literary, graphic, writing

fight fights, duel, fighting, confrontation,
battling, surprise, revenge, vengeance,
foe

+ subj-vec revenge, fights, confrontation,
vengeance, furious, grodd, surprise,
vicious, infuriated

rich cultivated, lush, cultivating, shady,
landscapes, growing, alfalfa, abun-
dance, herb, landscape

+ subj-vec delight, shady, good, riches, im-
mensely, arth, charm, curious, little-
known, wonderful

country nation, scandinavia, europe, america,
countries, turkey, uk, sweden, interna-
tionally, ireland

+subj-vec nation, clubbers, welcome, coming,
enjoying, mam, wigwam, pride, eu-
rope, americ

Table 3: KNN for words before and after adding a sub-
jective bias.

5.2 Analogies

Moreover, since subj-vec represents subjective us-
age, we add it to some embeddings in multi-sense
embedding space to observe the effect of subj-vec
on semantic shift. Table 3 illustrates the KNN for
the original words and the words with a subjective
bias. The table shows that by adding subjective
subj-vec, the subjective and sentimental properties
for words are changed. In general, more emotional

11

and subjective words appear in the KNNs of the
new location. This is another interesting property
of subj-vec.

6 Conclusions And Future Work

In this article we propose a methodology to rep-
resent language phenomena such as subjective us-
age by a uniform bias vector of sense pairs, and
provide an unsupervised approach to mine it. We
also use evaluations to explore its functions and
find subj-vec can relatively improve multi-sense
embeddings performance on subjective and sen-
timental analysis tasks. Furthermore, there are
many linguistic phenomena left to be mined.

Acknowledgements

We thank the anonymous reviewers for their valu-
able feedback. This work is supported by National
Natural Science Foundation of China (61472017).

References
Muhammad Abdul-Mageed, Mona Diab, and San-

dra Kübler. 2014. Samar: Subjectivity and Senti-
ment Analysis for Arabic Social Media. Computer
Speech & Language.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. Sentiwordnet 3.0: An Enhanced Lexical
Resource for Sentiment Analysis and Opinion Min-
ing. In Proc. of LREC.

Erik Cambria, Bjorn Schuller, Yunqing Xia, and
Catherine Havasi. 2013. New Avenues in Opinion
Mining and Sentiment Analysis. IEEE Intelligent
Systems.

Yixin Cao, Lifu Huang, Heng Ji, Xu Chen, and Juanzi
Li. 2017. Bridge Text and Knowledge by Learn-
ing Multi-prototype Entity Mention Embedding. In
Proc. of ACL.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A Unified Model for Word Sense Representation
and Disambiguation. In Proc. of EMNLP.

Jianpeng Cheng and Dimitri Kartsaklis. 2015. Syntax-
aware multi-sense word embeddings for deep com-
positional models of meaning. arXiv preprint
arXiv:1508.02354.

Sajib Dasgupta and Vincent Ng. 2009. Mine the Easy,
Classify the Hard: a Semi-supervised Approach to
Automatic Sentiment Classification. In Proc. of
ACL-IJCNLP.

Scott Deerwester, Susan T. Dumais, George W Furnas,
Thomas K Landauer, and Richard Harshman. 1990.
Indexing by latent semantic analysis. Journal of the
American society for information science.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014. Learning Sense-Specific Word Embed-
dings by Exploiting Bilingual Resources. In Proc.
of COLING.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving Word
Representations via Global Context and Multiple
word Prototypes. In Proc. of ACL.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015. Sensembed: Learning Sense
Embeddings for Word and Relational Similarity. In
Proc. of ACL-IJCNLP.

Efthymios Kouloumpis, Theresa Wilson, and Jo-
hanna D Moore. 2011. Twitter Sentiment Analysis:
The Good the Bad and the OMG! In Proc. of the
AAAI Conference on Weblogs and Social Media.

Igor Labutov and Hod Lipson. 2013. Re-embedding
Words. In Proc. of ACL.

Man Lan, Zhihua Zhang, Yue Lu, and Ju Wu. 2016.
Three convolutional neural network-based models
for learning sentiment word vectors towards senti-
ment analysis. In Proc. of IJCNN.

Guang-He Lee and Yun-Nung Chen. 2017. MUSE:
Modularizing Unsupervised Sense Embeddings. In
Proc. of EMNLP.

Jiwei Li and Dan Jurafsky. 2015. Do Multi-sense Em-
beddings Improve Natural Language Understand-
ing? In Proc. of EMNLP.

Chenghua Lin and Yulan He. 2009. Joint Senti-
ment/Topic Model for Sentiment Analysis. In Proc.
of CIKM.

Bing Liu. 2010. Sentiment Analysis and Subjectivity.
Handbook of Natural Language Processing.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proc. of ACL.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient Non-
parametric Estimation of Multiple Embeddings per
Word in Vector Space. In Proc. of EMNLP.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a Corpus for Sentiment Analysis and Opinion Min-
ing. In Proc. of LREC.

Bo Pang and Lillian Lee. 2004. A Sentimental Educa-
tion: Sentiment Analysis using Subjectivity Summa-
rization based on Minimum Cuts. In Proc. of ACL.

Bo Pang and Lillian Lee. 2008. Opinion Mining and
Sentiment Analysis. Now Publishers, Inc.

Joseph Reisinger and Raymond J Mooney. 2010.
Multi-prototype Vector-Space Models of Word
Meaning. In Proc. of NAACL-HLT.

12

Yafeng Ren, Yue Zhang, Meishan Zhang, and
Donghong Ji. 2016. Improving Twitter Senti-
ment Classification using Topic-Enriched Multi-
Prototype Word Embeddings. In AAAI, pages 3038–
3044.

Haoyue Shi, Caihua Li, and Junfeng Hu. 2016. Real
multi-sense or pseudo multi-sense: An approach to
improve word representation. Proc. of the Workshop
on Computational Linguistics for Linguistic Com-
plexity.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, and Manfred Stede. 2011. Lexicon-based
Methods for Sentiment Analysis. Computational
Linguistics.

Duyu Tang, Furu Wei, Bing Qin, Nan Yang, Ting Liu,
and Ming Zhou. 2016. Sentiment embeddings with
applications to sentiment analysis. IEEE Trans. on
Knowledge and Data Engineering.

Peter D. Turney. 2002. Thumbs Up or Thumbs Down?:
Semantic Orientation applied to unsupervised classi-
fication of reviews. In Proc. of ACL.

Sida Wang and Christopher D Manning. 2012. Base-
lines and Bigrams: Simple, Good Sentiment and
Topic Classification. In Proc. of ACL.

Janyce Wiebe. 2000. Learning Subjective Adjectives
from Corpora. In Proc. of AAAI.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating Expressions of Opinions and
Emotions in Language. Language Resource and
Evaluation.

13

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 14–23
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Language Independent Sentiment Analysis with Sentiment-Specific Word
Embeddings

Carl Saroufim, Akram Almatarky, Mohamed Abdel Hady
Microsoft Corporation, Redmond WA

{casarouf, akrgab, mohabdel}@microsoft.com

Abstract

Data annotation is a critical step to train a
text model but it is tedious, expensive and
time-consuming. We present a language in-
dependent method to train a sentiment polar-
ity model with limited amount of manually-
labeled data. Word embeddings such as
Word2Vec are efficient at incorporating se-
mantic and syntactic properties of words,
yielding good results for document classifica-
tion. However, these embeddings might map
words with opposite polarities, to vectors close
to each other. We train Sentiment Specific
Word Embeddings (SSWE) on top of an unsu-
pervised Word2Vec model, using either Recur-
rent Neural Networks (RNN) or Convolutional
Neural Networks (CNN) on data auto-labeled
as “Positive” or “Negative”. For this task, we
rely on the universality of emojis and emoti-
cons to auto-label a large number of French
tweets using a small set of positive and neg-
ative emojis and emoticons. Finally, we ap-
ply a transfer learning approach to refine the
network weights with a small-size manually-
labeled training data set. Experiments are con-
ducted to evaluate the performance of this ap-
proach on French sentiment classification us-
ing benchmark data sets from SemEval 2016
competition. We were able to achieve a per-
formance improvement by using SSWE over
Word2Vec. We also used a graph-based ap-
proach for label propagation to auto-generate
a sentiment lexicon.

1 Introduction

Text sentiment analysis is defined as the compu-
tational study of documents, sentences or phrases
(aspect level), to detect opinions, sentiments, emo-
tions, etc. It is particularly useful for companies
to collect feedback about their products, analyze
the public opinion about their brand, for politi-
cal parties to monitor the population support, etc.
Document-level sentiment analysis corresponds to
assigning an overall sentiment polarity to a docu-

ment. It can be formulated as a two-class classifi-
cation problem: positive or negative, excluding the
neutral case of documents with no polarity (Zhang
et al., 2018).

For this task, both supervised and unsuper-
vised learning approaches have been used. Super-
vised learning methods typically use bag-of-words
(which ignores word orders and semantics and suf-
fers from high dimensionality and sparsity), or,
more recently, word embeddings, which requires
unsupervised training on a big corpus of data. It
provides a mapping of words to dense vectors
of fixed length, encoding semantic and syntactic
properties of those words. The document can then
be represented by the average embedding vector
of the words it contains. Language-dependent fea-
tures such as Part of Speech, grammatical analysis,
lexicons of opinions and emotions have also been
applied successfully (Zhang et al., 2018).

While the use of standard word embedding
techniques such as Word2Vec (Mikolov et al.,
2013) or C&W (Collobert et al., 2011) can en-
hance the performance of prediction models and
perform well on general classification task, sen-
timent is not properly encoded in those vectors.
According to Tang (2014), words such as “good”
and “bad” might be close in the embeddings
space, although they have opposite polarities, be-
cause of similar usage and grammatical rules. We
show in this paper that training Sentiment Specific
Word Embeddings (SSWE) by updating an initial
Word2Vec model trained on a big corpus of tweets
provides better word embeddings for the task of
sentiment classification. SSWE training is per-
formed by updating word embeddings as part of
a supervised deep learning framework, by train-
ing a model on sentiment-labeled data. Through
backpropagation, the weights of the Embedding
Layer will be adjusted and incorporate sentiment.
At the end of the training, the embedding matrix
can be extracted from the model and will be used

14

https://doi.org/10.18653/v1/P17

to featurize words and documents. As a result, this
process needs a big amount of data labeled with
“Positive” and “Negative”. While labeled data sets
and sentiment lexicons exist in English and can
be used to label a big number of documents to
build the SSWE (e.g. SentiWordNet or ANEW in
English as lexicons), they are scarce in other lan-
guages (Pak and Paroubek, 2011). Hence the need
to find a systematic way of labeling a big number
of documents without any language knowledge,
then let prediction models “learn” from them.

One way to do it, is to rely on a universal opin-
ion lexicon that would hold true in any language.
With the rise of social media, the widespread use
of emojis1 provide us with such a tool. In particu-
lar, Twitter is one of the biggest online social me-
dia where users post over 500 million “tweets” ev-
ery day, with a frequent use of emojis2. A tweet is
a short (up to 140 characters) user-generated text,
typically noisy and written in a very casual lan-
guage.

By accessing and querying a big number of
tweets of a specific language and which have spe-
cific emojis, we can auto-label them based on the
polarity of those emojis. The assumption is that
if emojis are found in a tweet, then it expresses
a sentiment (ie. it is not neutral) which has the
same polarity as the emoji. This method is called
distant-supervised learning and has been applied
successfully in several similar scenarios (Pak and
Paroubek, 2011; Tang et al., 2014; Narr et al.,
2012).

In this paper, we focus on French, assuming no
language knowledge. The SSWE we get through
the described methodology is then used to featur-
ize documents when training a prediction model
on a new French data set for sentiment analysis.
The major contributions of the work presented in
this paper are:

– We develop SSWE models by updating
Word2Vec embeddings trained on tweets,
through supervised learning with Recurrent
Neural Networks (RNN) and Convolutional
Neural Networks (CNN), on a big data set of
tweets auto-labeled through emojis.

– We show that SSWE perform better than
the underlying Word2Vec embeddings, even

1In this paper, we will use the word ”emojis” to refer to
both ”emojis” and ”emoticons”.

2Twitter statistics: http://www.
internetlivestats.com/twitter-statistics

on data sets different and much less noisy
than tweets. SSWE trained with auto-labeled
tweets from which the emojis were removed,
improve the sentiment prediction on data sets
that have no or little emojis.

– We show that transfer learning starting with
the deep learning model used to train the
SSWE performs better than training a new
traditional ML prediction model from scratch
and using SSWE as features.

In Section 2, we present a literature review. In
Section 3, we present the methodology used to
auto-label tweets, train a Word2Vec model and up-
date it into SSWE. Section 4 describes the experi-
ment we conducted and discusses results. Finally,
in section 5 we summarize our results and present
directions for future work.

2 Related Work

We present here a brief review of previous work
for sentiment classification. Most early research
follows Pang (2002) who uses bag of words and
one-hot-encoding to represent words in movie re-
views, using linguistic features and various classi-
fiers. Work by Pang (2008), and Owoputi (2013)
focused on the features for learning and their ef-
fectiveness, such as part-of-speech, syntax, nega-
tion handling and topic-oriented features. Mo-
hammad (2013), achieved the best results for the
sentiment classification task of the SemEval com-
petition by using sentiment lexicons and hand-
crafted rules. Gamon (2004) investigated the sen-
timent analysis task on noisy data collected from
customer feedback surveys, using lexical (lem-
matized n-gram) and linguistic features (part-of-
speech tagging, context free phrase structure pat-
terns, transitivity of a predicate, tense information
etc.). They also tried feature reduction and applied
SVM model for classification.

Another approach for features representation is
to use low-dimensional real-valued vectors (word
embeddings) to represent the words, such as
Word2Vec or C&W. Maas (2011) proposed the use
of probabilistic document models with a sentiment
predictor function for each word. Bespalov (2012)
relied on latent semantic analysis to initialize em-
beddings. Labutov (2013) relies on pre-trained
word embeddings which are re-embedded in a su-
pervised task using labeled data by performing un-
constrained optimization of a convex objective.

15

Tang (2014) proposed to update word embed-
dings specifically for sentiment classification, ar-
guing that words with opposite polarities might
end up being neighbors. They learn word embed-
dings from a massive number of tweets collected
by a distant-supervised way based on the existence
of positive and negative emojis. They propose
a sentiment-specific word embedding (SSWE)
model that is a modification of C&W to predict
not just the lexical form (n-gram) but also the sen-
timent of the word in that context. They were able
to produce comparable results to the top system
(rule-based) in the SemEval 2013 competition.

Ren (2016) extended the work of Tang (2014),
arguing that the topic information of a tweet af-
fects the sentiment of its words. They modified the
learning objective of the C&W model to also in-
corporate the sentiment information as well as the
topic distribution provided by LDA models. They
also tackle the problem of word polysemy (words
that have multiple meanings based on their con-
text) by creating context representation for each
word occurrence (environment vector) and cluster
these vectors into ten groups using k-means algo-
rithm. The words get their meaning by their dis-
tance to the centroids of the clusters. Finally, they
train a CNN for sentiment classification.

In terms of classification models, with the re-
gained interest in deep learning, recent work
shifted to the use of RNNs. These networks pro-
cess every element of a sequence in a way depend-
ing of all previous computations, keeping track
of previous information across the sequence. In
particular, LSTM (Long Short-Term Memory) can
learn long-term dependencies and is thus popular
for sentiment classification of sentences. Gugilla
(2016) uses both LSTM and CNN with Word2Vec
and linguistic embeddings to distinguish between
neutral and sentiment documents. Qian (2017)
uses LSTM with linguistic resources such as sen-
timent lexicon, negation and intensity words, to
help identify the sentiment effect in sentences. Xu
(2016) proposed the use of cached LSTM model to
further enhance the capabilities of LSTM to cap-
ture the global semantic features and the local se-
mantic features for long text sentiment classifica-
tion.

For Twitter sentiment classification using dis-
tant supervision, while some research used
lexicon-based approaches with positive and neg-
ative sentiment words (Taboada et al., 2011; Thel-

Raw # Tweets % Positive
Tweets cleaned in cleaned
(in M) (in M)

April 18 4,14 2,62 51.29
May 18 3,89 2,44 49.20
June 18 2,83 1,76 50.94

Total 10,86 6,82 50.43

Table 1: Characteristics of the auto-labeled tweets used
in this paper.

wall et al., 2012), other studies leveraged emojis
for distant supervision (Pak and Paroubek, 2011;
Zhao et al., 2012). To ensure repeatability of
experiments in many languages without any lan-
guage knowledge, we will also take this direction
even though it means we are neglecting precious
language-dependent features that would have in-
creased the prediction power of our models.

3 SSWE Training

3.1 Auto-Labeled Tweets and Preprocessing

Having access to a big database of tweets, we
first queried three months of French tweets: April,
May and June 2018 (partial). Only tweets con-
taining one or more of a specified list of emojis
are considered, but all emojis in a tweet should
have the same polarity (confusing tweets are dis-
carded). This polarity will correspond to the label
of the tweet. For example, :) is a positive emoji,
while :(is negative. To avoid dealing with class
imbalance, we downsample the majority class to
get a 1:1 ratio of positive to negative auto-labeled
tweets.

We perform the following operations on the
auto-labeled tweets (Preprocessing 0). Using reg-
ular expression (Regex), we remove “RT” (cor-
responding to Retweets), ”@” and name men-
tions, tweet links and duplicate tweets. We also
separate emojis when there is no space between
them. Otherwise, multiple stacked emojis would
be seen as one word instead of a succession of
emojis by standard open-source tokenizers. Fi-
nally, we replace emojis involving punctuation by
“Emoji 01”, “Emoji 02”, etc. Otherwise, standard
tokenizers would separate punctuation marks and
break emojis. For example: “:P” would be tok-
enized into [“:”, “P”].

Figures 1 and 2 respectively show the positive
and negative emojis used for auto-labeling.

16

Figure 1: List of positive emojis used for auto-labeling.

Figure 2: List of negative emojis used for auto-labeling.

Table 1 summarizes statistics about the cleaned
data sets.

We explored two additional preprocessing
methods to study their impact on sentiment pre-
diction.

– Preprocessing A: Remove emojis after auto-
annotation to avoid biasing the prediction
models into classifying mostly based on emo-
jis.

– Preprocessing B: Replace every occurrence
of three or more successive characters into
two of them.

The reasoning behind Preprocessing B is as
follows: since tweets contain casual language,
users sometimes repeat the same character many
times to stress out an emotion. For example, the
word “aime” could appear as “aime”, “aiime”, “ai-
iime”, “aiiiiiime”, etc. As a result, the number of
features will increase when using ngrams, and the
dictionary size of word embeddings would also in-
crease. This would dilute the word embeddings
because the same word would be considered as
different ones which will carry a lower weight than
the case where all words with repetitions are as-
sumed to be one. Assuming that when the letter
is repeated 2 or more times, the number of repeti-
tions is random and expresses the same meaning,
we experiment with replacing any occurrence of
two or more successive characters with two occur-
rences.

3.2 Word2Vec Model Training

Twitter sentiment classification has traditionally
been conducted through machine learning mod-

els using labor intensive features. A less labor-
intensive feature engineering approach has been
to rely on word embeddings such as Word2Vec,
which incorporates syntactic context of words.
After preprocessing the autolabeled tweets, we
trained two Word2Vec models on them in an
unsupervised way. One where only standard
preprocessing is applied to autolabeled data
(Preprocessing 0), and the second on autolabeled
data where characters repetitions above three are
removed (Preprocessing B). Note that since the
autolabeled data is divided in three files, and to
avoid loading all the tweets in-memory at once,
Word2Vec is trained incrementally on the three
files.

3.3 Sentiment Specific Word Embeddings
Training

While Word2Vec typically performs well on gen-
eral classification tasks, it might not be effective
enough for sentiment classification because it ig-
nores word sentiments. Hence the need to update
the trained Word2Vec embeddings to incorporate
sentiment. We train a deep learning network (ei-
ther RNN or CNN) using first an Embedding layer,
initialized with the trained Word2Vec embeddings.
During training on the autolabeled tweets, network
weights, including word embeddings, are updated.
At the end of training, we extract the embedding
matrix: it has the same vocabulary as the original
Word2Vec, but weights now incorporate sentiment
information. We call this embedding matrix a
“Sentiment Specific Word Embeddings” (SSWE)
(Tang et al., 2014). The assumption to test is if in-
deed, SSWE used as features would perform better
than Word2Vec for the task of sentiment analysis.

17

Figure 3: Methodology used to train the SSWE.

We trained four different types of models:

– SSWE C trained using a CNN structure
(three parallel convolutional layers and
global max pooling, then dense layer with
ReLu, then dense layer with softmax).

– SSWE R, SSWE R avg, and SSWE R max
trained using an RNN structure (two bidirec-
tional LSTM from which respectively the last
output, average of outputs or max of outputs
goes through a dense layer with softmax).

After performing Preprocessing A, we can
train four additional models by removing emojis
from the autolabeled data when updating the em-
beddings of Word2Vec. Note that in this case,
emojis still have embeddings but they are not up-
dated during the training of SSWE in order to
avoid biasing the weights into relying mostly on
emojis.

After performing Preprocessing B, we can get
an additional eight models by using the apropriate
trained Word2Vec (without character repetitions).

Note that since the auto-labeled data is divided
in three files, and to avoid loading all the tweets in-
memory at once, SSWE is trained incrementally
on the three files. For each one, we used three
epochs and a batch size of 500.

Figure 3 summarizes the methodology used to
train the SSWE.

Figure 43 and Figure 5 summarize the architec-
tures of the deep learning models used.

3http://www.wildml.com/2015/11/
understanding-convolutional-neural-
networks-for-nlp/

Figure 4: CNN architecture.

Figure 5: RNN architecture.

3.4 Graph-Based Label Propagation

We used the method introduced by Hamilton
(2016) to create a dictionary of positive and nega-
tive words from Word2Vec embeddings in an un-
supervised way. The idea revolves around build-
ing word embeddings (the paper uses Vector Space
Model instead of Word2Vec), then creating a
graph of words connected to their k-nearest neigh-
bors in the embeddings space with edges weighted
by the cosine similarity. Using a short list of “seed
words” for positive and negative polarities, senti-
ment is propagated through the network through a
random walk method. This idea was implemented
by Hamilton et al. in a Python package called
SENTPROP.

We use emojis as seed words and Word2Vec
trained on tweets from which we only kept a spe-
cific short set of positive and negative emojis (so
the focus is on actual words that are neighbors to
the seed emojis instead of other emojis).

18

4 Experiments and Results

4.1 Setup

We conduct experiments to evaluate the validity
of using SSWE over Word2Vec for French senti-
ment classification. In addition to the auto-labeled
tweets, four manually labeled French data sets
were used. The first three data sets come from the
SemEval 2016 competition (International Work-
shop on Semantic Evaluation). It is an ongoing
series of evaluations of computational semantic
analysis systems, organized under the umbrella of
SIGLEX, the Special Interest Group on the Lex-
icon of the Association for Computational Lin-
guistics. The first data set (Train) corresponds to
French Restaurant Reviews. The two others cor-
respond to French Restaurant Reviews (Test1; i.e.
Same domain as the training set) and French Mu-
seum Reviews (Test2). The latter being out-of-
domain, it is a good gauge of how generalizable
a model trained on the training set is to different
French data sets. Those three data sets have been
labeled for Aspect Based Sentiment Analysis. It is
the task of mining and summarizing opinions from
text about specific entities and their aspects (Apid-
ianaki et al., 2016) they are annotated with rele-
vant entities, aspects and polarity values. In order
to use those three data sets in the context of docu-
ment level sentiment classification, we ungrouped
documents into sentences, then filtered them:

- We reject the sentences with mixed polarity
values.

- We keep the rest of the sentences and label
them as “Positive” if all polarity values are pos-
itive and as “Negative” if all polarity values are
negative.

Note that we were not able to download all
the reviews as some of them were not available
anymore4. The fourth data set is comprised of
manually labeled French tweets that are not pub-
licly available (Test3). These tweets do not con-
tain emojis, and thus the performance on this
data set will solely rely on the understanding that
our trained models will have of the French lan-
guage. The four French data sets (after processing)
and their characteristics are summarized in Table
2. We can see that they are all relatively well-
balanced, so no special treatment for class imbal-
ance will be performed.

4The data can be downloaded from http:
//alt.qcri.org/semeval2016/task5/index.
php?id=data-and-tools

Data Set Naming # Doc % Positive
SemEval 2016 Train 1338 47.80

Restaurant Train
SemEval 2016 Test1 515 47.60
Restaurant Test
SemEval 2016 Test2 529 54.25
Museum Test

Tweets Test3 3296 48.90
Manually Labeled

Table 2: Characteristics of the training and testing sets
used.

4.2 Experiments

The experiments conducted and their results are
summarized in Table 3.

In order to establish the importance of the
SSWE for sentiment analysis, we trained multi-
ple models using standard features (word ngrams,
character ngrams) or more advanced features
(Word2Vec, SSWE: average sentence embedding)
with standard classifiers (logistic regression (LR),
SVM, Random Forest) or deep learning frame-
works (CNN or RNN with transfer learning on
the data set Train), then evaluated them on Test1,
Test2, and Test3. More precisely, we used the fol-
lowing approaches as baselines, training a Logistic
Regression (LR), SVM and Random Forest with
word and character ngrams, Word2Vec, or both
(experiments 1-3).

The three baselines were compared to four
methods using SSWE trained with either RNN
(taking the last output of the recurrent sequence)
or CNN trained on the auto-labeled data and used
for feature extraction on Train. We compared the
performance with SSWE trained on auto-labeled
data cleaned from the emojis to prevent the model
from giving a high weight to emojis (experiments
4-7).

We compared those approaches with the use
of average or maximum of the output sequences
of the RNN (trained on auto-labeled data without
emoji, then used for feature engineering on Train)
(experiments 8-9).

We then add the character and ngrams features
(experiments 10-15).

Finally, we compared them with deep learning
and transfer learning. Keeping the same network
that was used to train the SSWE, we fix the SSWE
and let the last layer(s) be trainable on Train. For
the RNN, the dense layer and softmax are train-
able. For the CNN, training only the dense layer
and softmax as part of transfer learning yields poor

19

results, so we train the dense layer and ReLu as
well as the last dense layer and softmax during
transfer learning. The reason why transfer learn-
ing is used instead of direct training on Train is the
lack of data: Train having only 1338 unique doc-
uments, this is not enough to tune a deep learning
model which has a much larger number of param-
eters. (experiments 16-21)

We also explored two additional methods that
do not require any knowledge of the language and
that will be detailed in subsequent sections:

1) using a dictionary auto-built by label propa-
gation using specific emoji seeds on the Word2Vec
model (experiments 22-24).

2) repeating the experiment on data for which
two or more repetitions of characters are replaced
with two characters.

All approaches with Logistic Regression, SVM
or Random Forest used the Scikit-Learn Python
package. Word2Vec models were built using
genism, while SSWE and deep learning frame-
works used Keras with Tensorflow backend.

4.3 Evaluation Methods
For models trained with Logistic Regression,
SVM and Random Forest, we decided to report
and compare only results obtained with Logistic
Regression for fair comparison. The reported re-
sults correspond to those achieved with a set of
parameters giving the best results on part of the
training set, through sweeping. The parameters
that were swept on in Logistic Regression are: size
of word ngrams, size of character ngrams, lower-
casing of words, maximum number of iterations
for the ‘lbfgs’ solver, inverse of regularization
strength for ‘l2’ penalty. For models trained with
Deep Learning, multiple combinations of epochs
and batch sizes were used, and we report here the
best results obtained.

While F-score and Accuracy (since there is no
class imbalance) can be fair ways of evaluating
the performance, we decided to rely mainly on the
AUC (Area under the Curve) since it is indepen-
dent of the classification threshold choice and is a
good indicator of the ability of the models to dis-
tinguish between Positive and Negative examples.

4.4 Results and Analysis
With Logistic Regression, using only ngram fea-
tures (1) give the worse results on Test2 and
Test3. This is probably because ngrams ob-
tained on a specific training set fail to general-

Features Test1 Test2 Test3
LOGISTIC REGRESSION

1 ngram 86.27 75.36 72.49
2 Word2Vec 86.03 79.00 86.75
3 ngram + Word2Vec 90.18 83.3 86.71
4 SSWE R last 86.11 79.25 84.28
5 SSWE R last no emoji 87.86 83.12 86.52
6 SSWE C 85.34 78.91 83.72
7 SSWE C no emoji 89.15 83.59 87.83
8 SSWE R avg no emoji 88.01 83.07 87.17
9 SSWE R max no emoji 86.29 82.49 85.40
10 ngram + SSWE R last 89.86 83.10 85.06
11 ngram + 90.79 84.72 85.82

SSWE R last no emoji
12 ngram + 89.05 83.62 84.24

SSWE C
13 ngram + 91.42 85.67 87.50

SSWE C no emoji
14 ngram + 90.84 84.53 86.90

SSWE R avg no emoji
15 ngram + 91.20 85.75 87.37

SSWE R max no emoji
TRANSFER LEARNING

16 SSWE R last 90.17 84.2 83.89
17 SSWE R last no emoji 92.78 91.02 90.59
18 SSWE C 81.31 76.87 79.91
19 SSWE C no emoji 89.97 87.65 89.27
20 SSWE R avg no emoji 91.86 90.71 90.03
21 SSWE R max no emoji 91.61 91.13 90.34

WITH DICTIONARY (Dict)
22 Dict 63.52 63.86 64.85
23 LR + 88.95 76.97 77.73

ngram + Dict
24 LR + ngram + Dict + 91.21 85.73 87.38

SSWE C no emoji

Table 3: Experiments Results with Logistic Regres-
sion, Transfer Learning and Dictionary Lookup in
terms of AUC (in %).

ize well to out-of-domain data sets (Test2 and
Test3). Using Word2Vec only (2) is slightly worse
on Test1 but generalizes better on out-of-domain
data sets. Using both Word2Vec and ngram (3)
considerably improves the results compared to (1)
and (2), showing the importance of Word2Vec
in adding context information in word features,
which ngram does not. This will be the main base-
line to compare to the use of SSWE.

We notice that SSWE trained on the auto-
labeled data where emojis were kept (4), (6),
yields results similar or slightly lower than using
Word2Vec only (2). The same comparison holds
when we add ngrams: (10) and (12) vs. (3). This
is probably because the labels of the auto-labeled
data are directly correlated to specific positive and
negative emojis since they were used for autola-
beling. As a result, training SSWE on the auto-
labeled data without removing emojis likely bi-
ased the embeddings into giving higher weights

20

to emojis. Since all the test sets have little to no
emojis, the use of these SSWE yields poor results.

SSWE trained on auto-labeled data cleaned
from the emojis (without ngrams) in (5), (7), (8)
and (9) provides similar or better performance
than Word2Vec only (2). Adding ngrams to these
SSWE in (11), (13), (14) and (15) gives the best
results with Logistic Regression compared to the
best baseline (3). While beating the performance
of (3) on Test3 seems hard (likely due to the fact
that Word2Vec was trained on data similar to Test3
since they are both tweets), ngrams and SSWE
trained as part of a CNN model on auto-labeled
data without emojis (13) gives on average the best
results on the three data sets when using Logistic
Regression, compared to (3): 1.34%, 2.37%, and
0.79% improvement on Test1, Test2, Test3 respec-
tively. These results already confirm that SSWE
improves the prediction performance in sentiment
analysis over Word2Vec, likely because it incor-
porates sentiment polarity.

These results were even more confirmed with
deep learning. SSWE trained on auto-labeled
data with emojis also perform less good than their
counterpart trained without emojis: (16) vs. (17)
and (18) vs. (19). The best results are obtained
on average across the three test sets when transfer
learning is applied with the RNN, using the last
output from the bidirectional LSTM. Compared to
the best baseline (3), we achieve: 2.6%, 7.72%,
and 3.88% improvement on Test1, Test2, Test3 re-
spectively.

We also used the scores of the auto-generated
dictionary with a 0.5 threshold to assign a polarity
to the words. We then classify the documents by
comparing the distribution of negative and positive
words. This gave worse results than ngram with
logistic regression ((1) vs. (22)). We also used the
word scores to create a dictionary with 10 labels:
if the word has a score between 0 and 0.1, it is
assigned to the sentiment bin 1 class; between 0.1
and 0.2, it is assigned to sentiment bin 2, etc. The
distribution among those ten classes is then used
as an additional feature in our experiments with
logistic regression. However, this feature does not
improve the results((1) vs. (23) and (13) vs. (24)).

Finally, we did not notice an improvement when
removing repetition of characters above three.
This might be explained by the fact that character
repetition can be important for emphasis: the same
word with more character repetitions might have

a higher polarity. For example, “heureuxxxxx”
might show more excitement and be “more pos-
itive” than “heureuxx”.

4.5 Discussion
Given those results, multiple conclusions can be
drawn:

– Word2Vec boosts performance of ngrams, es-
pecially on out-of-domain testing set.

– SSWE trained on data autolabeled with emo-
jis and where emojis were not removed, neg-
atively impacts the performance of the model
on data that have little or no emojis.

– SSWE trained on data autolabeled with emo-
jis and where emojis were removed, provides
an improvement over Word2Vec.

– Transfer Learning in deep learning by fix-
ing the network structure (including SSWE
trained without emojis) on the training set,
yields the best improvements over the base-
line with an increase of more than 7% AUC
on Test2 for example. This is the most no-
ticeable when using RNN and taking the last
output of the bidirectional LSTM sequence.

5 Conclusion and Future Work

In this paper, we propose to label a big num-
ber of tweets in any language (here French) us-
ing a small set of positive and negative emojis,
train a Word2Vec model on the tweets, then up-
date the embeddings through deep learning with
bidirectional LSTM on the autolabeled data. The
embeddings we get are then enriched with senti-
ment information and can be used as features for
new data sets in the same language. If those data
sets have little or no emoji, the embeddings en-
richment should be performed using autolabeled
data filtered from emojis in order to avoid bias-
ing the embeddings and relying mostly on emo-
jis. We show that these sentiment specific word
embeddings perform better than plain Word2Vec
using SemEval 2016 French data of restaurant re-
views (Train) to train a model, another SemEval
2016 testing set of restaurant reviews (Test1), an-
other of museum reviews (Test2) and a manually
labeled data set of French tweets (Test3). It pro-
vides an AUC improvement of 1.34%, 2.37%, and
0.79% on Test1, Test2, Test3 respectively with Lo-
gistic Regression. The improvement gets to 2.6%,

21

7.72%, and 3.88% with transfer learning using
RNN with the network used to train the SSWE.
This methodology can be applied to any language
since it does not rely on linguistic features.

This work has a few limitations, which could
be better addressed in future work. This includes
the use of sentiment lexicons, stemming, normal-
ization, and negation handling. Our work did not
explore the graph propagation technique with dif-
ferent embeddings models such as Vector Space
Models. In addition, distant-supervised learning
was applied on tweets to get labeled data and then
train the SSWE. Tweets being written in a very ca-
sual language, the results on SemEval data (which
is clean) might improve if the SSWE were trained
on a more general data set. An area for future work
would be to explore distant supervised learning on
movie or product reviews, then compare the re-
sults with the created SSWE on SemEval data with
those obtained using the Twitter SSWE. Finally,
our work excludes the case of neutral text. We can
specify two thresholds for the polarity prediction
and assign a document to the neutral class when
the model yields a predicted probability between
those two thresholds. Another method is to train a
subjectivity classifier followed by a polarity clas-
sifier for subjective documents.

References
Marianna Apidianaki, Xavier Tannier, and Cécile

Richart. 2016. Datasets for aspect-based sentiment
analysis in french. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), Paris, France. European
Language Resources Association (ELRA).

Dmitriy Bespalov, Yanjun Qi, Bing Bai, and Ali Shoko-
ufandeh. 2012. Sentiment classification with super-
vised sequence embedding. In Proceedings of the
2012 European Conference on Machine Learning
and Knowledge Discovery in Databases - Volume
Part I, ECML PKDD’12, pages 159–174, Berlin,
Heidelberg. Springer-Verlag.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. CoRR, abs/1103.0398.

Michael Gamon. 2004. Sentiment classification on
customer feedback data: Noisy data, large feature
vectors, and the role of linguistic analysis. In Pro-
ceedings of the 20th International Conference on
Computational Linguistics, COLING ’04, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Chinnappa Guggilla, Tristan Miller, and Iryna
Gurevych. 2016. Cnn- and lstm-based claim classi-
fication in online user comments. In COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2740–2751.

William L. Hamilton, Kevin Clark, Jure Leskovec, and
Dan Jurafsky. 2016. Inducing domain-specific sen-
timent lexicons from unlabeled corpora. CoRR,
abs/1606.02820.

Igor Labutov and Hod Lipson. 2013. Re-embedding
words. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 489–493.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies - Volume 1, HLT ’11,
pages 142–150, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. CoRR, abs/1310.4546.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. CoRR,
abs/1308.6242.

Sascha Narr, Michael Hulfenhaus, and Sahin Al-
bayrak. 2012. Language-independent twitter senti-
ment analysis. Knowledge discovery and machine
learning (KDML), LWA, pages 12–14.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 380–390. Association for Computational Lin-
guistics.

Alexander Pak and Patrick Paroubek. 2011. Twitter
for sentiment analysis: When language resources
are not available. In Proceedings of the 2011 22Nd
International Workshop on Database and Expert
Systems Applications, DEXA ’11, pages 111–115,
Washington, DC, USA. IEEE Computer Society.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Found. Trends Inf. Retr., 2(1-
2):1–135.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? sentiment classification us-
ing machine learning techniques. In Proceedings of
EMNLP, pages 79–86.

22

Qiao Qian, Minlie Huang, Jinhao Lei, and Xiaoyan
Zhu. 2017. Linguistically regularized lstm for sen-
timent classification. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2017.

Yafeng Ren, Yue Zhang, Meishan Zhang, and
Donghong Ji. 2016. Improving twitter sentiment
classification using topic-enriched multi-prototype
word embeddings.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly D. Voll, and Manfred Stede. 2011. Lexicon-
based methods for sentiment analysis. 37:267–307.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In 52nd Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2014 - Pro-
ceedings of the Conference, volume 1, pages 1555–
1565.

Mike Thelwall, Kevan Buckley, and Georgios Pal-
toglou. 2012. Sentiment strength detection for the
social web. J. Am. Soc. Inf. Sci. Technol., 63(1):163–
173.

Jiacheng Xu, Danlu Chen, Xipeng Qiu, and Xuanjing
Huang. 2016. Cached long short-term memory neu-
ral networks for document-level sentiment classifi-
cation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1660–1669. Association for Computa-
tional Linguistics.

Lei Zhang, Shuai Wang, and Bing Liu. 2018. Deep
learning for sentiment analysis : A survey. CoRR,
abs/1801.07883.

Jichang Zhao, Li Dong, Junjie Wu, and Ke Xu. 2012.
Moodlens: An emoticon-based sentiment analysis
system for chinese tweets. In Proceedings of the
18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’12,
pages 1528–1531, New York, NY, USA. ACM.

23

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 24–30
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Creating a Dataset for Multilingual Fine-grained Emotion-detection
Using Gamification-based Annotation

Emily Öhman Kaisla Kajava Jörg Tiedemann Timo Honkela

University of Helsinki
firstname.lastname@helsinki.fi

Abstract

This paper introduces a gamified framework
for fine-grained sentiment analysis and emo-
tion detection. We present a flexible tool, Sen-
timentator, that can be used for efficient an-
notation based on crowd sourcing and a self-
perpetuating gold standard. We also present
a novel dataset with multi-dimensional anno-
tations of emotions and sentiments in movie
subtitles that enables research on sentiment
preservation across languages and the creation
of robust multilingual emotion detection tools.
The tools and datasets are public and open-
source and can easily be extended and applied
for various purposes.

1 Introduction

Sentiment analysis and emotion detection is a cru-
cial component in many practical applications but
also defines a great challenge in natural language
processing and artificial intelligence. Detecting
emotions is crucial in human-computer interac-
tion, and human behavior in communication is to
a large degree affected by the emotional states that
are created in a message. These states are typi-
cally fine-grained and fuzzy covering various di-
mensions of human feelings and attitudes. Nev-
ertheless, it is often the practice to consider sen-
timents and emotions as very coarse and discrete
features that can be detected with simple classi-
fiers on a small scale of a few classes.

In our work, we focus on a high-dimensional
model of emotions that allows a more natural and
fine-grained classification and, furthermore, we
tackle emotion detection in a multilingual setting.
One of the biggest issues that stand in the way of
creating reliable emotion detection algorithms is
the lack of properly annotated datasets for training
and testing purposes, especially in the case of the
dimensionality that we consider and the multilin-
gual support that we envision. This is the reason

why we created Sentimentator, a new annotation
tool that facilitates the efficient creation of appro-
priate datasets (Öhman and Kajava, 2018).

The main contribution of the paper is the frame-
work based on a gamified environment that we
develop to efficiently build large-scale resources.
Our setup results in a self-perpetuating gold stan-
dard, which is initialized by seed sentences that are
annotated by experts and augmented by crowd an-
notators. A combination of correlation-based scor-
ing and ranking makes it possible to build datasets
with weighted judgments based on the annotator
confidence that we measure. Initial rankings are
based on the comparison to seed annotation only
but they will be adjusted dynamically once the cor-
relation between crowd annotators allows to esti-
mate further reliability scores. The main idea is
that we can trust annotators that provide identical
or at least similar judgments as other reliable an-
notators. With this scheme, we can move away
from the use of limited seed sentences for con-
fidence estimation to a more dynamic and self-
perpetuating gold standard.

Another fundamental decision in our setup is
the use of multilingual material on which to base
our annotations. We are interested in the cross-
lingual use of emotions and the development of
multilingual classifiers (see Öhman et al., 2016).
Therefore, we start with sentences extracted from
movie subtitles (English originals in our case) for
which we also have plenty of translations into a
large number of languages. Movies contain a lot
of emotional content and, as a side effect, it is in-
teresting to see how that is reflected in subtitles
and their translations.

Before presenting Sentimentator itself, we will
first discuss related work and the theoretical
framework we work with. The presentation of the
seed/pilot dataset and its application for emotion
detection follows the description of the tool and

24

https://doi.org/10.18653/v1/P17

ends with a concluding discussion.

2 Related Work

Sentiment analysis is a widely studied task in nat-
ural language processing. Most of the existing
datasets applied in sentiment analysis use binary
or ternary annotation schemes (positive-negative,
or positive, negative, and neutral) (Andreevskaia
and Bergler, 2007), or some kind of combination
of these (i.e. the addition of e.g. ”mixed” (Saif
et al., 2013)). This is not enough if the aim is to
detect emotions rather than overarching sentiment
(de Albornoz et al., 2012; Li and Hovy, 2017;
Cambria et al., 2013). Furthermore, many of the
existing datasets or tools (Munezero et al., 2015;
Eryigit et al., 2013; Musat et al., 2012; Kakko-
nen and Kakkonen, 2011; Calefato et al., 2017;
Saif et al., 2013; Abdul-Mageed and Ungar, 2017)
are domain-dependent (often Twitter data) and/or
document-level. Very few of these are also open
data or open source.

An important questions is whether to show
wider context or not. Boland et al. (2013) show
that context can lead to the effect of double
weighting for fine-grained annotations. For that
reason, we also opted for the annotation of isolated
sentences even though our tools would easily sup-
port other setups.

2.1 Crowd-sourcing Annotations

The annotation of datasets can be very costly and
time consuming (Andreevskaia and Bergler, 2007;
Devitt and Ahmad, 2008) if done by expert anno-
tators. Crowd-sourcing can often be a cheaper al-
ternative to hiring expert annotators, and has been
used successfully by several researchers to create
different types of datasets (Turney, 2002; Green-
hill et al., 2014; Mohammad and Turney, 2013).

However, one issue with using non-experts to
solicit annotations is that there is a risk of the qual-
ity suffering. Our solution to annotation-reliability
related issues is gamification, which will be dis-
cussed in detail in section 3.

2.2 Theory of Emotion

The underlying theory of emotion for Sentimen-
tator is Plutchik’s theory of emotion (Plutchik,
1980). The eight core emotions he proposes are
anger, anticipation, disgust, fear, joy, sadness,
surprise, and trust. He uses a wheel, or flower,
to illustrate these emotions. For a more intuitive

interface, we have inverted the wheel (see figure
1).

Figure 1: Inverted wheel of emotions

Although Sentimentator takes into account the
intensity of the emotions, the complexity of the
annotation task does not increase linearly with the
number of classes this produces. It is possible to
annotate for all 24+1 emotions, but only use the
eight core emotions for classification, which was
done very successfully by Abdul-Mageed and Un-
gar (2017).

Using Euclidean distance on the inverted wheel
to calculate the similarity of annotations, we can
see that annotations for neutral and low intensity
emotions are in fact quite similar. This means we
can avoid unnecessarily dismissing an annotation
as noise, as might be the case if a more traditional
interface was used where neutral was a separate
category from low-intensity emotions.

2.3 Classification

Table 1 shows the accuracies achieved by a
few other multidimensional approaches (generally
those of Ekman (1971)) using various classifi-
cation methods such as SVMs, neural networks,
maximum entropy, Naı̈ve Bayes, and k-Nearest
Neighbor to name a few. When more classes are
included in a model, accuracies achieved are typi-
cally lower than what binary or ternary models of
sentiment analysis achieve (Purver and Battersby,
2012; Tokuhisa et al., 2008), with the exception
of Abdul-Mageed and Ungar (2017) who apply a
gated recurrent neural network model.

1Quoted in Purver and Battersby (2012)

25

Study classes accuracy
Go et al. (2009) 2 82.2-83%
Danisman and Alpkocak (2008) 6 32%
Chuang and Wu (2004) 6+1 56-74%
Chuang and Wu (2004) 6+1, audio 81.5%
Ansari 20101 6 81%
Purver and Battersby (2012) 6 varies
Seol et al. (2008) 8 45-65%
Abdul-Mageed and Ungar (2017) 8 95.68%
Tokuhisa et al. (2008) 10 up to 80%
Abdul-Mageed and Ungar (2017) 24 87.58%

Table 1: Accuracies achieved by previous studies

Although the data and methods are different,
it seems reasonable to expect accuracies between
30-70% depending on the category for an initial
multiclass classification. Depending on the avail-
ability, we will try to apply our model to the same
datasets that have been used in the studies listed in
table 1 in order to directly compare results.

3 Gamifying the Annotation Platform

Our goal is to implement efficient crowd-sourcing
through gamification. Gamification refers the use
of game elements in environments that are not typ-
ically games (Deterding et al., 2011; Hamari and
Koivisto, 2013). Previous research shows that one
can achieve a high number of quality annotations
by non-experts by using carefully considered gam-
ified aspects such as (1) Relatedness (connected
to other players), (2) Competence (mastering the
game problems), and (3) Autonomy (control of
own life) (Musat et al., 2012).

Robson et al. (2015) posits that gamification
can change behavior by tapping into motivational
drivers of human behavior: reinforcements and
emotions. The emotions we want to elicit are
of course enjoyment, but negative emotions such
as disappointment can also increase commitment
and a desire to increase one’s competence. Sim-
ilarly, both positive and negative reinforcements
increase repetitive behavior in players (Robson
et al., 2015).

Our platform offers players leaderboards and
statistics about both their immediate and longterm
progress (relatedness). Progress, rank and prestige
are important measures that help players feel com-
pensated for the work they are doing within the
game (competence). Rank has an additional func-
tion in our platform; as we lack a gold standard
against which to compare the annotations we re-
ceive, we use rank to determine noisy annotations

and noisy annotators. Furthermore, the player can
see how each of their choice affects their standing
in the ranks.

The dataset that the experiments in this paper
rely on is our validated seed sentences. These
sentences will be used as a type of seeded gold
standard. What this means is that annotators will
annotate both non-seed sentences and seed sen-
tences. They receive a score from their annota-
tion based on similarity with gold annotations that
determines their rank. In practice, rank is equiv-
alent with confidence level. With enough partic-
ipants, players will also be ranked according to
how closely their annotations match those of high-
ranked annotators. We, thus, have the option to
include only the least noisy, highest quality anno-
tations in our dataset.

In order to compare annotations, we map them
on the inverted Plutchik’s wheel we propose in
Figure 1 projected on a standard two-dimensional
space with coordinates [x, y], where the least in-
tense emotions are at the center and the most in-
tense at the tips of the petals. The origin of our
emotion space is located in the center of the wheel
and represents the case of a neutral expression.

We can then calculate the distance D(Gx, Gy)
between any pair of points corresponding to emo-
tion labels GX and Gy by computing the Eu-
clidean distance normalized by the maximum dis-
tance that can be observed between opposite emo-
tions with maximum intensity. Assuming that ge-
ometric location expresses the relatedness of emo-
tions, this distance metric takes into account all
different types of similarities/dissimilarities be-
tween annotations, including labels that combine
neighboring emotions.

The distance metric is the basis for the compu-
tation of annotation confidence Cx for new anno-
tation Gx that we obtain. We define annotation
confidence as

Cx = Rannotator ∗
1

N

n∑

n=1

(1− Cn ∗D(Gx, Gn))

where Gn ∈ {G1, .., GN} are annotations of
the same instance (sentence) from the current gold
standard with corresponding confidence scores
{C1, .., CN}.2 In other words, we add an aver-
aged penalty for annotations that differ from exist-
ing gold annotations weighted by their confidence
scores. Note that our seed annotations Gs obtain

2Note that we set Cx = Rannotator if N = 0.

26

a perfect confidence Cs = 1. Another component
of the confidence score is the rank of the annota-
tor based on the score Rannotator. This score is
initialized with one and will be updated by each
submitted annotation. Currently, we use a simple
average over annotation confidence scores of that
particular annotator:

Rannotator =
1

M

M∑

m=1

Cm

Our self-perpetuating gold standard with
ranking-based confidence ratings will reduce the
need for manual screening and will ensure that we
can receive consistent emotion annotations with a
measurable confidence attached to them.

4 Creating the Dataset

For the seed data, we used the following proce-
dure: On completed expert annotation, another ex-
pert annotates the same sentences with the data or-
der randomized. Ambiguous sentences were re-
viewed and the correct class was agreed upon. In
some cases where no agreement could be reached
the sentence was excluded from the seed dataset.

Our data collection will be unique in that it will
provide a fine-grained multi-dimensional open
source dataset for sentiment analysis and emo-
tion detection in various languages. Annotation is
on-going and the first real dataset will be avail-
able later in 2018. For now we have a set of
sentences with validated annotations that we will
use as our seed data to get the gamified annota-
tion started. This dataset has already been used
to investigate sentiment preservation in Finnish,
French, and Italian (Kajava, 2018).

We wanted to make the dataset as useful as pos-
sible to as many researchers as possible from the
beginning. This is why we selected an open par-
allel corpus, namely the OPUS movie subtitles
corpus (Tiedemann, 2012; Lison and Tiedemann,
2016). From this collection, approximately 9,000
English sentences were annotated into the follow-
ing emotion classes: anger, anticipation, disgust,
joy, fear, sadness, surprise, and trust. This yielded
a preliminary dataset of between 649 to 908 sen-
tences per class (see table 4). For the classification
experiments, we did not take into account the mea-
sure of emotion intensity that we introduce later in
our annotation framework, which is also part of
the seed sentence annotation.

ang ant dis fea joy sad sur tru Total
train 816 739 775 615 876 633 583 737 5,774
test 92 84 87 70 99 72 66 83 653

Table 2: Emotion distribution in seed data

We also keep the metadata and therefore all
sentences can be paired with a particular movie,
genre, time period, as well as its counterpart in an-
other language. This is valuable information for
future research avenues.

We expect to have a full dataset by the end of the
year as we will be collecting at least 100 000 anno-
tations in September-October of 2018 from crowd
annotators (students). Snow et al. (2008) suggest
using four non-experts to match the quality of one
expert annotator, however, gamification, seed sen-
tences, and rank-validation means that fewer an-
notations per sentence might be sufficient using
our platform. Inter-annotator agreement is on av-
erage around 70-90% depending on the type of
annotation and who is doing the annotation work
(expert vs. non-expert) (Nowak and Rüger, 2010),
and this is where annotator agreement was for our
data as well, varying between classes.

Based on initial timed annotations, a typical an-
notator can be expected to annotate up to 10 sen-
tences per minute. This means that it only takes
just over one hour to annotate around 600 sen-
tences. If every annotator is asked to annotate
1000 sentences, this should not take more than
a few hours each on average taking the learning
curve into account. The students are encouraged to
annotate in languages other than English as well,
resulting in at least two or three separate datasets
with an expected minimum of 40 000 annotations
each. We currently have preliminary datasets for
English, Italian, French, and Finnish.

5 Validation of the Data Quality

In order to test the quality of the data for the pur-
pose of developing an automatic emotion detector
we ran some initial experiments using our anno-
tated seed data for training, and evaluating stan-
dard multi-class classifiers. The data was tok-
enized and lowercased as a preprocessing step. We
selected Multinomial Naı̈ve Bayes (NB) and Mul-
tilayer Perceptron (MLP) classifiers for our exper-
iments. For the classifiers we use the scikit-learn
(Pedregosa et al., 2011) machine learning toolkit.
In both classification scenarios, the data was split
into class-stratified training and test sets of 90%

27

and 10%, respectively.
The MLP network used in this work is a three-

layer network. The model creates a lexicon from
the dataset using a bag-of-words approach, em-
ploying it for extracting a set of features for each
class. We use Adam for training the network
and apply Rectified Linear Unit (ReLu) activiation
functions in the hidden layers of feed-forward net-
work.

Classifier Accuracy
NB 0.5069
MLP 0.5023

Table 3: Overall classification accuracy

As can be seen in table 3, the baseline classi-
fiers perform reasonably well for such a small data
set and such a fine-grained task. Note that we did
spend any time on optimizing features and hyper-
parameters to obtain a better performance. The
purpose of this study is entirely to test the feasi-
bility of fine-grained classification and validity of
our seed data.

In the confusion matrix for the best perform-
ing classifier (see Table 4), we can see that there
is some significant confusion between anger and
fear, between disgust and sadness and also surpris-
ingly between trust and fear. These are the same
classes that others have struggled to distinguish
(e.g. (Purver and Battersby, 2012)), which is re-
assuring that our data is in good shape. With this
promising performance on our pilot data set (de-
spite its limited size) we are encouraged to pro-
ceed with future experiments and the more fine-
grained distinctions we propose that take intensity
into account.

These experiments also demonstrate that the
seed data is sufficient for initial classifications and
that we can go ahead in developing our gami-
fied strategy of getting more annotations based on
correlations between annotators and their level of
trust, which will initially be based on the compar-
ison to the validated seed sentences.

6 Conclusions

In this paper, we present an open annotation tool
for fine-grained emotion detection and a dataset
of seed sentences that can be used to gamify the
annotation efforts. The classification results show
that the dataset is reliable enough to be used as
seed sentences, indicating that gamification based

ang ant dis fea joy sad sur tru <- classified as
62 3 10 3 5 1 3 5 anger
9 43 6 1 5 1 5 14 anticipation
25 6 29 5 9 3 3 7 disgust
11 8 6 20 2 6 5 12 fear
2 4 5 1 77 2 3 5 joy
7 2 8 5 12 30 2 6 sadness
5 4 10 4 13 1 25 4 surprise
5 3 5 3 16 3 2 45 trust

Table 4: Confusion matrix for NB-based classification
of the test set.

on the seed data is a viable option for compil-
ing sentiment datasets, and that multidimensional
classification yields acceptable results even with
a small dataset. However, already with our lim-
ited validation experiments we can see that the
choice of model and learning algorithm influences
the quality of the resulting classifier. This is an im-
portant outcome that needs to be considered when
designing tools with scarce resources. We will
continue to monitor performance to measure the
impact of gamification and cross-lingual transfer
on classification performance.

7 Discussion and Future Work

As our system collects both coarse (ternary) senti-
ment annotations, and fine-grained emotion anno-
tations, a future option could be to apply the suc-
cessful approach demonstrated by Tokuhisa et al.
(2008), and utilize the coarser sentiment polarity
to pre-classify data before emotion classification,
and then implement a k-nearest neighbors algo-
rithm on the larger dataset. Our platform does not
show context by default, however, it is easy to add
the context of the target segment to be annotated if
required for a different type of project.

It might be valuable to re-annotate parts of
the data showing additional context to check the
impact on annotation and annotator confidence.
Tokuhisa et al. (2008) found that in their data,
context-dependent samples were useful for train-
ing their classifier and yielded slightly higher ac-
curacies than their non-context-dependent data.
Finally, we will also consider models that make
use of sentence-internal relations to improve the
classification results. In particular, we will inves-
tigate the use of sequence models and gated recur-
rent networks as proposed by Abdul-Mageed and
Ungar (2017).

28

References
Muhammad Abdul-Mageed and Lyle Ungar. 2017.

Emonet: Fine-grained emotion detection with gated
recurrent neural networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 718–728.

Jorge Carrillo de Albornoz, Laura Plaza, and Pablo
Gervás. 2012. Sentisense: An easily scalable
concept-based affective lexicon for sentiment anal-
ysis.

Alina Andreevskaia and Sabine Bergler. 2007. Clac
and clac-nb: Knowledge-based and corpus-based
approaches to sentiment tagging. In Proceedings
of the 4th international workshop on semantic eval-
uations, pages 117–120. Association for Computa-
tional Linguistics.

Katarina Boland, Andias Wira-Alam, and Reinhard
Messerschmidt. 2013. Creating an annotated corpus
for sentiment analysis of german product reviews.

Fabio Calefato, Filippo Lanubile, and Nicole Novielli.
2017. Emotxt: a toolkit for emotion recognition
from text. arXiv preprint arXiv:1708.03892.

Erik Cambria, Björn Schuller, Yunqing Xia, and
Catherine Havasi. 2013. New avenues in opinion
mining and sentiment analysis. IEEE Intelligent
Systems, 28(2):15–21.

Ze-Jing Chuang and Chung-Hsien Wu. 2004. Multi-
modal emotion recognition from speech and text.
International Journal of Computational Linguistics
& Chinese Language Processing, Volume 9, Num-
ber 2, August 2004: Special Issue on New Trends of
Speech and Language Processing, 9(2):45–62.

Taner Danisman and Adil Alpkocak. 2008. Feeler:
Emotion classification of text using vector space
model. In AISB 2008 Convention Communica-
tion, Interaction and Social Intelligence, volume 1,
page 53.

Sebastian Deterding, Miguel Sicart, Lennart Nacke,
Kenton O’Hara, and Dan Dixon. 2011. Gamifi-
cation. using game-design elements in non-gaming
contexts. In CHI’11 extended abstracts on human
factors in computing systems, pages 2425–2428.
ACM.

Ann Devitt and Khurshid Ahmad. 2008. Sentiment
analysis and the use of extrinsic datasets in evalu-
ation. In LREC.

Paul Ekman. 1971. Universals and cultural differences
in facial expressions of emotion. In Nebraska sym-
posium on motivation. University of Nebraska Press.

Gülsen Eryigit, Fatih Samet Cetin, Meltem Yanik,
Tanel Temel, and Ilyas Çiçekli. 2013. Turksent:
A sentiment annotation tool for social media. In
LAW@ ACL, pages 131–134.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Anita Greenhill, Kate Holmes, Chris Lintott, Brooke
Simmons, Karen Masters, Joe Cox, and Gary Gra-
ham. 2014. Playing with science: Gamised aspects
of gamification found on the online citizen science
project-zooniverse. In GAMEON’2014. EUROSIS.

Juho Hamari and Jonna Koivisto. 2013. Social moti-
vations to use gamification: An empirical study of
gamifying exercise. In ECIS, page 105.

Kaisla Kajava. 2018. Cross-lingual sentiment preser-
vation in binary and multi-dimensional classifica-
tion.

Tuomo Kakkonen and Gordana Galić Kakkonen. 2011.
Sentiprofiler: creating comparable visual profiles of
sentimental content in texts. Language Technolo-
gies for Digital Humanities and Cultural Heritage,
62:189–204.

Jiwei Li and Eduard Hovy. 2017. Reflections on senti-
ment/opinion analysis. In A Practical Guide to Sen-
timent Analysis, pages 41–59. Springer.

Pierre Lison and Jörg Tiedemann. 2016. Opensub-
titles2016: Extracting large parallel corpora from
movie and tv subtitles.

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a word-emotion association lexicon.
29(3):436–465.

Myriam Munezero, Calkin Suero Montero, Maxim
Mozgovoy, and Erkki Sutinen. 2015. Emotwitter–a
fine-grained visualization system for identifying en-
during sentiments in tweets. In International Con-
ference on Intelligent Text Processing and Compu-
tational Linguistics, pages 78–91. Springer.

Claudiu-Cristian Musat, Alireza Ghasemi, and Boi
Faltings. 2012. Sentiment analysis using a novel hu-
man computation game. In Proceedings of the 3rd
Workshop on the People’s Web Meets NLP: Collabo-
ratively Constructed Semantic Resources and Their
Applications to NLP, pages 1–9, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Stefanie Nowak and Stefan Rüger. 2010. How reliable
are annotations via crowdsourcing: a study about
inter-annotator agreement for multi-label image an-
notation. In Proceedings of the international con-
ference on Multimedia information retrieval, pages
557–566. ACM.

Emily Öhman, Timo Honkela, and Jörg Tiedemann.
2016. The challenges of multi-dimensional senti-
ment analysis across languages. PEOPLES 2016,
page 138.

Emily Öhman and Kaisla Kajava. 2018. Sentimenta-
tor: Gamifying fine-grained sentiment annotation.
In Digital Humanities in the Nordic Countries 2018.
CEUR Workshop Proceedings.

29

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Robert Plutchik. 1980. A general psychoevolutionary
theory of emotion. Theories of emotion, 1:3–31.

Matthew Purver and Stuart Battersby. 2012. Experi-
menting with distant supervision for emotion classi-
fication. In Proceedings of the 13th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 482–491. Association
for Computational Linguistics.

Karen Robson, Kirk Plangger, Jan H. Kietzmann, Ian
McCarthy, and Leyland Pitt. 2015. Is it all a game?
understanding the principles of gamification. Busi-
ness Horizons, 58(4):411 – 420.

Hassan Saif, Miriam Fernandez, Yulan He, and Harith
Alani. 2013. Evaluation datasets for twitter senti-
ment analysis: a survey and a new dataset, the sts-
gold.

Yong-Soo Seol, Dong-Joo Kim, and Han-Woo Kim.
2008. Emotion recognition from text using
knowledge-based ann. In ITC-CSCC: International
Technical Conference on Circuits Systems, Comput-
ers and Communications, pages 1569–1572.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y Ng. 2008. Cheap and fast—but is it
good?: evaluating non-expert annotations for natu-
ral language tasks. In Proceedings of the conference
on empirical methods in natural language process-
ing, pages 254–263. Association for Computational
Linguistics.

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Proceedings of the Eight Interna-
tional Conference on Language Resources and Eval-
uation (LREC’12), Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Ryoko Tokuhisa, Kentaro Inui, and Yuji Matsumoto.
2008. Emotion classification using massive exam-
ples extracted from the web. In Proceedings of the
22nd International Conference on Computational
Linguistics-Volume 1, pages 881–888. Association
for Computational Linguistics.

Peter D. Turney. 2002. Thumbs up or thumbs down?:
Semantic orientation applied to unsupervised clas-
sification of reviews. In Proceedings of the 40th
Annual Meeting on Association for Computational
Linguistics, pages 417–424, Stroudsburg, PA, USA.
Association for Computational Linguistics.

30

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 31–42
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

IEST: WASSA-2018 Implicit Emotions Shared Task

Roman Klinger1, Orphée De Clercq2, Saif M. Mohammad3, and Alexandra Balahur4

1 Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart, Germany
klinger@ims.uni-stuttgart.de

2 LT3, Language and Translation Technology Team, Ghent University, Belgium
orphee.declercq@ugent.be

3 National Research Council Canada, Ottawa, Ontario, Canada
saif.mohammad@nrc-cnrc.gc.ca

4 Text and Data Mining Unit, European Commission Joint Research Centre, Ispra, Italy
alexandra.balahur@ec.europa.eu

Abstract

Past shared tasks on emotions use data with
both overt expressions of emotions (I am so
happy to see you!) as well as subtle expres-
sions where the emotions have to be inferred,
for instance from event descriptions. Further,
most datasets do not focus on the cause or the
stimulus of the emotion. Here, for the first
time, we propose a shared task where systems
have to predict the emotions in a large auto-
matically labeled dataset of tweets without ac-
cess to words denoting emotions. Based on
this intention, we call this the Implicit Emotion
Shared Task (IEST) because the systems have
to infer the emotion mostly from the context.
Every tweet has an occurrence of an explicit
emotion word that is masked. The tweets are
collected in a manner such that they are likely
to include a description of the cause of the
emotion – the stimulus. Altogether, 30 teams
submitted results which range from macro F1

scores of 21 % to 71 %. The baseline (Max-
Ent bag of words and bigrams) obtains an F1

score of 60 % which was available to the partic-
ipants during the development phase. A study
with human annotators suggests that automatic
methods outperform human predictions, pos-
sibly by honing into subtle textual clues not
used by humans. Corpora, resources, and re-
sults are available at the shared task website at
http://implicitemotions.wassa2018.com.

1 Introduction

The definition of emotion has long been debated.
The main subjects of discussion are the origin of
the emotion (physiological or cognitive), the com-
ponents it has (cognition, feeling, behaviour) and

the manner in which it can be measured (categori-
cally or with continuous dimensions). The Implicit
Emotion Shared Task (IEST) is based on Scherer
(2005), who considers emotion as “an episode of
interrelated, synchronized changes in the states of
all or most of the five organismic subsystems (in-
formation processing, support, executive, action,
monitor) in response to the evaluation of an exter-
nal or internal stimulus event as relevant to major
concerns of the organism”.

This definition suggests that emotion is triggered
by the interpretation of a stimulus event (i. e., a sit-
uation) according to its meaning, the criteria of
relevance to the personal goals, needs, values and
the capacity to react. As such, while most situations
will trigger the same emotional reaction in most
people, there are situations that may trigger differ-
ent affective responses in different people. This is
explained more in detail by the psychological the-
ories of emotion known as the “appraisal theories”
(Scherer, 2005).

Emotion recognition from text is a research area
in natural language processing (NLP) concerned
with the classification of words, phrases, or doc-
uments into predefined emotion categories or di-
mensions. Most research focuses on discrete emo-
tion recognition, which assigns categorical emo-
tion labels (Ekman, 1992; Plutchik, 2001), e. g.,
Anger, Anticipation, Disgust, Fear, Joy, Sadness,
Surprise and Trust.1 Previous research developed
statistical, dictionary, and rule-based models for

1Some shared tasks on fine emotion intensity include the
SemEval-2007 Task 14, WASSA-2017 shared task EmoInt
(Mohammad and Bravo-Marquez, 2017), and SemEval-2018
Task 1 (Mohammad et al., 2018).

31

https://doi.org/10.18653/v1/P17

several domains, including fairy tales (Alm et al.,
2005), blogs (Aman and Szpakowicz, 2007) and
microblogs (Dodds et al., 2011). Presumably, most
models built on such datasets rely on emotion
words (or their representations) whenever acces-
sible and are therefore not forced to learn associ-
ations for more subtle descriptions. Such models
might fail to predict the correct emotion when such
overt words are not accessible. Consider the in-
stance “when my child was born” from the ISEAR
corpus, a resource in which people have been asked
to report on events when they felt a specific prede-
fined emotion. This example does not contain any
emotion word itself, though one might argue that
the words “child” and “born” have a positive prior
connotation.

Balahur et al. (2012b) showed that the inference
of affect from text often results from the interpreta-
tion of the situation presented therein. Therefore,
specific approaches have to be designed to under-
stand the emotion that is generally triggered by situ-
ations. Such approaches require common sense and
world knowledge (Liu et al., 2003; Cambria et al.,
2009). Gathering world knowledge to support NLP
is challenging, although different resources have
been built to this aim – e. g., Cyc2 and ConceptNet
(Liu and Singh, 2004).

On a different research branch, the field of dis-
tant supervision and weak supervision addresses
the challenge that manually annotating data is te-
dious and expensive. Distant supervision tackles
this by making use of structured resources to au-
tomatically label data (Mintz et al., 2009; Riedel
et al., 2010; Mohammad, 2012). This approach has
been adapted in emotion analysis by using informa-
tion assigned by authors to their own text, with the
use of hashtags and emoticons (Wang et al., 2012).

With the Implicit Emotion Shared Task (IEST),
we aim at combining these two research branches:
On the one hand, we use distant supervision to
compile a corpus of substantial size. On the other
hand, we limit the corpus to those texts which are
likely to contain descriptions of the cause of the
emotion – the stimulus. Due to the ease of access
and the variability and data richness on Twitter,
we opt for compiling a corpus of microposts, from
which we sample tweets that contain an emotion
word followed by ‘that’, ‘when’, or ‘because’. We
then mask the emotion word and ask systems to
predict the emotion category associated with that

2http://www.cyc.com

word.3 The emotion category can be one of six
classes: anger, disgust, fear, joy, sadness, and sur-
prise. Examples from the data are:

(1) “It’s [#TARGETWORD#] when you
feel like you are invisible to others.”

(2) “My step mom got so [#TARGET-
WORD#] when she came home from
work and saw that the boys didn’t come
to Austin with me.”

In Example 1, the inference is that feeling invisible
typically makes us sad. In Example 2, the context
is presumably that a person (mom) expected some-
thing else than what was expected. This in isolation
might cause anger or sadness, however, since “the
boys are home” the mother is likely happy. Note
that such examples can be used as source of com-
monsense or world knowledge to detect emotions
from contexts where the emotion is not explicitly
implied.

The shared task was conducted between 15
March 2018 (publication of train and trial data)
and the evaluation phase, which ran from 2 to 9
July. Submissions were managed on CodaLab4.
The best performing systems are all ensembles of
deep learning approaches. Several systems make
use of external additional resources such as pre-
trained word vectors, affect lexicons, and language
models fine-tuned to the task.

The rest of the paper is organized as follows: we
first review related work (Section 2). Section 3
introduces the shared task, the data used, and the
setup. The results are presented in Section 4, in-
cluding the official results and a discussion of dif-
ferent submissions. The automatic system’s pre-
dictions are then compared to human performance
in Section 5, where we report on a crowdsourcing
study with the data used for the shared task. We
conclude in Section 6.

2 Related Work

Related work is found in different directions of
research on emotion detection in NLP: resource
creation and emotion classification, as well as mod-
eling the emotion itself.

Modeling the emotion computationally has been
approached from the perspective of humans needs

3This gives the shared task a mixed flavor of both text
classification and word prediction, in the spirit of distributional
semantics.

4https://competitions.codalab.org/competitions/19214

32

and desires with the goal of simulating human re-
actions. Dyer (1987) presents three models which
take into account characters, arguments, emotion
experiencers, and events. These aspects are mod-
eled with first order logic in a procedural manner.
Similarly, Subasic and Huettner (2001) use fuzzy
logic for such modeling in order to consider grad-
ual differences. A similar approach is followed by
the OCC model (Ortony et al., 1990), for which
Udochukwu and He (2015) show how to connect it
to text in a rule-based manner for implicit emotion
detection. Despite of this early work on holistic
computational models of emotions, NLP focused
mostly on a more coarse-grained level.

One of the first corpora annotated for emotions
is that by Alm et al. (2005) who analyze sentences
from fairy tales. Strapparava and Mihalcea (2007)
annotate news headlines with emotions and valence,
Mohammad et al. (2015) annotate tweets on elec-
tions, and Schuff et al. (2017) tweets of a stance
dataset (Mohammad et al., 2017). The SemEval-
2018 Task 1: Affect in Tweets (Mohammad et al.,
2018) includes several subtasks on inferring the af-
fectual state of a person from their tweet: emotion
intensity regression, emotion intensity ordinal clas-
sification, valence (sentiment) regression, valence
ordinal classification, and multi-label emotion clas-
sification. In all of these prior shared tasks and
datasets, no distinction is made between implicit
or explicit mentions of the emotions. We refer the
reader to Bostan and Klinger (2018) for a more de-
tailed overview of emotion classification datasets.

Few authors specifically analyze which phrase
triggers the perception of an emotion. Aman and
Szpakowicz (2007) focus on the annotation on doc-
ument level but also mark emotion indicators. Mo-
hammad et al. (2014) annotate electoral tweets
for semantic roles such as emotion and stimulus
(from FrameNet). Ghazi et al. (2015) annotate
a subset of Aman and Szpakowicz (2007) with
causes (inspired by the FrameNet structure). Kim
and Klinger (2018) and Neviarouskaya and Aono
(2013) similarly annotate emotion holders, targets,
and causes as well as the trigger words.

One of the oldest resources nowadays used for
emotion recognition is the ISEAR set (Scherer,
1997) which consists of self-reports of emotional
events. As the task of participants in a psycho-
logical study was not to express an emotion but
to report on an event in which they experienced
a given emotion, this resource can be considered

similar to our goal of focusing on implicit emotion
expressions.

With the aim to extend the coverage of ISEAR,
Balahur et al. (2011, 2012a) build EmotiNet, a
knowledge base to store situations and the affective
reactions they have the potential to trigger. They
show how the knowledge stored can be expanded
using lexical and semantic similarity, as well as
through the use of Web-extracted knowledge (Bal-
ahur et al., 2013). The patterns used to populate
the database are of the type “I feel [emotion] when
[situation]”, which was also a starting point for our
task.

Finally, several approaches take into consider-
ation distant supervision (Mohammad and Kir-
itchenko, 2015; Abdul-Mageed and Ungar, 2017;
De Choudhury et al., 2012; Liu et al., 2017, i. a.).
This is motivated by the high availability of user-
generated text and by the challenge that manual
annotation is typically tedious or expensive. This
contrasts with the current data demand of machine
learning, and especially, deep learning approaches.

With our work in IEST, we combine the goal of
the development of models which are able to recog-
nize emotions from implicit descriptions without
having access to explicit emotion words, with the
paradigm of distant supervision.

3 Shared Task

3.1 Data

The aim of the Implicit Emotion Shared Task
is to force models to infer emotions from the
context of emotion words without having access
to them. Specifically, the aim is that models infer
the emotion through the causes mentioned in the
text. Thus, we build the corpus of Twitter posts
by polling the Twitter API5 for the expression
‘EMOTION-WORD (that|because|when)’,
where EMOTION-WORD contains a synonym for
one out of six emotions.6 The synonyms are shown
in Table 1. The requirement of tweets to have
either ‘that’, ‘because’, or ‘when’ immediately
after the emotion word means that the tweet likely
describes the cause of the emotion.

The initially retrieved large dataset has a distribu-
tion of 25 % surprise, 23 % sadness, 18 % joy, 16 %
fear, 10 % anger, 8 % disgust. We discard tweets

5https://developer.twitter.com/en/docs.html
6Note that we do not check that there is a white space

before the emotion word, which leads to tweets containing
. . . “unEMOTION-word. . . ”.

33

Emotion Abbr. Synonyms

Anger A angry, furious
Fear F afraid, frightened, scared, fearful
Disgust D disgusted, disgusting
Joy J cheerful, happy, joyful
Sadness Sa sad, depressed, sorrowful

Surprise Su surprising, surprised, astonished,
shocked, startled, astounded, stunned

Table 1: Emotion synonyms used when polling Twitter.

Emotion Train Trial Test

Anger 25562 1600 4794
Disgust 25558 1597 4794
Fear 25575 1598 4791
Joy 27958 1736 5246
Sadness 23165 1460 4340
Surprise 25565 1600 4792

Sum 153383 9591 28757

Table 2: Distribution of IEST data.

with more than one emotion word, as well as exact
duplicates, and mask usernames and URLs. From
this set, we randomly sample 80 % of the tweets
to form the training set (153,600 instances), 5 %
as trial set (9,600 instances), and 15 % as test set
(28,800 instances). We perform stratified sampling
to obtain a balanced dataset. While the shared task
took place, two errors in the data preprocessing
were discovered by participants (the use of the word
unhappy as synonym for sadness, which lead to in-
consistent preprocessing in the context of negated
expressions, and the occurrence of instances with-
out emotion words). To keep the change of the data
at a minimum, the erroneous instances were only
removed, which leads to a distribution of the data
as shown in Table 2.

3.2 Task Setup

The shared task was announced through a dedi-
cated website (http://implicitemotions.wassa2018.
com/) and computational-linguistics-specific mail-
ing lists. The organizers published an evalua-
tion script which calculates precision, recall, and
F1 measure for each emotion class as well as micro
and macro average. Due to the nearly balanced
dataset, the chosen official metric for ranking sub-
mitted systems is the macro-F1 measure.

In addition to the data, the participants were
provided a list of resources they might want to
use7 (and they were allowed to use any other
resources they have access to or create them-

7http://implicitemotions.wassa2018.com/resources/

Predicted Labels

A D F J Sa Su

G
ol

d
L

ab
el

s A 2431 476 496 390 410 426
D 426 2991 245 213 397 522
F 430 249 3016 327 251 518
J 378 169 290 3698 366 345
Sa 450 455 313 458 2335 329
Su 411 508 454 310 279 2930

Table 3: Confusion Matrix on Test Data for Baseline.

Predicted Labels

A D F J Sa Su

G
ol

d
L

ab
el

s A 3182 313 293 224 329 453
D 407 3344 134 102 336 471
F 403 129 3490 196 190 383
J 297 67 161 4284 220 217
Sa 443 340 171 240 2947 199
Su 411 367 293 209 176 3336

Table 4: Confusion Matrix on Test Data of Best Sub-
mitted System

selves). We also provided access to a baseline
system.8 This baseline is a maximum entropy
classifier with L2 regularization. Strings which
match [#a-zA-Z0-9_=]+|[ˆ] form tokens.
As preprocessing, all symbols which are not al-
phanumeric or contain the # sign are removed.
Based on that, unigrams and bigrams form the
Boolean features as a set of words for the classifier.

4 Results

4.1 Baseline

The intention of the baseline implementation was
to provide participants with an intuition of the dif-
ficulty of the task. It reaches 59.88 % macro F1

on the test data, which is very similar to the trial
data result (60.1 % F1). The confusion matrix for
the baseline is presented in Table 3; the confusion
matrix for the best submitted system is shown in
Table 4.

4.2 Submission Results

Table 5 shows the main results of the shared task.
We received submissions through CodaLab from
thirty participants. Twenty-six teams responded
to a post-competition survey providing additional
information regarding team members (56 people in
total) and the systems that were developed. For the
remaining analyses and the ranking, we only report
on these twenty-six teams.

8https://bitbucket.org/rklinger/simpletextclassifier

34

id Team F1 Rank B

1 Amobee 71.45 (1) 3
2 IIIDYT 71.05 (2) 3
3 NTUA-SLP 70.29 (3) 4
4 UBC-NLP 69.28 (4) 6
5 Sentylic 69.20 (5) 7
6 HUMIR 68.64 (6) 8
7 nlp 68.48 (7) 9
8 DataSEARCH 68.04 (8) 10
9 YNU1510 67.63 (9) 11
10 EmotiKLUE 67.13 (10) 11
11 wojtek.pierre 66.15 (11) 15
12 hgsgnlp 65.80 (12) 15
13 UWB 65.70 (13) 15
14 NL-FIIT 65.52 (14) 15
15 TubOslo 64.63 (15) 17
16 YNU Lab 64.10 (16) 17
17 Braint 62.61 (17) 19
18 EmoNLP 62.11 (18) 19
19 RW 60.97 (19) 20

20 Baseline 59.88 21

21 USI-IR 58.37 (20) 22
22 THU NGN 58.01 (21) 23
23 SINAI 57.94 (22) 24
24 UTFPR 56.92 (23) 26
25 CNHZ2017 56.40 27
26 lyb3b 55.87 27
27 Adobe Research 53.08 (24) 28
28 Anonymous 50.38 29
29 dinel 49.99 (25) 30
30 CHANDA 41.89 (26) 31
31 NLP LDW 21.03

Table 5: Official results of IEST 2018. Participants
who did not report on the system details did not get
assigned a rank and are reported in gray. Column B
provides the first row in the results table to which the re-
spective row is significantly different (confidence level
0.99), tested with bootstrap resampling.

The table shows results from 31 systems, includ-
ing the baseline results which have been made avail-
able to participants during the shared task started.
From all submissions, 19 submissions scored above
the baseline. The best scoring system is from
team Amobee, followed by IIDYT and NTUA-SLP.
The first two results are not significantly differ-
ent, as tested with the Wilcoxon (1945) sign test
(p < 0.01) and with bootstrap resampling (confi-
dence level 0.99).

Table 10 in the Appendix shows a breakdown
of the results by emotion class. Though the data
was nearly balanced, joy is mostly predicted with
highest performance, followed by fear and disgust.
The prediction of surprise and anger shows a lower
performance.

Note that the macro F1 evaluation took into ac-
count all classes which were either predicted or in
the gold data. Two teams submitted results which

R
an

k

K
er

as

Te
ns

or
flo

w

Pa
nd

as

Sc
iK

itL
ea

rn

N
LT

K

G
lo

V
e

G
en

si
m

Py
To

rc
h

Fa
st

Te
xt

Sp
aC

y

W
ek

a
E

L
M

o
L

ib
L

in
ea

r
T

he
an

o

1 X X X X
2 X X
3 X X X
4 X X X X X X X
5 X X X X X
6 X X X X X
7 X X X X X X
8 X X X X X X X X
9 X X X X X X X X

10 X X
11 X X X X X X
12 X X X X X
13 X X X X X X
14 X X X X X
15 X
16 X X X X X
17 X X
18 X X X X
19 X X
20 X X X X X
21 X X X X X
22 X X X X X
23 X X
24 X X X X X X
25 X X X
26 X

16 14 14 13 13 11 11 5 5 3 3 3 1 1

Table 6: Overview of tools employed by different
teams (sorted by popularity from left to right).

contain labels not present in the gold data, which
reduced the macro-F1 dramatically. With an evalu-
ation only taking into account 6 labels, id 22 would
be on rank 9 and id 28 would be on rank 10.

4.3 Review of Methods

Table 6 shows that many participants use high-level
libraries like Keras or NLTK. Tensorflow is only
of medium popularity and Theano is only used
by one participant. Table 7 shows a summary of
machine learning methods used by the teams, as
reported by themselves. Nearly every team uses
embeddings and neural networks; many teams use
an ensemble of architectures. Several teams use
language models showing a current trend in NLP to
fine-tune those to specific tasks (Howard and Ruder,
2018). Presumably, those are specifically helpful
in our task due to its word-prediction aspect.

Finally, Table 8 summarizes the different kinds
of information sources taken into account by the
teams. Several teams use affect lexicons in addi-
tion to word information and emoji-specific infor-
mation. The incorporation of statistical knowledge
from unlabeled corpora is also popular.

35

R
an

k
E

m
be

dd
in

gs

L
ST

M
/R

N
N

/G
R

U

E
ns

em
bl

e
C

N
N

/C
ap

su
le

s
A

tte
nt

io
n

L
in

ea
rC

la
ss

ifi
er

Tr
an

sf
er

L
ea

rn
in

g
L

an
gu

ag
e

m
od

el
M

L
P

A
ut

oe
nc

od
er

R
an

do
m

Fo
rr

es
t

k-
M

ea
ns

B
ag

gi
ng

L
D

A

1 X X X X X X X
2 X X X X
3 X X X X X X
4 X X X X X X
5 X X X X
6 X X X X X X
7 X X X X
8 X X X
9 X X X X X

10 X X X
11 X X X
12 X X X X
13 X X
14 X X X
15 X
16 X X X
17 X X X X
18 X X X X
19 X
20 X X
21 X X X X X
22 X X
23 X X
24 X X X X
25 X X X
26

23 20 12 9 7 5 5 3 2 1 1 1 1 1

Table 7: Overview of methods employed by different
teams (sorted by popularity from left to right).

4.4 Top 3 Submissions

In the following, we briefly summarize the ap-
proaches used by the top three teams: Amobee,
IIIDYT, and NTUA-SLP. For more information on
these approaches and those of the other teams, we
refer the reader to the individual system description
papers. The three best performing systems are all
ensemble approaches. However, they make use of
different underlying machine learning architectures
and rely on different kinds of information.

4.4.1 Amobee
The top-ranking system, Amobee, is an ensemble
approach of several models (Rozental et al., 2018).
First, the team trains a Twitter-specific language
model based on the transformer decoder architec-
ture using 5B tweets as training data. This model
is used to find the probabilities of potential miss-
ing words, conditional upon the missing word de-
scribing one of the six emotions. Next, the team
applies transfer learning from the trained models
they developed for SemEval 2018 Task 1: Affect
in Tweets (Rozental and Fleischer, 2018). Finally,
they directly train on the data provided in the shared
task while incorporating outputs from DeepMoji

R
an

k

W
or

ds

L
ex

ic
on

s

C
ha

ra
ct

er
s

E
m

oj
i

U
nl

ab
el

ed
C

or
po

ra

E
m

ot
io

n
E

m
b.

Se
nt

en
ce

/D
oc

um
en

t

Se
m

E
va

l

1 X X X X X X
2 X X X
3 X X X X
4 X X
5 X
6 X X X
7 X
8 X X X
9 X

10 X X X
11 X X X
12 X X X X
13 X X
14 X X X
15 X X
16 X
17 X X
18 X X X X X X
19 X
20 X X X
21 X X X
22 X X
23 X X
24 X X X X
25 X
26 X

26 9 8 7 6 4 4 3

Table 8: Overview of information sources employed by
different teams (sorted by popularity from left to right).

(Felbo et al., 2017) and “Universal Sentence En-
coder” (Cer et al., 2018) as features.

4.4.2 IIIDYT
The second-ranking system, IIIDYT (Balazs et al.,
2018), preprocesses the dataset by tokenizing the
sentences (including emojis), and normalizing the
USERNAME, NEWLINE, URL and TRIGGER-
WORD indicators. Then, it feeds word-level rep-
resentations returned by a pretrained ELMo layer
into a Bi-LSTM with 1 layer of 2048 hidden units
for each direction. The Bi-LSTM output word rep-
resentations are max-pooled to generate sentence-
level representations, followed by a single hidden
layer of 512 units and output size of 6. The team
trains six models with different random initializa-
tions, obtains the probability distributions for each
example, and then averages these to obtain the final
label prediction.

4.4.3 NTUA-SLP
The NTUA-SLP system (Chronopoulou et al.,
2018) is an ensemble of three different generic
models. For the first model, the team pretrains
Twitter embeddings with the word2vec skip-gram

36

model using a large Twitter corpus. Then, these
pretrained embeddings are fed to a neural classi-
fier with 2 layers, each consisting of 400 bi-LSTM
units with attention. For the second model, they
use transfer learning of a pretrained classifier on
a 3-class sentiment classification task (Semeval17
Task4A) and then apply fine-tuning to the IEST
dataset. Finally, for the third model the team uses
transfer learning of a pretrained language model,
according to Howard and Ruder (2018). They first
train 3 language models on 3 different Twitter cor-
pora (2M, 3M, 5M) and then they fine-tune them
to the IEST dataset with gradual unfreezing.

4.5 Error Analysis

Table 11 in the Appendix shows a subsample of
instances which are predicted correctly by all teams
(marked as +, including the baseline system and
those who did not report on system details) and that
were not predicted correctly by any team (marked
as −), separated by correct emotion label.

For the positive examples which are correctly
predicted by all teams, specific patterns reoccur.
For anger, the author of the first example encour-
ages the reader not to be afraid – a prompt which
might be less likely for other emotions. For several
emotions, single words or phrases are presumably
associated with such emotions, e. g., “hungry” with
anger, “underwear”, “sweat”, “ewww” with dis-
gust, “leaving”, “depression” for sadness, “why am
i not” for surprise.

Several examples which are all correctly pre-
dicted by all teams for joy include the syllable “un”
preceding the triggerword – a pattern more frequent
for this emotion than for others. Another pattern
is the phrase “fast and furious” (with furious for
anger) which should be considered a mistake in the
sampling procedure, as it refers to a movie instead
of an emotion expression.

Negative examples appear to be reasonable when
the emotion is given but may also be valid with
other labels than the gold. For disgust, respec-
tive emotion synonyms are often used as a strong
expression actually referring to other negative emo-
tions. Especially for sadness, the negative exam-
ples include comparably long event descriptions.

5 Comparison to Human Performance

An interesting research question is how accurately
native speakers of a language can predict the emo-
tion class when the emotion word is removed from

Predicted Labels

A D F J Sa Su

G
ol

d
L

ab
el

s A 349 40 34 55 95 43
D 195 92 30 84 157 69
F 94 20 265 92 120 42
J 39 6 22 398 36 13
Sa 88 37 23 89 401 46
Su 123 25 29 132 53 183

Table 9: Confusion Matrix Sample Annotated by Hu-
mans in Crowdsourcing

a tweet. Thus we conducted a crowdsourced study
asking humans to perform the same task as pro-
posed for automatic systems in this shared task.

We sampled 900 instances from the IEST data:
50 tweets for each of the six emotions in 18
pair-wise combinations with ‘because’, ‘that’, and
‘when’. The tweets and annotation questionnaires
were uploaded on a crowdsourcing platform, Figure
Eight (earlier called CrowdFlower).9 The question-
naire asked for the best guess for the emotion (Q1)
as well as any other emotion that they think might
apply (Q2).

About 5 % of the tweets were annotated inter-
nally beforehand for Q1 (by one of the authors of
this paper). These tweets are referred to as gold
tweets. The gold tweets were interspersed with
other tweets. If a crowd-worker got a gold tweet
question wrong, they were immediately notified
of the error. If the worker’s accuracy on the gold
tweet questions fell below 70 %, they were refused
further annotation, and all of their annotations were
discarded. This served as a mechanism to avoid
malicious annotations.

Each tweet is annotated by at least three people.
A total of 3,619 human judgments of emotion asso-
ciated with the trigger word were obtained. Each
judgment included the best guess for the emotion
(response to Q1) as well as any other emotion that
they think might apply (response to Q2). The an-
swer to Q1 corresponds to the shared task setting.
However, automatic systems were not given the
option of providing additional emotions that might
apply (Q2).

The macro F1 for predicting the emotion is 45 %
(Q1, micro F1 of 0.47). Observe that human perfor-
mance is lower than what automatic systems reach
in the shared task. The correct emotion was present
in the top two guessed emotions in 57 % of the
cases. Perhaps, the automatic systems are honing

9https://www.figure-eight.com

37

in to some subtle systematic regularities in hope
that particular emotion words are used (for exam-
ple, the function words in the immediate neighbor-
hood of the target word). It should also be noted,
however, that the data used for human annotations
was only a subsample of the IEST data.

An analysis of subsets of Tweets containing the
words because, that, and when after the emotion
word shows that Tweets with “that” are more dif-
ficult (41 % accuracy) than with “when” (49 %)
and “because” (51 %). This relationship between
performance and query string is not observed in
the baseline system – here, accuracy on the test
data (on the data used for human evaluation) for
the “that” subset is 61 % (60 %), for “when” 62 %
(53 %), and for “because” 55 % (50 %) – there-
fore, the automatic system is most challenged by
“because”, while humans are more challenged by
“that”. Please note that this comparison on the test
data is somewhat unfair since for the human anal-
ysis, the data was sampled in a stratified manner,
but not for the automatic prediction. The test data
contains 5635 “because” tweets, 13649 with “that”
and 9474 with “when”.

There are differences in the difficulty of the task
for different emotions: The accuracy (F1) by emo-
tion is 57 % (46 %) for anger, 15 % (21 %) for dis-
gust, 42 % (51 %) for fear, 77 % (58 %) for joy,
59 % (52 %) for sadness and 34 % (39 %) for sur-
prise. The confusion matrix is depicted in Table 9.
Disgust is often confused with anger, followed by
fear being confused with sadness. Surprise is often
confused with anger and joy.

6 Conclusions & Future Work

With this paper and the Implicit Emotion Shared
Task, we presented the first dataset and joint effort
to focus on causal descriptions to infer emotions
that are triggered by specific life situations on a
large scale. A substantial number of participating
systems presented the current state of the art in text
classification in general and transferred it to the
task of emotion classification.

Based on the experiences during the organiza-
tion and preparation of this shared task, we plan
the following steps for a potential second iteration.
The dataset was now constructed via distant super-
vision, which might be a cause for inconsistencies
in the dataset. We plan to use crowdsourcing as
applied for the estimation of human performance
to improve preprocessing of the data. In addition,

as one participant noted, the emotion words which
were used to retrieve the data were removed, but,
in a subset of the data, other emotion words were
retained.

The next step, which we suggest to the partici-
pants and future researchers is introspection of the
models – carefully analyse them to prove that the
models actually learn to infer emotions from subtle
descriptions of situations, instead of purely associ-
ating emotion words with emotion labels. Similarly,
an open research question is how models developed
on the IEST data perform on other data sets. Bostan
and Klinger (2018) showed that transferring mod-
els from one corpus to another in emotion analysis
leads to drops in performance. Therefore, an inter-
esting option is to use transfer learning from estab-
lished corpora (which do not distinguish explicit
and implicit emotion statements) to the IEST data
and compare the models to those directly trained
on the IEST and vice versa.

Finally, another line of future research is the
application of the knowledge inferred to other tasks,
such as argument mining and sentiment analysis.

Acknowledgments

This work has been partially supported by the
German Research Council (DFG), project SEAT
(Structured Multi-Domain Emotion Analysis from
Text, KL 2869/1-1). We thank Evgeny Kim, Laura
Bostan, Jeremy Barnes, and Veronique Hoste for
fruitful discussions.

References
Muhammad Abdul-Mageed and Lyle Ungar. 2017.

Emonet: Fine-grained emotion detection with gated
recurrent neural networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
718–728, Vancouver, Canada. Association for Com-
putational Linguistics.

Cecilia Ovesdotter Alm, Dan Roth, and Richard Sproat.
2005. Emotions from text: Machine learning
for text-based emotion prediction. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 579–586, Vancouver,
British Columbia, Canada. Association for Compu-
tational Linguistics.

Saima Aman and Stan Szpakowicz. 2007. Identify-
ing expressions of emotion in text. In Text, Speech
and Dialogue, pages 196–205, Berlin, Heidelberg.
Springer Berlin Heidelberg.

38

Alexandra Balahur, Jesus Hermida, and Andres Mon-
toyo. 2012a. Building and exploiting emotinet, a
knowledge base for emotion detection based on the
appraisal theory model. IEEE Transactions on Af-
fective Computing, 3:88–101.

Alexandra Balahur, Jesús M. Hermida, Andrés Mon-
toyo, and Rafael Muñoz. 2011. EmotiNet: A knowl-
edge base for emotion detection in text built on the
appraisal theories. In Natural Language Processing
and Information Systems, pages 27–39, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Alexandra Balahur, Jesús M. Hermida, and Hristo
Tanev. 2013. Detecting implicit emotion expres-
sions from text using ontological resources and lex-
ical learning. In New Trends of Research in Ontolo-
gies and Lexical Resources: Ideas, Projects, Sys-
tems, pages 235–255, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Alexandra Balahur, Jess Hermida, and Andrs Montoyo.
2012b. Detecting implicit expressions of emotion
in text: A comparative analysis. Decision Support
Systems, 53(4):742753.

Jorge A. Balazs, Edison Marrese-Taylor, and Yutaka
Matsuo. 2018. IIIDYT at IEST 2018: Implicit Emo-
tion Classification with Deep Contextualized Word
Representations. In Proceedings of the 9th Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, Brussels, Bel-
gium. Association for Computational Linguistics.

Laura Ana Maria Bostan and Roman Klinger. 2018. A
survey on annotated data sets for emotion classifi-
cation in text. In Proceedings of COLING 2018,
the 27th International Conference on Computational
Linguistics, Santa Fe, USA.

Erik Cambria, Amir Hussain, Catherine Havasi, and
Chris Eckl. 2009. Affectivespace: Blending com-
mon sense and affective knowledge to perform
emotive reasoning. In WOMSA09: 1st Work-
shop on Opinion Mining and Sentiment Analysis.
WOMSA’09: 1st Workshop on Opinion Mining and
Sentiment Analysis, pages 32–41, Seville, Spain.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris
Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. 2018. Universal sentence encoder. CoRR,
abs/1803.11175.

Alexandra Chronopoulou, Aikaterini Margatina, Chris-
tos Baziotis, and Alexandros Potamianos. 2018.
NTUA-SLP at IEST 2018: Ensemble of neural trans-
fer methods for implicit emotion classification. In
Proceedings of the 9th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, Brussels, Belgium. Association for
Computational Linguistics.

Munmun De Choudhury, Scott Counts, and Michael
Gamon. 2012. Not all moods are created equal! ex-
ploring human emotional states in social media. In
Sixth international AAAI conference on weblogs and
social media, pages 66–73.

Peter S. Dodds, Kameron D. Harris, Isabel M.
Kloumann, Catherine A. Bliss, and Christopher M.
Danforth. 2011. Temporal patterns of happiness and
information in a global social network: Hedonomet-
rics and twitter. PloS one, 6(12).

Michael G. Dyer. 1987. Emotions and their computa-
tions: Three computer models. Cognition and Emo-
tion, 1(3):323–347.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4):169–200.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sarcasm.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1615–1625, Copenhagen, Denmark. Association for
Computational Linguistics.

Diman Ghazi, Diana Inkpen, and Stan Szpakowicz.
2015. Detecting emotion stimuli in emotion-bearing
sentences. In Computational Linguistics and In-
telligent Text Processing, pages 152–165, Cham.
Springer International Publishing.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Evgeny Kim and Roman Klinger. 2018. Who feels
what and why? annotation of a literature corpus
with semantic roles of emotions. In Proceedings
of COLING 2018, the 27th International Conference
on Computational Linguistics, Santa Fe, USA.

Hugo Liu, Henry Lieberman, and Ted Selker. 2003.
A model of textual affect sensing using real-world
knowledge. In Proceedings of the 8th International
Conference on Intelligent User Interfaces, IUI ’03,
pages 125–132, New York, NY, USA. ACM.

Hugo Liu and Push Singh. 2004. Conceptnet – a practi-
cal commonsense reasoning tool-kit. BT Technology
Journal, 22(4):211–226.

Vicki Liu, Carmen Banea, and Rada Mihalcea. 2017.
Grounded emotions. In 2017 Seventh International
Conference on Affective Computing and Intelligent
Interaction (ACII), pages 477–483, San Antonio,
Texas.

39

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Conference of the As-
sociation for Computational Linguistics and the In-
ternational Joint Conference on Natural Language
Processing of the Asian Federation of Natural Lan-
guage Processing.

Saif Mohammad. 2012. #emotional tweets. In *SEM
2012: The First Joint Conference on Lexical and
Computational Semantics – Volume 1: Proceedings
of the main conference and the shared task, and Vol-
ume 2: Proceedings of the Sixth International Work-
shop on Semantic Evaluation (SemEval 2012), pages
246–255, Montréal, Canada. Association for Com-
putational Linguistics.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
WASSA-2017 shared task on emotion intensity. In
Proceedings of the Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis (WASSA), Copenhagen, Denmark.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalua-
tion (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion cate-
gories from tweets. Computational Intelligence,
31(2):301–326.

Saif M. Mohammad, Parinaz Sobhani, and Svetlana
Kiritchenko. 2017. Stance and sentiment in tweets.
ACM Trans. Internet Technol., 17(3):26:1–26:23.

Saif M. Mohammad, Xiaodan Zhu, Svetlana Kir-
itchenko, and Joel Martin. 2015. Sentiment, emo-
tion, purpose, and style in electoral tweets. Informa-
tion Processing & Management, 51(4):480–499.

Saif M. Mohammad, Xiaodan Zhu, and Joel Martin.
2014. Semantic role labeling of emotions in tweets.
In Proceedings of the 5th Workshop on Computa-
tional Approaches to Subjectivity, Sentiment and So-
cial Media Analysis, pages 32–41, Baltimore, Mary-
land. Association for Computational Linguistics.

Alena Neviarouskaya and Masaki Aono. 2013. Extract-
ing causes of emotions from text. In Proceedings of
the Sixth International Joint Conference on Natural
Language Processing, pages 932–936.

Andrew Ortony, Gerald L. Clore, and Allan Collins.
1990. The cognitive structure of emotions. Cam-
bridge University Press.

Robert Plutchik. 2001. The nature of emotions hu-
man emotions have deep evolutionary roots, a fact
that may explain their complexity and provide tools
for clinical practice. American Scientist, 89(4):344–
350.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling Relations and Their Mentions with-
out Labeled Text. In Proceedings of the Euro-
pean Conference on Machine Learning and Prin-
ciples and Practice in Knowledge Discovery from
Databases.

Alon Rozental and Daniel Fleischer. 2018. Amobee at
semeval-2018 task 1: GRU neural network with a
CNN attention mechanism for sentiment classifica-
tion. CoRR, abs/1804.04380.

Alon Rozental, Daniel Fleischer, and Zohar Kelrich.
2018. Amobee at IEST 2018: Transfer Learning
from Language Models. In Proceedings of the 9th
Workshop on Computational Approaches to Subjec-
tivity, Sentiment and Social Media Analysis, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Klaus R Scherer. 1997. Profiles of emotion-antecedent
appraisal: Testing theoretical predictions across cul-
tures. Cognition & Emotion, 11(2):113–150.

Klaus. R. Scherer. 2005. What are emotions? and how
can they be measured? Social Science Information,
44(4):695–729.

Hendrik Schuff, Jeremy Barnes, Julian Mohme, Sebas-
tian Padó, and Roman Klinger. 2017. Annotation,
modelling and analysis of fine-grained emotions on
a stance and sentiment detection corpus. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, Copenhagen, Denmark. Workshop at
Conference on Empirical Methods in Natural Lan-
guage Processing, Association for Computational
Linguistics.

Carlo Strapparava and Rada Mihalcea. 2007. Semeval-
2007 task 14: Affective text. In Proceedings of the
Fourth International Workshop on Semantic Evalua-
tions (SemEval-2007), pages 70–74, Prague, Czech
Republic. Association for Computational Linguis-
tics.

Pero Subasic and Alison Huettner. 2001. Affect analy-
sis of text using fuzzy semantic typing. IEEE Trans-
actions on Fuzzy Systems, 9(4):483–496.

Orizu Udochukwu and Yulan He. 2015. A rule-based
approach to implicit emotion detection in text. In
Natural Language Processing and Information Sys-
tems, pages 197–203, Cham. Springer International
Publishing.

Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan,
and Amit P. Sheth. 2012. Harnessing twitter ”big
data” for automatic emotion identification. In So-
cialCom/PASSAT, pages 587–592. IEEE.

Frank Wilcoxon. 1945. Individual comparisons by
ranking methods. Biometrics bulletin, 1(6):80–83.

40

A Results by emotion class

Table 10 shows breakdown of the results by emotion class.

Joy Sadness Disgust Anger Surprise Fear

Team P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Amobee 82 82 82 70 68 69 73 70 72 62 66 64 66 70 68 77 73 75
IIIDYT 79 81 80 71 67 69 70 71 71 66 63 64 66 71 68 76 74 75
NTUA-SLP 81 77 79 71 66 69 72 70 71 63 64 63 62 71 67 75 73 74

UBC-NLP 79 79 79 67 67 67 69 68 69 62 63 62 65 67 66 73 73 73
Sentylic 80 77 79 68 66 67 69 69 69 63 61 62 63 69 66 73 73 73
HUMIR 77 78 78 70 64 66 70 68 69 61 63 62 61 69 65 74 70 72
nlp 77 78 78 68 62 65 70 67 69 62 63 62 62 68 65 72 72 72
DataSEARCH 77 77 77 66 64 65 69 68 68 61 62 62 64 65 65 72 71 71
YNU1510 78 75 76 64 64 64 68 68 68 60 63 62 64 65 64 73 71 72
EmotiKLUE 77 78 77 69 59 64 67 67 67 60 61 60 60 68 64 72 69 71
wojtek.pierre 77 75 76 67 61 64 66 68 67 57 60 58 62 63 62 69 70 69
hgsgnlp 75 75 75 66 59 62 67 66 67 59 59 59 59 67 63 69 69 69
UWB 74 77 75 61 68 64 74 59 65 57 63 60 66 56 61 65 73 69
NL-FIIT 76 74 75 62 64 63 69 63 66 61 57 59 58 65 61 68 70 69
TubOslo 82 67 74 62 63 62 62 68 65 59 56 58 57 66 62 68 66 67
YNU Lab 74 74 74 66 56 61 63 67 65 55 61 58 63 56 60 66 70 68
Braint 77 70 73 61 60 60 60 68 64 56 55 55 60 57 59 63 66 65
EmoNLP 73 72 73 62 57 60 63 62 63 55 56 56 56 61 58 64 64 64
RW 71 72 72 60 57 59 62 63 62 55 52 53 56 60 58 62 63 63

Baseline 69 71 70 58 54 56 62 62 62 54 51 52 55 59 57 63 63 63

USI-IR 71 69 70 58 51 54 59 59 59 49 58 53 57 50 53 59 62 61
THU NGN 77 78 77 69 63 66 68 68 68 60 63 62 61 66 64 71 68 70
SINAI 68 68 68 52 52 52 59 60 59 52 51 52 56 55 55 61 61 61
UTFPR 64 53 58 54 60 57 59 58 58 50 53 52 51 62 56 66 56 61
CNHZ2017 65 70 67 58 47 52 58 59 59 51 48 50 49 58 53 58 57 58
lyb3b 72 64 68 58 46 52 55 62 58 46 53 50 47 50 49 60 58 59
AdobeResearch 62 65 63 52 52 52 52 51 52 48 45 46 49 52 50 56 54 55
Anonymous 76 77 76 64 67 65 70 64 67 62 59 60 59 69 64 74 68 71
dinel 61 61 61 52 37 43 52 49 50 44 50 47 44 54 48 51 50 50
CHANDA 46 64 54 39 36 38 54 42 47 38 37 37 51 20 29 39 58 46
NLP LDW 33 38 36 18 12 14 20 31 25 22 26 24 18 7 10 18 17 18

Table 10: Results by emotion class. Note that this table is limited to the six emotion labels of interest in the
data set. However, other labels predicted than these six were taken into account for calculation of the final macro
F1 score. Therefore, the macro F1 calculated from this table is different from the results in Table 5 in two cases
(THU NGN and Anonymous, who would be on rank 9 and rank 10, when predictions for classes outside the labels
were ignored.).

41

B Examples
Table 11 shows examples which have been correctly or wrongly predicted by all instances. They are discussed in Section 4.5.

Emo. +/− Instance

A
ng

er

+ You can’t spend your whole life holding the door open for people and then being TRIGGER when they
dont thank you. Nobody asked you to do it.

+ I get impatient and TRIGGER when I’m hungry
+ Anyone have the first fast and TRIGGER that I can borrow?

− I’m kinda TRIGGER that I have to work on Father’s Day
− @USERNAME she’ll become TRIGGER that I live close by and she will find me and punch me
− This has been such a miserable day and I’m TRIGGER because I wish I could’ve enjoyed myself more

D
is

gu
st

+ I find it TRIGGER when I can see your underwear through your leggings
+ @USERNAME ew ew eeww your weird I can’t I would feel so TRIGGER when people touch my hair
+ nyc smells TRIGGER when it’s wet.

− I wanted a cup of coffee for the train ride. Got ignored twice. I left TRIGGER because I can’t afford to
miss my train. #needcoffee :(

− So this thing where other black people ask where you’re ”really” from then act TRIGGER when you
reply with some US state. STAHP

− I’m so TRIGGER that I have to go to the post office to get my jacket that i ordered because delivering it
was obviously rocket science

Fe
ar

+ @USERNAME & explain how much the boys mean to me but I’m too TRIGGER that they’ll just laugh
at me bc my dad laughed after he

+ I threw up in a parking lot last night. I’m TRIGGER that’s becoming my thing. #illbutmostlymentally
+ When you holding back your emotions and you’re TRIGGER that when someone tries to comfort you

they’ll come spilling out http://url.removed

− It’s so funny how people come up to me at work speaking Portuguese and they get TRIGGER when I
respond in Portuguese

− @USERNAME it seems so fun but i haven’t got to try it yet. my mom and sis are always TRIGGER
when i try do something new with food.

− @USERNAME It’s hard to be TRIGGER when your giggle is so cute

Jo
y

+ maybe im so unTRIGGER because i never see the sunlight?
+ @USERNAME you’re so welcome !! i’m super TRIGGER that i’ve discovered ur work ! cant wait to see

more !!
+ @USERNAME Im so TRIGGER that you guys had fun love you

− @USERNAME Not TRIGGER that your show is a rerun. It seems every week one or more your
segments is a rerun.

− I am actually TRIGGER when not invited to certain things. I don’t have the time and patience to pretend.
− This has been such a miserable day and I’m TRIGGER because I wish I could’ve enjoyed myself more

S
ad

ne
ss

+ this award honestly made me so TRIGGER because my teacher is leaving http://url.removed
+ It is very TRIGGER that people think depression actually does work like that... http://url.removed
+ @USERNAME @USERNAME @USERNAME It’s also TRIGGER that you so hurt about it :’(

− Some bitch stole my seat then I had to steal the seat next to me. The boy looked TRIGGER when he
saw me, and he was smart! #iwasgonnapass

− I was so TRIGGER because I was having fun lol then i slipped cus I wasn’t wearing shoes
− @USERNAME I wipe at my eyes next, then swim a bit. ”I’m sorry.” I repeat, TRIGGER that I made him

worry.

S
ur

pr
is

e

+ why am i not TRIGGER that cal said that
+ @USERNAME why am I not TRIGGER that you’re the founder
+ @USERNAME I’m still TRIGGER when students know my name. I’m usually just ”that guy who wears

bow ties” =) (and there are a few at WC!)

− It’s TRIGGER when I see people that have the same phone as me no has htcs
− There is a little boy in here who is TRIGGER that he has to pay for things and that we won’t just give

him things
− totally TRIGGER that my fams celebrating easter today because my sister goes back to uni sunday

Table 11: Subsample of Tweets that were correctly predicted by all teams and of Tweets that were not
correctly predicted by any team.

42

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 43–49
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Amobee at IEST 2018: Transfer Learning from Language Models

Alon Rozental∗ , Daniel Fleischer∗ , Zohar Kelrich∗
Amobee Inc., Tel Aviv, Israel

alon.rozental@amobee.com
daniel.fleischer@amobee.com
zohar.kelrich@amobee.com

Abstract

This paper describes the system developed
at Amobee for the WASSA 2018 implicit
emotions shared task (IEST). The goal of this
task was to predict the emotion expressed by
missing words in tweets without an explicit
mention of those words. We developed
an ensemble system consisting of language
models together with LSTM-based networks
containing a CNN attention mechanism. Our
approach represents a novel use of language
models—specifically trained on a large Twitter
dataset—to predict and classify emotions. Our
system reached 1st place with a macro F1 score
of 0.7145.

1 Introduction

Sentiment analysis (SA) is a sub-field of natural
language processing (NLP) that explores the
automatic deduction of feelings and attitudes from
textual data. One popular choice of source to
study is Twitter, a social network website where
people publish short messages, called tweets, with
a maximum length of 280 characters. People
write on various topics, including global and
local events, public figures, brands and products.
Twitter data has attracted the interest of both
academia and industry for the last several years.
It contains some unique features, such as emojis,
misspelling and slang that are of interest to
NLP researchers while also containing insights
relevant for business intelligence, marketing and
e-governance.

The implicit emotions shared task (IEST) is
part of the WASSA 2018 workshop, and is
concerned with classifying tweets into one of 6
emotions—anger, disgust, fear, joy, sadness and
surprise—without an explicit mention of emotion
words. There were 30 teams who participated in

∗These authors contributed equally to this work.

the task; for a description and analysis of the task
and the datasets, see Klinger et al. (2018).

This paper describes our specially developed
system for the shared task; it comprises several
ensembles, where our new contribution is the use
of a language model as an emotion classifier.
A language model, based on the Transformer-
Decoder architecture (Vaswani et al., 2017) was
trained using a large Twitter dataset, and used to
produce probabilities for each of the 6 emotions.

The paper is organized as follows: Sections 2
and 3 describe our data sources and the embedding
training, Section 4 describes the training and usage
of the language models. In Section 5 we describe
the resources that are used as features; Section
6 describes the architecture, broken into smaller
components. Finally, we review and conclude in
Section 7.

2 Data Sources

We used several data sources for the shared task:

1. Twitter Firehose: we took a random sample
of 5 billion unique tweets using the Twitter
Firehose service. The tweets were used to
train language models and word embeddings;
in the following, we will refer to this as the
Tweets 5B dataset.

2. Semeval 2018 shared task 1 datasets, specif-
ically subtasks 1 and 5 in which tweets are
classified into one of 4 emotions (anger, fear,
joy and sadness; subtask 1) and a multi-
label classification of tweets into 11 emotions
(sub-task 5). We used both the datasets and
our trained models; Rozental and Fleischer
(2018) describes the system and Mohammad
et al. (2018) describes the shared task.

3. The official IEST 2018 task datasets; the
missing emotion words are replaced by the

43

https://doi.org/10.18653/v1/P17

Label Train Dev Test

Anger 25562 1600 4794

Disgust 25558 1597 4794

Fear 25575 1598 4791

Joy 27958 1736 5246

Sad 23165 1460 4340

Surprise 25565 1600 4792

Total 153383 9591 28757

Table 1: Distributions of labels in the train, dev and test
datasets.

keyword [#TRIGGERWORD#]. Table 1
presents the label distributions; refer to the
task paper for a description of the dataset.

We used different pre-processing procedures
on the aforementioned tweets for our different
learning algorithms. Those procedures ranged
from no pre-processing at all (for language
models), through a simple cleanup (for word
embeddings) to an extensive pre-processing, used
with our Semeval (2018) system to produce
predictions, with the following processing steps:
word tokenization, part of speech tagging, regex
treatment, lemmatization, named entity recogni-
tion, synonym replacement and word replacement
using a wikipedia-based dictionary.

3 Embeddings Training

Word embeddings are a set of algorithms de-
signed to encode a large vocabulary using low-
dimensional real vectors. Depending on the
algorithm, the vectors carry additional semantic
information, and are used in down-stream NLP
tasks. We trained word embeddings specifically
for the task; first, starting with the Tweets 5B
dataset, we removed exact duplicates. Then
we used a regex process: URLs, emails and
Twitter usernames were replaced with special
keywords. Next we removed tweets by using a
text similarity threshold1. Finally, we replaced
rare words with a special token; the criterion was
to have a vocabulary of 300K unique tokens in
total. We used the Gensim package (Řehůřek
and Sojka, 2010) to train 4 embeddings with sizes
of 300, 500, 700 and 1000 with the Word2vec
(Mikolov et al., 2013) algorithm. Similarly,
we trained 4 embeddings using the FastText

1 Using the SequenceMatcher module in Python.

algorithm (Bojanowski et al., 2017). We found
that for the purpose of downstream tasks, the
Word2vec embeddings outperformed the FastText
embeddings for each of the 4 sizes. In addition,
the Word2vec embedding of size 1000 performed
better than the others, provided that the training
set is large enough. The size of the IEST 2018
train set was sufficiently large for us to use that
single word embedding. The embeddings usage is
described in the architecture section 6.

4 Language Models

We trained a language model (LM) using the
Transformer-Decoder architecture, introduced in
Vaswani et al. (2017). We used the Tensor2Tensor
library (Vaswani et al., 2018) with the built-in
transformer-big parameter set, where we
only set the tweet maximum length to be 64
tokens. The model was trained for 2 days using
the Tweets 5B dataset on 8 Nvidia Tesla V100
GPUs. We will refer to this model as LM1. We
built a pipeline around the trained model, such that
given a sentence, its probability to be randomly
generated by the model is returned. For example,
under LM1 the probability of the text “I was
surprised to see you here” (S1) being generated
is exp (−25.76) and the text “I was afraid to see
you here” (S2) has a probability of exp (−27.86).
One can then calculate the conditional probability
of having S1 given only S1 or S2 were generated,
with a resulting value of 0.89.

In order to use LM1 to predict the correct label
for a tweet, we created a list of possible words for
each of the six emotions, presented in appendix A.
For each tweet, we replaced the trigger word with
each of the words from the list and then selected
the most probable version of each emotion. The
resulting 6 normalized probabilities are considered
to be the probabilities assigned by the LM for the
possible labels. See table 2 for a more detailed
example with 3 emotions.

In addition to LM1, we trained another lan-
guage model, denoted by LM2; it was generated
by taking LM1 and continuing its training using
just the tweets of the shared task dataset, where the
trigger word was replaced by the most probable
word (according to LM1 predictions) in the
emotional category matching the label. LM2
was trained for a day using a single V100 GPU.
The prediction procedure was the same as for
LM1. For the purposes of downstream analysis,

44

Emotion Possible Tweet Log Probability Max Final Probability

Joy
I’m happy than you. −24.38 −19.7 0.89995

I’m happier than you. −19.7

Angry
I’m angry than you. −26.8 −21.9 0.09972

I’m angrier than you. −21.9

Surprise
I’m surprise than you. −27.6 −27.6 0.00033

I’m surprised than you. −31.5

Table 2: Probability calculation of the sentence “I’m #{TRIGGERWORD} than you.” with 3 emotions using the
language models. Notice that the sentences which are grammatically incorrect have much lower probabilities.

the features we extracted from these models are
the final 6 probabilities pi (s), the log probability
to generate the most likely candidate tweet by
random—referred to as tweet complexity—given
by comp (s) = max

w∈W
log pw (s), where W is the set

of possible replacement words and finally, for each
candidate tweet, its shifted log probability, given
by log p̃w (s) = log pw (s)− comp (s).

5 Features

We used 4 types of features in our system:
first we used predictions from the language
models; we took both the log-probabilities of
the tweets with the trigger words replaced by
each word from appendix A, as well as the
final 6 probabilities for each tweet, for each of
the two language model. Next, we used our
system for the Semeval 2018 task 1 competition
to generate features and predictions for sub-
tasks 1 and 5 (as mentioned in section 2).
Next we used 2 external resources for tweets
embedding: Universal Sentence Embedding (Cer
et al., 2018), using the Tensorflow Hub service
and the DeepMoji package (Felbo et al., 2017).
We created 7 versions of each tweet by replacing
the trigger word with one of the 6 emotions and
an unrecognized word, thus creating 7 Universal
Sentence Embedding of dimension 512. The
DeepMoji embedding size is 2304 and only one
was produced for each tweet. Finally, we added
a binary feature that captures whether the trigger
word has a prefix in each tweet. These features
are used in the 1st (6.2) and 2nd (6.3) ensembles.

6 Architecture Overview

The system comprises of a multi-level soft-
voting ensemble. Each building block described
in this section is a classifier by itself and is

presented as such. For our submitted solution, the
building blocks were trained jointly in the manner
described in the next section, using a single
Nvidia GTX 1080 Ti GPU. We used the Keras
library (Chollet et al., 2015) and the TensorFlow
framework (Abadi et al., 2016).

6.1 Mini ASC Modules
This component consists of a bi-LSTM layer
with a CNN-based attention mechanism, similar
to a single module in the Amobee Sentiment
Classifier (ASC) architecture described in (2018).
A Dropout layer (Srivastava et al., 2014) of
0.5 was applied between each 2 consecutive
layers except for the word embedding layer;
for an illustration, see figure 1. The input
was the official dataset, transformed using our
trained embeddings, where the trigger word was
embedded as an unknown word using the rare-
words token. We concatenated an additional bit
to each word vector, denoting whether it is the
missing trigger-word, differentiating it from other
unknown words. There are three key differences
from our original work:

1. The GRU layer was replaced by an LSTM
layer.

2. Residual connections were added from the
output of the max-pooling layer to the
network output.

3. Hyper parameters values were in the follow-
ing ranges: embedding size=1000, LSTM
hidden size=[128, 512], number of fil-
ters=[128, 512] and dense layer size=[16,
32].

Training a single mini-ASC module on the IEST
2018 training set using the Adam optimizer
(Kingma and Ba, 2014), categorial cross entropy

45

LSTM
(F)

LSTM
(F)

LSTM
(F)

LSTM
(F)

LSTM
(B)

LSTM
(B)

LSTM
(B)

LSTM
(B)

I
am

very

#TRIGGER#

Sentence Embedding
40x1001

d=1000+1

Bi-directional LSTM
d=128

Hidden States
(40x2)x128

256 Filters
5 Sizes

d=1280

Pool-Max +
Concat.

d=16

d=6

Fully connected
layers

Mini Amobee Sentiment Classifier (ASC)

0

0

0

1

concat

Figure 1: Architecture of the mini Amobee sentiment classifier.

loss function and a batch size of 32, results
in an average accuracy of 0.669 on the official
validation set.

6.2 First Ensemble

The first level ensemble incorporates 4 mini ASC
modules and 3 identical sub-networks (see figure
2). The sub-networks share the same architecture
and their inputs are the following:

1. Universal + DeepMoji embeddings; this
network reaches an average F1 score of 0.587
by itself on the validation set.

2. The LM1 + LM2 predictions; this network
reaches an average F1 score of 0.637 by itself
on the validation set.

3. The Semeval 2018 predictions, together with
the LM1 predictions; this network reaches an
average F1 score of 0.646 by itself on the
validation set.

These networks share the same structure: the input
is connected to a dense layer of dimension 16 and
then concatenated with the input going into a final
dense layer of size 6 with a softmax activation
function. Dropout layers of 0.5 are applied after
the input and before the output layers.

The other 4 models are copies of the architec-
ture described in 6.1. All orange layers of size 6
are outputs of the model and are trained against
the labels with equal contribution to the total loss.
We used the Adam optimizer with a batch size
of 32, a learning rate of 5 · 10−4 and a decay of
5·10−5 (decay in Adam is introduced in Keras, and
is not part of the original algorithm; it represents
decay between batches). This network reaches an
average F1 score of 0.700 on the validation set.
This first ensemble is denoted by E1.

6.3 Second Ensemble

In the second level ensemble (figure 3), we
started with 8 copies of the aforementioned E1
models (with different parameters for the Mini
ASC modules in the ranges described in section
6.1) and combined them with a concatenation
of the following features (described in section
5): two external embeddings (Universal Sentence
Embedding, DeepMoji) and our Semeval 2018
pipeline predictions.

We have used a dense layer of size 16 over
the outputs of the 8 E1 models and a dense
layer of size 100 over all of the above features
(including the E1 outputs). These two layers were
concatenated into a softmax layer of size 6 which
was the output of the second ensemble; we denote
this by E2. This E2 network reaches an average
F1 score of 0.702 on the validation set. The final
model is a soft voting ensemble, comprising 128
networks of type E2; this probability averaging
is meant to decrease the variance of the model
which reaches an average F1 score of 0.705 on the
validation set.

Since the final model is an ensemble, where
some models are somewhat overfitted with respect
to the training dataset (e.g. E1) and some models
are not overfitted at all (LM1), we decided to use
the validation dataset to train the final model for
an additional 4 epochs using a large batch size of
900. After this procedure, the system scored an F1
of 0.7145 on the test dataset.

7 Review and Conclusions

In this paper we described the system developed
for the WASSA 2018 implicit emotion shared
task. It consists of a multi-level ensemble,
combining a novel use of language models to
predict the right emotion word, together with

46

Mini
Mini

MiniUniversal+DeepMoji

d=16

d=6

d=6

d=16

d=64

d=16

weighted average pooling

Mini-ASC

LM1 + LM2

LM1+Semeval

d=6

d=6

N=4

Figure 2: Architecture of the first-level ensemble.

MegaMega

d=100 d=16
d=100 d=16

d=100 d=16

d=6412
N=8

d=6

N=128

E2

d=100 d=16

mean poolingd=6

d=6

E1
d=6

E2

Figure 3: Architecture of the second-level ensemble.

previous high-ranking architecture, used in the
Semeval 2018 sentiment shared task, and two
external embeddings. The system reached 1st
place with macro F1 of 0.7145, with the next
system scoring 0.7105. Examining the nature of
the this task, it is a combination of both sentiment
classification and word prediction; this was the
motivation of using the Semeval 2018 models,
which were designed to classify emotions. On
the other hand, the language model is specifically
trained to maximize the likelihood of matching a
word to a given sentence, thus naturally lending
itself to the word prediction aspect of the task.

We have seen that splitting the dataset into
two parts, one for training our models and the
other for the ensembling process (in this case

the second part is the validation set) is much
more beneficial than training our models on the
combined bigger dataset, in cases when some
of the models are expected to be much less
generalizable than others.

It is interesting to note the task organizers have
tested human performance on a subset sample,
achieving macro F1 of 0.45, which is much lower
than the automated systems.

We plan to release the word embeddings and
language models as open-source in the near future
to benefit further research and increase sharing of
resources.

47

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–
283.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors
with subword information. Transactions of the
Association for Computational Linguistics, 5:135–
146.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal sentence encoder. CoRR,
abs/1803.11175.

François Chollet et al. 2015. Keras. https://
github.com/keras-team/keras.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using
millions of emoji occurrences to learn any-domain
representations for detecting sentiment, emotion and
sarcasm. In Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Roman Klinger, Orphée de Clercq, Saif M. Mo-
hammad, and Alexandra Balahur. 2018. Iest:
Wassa-2018 implicit emotions shared task. In
Proceedings of the 9th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, Brussels, Belgium. Association for
Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 26, pages 3111–3119. Curran Associates,
Inc.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In
Proceedings of International Workshop on Semantic
Evaluation (SemEval-2018), New Orleans, LA,
USA.

Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–
50, Valletta, Malta. ELRA. http://is.muni.
cz/publication/884893/en.

Alon Rozental and Daniel Fleischer. 2018. Amobee
at semeval-2018 task 1: GRU neural network
with a CNN attention mechanism for sentiment
classification. CoRR, abs/1804.04380.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ashish Vaswani, Samy Bengio, Eugene Brevdo,
Francois Chollet, Aidan N. Gomez, Stephan Gouws,
Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki
Parmar, Ryan Sepassi, Noam Shazeer, and Jakob
Uszkoreit. 2018. Tensor2tensor for neural machine
translation. CoRR, abs/1803.07416.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

48

A Emotions Lexicon

Emotion Words

Anger Anger, angry, fuming, angrily, angrier, angers, angered, furious.
Disgust Disgust, disgusted, disgusting, disgustedly, disgusts.

Fear Fear, feared, fearing, fearfully, frightens, fearful, afraid, scared.
Joy Joy, happy, thrilling, joyfully, happily, happier, delights, joyful, joyous.
Sad Sad, sadden, depressing, depressingly, sadder, depresses, sorrowful, saddened.

Surprise Surprise, surprised, surprising, surprisingly, surprises, shocked.

Table 3: Emotion lexicon used to produce predictions using the language models.

49

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 50–56
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

IIIDYT at IEST 2018: Implicit Emotion Classification With Deep
Contextualized Word Representations

Jorge A. Balazs, Edison Marrese-Taylor and Yutaka Matsuo
Graduate School of Engineering

The University of Tokyo
{jorge, emarrese, matsuo}@weblab.t.u-tokyo.ac.jp

Abstract

In this paper we describe our system designed
for the WASSA 2018 Implicit Emotion Shared
Task (IEST), which obtained 2nd place out
of 30 teams with a test macro F1 score of
0.710. The system is composed of a single
pre-trained ELMo layer for encoding words,
a Bidirectional Long-Short Memory Network
BiLSTM for enriching word representations
with context, a max-pooling operation for cre-
ating sentence representations from them, and
a Dense Layer for projecting the sentence
representations into label space. Our offi-
cial submission was obtained by ensembling 6
of these models initialized with different ran-
dom seeds. The code for replicating this pa-
per is available at https://github.com/
jabalazs/implicit_emotion.

1 Introduction

Although the definition of emotion is still debated
among the scientific community, the automatic
identification and understanding of human emo-
tions by machines has long been of interest in
computer science. It has usually been assumed
that emotions are triggered by the interpretation of
a stimulus event according to its meaning.

As language usually reflects the emotional state
of an individual, it is natural to study human emo-
tions by understanding how they are reflected in
text. We see that many words indeed have af-
fect as a core part of their meaning, for example,
dejected and wistful denote some amount of sad-
ness, and are thus associated with sadness. On the
other hand, some words are associated with af-
fect even though they do not denote affect. For
example, failure and death describe concepts that
are usually accompanied by sadness and thus they
denote some amount of sadness. In this context,
the task of automatically recognizing emotions
from text has recently attracted the attention of re-

searchers in Natural Language Processing. This
task is usually formalized as the classification of
words, phrases, or documents into predefined dis-
crete emotion categories or dimensions. Some ap-
proaches have aimed at also predicting the degree
to which an emotion is expressed in text (Moham-
mad and Bravo-Marquez, 2017).

In light of this, the WASSA 2018 Implicit Emo-
tion Shared Task (IEST) (Klinger et al., 2018)
was proposed to help find ways to automatically
learn the link between situations and the emotion
they trigger. The task consisted in predicting the
emotion of a word excluded from a tweet. Re-
moved words, or trigger-words, included the terms
“sad”, “happy”, “disgusted”, “surprised”, “angry”,
“afraid” and their synonyms, and the task was
to predict the emotion they conveyed, specifically
sadness, joy, disgust, surprise, anger and fear.

From a machine learning perspective, this prob-
lem can be seen as sentence classification, in
which the goal is to classify a sentence, or in par-
ticular a tweet, into one of several categories. In
the case of IEST, the problem is specially chal-
lenging since tweets contain informal language,
the heavy usage of emoji, hashtags and username
mentions.

In this paper we describe our system designed
for IEST, which obtained the second place out of
30 teams. Our system did not require manual fea-
ture engineering and only minimal use of exter-
nal data. Concretely, our approach is composed
of a single pre-trained ELMo layer for encoding
words (Peters et al., 2018), a Bidirectional Long-
Short Memory Network (BiLSTM) (Graves and
Schmidhuber, 2005; Graves et al., 2013), for en-
riching word representations with context, a max-
pooling operation for creating sentence represen-
tations from said word vectors, and finally a Dense
Layer for projecting the sentence representations
into label space. To the best of our knowledge,

50

https://doi.org/10.18653/v1/P17

our system, which we plan to release, is the first to
utilize ELMo for emotion recognition.

2 Proposed Approach

2.1 Preprocessing

As our model is purely character-based, we per-
formed little data preprocessing. Table 1 shows
the special tokens found in the datasets, and how
we substituted them.

Original Replacement

[#TRIGGERWORD#] TRIGGERWORD
@USERNAME USERNAME
[NEWLINE] NEWLINE
http://url.removed URL

Table 1: Preprocessing substitutions.

Furthermore, we tokenized the text using a vari-
ation of the twokenize.py1 script, a Python
port of the original Twokenize.java (Gimpel
et al., 2011). Concretely, we created an emoji-
aware version of it by incorporating knowledge
from an emoji database,2 which we slightly mod-
ified for avoiding conflict with emoji sharing uni-
code codes with common glyphs used in Twitter,3

and for making it compatible with Python 3.

2.2 Architecture

Figure 1 summarizes our proposed architecture.
Our input is based on Embeddings from Language
Models (ELMo) by Peters et al. (2018). These
are character-based word representations allowing
the model to avoid the “unknown token” problem.
ELMo uses a set of convolutional neural networks
to extract features from character embeddings, and
builds word vectors from them. These are then
fed to a multi-layer Bidirectional Language Model
(BiLM) which returns context-sensitive vectors
for each input word.

We used a single-layer BiLSTM as context fine-
tuner (Graves and Schmidhuber, 2005; Graves
et al., 2013), on top of the ELMo embeddings, and
then aggregated the hidden states it returned by us-
ing max-pooling, which has been shown to per-
form well on sentence classification tasks (Con-
neau et al., 2017).
1
https://github.com/myleott/ark-twokenize-py

2
https://github.com/carpedm20/emoji/blob/e7bff32/emoji/
unicode_codes.py

3For example, the hashtag emoji is composed by the uni-
code code points U+23 U+FE0F U+20E3, which include
U+23, the same code point for the # glyph.

Finally, we used a single-layer fully-connected
network for projecting the pooled BiLSTM output
into a vector corresponding to the label logits for
each predicted class.

2.3 Implementation Details and
Hyperparameters

ELMo Layer: We used the official Al-
lenNLP implementation of the ELMo model4,
with the official weights pre-trained on the 1 Bil-
lion Word Language Model Benchmark, which
contains about 800M tokens of news crawl data
from WMT 2011 (Chelba et al., 2014).

Dimensionalities: By default the ELMo layer
outputs a 1024-dimensional vector, which we then
feed to a BiLSTM with output size 2048, resulting
in a 4096-dimensional vector when concatenating
forward and backward directions for each word of
the sequence5. After max-pooling the BiLSTM
output over the sequence dimension, we obtain a
single 4096-dimensional vector corresponding to
the tweet representation. This representation is fi-
nally fed to a single-layer fully-connected network
with input size 4096, 512 hidden units, output size
6, and a ReLU nonlinearity after the hidden layer.
The output of the dense layer is a 6-dimensional
logit vector for each input example.

Loss Function: As this corresponds to a mul-
ticlass classification problem (predicting a single
class for each example, with more than 2 classes
to choose from), we used the Cross-Entropy Loss
as implemented in PyTorch (Paszke et al., 2017).

Optimization: We optimized the model with
Adam (Kingma and Ba, 2014), using default hy-
perparameters (β1 = 0.9, β2 = 0.999, ε = 10−8),
following a slanted triangular learning rate sched-
ule (Howard and Ruder, 2018), also with default
hyperparameters (cut frac = 0.1, ratio = 32),
and a maximum learning rate ηmax = 0.001, over
T = 23, 970 iterations6.

Regularization: we used a dropout layer (Sri-
vastava et al., 2014), with probability of 0.5 af-
ter both the ELMo and the hidden fully-connected
layer, and another one with probability of 0.1 af-
4
https://allenai.github.io/allennlp-docs/api/allennlp.
modules.elmo.html

5A BiLSTM is composed of two separate LSTMs that read
the input in opposite directions and whose outputs are con-
catenated at the hidden dimension. This results in a vector
double the dimension of the input for each time step.

6This number is obtained by multiplying the number of
epochs (10), times the total number of batches, which for the
training dataset corresponds to 2396 batches of 64 elements,
and 1 batch of 39 elements, hence 2397× 10 = 23, 970.

51

BiLSTM

E
LM

o Layer

M
ax P

ooling

Context Layer
Sentence
Encoder

Fully-C
onnected N

etw
ork

S
oftm

ax

Probabilities

Classifier

[#TRIGGERWORD#]

It’s

...

Word Encoder

Figure 1: Proposed architecture.

ter the max-pooling aggregation layer. We also
reshuffled the training examples between epochs,
resulting in a different batch for each iteration.

Model Selection: To choose the best hyperpa-
rameter configuration we measured the classifica-
tion accuracy on the validation (trial) set.

2.4 Ensembles
Once we found the best-performing configura-
tion we trained 10 models using different random
seeds, and tried averaging the output class prob-
abilities of all their possible

∑9
k=1

(
9
k

)
= 511

combinations. As Figure 2 shows, we empiri-
cally found that a specific combination of 6 mod-
els yielded the best results (70.52%), providing ev-
idence for the fact that using a number of indepen-
dent classifiers equal to the number of class labels
provides the best results when doing average en-
sembling (Bonab and Can, 2016).

1 2 3 4 5 6 7 8 9
Number of Ensembled Models

0.694
0.695
0.696
0.697
0.698
0.699
0.700
0.701
0.702
0.703
0.704
0.705
0.706

Va
lid

at
io

n
Be

st
 M

ac
ro

 F
1

Figure 2: Effect of the number of ensembled mod-
els on validation performance.

3 Experiments and Analyses

We performed several experiments to gain insights
on how the proposed model’s performance inter-

acts with the shared task’s data. We performed an
ablation study to see how some of the main hy-
perparameters affect performance, and an analy-
sis of tweets containing hashtags and emoji to un-
derstand how these two types of tokens help the
model predict the trigger-word’s emotion. We also
observed the effects of varying the amount of data
used for training the model to evaluate whether it
would be worthwhile to gather more training data.

3.1 Ablation Study

We performed an ablation study on a single model
having obtained 69.23% accuracy on the valida-
tion set. Results are summarized in Table 2.

We can observe that the architectural choice
that had the greatest impact on our model was
the ELMo layer, providing a 3.71% boost in per-
formance as compared to using GloVe pre-trained
word embeddings.

We can further see that emoji also contributed
significantly to the model’s performance. In Sec-
tion 3.4 we give some pointers to understanding
why this is so.

Additionally, we tried using the concatenation
of the max-pooled, average-pooled and last hidden
states of the BiLSTM as the sentence represen-
tation, following Howard and Ruder (2018), but
found out that this impacted performance nega-
tively. We hypothesize this is due to tweets be-
ing too short for needing such a rich representa-
tion. Also, the size of the concatenated vector was
4096× 3 = 12, 288, which probably could not be
properly exploited by the 512-dimensional fully-
connected layer.

Using a greater BiLSTM hidden size did not
help the model, probably because of the reason

52

Variation Accuracy (%) ∆%

Submitted 69.23 -

No emoji 68.36 - 0.87

No ELMo 65.52 - 3.71

Concat Pooling 68.47 - 0.76

LSTM hidden=4096 69.10 - 0.13
LSTM hidden=1024 68.93 - 0.30
LSTM hidden=512 68.43 - 0.80

POS emb dim=100 68.99 - 0.24
POS emb dim=75 68.61 - 0.62
POS emb dim=50 69.33 + 0.10
POS emb dim=25 69.21 - 0.02

SGD optim lr=1 64.33 - 4.90
SGD optim lr=0.1 66.11 - 3.12
SGD optim lr=0.01 60.72 - 8.51
SGD optim lr=0.001 30.49 - 38.74

Table 2: Ablation study results.
Accuracies were obtained from the validation dataset. Each
model was trained with the same random seed and hyperpa-
rameters, save for the one listed. “No emoji” is the same
model trained on the training dataset with no emoji, “No
ELMo” corresponds to having switched the ELMo word en-
coding layer with a simple pre-trained GloVe embedding
lookup table, and “Concat Pooling” obtained sentence repre-
sentations by using the pooling method described by Howard
and Ruder (2018). “LSTM hidden” corresponds to the hidden
dimension of the BiLSTM, “POS emb dim” to the dimen-
sion of the part-of-speech embeddings, and “SGD optim lr”
to the learning rate used while optimizing with the schedule
described by Conneau et al. (2017).

mentioned earlier; the fully-connected layer was
not big or deep enough to exploit the additional in-
formation. Similarly, using a smaller hidden size
neither helped.

We found that using 50-dimensional part-of-
speech embeddings slightly improved results,
which implies that better fine-tuning this hyperpa-
rameter, or using a better POS tagger could yield
an even better performance.

Regarding optimization strategies, we also tried
using SGD with different learning rates and a step-
wise learning rate schedule as described by Con-
neau et al. (2018), but we found that doing this did
not improve performance.

Finally, Figure 3 shows the effect of using dif-
ferent dropout probabilities. We can see that hav-
ing higher dropout after the word-representation
layer and the fully-connected network’s hidden
layer, while having a low dropout after the sen-
tence encoding layer yielded better results overall.

3.2 Error Analysis
Figure 4 shows the confusion matrix of a single
model evaluated on the test set, and Table 3 the

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Dropout after sentence-encoding layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Dr
op

ou
t a

fte
r w

or
d-

en
co

di
ng

 &
 fu

lly
-c

on
ne

ct
ed

 la
ye

rs 67.92 67.52 68.12 67.77 68.04 67.43 67.71

67.94 67.66 68.17 68.21 67.89 67.72 67.73

67.86 68.54 68.66 68.10 68.07 68.18 67.68

68.43 68.23 68.32 68.33 68.51 68.30 68.07

68.80 68.91 68.66 68.71 68.46 68.48 68.19

68.82 69.23 68.99 68.95 68.49 69.04 68.53

68.96 68.86 68.50 68.92 68.61 68.56 68.17 67.6

67.8

68.0

68.2

68.4

68.6

68.8

69.0

69.2

Validation Accuracy (%
)

Figure 3: Dropout Ablation.
Rows correspond to the dropout applied both after the ELMo
layer (word encoding layer) and after the fully-connected net-
work’s hidden layer, while columns correspond to the dropout
applied after the max-pooling operation (sentence encoding
layer.)

corresponding classification report. In general, we
confirm what Klinger et al. (2018) report: anger
was the most difficult class to predict, followed by
surprise, whereas joy, fear, and disgust
are the better performing ones.

To observe whether any particular pattern arose
from the sentence representations encoded by our
model, we projected them into 3d space through
Principal Component Analysis (PCA), and were
surprised to find that 2 clearly defined clus-
ters emerged (see Figure 6), one containing the
majority of datapoints, and another containing
joy tweets exclusively. Upon further explo-
ration we also found that the smaller cluster was
composed only by tweets containing the pattern
un TRIGGERWORD , and further, that all of
them were correctly classified.

It is also worth mentioning that there are
5827 tweets in the training set with this pat-
tern. Of these, 5822 (99.9%) correspond to
the label joy. We observe a similar trend on
the test set; 1115 of the 1116 tweets having
the un TRIGGERWORD pattern correspond to
joy tweets. We hypothesize this is the reason why
the model learned this pattern as a strong discrim-
inating feature.

Finally, the only tweet in the test set that con-
tained this pattern and did not belong to the joy
class, originally had unsurprised as its trigger-
word7, and unsurprisingly, was misclassified.

7We manually searched for the original tweet.

53

anger
disgust fear joy sad

surprise

Predicted Label

anger

disgust

fear

joy

sad

surprise

Tr
ue

 L
ab

el

2879 368 351 349 359 488

346 3169 176 154 365 584

311 156 3456 253 175 440

225 108 195 4224 219 275

379 355 194 318 2869 225

338 349 286 242 200 3377 500

1000

1500

2000

2500

3000

3500

4000

Num
ber of Exam

ples

Figure 4: Confusion Matrix (Test Set).

Precision Recall F1-score

anger 0.643 0.601 0.621
disgust 0.703 0.661 0.682
fear 0.742 0.721 0.732
joy 0.762 0.805 0.783
sad 0.685 0.661 0.673

surprise 0.627 0.705 0.663

Average 0.695 0.695 0.694

Table 3: Classification Report (Test Set).

3.3 Effect of the Amount of Training Data

As Figure 5 shows, increasing the amount of data
with which our model was trained consistently in-
creased validation accuracy and validation macro
F1 score. The trend suggests that the proposed
model is expressive enough to learn from more
data, and is not overfitting the training set.

0.2 0.4 0.6 0.8 1.0
Training Data Proportion

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

Va
lid

at
io
n
Sc

or
e

Best Validation Accuracy
Best Validation Average Macro F1 Score

Figure 5: Effect of the amount of training data on
classification performance.

3.4 Effect of Emoji and Hashtags

Table 4 shows the overall effect of hashtags and
emoji on classification performance. Tweets con-

Present Not Present

Emoji 4805 (76.6%) 23952 (68.0%)
Hashtags 2122 (70.5%) 26635 (69.4%)

Table 4: Number of tweets on the test set with and
without emoji and hashtags. The number between
parentheses is the proportion of tweets classified
correctly.

taining emoji seem to be easier for the model to
classify than those without. Hashtags also have a
positive effect on classification performance, how-
ever it is less significant. This implies that emoji,
and hashtags in a smaller degree, provide tweets
with a context richer in sentiment information, al-
lowing the model to better guess the emotion of
the trigger-word.

Emoji alias N emoji no-emoji
∆%

% # %

mask 163 154 94.48 134 82.21 - 12.27
two hearts 87 81 93.10 77 88.51 - 4.59
heart eyes 122 109 89.34 103 84.43 - 4.91
heart 267 237 88.76 235 88.01 - 0.75

rage 92 78 84.78 66 71.74 - 13.04
cry 116 97 83.62 83 71.55 - 12.07
sob 490 363 74.08 345 70.41 - 3.67
unamused 167 121 72.46 116 69.46 - 3.00

weary 204 140 68.63 139 68.14 - 0.49
joy 978 649 66.36 629 64.31 - 2.05
sweat smile 111 73 65.77 75 67.57 1.80
confused 77 46 59.74 48 62.34 2.60

Table 5: Fine grained performance on tweets con-
taining emoji, and the effect of removing them.
N is the total number of tweets containing the listed emoji,
and % the number and percentage of correctly-classified
tweets respectively, and ∆% the variation of test accuracy
when removing the emoji from the tweets.

Table 5 shows the effect specific emoji have
on classification performance. It is clear some
emoji strongly contribute to improving prediction
quality. The most interesting ones are mask,
rage, and cry, which significantly increase ac-
curacy. Further, contrary to intuition, the sob
emoji contributes less than cry, despite represent-
ing a stronger emotion. This is probably due to
sob being used for depicting a wider spectrum of
emotions.

Finally, not all emoji are beneficial for this task.
When removing sweat smile and confused
accuracy increased, probably because they repre-
sent emotions other than the ones being predicted.

54

x

2 0 2 4 6 8 10 12 14

y
2

0
2

4
6

z

4
2
0
2

4

6

sad
fear
surprise
disgust
anger
joy

Figure 6: 3d Projection of the Test Sentence Rep-
resentations.

4 Conclusions and Future Work

We described the model that got second place in
the WASSA 2018 Implicit Emotion Shared Task.
Despite its simplicity, and low amount of depen-
dencies on libraries and external features, it per-
formed almost as well as the system that obtained
the first place.

Our ablation study revealed that our hyperpa-
rameters were indeed quite well-tuned for the task,
which agrees with the good results obtained in the
official submission. However, the ablation study
also showed that increased performance can be ob-
tained by incorporating POS embeddings as addi-
tional inputs. Further experiments are required to
accurately measure the impact that this additional
input may have on the results. We also think the
performance can be boosted by making the archi-
tecture more complex, concretely, by using a BiL-
STM with multiple layers and skip connections in
a way akin to (Peters et al., 2018), or by making
the fully-connected network bigger and deeper.

We also showed that, what was probably an
annotation artifact, the un TRIGGERWORD
pattern, resulted in increased performance for
the joy label. This pattern was probably
originated by a heuristic naı̈vely replacing the
ocurrence of happy by the trigger-word indica-
tor. We think the dataset could be improved
by replacing the word unhappy, in the origi-
nal examples, by TRIGGERWORD instead of
un TRIGGERWORD , and labeling it as sad,
or angry, instead of joy.

Finally, our studies regarding the importance of
hashtags and emoji in the classification showed
that both of them seem to contribute significantly

to the performance, although in different mea-
sures.

5 Acknowledgements

We thank the anonymous reviewers for their re-
views and suggestions. The first author is partially
supported by the Japanese Government MEXT
Scholarship.

References
Hamed R. Bonab and Fazli Can. 2016. A theoretical

framework on the ideal number of classifiers for on-
line ensembles in data streams. In Proceedings of
the 25th ACM International on Conference on In-
formation and Knowledge Management, CIKM ’16,
pages 2053–2056, New York, NY, USA. ACM.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2014. One billion word benchmark for measur-
ing progress in statistical language modeling. Pro-
ceedings of the Annual Conference of the Interna-
tional Speech Communication Association, INTER-
SPEECH, pages 2635–2639.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
Learning of Universal Sentence Representations
from Natural Language Inference Data. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 670–680,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Alexis Conneau, Germán Kruszewski, Guillaume
Lample, Loı̈c Barrault, and Marco Baroni. 2018.
What you can cram into a single vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136. Association for
Computational Linguistics.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flani-
gan, and Noah A. Smith. 2011. Part-of-speech tag-
ging for twitter: Annotation, features, and experi-
ments. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies, pages 42–47,
Portland, Oregon, USA. Association for Computa-
tional Linguistics.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech Recognition with Deep Re-
current Neural Networks. In Proceedings of the
2013 International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6645–6649,
Vancouver, Canada. IEEE.

55

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise Phoneme Classification with Bidirectional
LSTM and Other Neural Network Architectures.
Neural Networks, 18(5-6):602–610.

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.
ArXiv e-prints.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. CoRR.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. IEST: WASSA-
2018 Implicit Emotions Shared Task. In Proceed-
ings of the 9th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, Brussels, Belgium. Association for
Computational Linguistics.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
WASSA-2017 Shared Task on Emotion Intensity. In
Proceedings of the EMNLP 2017 Workshop on Com-
putational Approaches to Subjectivity, Sentiment,
and Social Media (WASSA), Copenhagen, Denmark.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS Autodiff Workshop.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

56

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 57–64
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

NTUA-SLP at IEST 2018: Ensemble of Neural Transfer Methods for
Implicit Emotion Classification

Alexandra Chronopoulou1∗, Aikaterini Margatina1∗

Christos Baziotis1,2, Alexandros Potamianos1,3

1School of ECE, National Technical University of Athens, Athens, Greece
2 Department of Informatics, Athens University of Economics and Business, Athens, Greece

3 Signal Analysis and Interpretation Laboratory (SAIL), USC, Los Angeles, USA

el12068@central.ntua.gr, el12108@central.ntua.gr
cbaziotis@mail.ntua.gr, potam@central.ntua.gr

Abstract

In this paper we present our approach to tackle
the Implicit Emotion Shared Task (IEST) or-
ganized as part of WASSA 2018 at EMNLP
2018. Given a tweet, from which a certain
word has been removed, we are asked to pre-
dict the emotion of the missing word. In
this work, we experiment with neural Transfer
Learning (TL) methods. Our models are based
on LSTM networks, augmented with a self-
attention mechanism. We use the weights of
various pretrained models, for initializing spe-
cific layers of our networks. We leverage a big
collection of unlabeled Twitter messages, for
pretraining word2vec word embeddings and
a set of diverse language models. Moreover,
we utilize a sentiment analysis dataset for pre-
training a model, which encodes emotion re-
lated information. The submitted model con-
sists of an ensemble of the aforementioned TL
models. Our team ranked 3rd out of 30 partici-
pants, achieving an F1 score of 0.703.

1 Introduction

Social media, especially micro-blogging services
like Twitter, have attracted lots of attention from
the NLP community. The language used is con-
stantly evolving by incorporating new syntactic
and semantic constructs, such as emojis or hash-
tags, abbreviations and slang, making natural lan-
guage processing in this domain even more de-
manding. Moreover, the analysis of such content
leverages the high availability of datasets offered
from Twitter, satisfying the need for large amounts
of data for training.

∗*These authors contributed equally to this work.

Emotion recognition is particularly interesting
in social media, as it has useful applications in
numerous tasks, such as public opinion detection
about political tendencies (Pla and Hurtado, 2014;
Tumasjan et al., 2010; Li and Xu, 2014), stock
market monitoring (Si et al., 2013; Bollen et al.,
2011b), tracking product perception (Chamlert-
wat et al., 2012), even detection of suicide-related
communication (Burnap et al., 2015).

In the past, emotion analysis, like most NLP
tasks, was tackled by traditional methods that
included hand-crafted features or features from
sentiment lexicons (Nielsen, 2011; Mohammad
and Turney, 2010, 2013; Go et al., 2009) which
were fed to classifiers such as Naive Bayes and
SVMs (Bollen et al., 2011a; Mohammad et al.,
2013; Kiritchenko et al., 2014). However, deep
neural networks achieve increased performance
compared to traditional methods, due to their abil-
ity to learn more abstract features from large
amounts of data, producing state-of-the-art re-
sults in emotion recognition and sentiment anal-
ysis (Deriu et al., 2016; Goel et al., 2017; Baziotis
et al., 2017).

In this paper, we present our work submitted to
the WASSA 2018 IEST (Klinger et al., 2018). In
the given task, the word that triggers emotion is re-
moved from each tweet and is replaced by the to-
ken [#TARGETWORD#]. The objective is to pre-
dict its emotion category among 6 classes: anger,
disgust, fear, joy, sadness and surprise. Our pro-
posed model employs 3 different TL schemes of
pretrained models: word embeddings, a sentiment
model and language models.

57

https://doi.org/10.18653/v1/P17

Twitter
Dataset

Word2Vec
Embeddings

Twitter
Dataset

IEST
Dataset

IEST
Language Model

Sentiment
Model

Sentiment
Dataset

IEST
Model

Twitter
Dataset

Word2Vec
Embeddings

Transfer
Embeddings

Transfer
Embeddings + EncoderTransfer

Embeddings

Language
Model

IEST
Dataset

Transfer
Embeddings + Encoder

Finetuning

P-Emb

P-Sent

P-LM

Figure 1: High-level overview of our TL approaches.

2 Overview

Our approach is composed of the following three
steps: (1) pretraining, in which we train word2vec
word embeddings (P-Emb), a sentiment model (P-
Sent) and Twitter-specific language models (P-
LM), (2) transfer learning, in which we transfer
the weights of the aforementioned models to spe-
cific layers of our IEST classifier and (3) ensem-
bling, in which we combine the predictions of each
TL model. Figure 1 depicts a high-level overview
of our approach.

2.1 Data
Apart from the IEST dataset, we employ a Se-
mEval dataset for sentiment classification and
other manually-collected unlabeled corpora for
our language models.
Unlabeled Twitter Corpora. We collected a
dataset of 550 million archived English Twitter
messages, from 2014 to 2017. This dataset is used
for calculating word statistics for our text prepro-
cessing pipeline and training our word2vec word
embeddings presented in Sec. 4.1.

For training our language models, described in
Sec. 4.3, we sampled three subsets of this cor-
pus. The first consists of 2M tweets, all of which
contain emotion words. To create the dataset, we
selected tweets that included one of the six emo-
tion classes of our task (anger, disgust, fear, joy,
sadness and surprise) or synonyms. We ensured
that this dataset is balanced by concatenating ap-
proximately 350K tweets from each category. The
second chunk has 5M tweets, randomly selected
from the initial 550M corpus. We aimed to create

a general sub-corpus, so as to focus on the struc-
tural relationships of words, instead of their emo-
tional content. The third chunk is composed of
the two aforementioned corpora. We concatenated
the 2M emotion dataset with 2M generic tweets,
creating a final 4M dataset. We denote the three
corpora as EmoCorpus (2M), EmoCorpus+ (4M)
and GenCorpus (5M).
Sentiment Analysis Dataset. We use the dataset
of SemEval17 Task4A (Sent17) (Rosenthal et al.,
2017) for training our sentiment classifier as de-
scribed in Sec. 4.2. The dataset consists of Twitter
messages annotated with their sentiment polarity
(positive, negative, neutral). The training set con-
tains 56K tweets and the validation set 6K tweets.

2.2 Preprocessing

To preprocess the tweets, we use Ekphrasis (Bazi-
otis et al., 2017), a tool geared towards text from
social networks, such as Twitter and Facebook.
Ekphrasis performs Twitter-specific tokenization,
spell correction, word normalization, segmenta-
tion (for splitting hashtags) and annotation.

2.3 Word Embeddings

Word embeddings are dense vector representa-
tions of words which capture semantic and syn-
tactic information. For this reason, we employ the
word2vec (Mikolov et al., 2013) algorithm to train
our word vectors, as described in Sec. 4.1.

2.4 Transfer Learning

Transfer Learning (TL) uses knowledge from a
learned task so as to improve the performance of

58

a related task by reducing the required training
data (Torrey and Shavlik, 2010; Pan et al., 2010).
In computer vision, transfer learning is employed
in order to overcome the deficit of training samples
for some categories by adapting classifiers trained
for other categories (Oquab et al., 2014). With the
power of deep supervised learning, learned knowl-
edge can even be transferred to a totally different
task (i.e. ImageNet (Krizhevsky et al., 2012)).

Following this logic, TL methods have also
been applied to NLP. Pretrained word vec-
tors (Mikolov et al., 2013; Pennington et al., 2014)
have become standard components of most ar-
chitectures. Recently, approaches that leverage
pretrained language models have emerged, which
learn the compositionality of language, capture
long-term dependencies and context-dependent
features. For instance, ELMo contextual word
representations (Peters et al., 2018) and ULMFiT
(Howard and Ruder, 2018) achieve state-of-the-art
results on a wide variety of NLP tasks. Our work
is mainly inspired by ULMFiT, which we extend
to the Twitter domain.

2.5 Ensembling
We combine the predictions of our 3 TL schemes
with the intent of increasing the generalization
ability of the final classifier. To this end, we
employ a pretrained word embeddings approach,
as well as a pretrained sentiment model and a
pretrained LM. We use two ensemble schemes,
namely unweighted average and majority voting.
Unweighted Average (UA). In this approach, the
final prediction is estimated from the unweighted
average of the posterior probabilities for all differ-
ent models. Formally, the final prediction p for a
training instance is estimated by:

p = argmax
c

1

C

M∑

i=1

~pi, pi ∈ IRC (1)

where C is the number of classes, M is the number
of different models, c ∈ {1, ..., C} denotes one
class and ~pi is the probability vector calculated by
model i ∈ {1, ...,M} using softmax function.
Majority Voting (MV). Majority voting approach
counts the votes of all different models and
chooses the class with most votes. Compared to
UA, MV is affected less by single-network deci-
sions. However, this schema does not consider
any information derived from the minority mod-
els. Formally, for a task with C classes and M

different models, the prediction for a specific in-
stance is estimated as follows:

vc =
M∑

i=1

Fi(c)

p = argmax
c∈{1,...,C}

vc

(2)

where vc denotes the votes for class c from all dif-
ferent models, Fi is the decision of the ith model,
which is either 1 or 0 with respect to whether the
model has classified the instance in class c or not
and p is the final prediction.

3 Network Architecture

All of our TL schemes share the same architecture:
A 2-layer LSTM with a self-attention mechanism.
It is shown in Figure 2.
Embedding Layer. The input to the network is a
Twitter message, treated as a sequence of words.
We use an embedding layer to project the words
w1, w2, ..., wN to a low-dimensional vector space
RW , where W is the size of the embedding layer
and N the number of words in a tweet.
LSTM Layer. An LSTM takes as input a se-
quence of word embeddings and produces word
annotations h1, h2, ..., hN , where hi is the hidden
state at time-step i, summarizing all the informa-
tion of the sentence up to wi. We use bidirectional
LSTM to get word annotations that summarize
the information from both directions. A bi-LSTM
consists of a forward

−→
f that parses the sentence

from w1 to wN and a backward
←−
f that parses it

from wN to w1. We obtain the final annotation
for each word hi, by concatenating the annotations
from both directions, hi =

−→
hi ‖

←−
hi , hi ∈ R2L,

where ‖ denotes the concatenation operation and
L the size of each LSTM. When the network is
initialized with pretrained LMs, we employ unidi-
rectional instead of bi-LSTMs.
Attention Layer. To amplify the contribution
of the most informative words, we augment our
LSTM with an attention mechanism, which as-
signs a weight ai to each word annotation hi. We
compute the fixed representation r of the whole in-
put message, as the weighted sum of all the word
annotations.

ei = tanh(Whhi + bh), ei ∈ [−1, 1] (3)

ai =
exp(ei)∑T
t=1 exp(et)

,

T∑

i=1

ai = 1 (4)

59

𝑥1 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

BiLSTM

𝑎1

𝑎𝑇 ෍𝑎𝑖 = 1

ℎ1 ℎ1

𝑥2 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 ℎ2 ℎ2

𝑥3 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 ℎ3 ℎ3

𝑥𝑇 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 ℎ𝑇 ℎ𝑇

… …

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

BiLSTM

ℎ1 ℎ1

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 ℎ2 ℎ2

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 ℎ3 ℎ3

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 ℎ𝑇 ℎ𝑇

… …

𝑎2

𝑎3

… … …

class probabilities

𝑟

Figure 2: The proposed model, composed of a 2-layer bi-LSTM with a deep self-attention mechanism.
When the model is initialized with pretrained LMs, we use unidirectional LSTM instead of bidirectional.

r =

T∑

i=1

aihi, r ∈ R2L (5)

where Wh and bh are the attention layer’s weights.
Output Layer. We use the representation r as
feature vector for classification and we feed it to
a fully-connected softmax layer with L neurons,
which outputs a probability distribution over all
classes pc as described in Eq. 6:

pc =
eWr+b

∑
i∈[1,L](e

Wir+bi)
(6)

where W and b are the layer’s weights and biases.

4 Transfer Learning Approaches

4.1 Pretrained Word Embeddings (P-Emb)

In the first approach, we train word2vec word
embeddings with which we initialize the embed-
ding layer of our network. The weights of the
embedding layer remain frozen during training.
The word2vec word embeddings are trained on
the 550M Twitter corpus (Sec. 2.1), with nega-
tive sampling of 5 and minimum word count of
20, using Gensim’s (Řehůřek and Sojka, 2010) im-
plementation. The resulting vocabulary contains
800, 000 words.

4.2 Pretrained Sentiment Model (P-Sent)

In the second approach, we first train a sentiment
analysis model on the Sent17 dataset, using the ar-
chitecture described in Sec. 3. The embedding
layer of the network is initialized with our pre-
trained word embeddings. Then, we fine-tune the
network on the IEST task, by replacing its last
layer with a task-specific layer.

4.3 Pretrained Language Model (P-LM)

The third approach consists of the following steps:
(1) we first train a language model on a generic
Twitter corpus, (2) we fine-tune the LM on the task
at hand and finally, (3) we transfer the embedding
and RNN layers of the LM, we add attention and
output layers and fine-tune the model on the target
task.
LM Pretraining. We collect three Twitter
datasets as described in Sec. 2.1 and for each one
we train an LM. In each dataset we use the 50,000
most frequent words as our vocabulary. Since
the literature concerning LM transfer learning is
limited, especially in the Twitter domain, we aim
to explore the desired characteristics of the pre-
trained LM. To this end, our contribution in this
research area lies in experimenting with a task-
relevant corpus (EmoCorpus), a generic one (Gen-
Corpus) and a mixture of both (EmoCorpus+).
LM Fine-tuning. This step is crucial since, albeit
the diversity of the general-domain data used for
pretraining, the data of the target task will likely
have a different distribution.

We thus fine-tune the three pretrained LMs on
the IEST dataset, employing two approaches. The
first is simple fine-tuning, according to which
all layers of the model are trained simultane-
ously. The second one is a simplified yet sim-
ilar approach to gradual unfreezing, proposed
in (Howard and Ruder, 2018), which we denote
as Simplified Gradual Unfreezing (SGU). Accord-
ing to this method, after we have transfered the
pretrained embedding and LSTM weights, we let
only the output layer fine-tune for n − 1 epochs.
At the nth epoch, we unfreeze both LSTM lay-
ers. We let the model fine-tune, until epoch k − 1.
Finally, at epoch k, we also unfreeze the embed-

60

ding layer and let the network train until conver-
gence. In other words, we experiment with pairs
of numbers of epochs, {n, k}, where n denotes the
epoch when we unfreeze the LSTM layers and k
the epoch when we unfreeze the embedding layer.
Naive fine-tuning poses the risk of catastrophic
forgetting, or else abruptly losing the knowledge
of a previously learnt task, as information rele-
vant to the current task is incorporated. Therefore,
to prevent this from happening, we unfreeze the
model starting from the last layer, which is task-
specific, and after some epochs we progressively
unfreeze the next, more general layers, until all
layers are unfrozen.
LM Transfer. This is the final step of our TL ap-
proach. We now have several LMs from the sec-
ond step of the procedure. We transfer their em-
bedding and RNN weights to a final target classi-
fier. We again experiment with both simple and
more sophisticated fine-tuning techniques, to find
out which one is more helpful to this task.

Furthermore, we introduce the concatenation
method which was inspired by the correlation of
language modeling and the task at hand. We use
pretrained LMs to leverage the fact that the task is
basically a cloze test. In an LM, the probability
of occurrence of each word, is conditioned on the
preceding context, P (wt|w1, . . . , wt−1). In RNN-
based LMs, this probability is encoded in the hid-
den state of the RNN, P (wt|ht−1). To this end, we
concatenate the hidden state of the LSTM, right
before the missing word, himplicit, to the output of
the self-attention mechanism, r:

r′ = r ‖ himplicit, hi ∈ R2L (7)

where L is the size of each LSTM, and then feed
it to the output linear layer. This way, we pre-
serve the information which implicitly encodes the
probability of the missing word.

5 Experiments and Results

5.1 Experimental Setup
Training. We use Adam algorithm (Kingma and
Ba, 2014) to optimize our networks, with mini-
batches of size 64 and clip the norm of the gra-
dients (Pascanu et al., 2013) at 0.5, as an extra
safety measure against exploding gradients. We
also used PyTorch (Paszke et al., 2017) and Scikit-
learn (Pedregosa et al., 2011).
Hyperparameters. For all our models, we em-
ploy the same 2-layer attention-based LSTM ar-

chitecture (Sec. 3). All the hyperparameters used
are shown in Table 1.

Layer P-Emb P-Sent P-LM
Embedding 300 300 400
Embedding noise 0.1 0.1 0.1
Embedding dropout 0.2 0.2 0.2
LSTM size 400 400 600/800
LSTM dropout 0.4 0.4 0.4

Table 1: Hyper-parameters of our models.

5.2 Official Results

Our team ranked 3rd out of 30 participants, achiev-
ing 0.703 F1-score on the official test set. Table 2
shows the official ranking of the top scoring teams.

Rank Team Name Macro F1
1 Amobee 0.714
2 IIIDYT 0.710
3 NTUA-SLP 0.703
4 UBC-NLP 0.693
5 Sentylic 0.692

Table 2: Results of the WASSA IEST competition.

5.3 Experiments

Baselines. In Table 5 we compare the proposed
TL approaches against two strong baselines: (1) a
Bag-of-Words (BoW) model with TF-IDF weight-
ing and (2) a Bag-of-Embeddings (BoE) model,
where we retrieve the word2vec representations
of the words in a tweet and compute the tweet
representation as the centroid of the constituent
word2vec representations. Both BoW and BoE
features are then fed to a linear SVM classifier,
with tuned C = 0.6. All of our reported F1-scores
are calculated on the evaluation (dev) set, due to
time constraints.
P-Emb and P-Sent models (4.1, 4.2). We evaluate
the P-Emb and P-Sent models, using both bidirec-
tional and unidirectional LSTMs. The F1 score of
our best models is shown in Table 5. As expected,
bi-LSTM models achieve higher performance.
P-LM (4.3). For the experiments with the pre-
trained LMs, we intend to transfer not just the first
layer of our network, but rather the whole model,
so as to capture more high-level features of lan-
guage. As mentioned above, there are three dis-
tinct steps concerning the training procedure of
this TL approach: (1) LM pretraining: we train
three LMs on the EmoCorpus, EmoCorpus+ and

61

LM Fine-tuning LM Transfer
Simple FT SGU Concat. F1

Simple FT

3 0.672
3 3 0.667

3 0.676
3 3 0.673

SGU

3 0.673
3 3 0.667

3 0.678
3 3 0.682

Table 3: Results of the P-LM, trained on the Emo-
Corpus. The first column refers to the way we fine-
tune each LM on the IEST dataset and the second
to the way we finally fine-tune the classifier on the
same dataset.

Dataset F1
EmoCorpus 0.682
EmoCorpus+ 0.680
GenCorpus 0.675

Table 4: Comparison of the P-LM models, all fine-
tuned with SGU and Concat. methods.

GenCorpus corpora, (2) LM fine-tuning: we fine-
tune the LMs on the IEST dataset, with 2 different
ways. The first one is simple fine-tuning, while the
second one is our simplified gradual unfreezing
(SGU) technique. (3) LM transfer: We now have
6 LMs, fine-tuned on the IEST dataset. We trans-
fer their weights to our final emotion classifier, we
add attention to the LSTM layers and we experi-
ment again with our 2 ways of fine-tuning and the
concatenation method proposed in Sec. 4.3.

In Table 3 we present all possible combinations
of transferring the P-LM to the IEST task. We
observe that SGU consistently outperforms Sim-
ple Fine-Tuning (Simple FT). Due to the difficulty
in running experiments for all possible combina-
tions, we compare our best approach, namely SGU
+ Concat., with P-LMs trained on our three un-
labeled Twitter corpora, as depicted in Table 4.
Even though EmoCorpus contains less training ex-
amples, P-LMs trained on it learn to encode more
useful information for the task at hand.

5.4 Ensembling

Our submitted model is an ensemble of the mod-
els with the best performance. More specifically,
we leverage the following models: (1) TL of pre-
trained word embeddings, (2) TL of pretrained
sentiment classifier, (3) TL of 3 different LMs,
trained on 2M, 4M and 5M respectively. We use
Unweighted Average (UA) ensembling of our best

Model F1
Bag of Words (BoW) 0.601
Bag of Embeddings (BoE) 0.605
P-Emb 0.668
P-Sent 0.671
P-LM 0.675
P-Emb + bidir. 0.684
P-Sent + bidir. 0.674
P-LM + SGU 0.679
P-LM + SGU + Concat. 0.682
Ensembling (UA) P-Emb + P-Sent 0.684
Ensembling (UA) P-Sent + P-LM 0.695
Ensembling (UA) P-Emb + P-LM 0.701
Ensembling (MV) All 0.700
Ensembling (UA) All 0.702

Table 5: Results of our experiments when tested
on the evaluation (dev) set. BoW and BoE are
our baselines, while P-Emb, P-Sent and P-LM our
proposed TL approaches. SGU stands for Sim-
plified Gradual Unfreezing, bidir. for bi-LSTM,
Concat. for the concatenation method, UA for Un-
weighted Average and MV for Majority Voting en-
sembling.

models from all aforementioned approaches. Our
final results on the evaluation data are shown in
Table 5.

5.5 Discussion

As shown in Table 5, we observe that all of our
proposed models achieve individually better per-
formance than our baselines by a large margin.
Moreover, we notice that, when the three mod-
els are trained with unidirectional LSTM and the
same number of parameters, the P-LM outper-
forms both the P-Emb and the P-Sent models. As
expected, the upgrade to bi-LSTM improves the
results of P-Emb and P-Sent. We hypothesize that
P-LM with bidirectional pretrained language mod-
els would have outperformed both of them. Fur-
thermore, we conclude that both SGU for fine-
tuning and the concatenation method enhance the
performance of the P-LM approach. As far as the
ensembling is concerned, both approaches, MV
and UA, yield similar performance improvement
over the individual models. In particular, we no-
tice that adding the P-LM predictions to the en-
semble contributes the most. This indicates that P-
LMs encode more diverse information compared
to the other approaches.

62

6 Conclusion

In this paper we describe our deep-learning meth-
ods for missing emotion words classification, in
the Twitter domain. We achieved very competitive
results in the IEST competition, ranking 3rd/30
teams. The proposed approach is based on an
ensemble of Transfer Learning techniques. We
demonstrate that the use of refined, high-level fea-
tures of text, as the ones encoded in language mod-
els, yields a higher performance. In the future,
we aim to experiment with subword-level mod-
els, as they have shown to consistently face the
OOV words problem (Sennrich et al., 2015; Bo-
janowski et al., 2016), which is more evident in
Twitter. Moreover, we would like to explore other
transfer learning approaches.

Finally, we share the source code of our mod-
els 1, in order to make our results reproducible and
facilitate further experimentation in the field.

References
Christos Baziotis, Nikos Pelekis, and Christos Doulk-

eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Johan Bollen, Huina Mao, and Alberto Pepe. 2011a.
Modeling public mood and emotion: Twitter sen-
timent and socio-economic phenomena. Icwsm,
11:450–453.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011b.
Twitter mood predicts the stock market. Journal of
computational science, 2(1):1–8.

Pete Burnap, Walter Colombo, and Jonathan Scour-
field. 2015. Machine classification and analysis of
suicide-related communication on twitter. In Pro-
ceedings of the 26th ACM conference on hypertext
& social media, pages 75–84. ACM.

Wilas Chamlertwat, Pattarasinee Bhattarakosol, Tip-
pakorn Rungkasiri, and Choochart Haruechaiyasak.
2012. Discovering consumer insight from twitter
via sentiment analysis. J. UCS, 18(8):973–992.

Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Au-
relien Lucchi, Valeria De Luca, and Martin Jaggi.

1/github.com/alexandra-chron/
wassa-2018

2016. Swisscheese at semeval-2016 task 4: Senti-
ment classification using an ensemble of convolu-
tional neural networks with distant supervision. In
Proceedings of the 10th international workshop on
semantic evaluation, EPFL-CONF-229234, pages
1124–1128.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Jeremy Howard and Sebastian Ruder. 2018. Fine-
tuned language models for text classification. CoRR,
abs/1801.06146.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Mo-
hammad. 2014. Sentiment analysis of short in-
formal texts. Journal of Artificial Intelligence Re-
search, 50:723–762.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Weiyuan Li and Hua Xu. 2014. Text-based emotion
classification using emotion cause extraction. Ex-
pert Systems with Applications, 41(4):1742–1749.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. NRC-Canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

Saif M Mohammad and Peter D Turney. 2010. Emo-
tions evoked by common words and phrases: Us-
ing mechanical turk to create an emotion lexicon. In
Proceedings of the NAACL HLT 2010 workshop on
computational approaches to analysis and genera-
tion of emotion in text, pages 26–34. Association for
Computational Linguistics.

63

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Finn Årup Nielsen. 2011. A new anew: Evaluation of a
word list for sentiment analysis in microblogs. arXiv
preprint arXiv:1103.2903.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef
Sivic. 2014. Learning and transferring mid-level im-
age representations using convolutional neural net-
works. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
1717–1724.

Sinno Jialin Pan, Qiang Yang, et al. 2010. A survey on
transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3), 28:1310–1318.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, and others. 2011. Scikit-
learn: Machine learning in Python. Journal of Ma-
chine Learning Research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global Vectors for
Word Representation. In EMNLP, volume 14, pages
1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Ferran Pla and Lluís-F Hurtado. 2014. Political ten-
dency identification in twitter using sentiment anal-
ysis techniques. In Proceedings of COLING 2014,
the 25th international conference on computational
linguistics: Technical Papers, pages 183–192.

Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010
Workshop on New Challenges for NLP Frame-
works, pages 45–50, Valletta, Malta. ELRA.
http://is.muni.cz/publication/
884893/en.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Jianfeng Si, Arjun Mukherjee, Bing Liu, Qing Li,
Huayi Li, and Xiaotie Deng. 2013. Exploiting topic
based twitter sentiment for stock prediction. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), volume 2, pages 24–29.

Lisa Torrey and Jude Shavlik. 2010. Transfer learn-
ing. In Handbook of Research on Machine Learning
Applications and Trends: Algorithms, Methods, and
Techniques, pages 242–264. IGI Global.

Andranik Tumasjan, Timm Oliver Sprenger, Philipp G
Sandner, and Isabell M Welpe. 2010. Predicting
elections with twitter: What 140 characters reveal
about political sentiment. Icwsm, 10(1):178–185.

64

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 65–71
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Sentiment analysis under temporal shift

Jan Lukes and Anders Søgaard
Dpt. of Computer Science
University of Copenhagen

Copenhagen, Denmark
smx262@alumni.ku.dk

Abstract

Sentiment analysis models often rely on
training data that is several years old. In
this paper, we show that lexical features
change polarity over time, leading to de-
grading performance. This effect is par-
ticularly strong in sparse models relying
only on highly predictive features. Using
predictive feature selection, we are able to
significantly improve the accuracy of such
models over time.

1 Introduction

Sentiment analysis models often rely on data that
is several years old. Such data, e.g., product
reviews, continuously undergo shifts, leading to
changes in term frequency, for example. We also
observe the emergence of novel expressions, as
well as the amelioration and pejoration of words
(Cook and Stevenson, 2010). Such changes are
typically studied over decades or centuries; how-
ever, we hypothesize that change is continuous,
and small changes can be detected over shorter
time spans (years), and that their cumulation can
influence the quality of sentiment analysis mod-
els. In this paper, we analyze temporal polarity
changes of individual features using product re-
views data. Additionally, we show that predictive
feature selection, trying to counteract shifts in po-
larity, significantly improves model accuracy over
time.

Contributions First, we show deterioration of
sentiment analysis model performance over time.
We propose rank-based metrics for detecting po-
larity shifts and identify several examples of lexi-
cal features that exhibit temporal drift in our data.
Finally, we use our findings to design a predictive
feature selection scheme, based on expected polar-
ity changes, and show that models using predictive

Sample positive review:
”Grand daughters really like this movie. Good
clean movie for all ages. Would recommend for

everyone. Good horse movie for girls.”

Sample negative review:
”Not what I expected. Very cheap and chintzy

looking for the price. Certainly did not look like a
wallet. Very disappointed in the quality.”

Figure 1: Examples of reviews

feature selection perform significantly better than
models that simply rely on the most predictive fea-
tures across the training data without estimating
temporal shifts.

Training data Model accuracy

Runs 1 2 3 Mean

2001-2004 0.858 0.855 0.863 0.859
2008-2011 0.877 0.873 0.878 0.877

Table 1: Classifier accuracy deterioration when
using older and newer training sets. Models were
trained using random independent data subsets
from periods 2001-2004 or 2008-2011 and tested
using random independent subsets from 2012-
2014. Subset size: K = 40, 000 with 80/20 split.

2 Sentiment analysis models get worse
over time

One way we may observe polarity shifts over time
is when we see models trained on older data per-
form worse than models trained on more recent
data. Or, equivalently, by seeing performance
degradations over time.

The Amazon product review data, which we

65

https://doi.org/10.18653/v1/P17

will use in our experiments, is a collection of
user product reviews and meta-data crawled from
Amazon.com, consisting of 82 million reviews
and spanning May 1996 until July 2014 (He and
McAuley, 2016; McAuley et al., 2015). Previous
work already preprocessed the dataset, removing
duplicates and boiler plates. We sample large sub-
samples of reviews per year from the original data
set (K = 40000). Only years 2001 to 2014 were
used in this project, as the samples from earlier
years were of insufficient size.

Following previous work (Blitzer et al., 2007),
we map the user-provided sentiment annotations,
ranging from 1 star to 5 stars, into binary labels,
where 3 stars and less are replaced by negative
class labels, indicating negative or critical review,
and 4 or more stars were considered positive re-
views and associated with a positive class label.

Experiments with off-the-shelf classifiers In
our first set of experiments, we train logistic re-
gression models on data from 2001-2004 and on
data from 2008-2011, and test their accuracy on
random test samples from years 2012 to 2014. Our
results show that models trained on older data per-
formed noticeably worse than models trained on
data from years 2008-2011 (see Table 1). The
mean accuracies, obtained by averaging accura-
cies of models trained on three independently se-
lected samples, were 0.859 for models trained on
reviews from 2001-2004, and 0.877 for models
trained on reviews from 2008-2011, i.e., an aver-
age absolute 2% decrease in accuracy.

This model deterioration over time could be at-
tributed to a decrease in vocabulary overlap – as
measured by, for example, the Jaccard similarity
coefficient over unigrams and bigrams. To mea-
sure possible influence of this factor, we moni-
tor the Jaccard index of unigram and bigram fea-
tures that occur at least 5 times in the data sets:
The average Jaccard indices between training and
test data were 0.112 for 2001-2004 and 0.154 for
2008-2011.1 Since the difference is minor, we hy-
pothesize that temporal shifts in polarity are re-
sponsible for at least some of the drops in model
performance over time. We confirm this hypoth-
esis below by monitoring performance over time
with a fixed feature set (fixing also the Jaccard in-
dex).

1The relatively low values are due to training and test sets
being of different sizes, 32000 and 8000 respectively.

2.1 Experiments with a fixed feature set

The purpose of our second set of experiments is
again to see how accuracy changesover time with
models being trained on ’older’ and ’newer’ data
subsets, but on identical feature sets. Similar to
the above experiments, years 2001 to 2004 were
selected as our older training data subsets, and
years 2008 to 2011 were selected as our newer
data. We again sample 40, 000 reviews per year
and create 80/20 train-test splits. The experiment
was repeated three times with new samples to ob-
tain the average accuracies seen below in Figure 2.
The fixed feature set used was obtained by select-
ing the 5,000 most frequent unigrams and bigrams
present in the training data for year 2001.We use
simple count vectors to represent the reviews.

The deterioration of performance over time is
clearly visible from the plot in Figure 2, by look-
ing at the gap between the red and the green scatter
points. We believe these results support our hy-
pothesis that over time, the polarities of individ-
ual features may change, and the cumulation of
such changes significantly influences performance
of sentiment classifiers.

Figure 2: Each dot represents the average accuracy
of the model trained on data from year x, where
y ∈ [2001, .., 2004, 2008, .., 2011], and tested on
year x, where x ∈ [2012, 2013, 2014]. All possi-
ble combinations were run 3 times with different
random yearly subsets to compute the average ac-
curacies presented in the figure.

3 Polarity shifts

In this section, we look at individual features in or-
der to detect examples of polarity shifts, i.e., ame-
lioration or pejoration over time. We do so by an-
alyzing the weights of classifiers trained on differ-
ent years. As in our previous experiments, we use

66

logistic regression classifiers trained with `1 regu-
larization penalties. For each year in the interval
2001 to 2014, we training a classifier on a training
set of 32,000 randomly sampled reviews, and we
then inspect the coefficients associated with par-
ticular lexical features. These values measure the
impact of lexical features on the final predictions
of the models; high coefficients associate lexical
features with positive sentiment, and low (neg-
ative) coefficients associate lexical features with
high negative sentiment.

Logistic regression coefficients are not compa-
rable across models, though, because of different
scales, and one option would therefore be to use
Min-Max scaling to transform coefficient values
to the interval [1, 0] for positive values and [0,−1]
for negative values. We use such scaling later in
the paper; however, for robustly detecting polarity
shifts, we instead propose using feature polarity
rankings. Such ranking is done by ordering fea-
tures by their respective coefficients and assign-
ing a rank to each feature. The highest coeffi-
cient is rank 1, the second highest rank 2, and so
on. This allows us to make direct comparisons be-
tween several models trained on different subsets
of data.

Year Positive feature polarity rank

’highly’ ’great’ ’incredible’
2001 1 11 9
2002 4 11 10
2003 4 6 57
2004 1 6 40
2005 3 4 50
2006 3 1 173
2007 6 1 137
2008 3 2 126

Table 2: Example feature ranks obtained by train-
ing a logistic regression classifier on 32,000 re-
views from each year.

Due to the exponential distribution of coeffi-
cient values, as seen in Figure 3, a cap on maxi-
mal rank is placed such that max{rank} ≤ 3 ∗ f ,
where f is the number of positive (or negative)
features. If ranks would be uncapped, even the
slightest decrease in coefficient value would dis-
proportionately increase feature ranks. As a re-
sult, rank and rank averages (used in predictive
feature selection) would be much more influenced

by randomness of logistic regression, and hence,
less interpretable. We argue that shifts in polarity
are more precisely measured this way.

Figure 3: Distribution of coefficient values of 100
most positive and negative features obtained from
models trained on data subsets from years 2001 to
2014. Coefficient values were scaled using Min-
Max.

Using the feature polarity ranking described
above, we analyze what shifts occur in individ-
ual unigrams and bigrams. To do so, we again
use random data subsets of 40, 000 reviews and
80/20 splits. For each year spanning 2001 to 2014,
we again generate three independent subsets to al-
low for more robust results and less randomness
caused by logistic regression. Each subset is used
to train a classifier, and we compute the polarity
ranks of all lexical features.

Once we have established the ranks of lexical
features, we use linear regression to estimate the
degree to which polarity has changed. Using the
p value of such a linear fit, we filter out non-
significant changes where p > 0.05. See Figure
4 for examples of significant polarity shifts.

4 Models that are robust over time

Based on our previous findings that sentiment
analysis models deteriorate over time, as training
data sets get older, combined with observing sig-
nificant changes in the polarity of lexical features,
we hypothesize, that predictive feature selection
can, to some extent, counteract the negative effects
of polarity shift. In our final set of experiments, we
perform predictive feature selection using polarity

67

Figure 4: Figure shows a sample of 3 bigrams and
2 unigrams, where significant degradation in pos-
itivity was observed. Each color represents an in-
dependently selected collection of random yearly
subsets of reviews.

rank predictions to select features based on their
expected polarity.

We use two methods for predictive feature se-
lection, both relying on the predicted rate (or
slope) of change in polarity and a metric of signif-
icance that serves as a filtering mechanism. The
methods used are:

• Difference of means: This method uses two
mean polarity ranks - initial and final, to de-
termine rate of change in feature polarity, and

whether the change is significant. Initial and
final mean ranks are calculated using polarity
ranks from individual years (i.e. how feature
ranked in polarity as determined by model
trained on data from that year). In our case,
the training data spans 2001-2008 and differ-
ence of means uses years 2001-2003 for the
initial mean rank and 2006-2008 for the fi-
nal mean rank. Furthermore, each feature to
be included has to pass the following signifi-
cance test:

|mean(06−08)−mean(01−03)
mean(01−03) | > 0.05

The exact value can optionally be determined
by experimentation, however in this experi-
ment the significance threshold was set to 5%
of the initial rank.

• Linear regression: We use linear regression
to find the trend line of the feature polarity
rank and use that in the decision process. As
in previous method, yearly polarity ranks are
used, however, instead of using only initial or
final years we use the whole span of training
data to obtain a linear fit. The p-value calcu-
lated during the fit is used as the significance
threshold, where p < 0.05, for the feature
polarity shift to be considered significant.

Using the methods described above, if signifi-
cant temporal shift in polarity occurs, we obtain
an expected rank for each such feature. This infor-
mation is then used in predictive feature selection
that is identical with both methods. First, a feature
set of fixed size K (e.g. K positive and K negative
features) is created by looking at features that have
the best average rank. Additionally, an extended
supplement feature set is made of features that are
in the next best category (i.e. mean rank K + 1
to mean rank 3K). This next best feature set is
then analyzed by one of the predictive methods de-
scribed above, and expected rank is determined for
features with significant temporal polarity shift.
The results of such analysis are ordered from the
most polar expected rank to the least polar, while
any result where the expected rank is larger than
the fixed size K is ignored. The next step is to
analyze the K-sized original feature set using the
same method. Results are then ordered in inverse
order, so that features expected to be least polar are
first, while also, any feature that is expected to re-
main polar (i.e. feature rank < K) is ignored.

68

This new smaller set of features is then read from
least polar expected rank, and while there is a fea-
ture in the next best set we make a switch. Simply
put, this procedure eliminates features predicted to
lose polarity and features predicted to gain most
polarity are included instead. Experiments show
that number of features switched changes based
on parameters (i.e. p-values, size of K, etc.) from
around 10% of the feature set for K = 100 to 30%
for K = 300.

4.1 Experiments

In the first experiment with temporally robust
models, we used the difference of means to imple-
ment predictive feature selection. The data used to
create baseline accuracy was a random subset of R
reviews, where, again, R = 40, 000 reviews were
selected uniformly at random from years 2001 to
2008. After using 80/20 splits, a subset of 32,000
reviews was used to train a logistic regression clas-
sifier, and following the training, K most negative
and K most positive features were selected. In
contrast to the baseline model, the temporally ro-
bust model used the difference of means method
to select K negative and K positive features using
predictive feature selection described in the sec-
tion above. This setup was run 3 times with dif-
ferent random subsets of data for both the baseline
and the temporally robust model. The result ob-
tained from the runs can be seen below in Figure
5 and Table 3.

Average model accuracies using 200 features

Test years Baseline Temp. robust

2010 0.828 0.834
2011 0.821 0.825
2012 0.834 0.839
2013 0.845 0.847
2014 0.845 0.85

Table 3: Each value in the table represents an av-
erage accuracy of either a baseline or a temporally
robust model tested on a data set of 8,000 reviews
from the designated year. Each average is made
over 3 experimental runs using different random
subsets as training and test data (with no overlap
between training and test). Every model used 100
positive and 100 negative features (i.e. K = 100).
The predictive feature selection was implemented
using the difference of means method.

Figure 5: The figure contains results from both the
baseline and the temporally robust models trained
with 200 features on 32,000 reviews. Upper part
of the figure depicts model accuracies for all tested
years and all 3 experimental runs; the lower part
shows the average accuracy for each tested year.
The difference of means method was used for pre-
dictive feature selection.

In this particular experiment K = 100 (i.e. 200
features in total), however, identical experiments
were run also with K = 200 and K = 400 (see
Figure 6). The results indicate that with the num-
ber of features limited to 200, the predictive fea-
ture selection on average outperforms our base-
line model by a significant margin across all tested
years, i.e. 2010 to 2014.

69

Figure 6: The figure contains results from both the
baseline and the temporally robust models trained
with 800 features on 32,000 reviews. Upper part
of the figure depicts model accuracies for all tested
years and all 3 experimental runs; the lower part
shows the average accuracy for each tested year.
The difference of means method was used for the
predictive feature selection.

As can be seen above in Figure 6, significantly
increased performance is present even in models
that use increased number of features, i.e. from
K = 100 to K = 400. Such a result suggests that
predictive feature selection increases performance
even when more features are used, and not only in
the extremely sparse model with 200 features.

Figure 7: The figure contains results from both the
baseline and the temporally robust models trained
with 800 features on 32,000 reviews. Upper part
of the figure depicts model accuracies for all tested
years and all 3 experimental runs; the lower part
shows the average accuracy for each tested year.
The linear regression method with p-value filtering
was used for the predictive feature selection.

Furthermore, additional experiment with an
identical experimental setup (K = 400) was per-
formed; however, the predictive feature selection
was implemented using linear regression method
with p-value filter, as described above in the pa-
per. Results, seen in Figure 7, clearly show that
this method also performs better than the baseline
approach consisting of selecting only most polar

70

features based on training data. In general, both
methods - difference of means and linear regres-
sion with p-value filter - achieve a similar perfor-
mance, which is consistently better than our base-
line model for all tested years and all tested num-
bers of features, i.e. K ∈ [100, 200, 400].

5 Conclusion

Large data sets for sentiment analysis are costly
to create and are quite commonly a few years old.
The performance of classifiers trained on such data
sets decreases over time, as the interval between
creations of test and training sets expands. This
is, in part, due to a cumulative effect of individual
lexical features going through amelioration, or pe-
joration, which significantly changes their polarity
over time. We call this effect for temporal polarity
shift.

To counter effects of these shifts, and improve
the overall performance of a classifier, we devised
two methods that allow us to predict the expected
feature polarity. Using these methods, we imple-
mented predictive feature selection, an approach,
especially beneficial for sparse models, that se-
lects a better feature set for the classifier using
the expected polarity, rather than using the current
most polar features in the training data. Tempo-
rally robust models, i.e., the models using predic-
tive feature selection, consistently achieve better
accuracy than the baseline models, which suggest
that negative effects of temporal polarity shifts can
be countered to some degree.

References
John Blitzer, Mark Dredze, and Fernando Pereira.

2007. Biographies, Bollywood, Boom-boxes and
Blenders: Domain Adaptation for Sentiment Clas-
sification. In Proceedings of ACL.

Paul Cook and Suzanne Stevenson. 2010. Automati-
cally identifying changes in the semantic orientation
of words. In LREC.

Ruining He and Julian McAuley. 2016. Ups and
downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In
proceedings of the 25th international conference
on world wide web, pages 507–517. International
World Wide Web Conferences Steering Committee.

Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton Van Den Hengel. 2015. Image-based recom-
mendations on styles and substitutes. In Proceed-
ings of the 38th International ACM SIGIR Confer-

ence on Research and Development in Information
Retrieval, pages 43–52. ACM.

71

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 72–78
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Not Just Depressed: Bipolar Disorder Prediction on Reddit

Ivan Seuklić Matej Gjurković Jan Šnajder
Text Analysis and Knowledge Engineering Lab

Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, 10000 Zagreb, Croatia

{ivan.sekulic,matej.gjurkovic,jan.snajder}@fer.hr

Abstract

Bipolar disorder, an illness characterized by
manic and depressive episodes, affects more
than 60 million people worldwide. We present
a preliminary study on bipolar disorder pre-
diction from user-generated text on Reddit,
which relies on users’ self-reported labels. Our
benchmark classifiers for bipolar disorder pre-
diction outperform the baselines and reach ac-
curacy and F1-scores of above 86%. Feature
analysis shows interesting differences in lan-
guage use between users with bipolar disor-
ders and the control group, including differ-
ences in the use of emotion-expressive words.

1 Introduction

World Health Organization’s 2017 and Wykes et al.
(2015) report that up to 27% of adult population
in Europe suffer or have suffered from some kind
of mental disorder. Unfortunately, as much as 35–
50% of those affected go undiagnosed and receive
no treatment for their illness. To counter that, the
WHO’s Mental Health Action Plan’s (Saxena et al.,
2013) lists as one of its main objectives the gather-
ing of information and evidence on mental condi-
tions. At the same time, analysis of texts produced
by authors affected by mental disorders is attracting
increased attention in the natural language process-
ing community. The research is geared toward a
deeper understanding of mental health and the de-
velopment of models for early detection of various
mental disorders, especially on social networks.

In this paper we focus on bipolar disorder, a
complex psychiatric disorder manifested by uncon-
trolled changes in mood and energy levels. Bipolar
disorder is characterized by manic episodes, during
which people feel abnormally elevated and ener-
gized, and depression episodes, manifested in de-
creased activity levels and a feeling of hopelessness.
The two phases are recurrent and differ in intensity

and duration, greatly affecting the person’s capac-
ity to carry out daily tasks. Bipolar disorder affects
more than 60 million people, or almost 1% of the
world population (Anderson et al., 2012). The sui-
cide rate in patients diagnosed with bipolar disorder
is more than 6% (Nordentoft et al., 2011). There is
thus a clear need for the development of systems
capable of early detection of this illness.

As a first step toward that goal, in this paper
we present a preliminary study on bipolar disor-
der prediction based on user-generated texts on
social media. The main problem in detecting men-
tal disorders from user-generated text is the lack
of labeled datasets. We follow the recent strand
of research (Gkotsis et al., 2016; De Choudhury
et al., 2016; Shen and Rudzicz, 2017; Gjurković
and Šnajder, 2018) and use Reddit as a rich and di-
verse source of high-volume data with self-reported
labels. Our study consists of three parts. First, we
test benchmark models for predicting Reddit users
with bipolar disorder. Second, we carry out a fea-
ture analysis to determine which psycholinguistic
features are good predictors of the disorder. Lastly,
acknowledging that emotional swings are the main
symptom of the disorder, we analyze the emotion-
expressive textual features in bipolar disorder users
and the non-bipolar control group of users.

2 Related Work

Psychologist have long studied the language
use in patients with mental disorders, including
schizophrenia (Taylor et al., 1994), suicidal tenden-
cies (Thomas and Duszynski, 1985), and depres-
sion (Schnurr et al., 1992). Lately, computer-based
analysis with LIWC (Linguistic Inquiry and Word
Count) (Pennebaker et al., 2001) resource was used
to extract features for various studies regarding
mental health (Pennebaker and King, 1999). For
example, Stirman and Pennebaker (2001) found

72

https://doi.org/10.18653/v1/P17

the increased use of the first-person singular pro-
nouns (I, me, my) in poems to be a good predictor
of suicidal behavior, while Rude et al. (2004) de-
tected an excessive use of the pronoun I in essays
of depressed psychology students. In a recent study,
however, Tackman et al. (2018) suggest that first-
person singular pronouns may be better viewed as a
marker of general distress or negative emotionality
rather than as a specific marker of depression.

A number of studies looked into the use of
emotion-expressive words. Rude et al. (2004)
found that currently depressed students used more
negative emotion words than never-depressed stu-
dents. Halder et al. (2017) tracked linguistic
changes of social network users over time to un-
derstand the progression of their emotional status.
Kramer et al. (2004) found that conversations in
bipolar support chat rooms contained more posi-
tively valence words and slightly more negatively
valenced emotions than casual conversations.

Much recent work has leveraged social media as
a source of user-generated text for mental health
profiling (Park et al., 2012). Most studies used
Twitter data; e.g., De Choudhury et al. (2013) pre-
dicted depression in Twitter users, while CLPsych
2015 shared task (Coppersmith et al., 2015b) ad-
dressed depression and post-traumatic stress disor-
der (PTSD). Bipolar disorder on Twitter is usually
classified alongside other disorders. E.g., Copper-
smith et al. (2014, 2015a) achieved a precision
of 0.64 at 10% false alarms, while Benton et al.
(2017) used multi-task learning and achieved an
AUC-score of 0.752.

Reddit has only recently been used as a source
for the analysis of mental disorders. Gkotsis et al.
(2016) analyzed the language in different subred-
dits related to mental health, and showed that lin-
guistic features such as vocabulary use and sen-
tence complexity vary across different subreddits.
De Choudhury et al. (2016) explored the meth-
ods for automatic detection of individuals which
could transit from mental health discourse to sui-
cidal ideas. Shen and Rudzicz (2017) used topic
modeling, LIWC, and language models to predict
whether a Reddit post is related to anxiety. To
our knowledge, there is no previous study on the
analysis of bipolar disorder of Reddit users.

3 Dataset

Reddit is one of the largest social media sites in the
world, with more than 85 million unique visitors

per month.1 Reddit is suitable for our study not
only because of its vast volume, but also because it
offers user anonimity and covers a wide range of
topics. Registered users can anonymously discuss
various topics on more than 1 million subpages,
called “subreddits”. A considerable number of
subreddits is dedicated to mental health in general,
and to bipolar disorder in particular. All comments
between 2005 and 2018 (more than 3 billion) are
available as a Reddit dump database via Google
Big Query, which we used to obtain the data.

Bipolar disorder users. To obtain a sample of
users with bipolar disorder, we first retrieved all
subreddits related to the disorder, i.e., bipolar, bipo-
lar2, BipolarReddit, BipolarSOs, bipolarart, as
well as the more generic mentalhealth subreddit.
Then, following Beller et al. (2014) and Copper-
smith et al. (2014), we looked for self-reported
bipolar users by searching in the user’s comments
for the string “I am diagnosed with bipolar” and
its paraphrased versions. In addition, following
Gjurković and Šnajder (2018), we inspect users’
flairs – short descriptive texts that the users can set
for certain subreddits to appear next to their names.
While a flair is not mandatory, we found that many
users with bipolar disorder do use flairs on mental
health subreddits to indicate their disorder.

The acquisition procedure yielded a set of 4,619
unique users with self-reported bipolar disorder.
The users generated around 5 million comments,
totaling more than 163 million tokens. To get an
estimate of labeling quality, we randomly sampled
250 users and inspected their labels and text. As we
found no false positives (i.e., all 250 users report on
being diagnosed a bipolar disorder), we gauge that
the dataset is of high precision. The true precision
of the dataset depends, of course, on the veracity
of the self-reported diagnosis.

To make the subsequent analysis reliable and un-
biased, we decided to additionally prune the dataset
as follows. To mitigate the topic bias, we removed
all comments by bipolar disorder users on bipolar
subreddits, as well as on the general mental health
subreddit. Additionally, any comment on any sub-
reddit that mentions the words bipolar or BP (case
insensitive) was also excluded. Finally, to increase
the reliability, we retained in our dataset only the
users who, after pruning, have at least 1000 word
remaining. The final number of users in our dataset
is 3,488.

1https://www.alexa.com/siteinfo/reddit.com

73

Category # bipolar # control

Animals 397 898
AskReddit 1797 2767
Gaming 489 1501
Jobs and finance 293 586
Movies/music/books 502 1606
Politics 332 2445
Religion 264 700
Sex and relationships 948 1000
Sports 156 785

All 3488 3931

Table 1: The number of unique bipolar disorder and
control group users broken down by topic categories

Control group. The control group was sampled
from the general Reddit community, serving as a
representative of the mentally healthy population.
To ensure that the topics discussed by the control
group match those of bipolar disorder users, we
sampled users that post in subreddits often visited
by bipolar disorder users (i.e., subreddits where
posting frequency of bipolar disorder users was
above the average). To also ensure that the control
group is representative of the mentally healthy Red-
dit population, we removed all users with more than
1000 words on mental health related subreddits. As
before, we only retained users that had more than
1000 words in all of their comments. The final num-
ber of users in the control group is 3,931, which
is close to the number of bipolar users, with the
purpose of having a balanced dataset. The total
number of comments is about 20 million, which is
four times more than for the bipolar disorder users.

Topic categories. Topic of discussion may af-
fect the language use, including the stylometric
variables (Mikros and Argiri, 2007), which means
that topic distribution may act as a confounder in
our analysis. To minimize this effect, we split the
dataset into nine topic categories, each consisting
of a handful of subreddits on a similar topic. Table 1
shows the breakdown of the number of unique users
from both groups across topic categories. AskRed-
dit is the biggest subreddit and not bound to any
particular topic; in this category, we also add other
subreddits covering a wide range of topics, such as
CasualConversation and Showerthoughts. To be
included in a category, the user must have had at
least 1000 words on subreddits from that category.

4 Bipolar Disorder Prediction

Feature extraction. For each user, we extracted
three kinds of features: (1) psycholinguistic fea-

tures, (2) lexical features, and (3) Reddit user fea-
tures. For the psycholinguistic features, in line
with much previous work, we used LIWC (Pen-
nebaker et al., 2015), a widely used tool in predict-
ing mental health, which classifies the words into
dictionary-defined categories. We extracted 93 fea-
tures, including syntactic features (e.g., pronouns,
articles), topical features (e.g., work, friends), and
psychological features (e.g., emotions, social con-
text). In addition to LIWC, we used Empath (Fast
et al., 2016), which is similar to LIWC but cate-
gorizes the words using similarities based on neu-
ral embeddings. We used the 200 predefined and
manually curated categories, which Fast et al. have
found to be highly correlated with LIWC categories
(r=0.906).

The lexical features are the tf-idf weighted bag-
of-words, stemmed using Porter stemmer from
NLTK (Bird et al., 2009). Finally, Reddit user
features are meant to model user’s interaction pat-
terns. These include post-comment ratio, the num-
ber of gilded posts (posts awarded with money by
other users), average controversiality, the average
difference between ups and downs on user’s com-
ments and the time intervals between comments
(the mean, median, selected percentiles, and the
mode).2

Experimental setup. We frame bipolar disorder
prediction as a binary classification task, using the
above-defined features and three classifiers: a sup-
port vector machine (SVM), logistic regression,
and random forest ensemble (RF). We evaluated
our models and tune the hyperparameters using
10×5 nested cross validation. To mitigate for class
imbalance, we use class weighting when train-
ing classifiers on the dataset split into categories.
As baselines, we used a majority class classifier
(MCC) for evaluating the accuracy score and a ran-
dom classifier with class priors estimated from the
training set for evaluating the F1-score (F1-score
is undefined for MCC). For implementation, we
used Scikit-learn (Pedregosa et al., 2011). We use a
two-sided t-test for all statistical significance tests
and test at p<0.001 level.

Results. Table 2 shows the accuracy and F1-
scores for the different classifiers. Random forest

2Users with bipolar disorder often experience sleep distur-
bance, which can make their usage patterns deviate from that
of other users. Unfortunately, timestamps in Big Query are in
UTC, not in users’ local times, thus determining the time zone
would require geolocalization. We leave this for future work.

74

Acc F1

MCC 0.529 –
Random 0.546 0.453
SVM 0.865 0.853
LogReg 0.866 0.849
RF 0.869 0.863

Table 2: Prediction accuracy and F1-scores

LIWC Empath Tf-idf All

SVM 0.837 0.782 0.865 0.838
LogReg 0.841 0.819 0.866 0.862
RF 0.829 0.825 0.869 0.869

Table 3: Prediction accuracy for the different models
and feature sets

classifier achieved the best results, with accuracy
of 0.869 and an F1-score of 0.863. All models out-
perform the baseline accuracies of 0.529 and 0.546,
and the baseline F1-score of 0.453.

Table 3 shows the accuracy of the models us-
ing different feature sets. We observe two trends:
Empath generally performs worse than LIWC, and
tf-idf features perform better than LIWC. How-
ever, looking at the scores of the random forest
classifier as the best model, we find that there is
no significant difference between LIWC and Em-
path. Tf-idf does perform significantly different
than both LIWC and Empath, while all features
combined (including Reddit user features) do not
differ from tf-idf alone. We speculate that tf-idf
might yield better results in this case because essen-
tially all the words that LIWC and Empath detect
also exist as individual features in tf-idf. Similarly,
Coppersmith et al. (2014) achieve better results
using language models than LIWC, arguing that
many relevant text signals go undetected by LIWC.

Finally, Table 4 shows the accuracy across topic
categories for the MCC baseline and the best classi-
fier in each category. Our models outperform MCC
in all categories, and the differences are significant
for all categories except Sports.

5 Feature Analysis

We analyze the merit of the psycholinguistic fea-
tures using a two-sided t-test, with the null hypothe-
sis of no difference in feature values between users
with bipolar disorder and control users. The lower
the p-value, the higher the merit. We analyzed the
features separately on the entire dataset and on the
dataset split into categories.

MCC Our models

Animals 0.693 0.807*
AskReddit 0.606 0.856*
Gaming 0.754 0.777*
Jobs and finance 0.665 0.752*
Movies/music/books 0.761 0.817*
Politics 0.880 0.882*
Religion 0.724 0.784*
Sex and relationships 0.513 0.801*
Sports 0.832 0.837

Table 4: Accuracy of the MCC baseline and our mod-
els across topic categories. Accuracies marked with “*”
are significantly different from the baseline.

Between-group analysis. Ten LIWC features
with the lowest p-value on the entire dataset are
presented in Table 5, together with feature value
means for the two groups. The values in the table
are percentages of words in text from each category,
except Authentic and Clout, which are “summary
variables” devised by Pennebaker et al. (2015). Per-
sonal pronouns, especially the pronoun I, are used
more often by bipolar disorder users. This obser-
vation is in accord with past studies on language
of depressed people, which we can compare to be-
cause a bipolar depressive episode is almost iden-
tical to major depression (Anderson et al., 2012).
Coppersmith et al. (2014) also report a significant
difference in the use of I between Twitter users
with bipolar disorder and the control group. The
Authentic feature of Newman et al. (2003) reflects
the authenticity of the author’s text: a higher value
of this feature in bipolar disorder users may perhaps
be explained by them speaking about personal is-
sues more sincerely, though further research would
be required to confirm this. We also observe a
higher use of words associated with feelings (feel),
health, and biological processes (bio). Kacewicz
et al. (2014) argue that pronoun use reflects stand-
ings in social hierarchies, expressed through Clout
and power features: we observe a lower use of
these words in users with bipolar disorder, which
might indicate they think of themselves as less valu-
able members of society. The analysis of Empath
features yielded similar findings: health, content-
ment, affection, pain, and nervousness have higher
values in users with bipolar disorder.

Per-category analysis. Significant features in
specific categories follow a pattern similar to the
features on the complete dataset. Pronoun I is sta-
tistically significant in all of the categories, as well
as features Clout and Authentic.

75

Feature bipolar µ control µ

Authentic 52.65 32.92
ppron 10.69 8.66
i 5.84 3.38
health 0.96 0.50
feel 0.69 0.48
power 2.11 2.58
pronoun 16.87 14.86
bio 2.65 1.90
Clout 48.51 58.03
article 5.88 6.55

Table 5: Mean values of most significant LIWC fea-
tures for both groups

Bipolar Control

posemo 3.899 ± 1.02 3.442 ± 0.78
negemo 2.432 ± 0.67 2.569 ± 0.70
anxiety 0.367 ± 0.19 0.266 ± 0.10
anger 0.818 ± 0.39 1.128 ± 0.52
sad 0.455 ± 0.21 0.363 ± 0.11
affect 6.415 ± 1.22 6.074 ± 1.12

Table 6: Means and standard deviations of LIWC emo-
tion categories for bipolar and control group

6 Emotion Analysis

As emotional swings are of the main symptoms
of bipolar disorder, we expect that there will be
a difference in the use of emotion words between
users with bipolar disorder and the control group.
We report the results for LIWC, as Empath gave
very similar results.

Between-group differences. Table 6 shows
means and standard deviations of the values of six
LIWC emotion categories (posemo, negemo, anxi-
ety, anger, sad, and affect) for the users with bipo-
lar disorder and the control group. Users with bipo-
lar disorder use significantly more words linked
with general affect. Furthermore, we observe in-
creased use of words related to sadness, while the
control group uses more anger-related words. The
results for sadness are in line with previous work
on depressed authors. In addition, we find signif-
icant use of anxiety words in users with bipolar
disorder, similar to the findings of Coppersmith
et al. (2014). Surprisingly, we find that users with
bipolar disorder use more positive emotion words
than the control group. This is in contrast to find-
ings of Rude et al. (2004), who report no statistical
significance in the use of positive emotion words in
depressed authors. We speculate that this difference
may be due to the characteristics of manic episodes,
which do not occur in clinically depressed people.

Bipolar Control p-value

posemo 0.00272* 0.00166 0.00272
negemo 0.00583* 0.00379 0.00583
anxiety 0.00765* 0.00627 0.00765
anger 0.01745 0.01422 0.01745
sadness 0.00695* 0.00572 0.00695

Table 7: Averages of standard deviations in the use
of emotion-expressive words for the two groups. All
differences are significant except for “anger”.

Per-category differences. The difference be-
tween users with bipolar disorders and the control
group in AskReddit, Animals, Movies/music/books,
and Sex and relationships categories is significant
in words related to sadness, anxiety, anger, and
positive emotions. However, there is no significant
difference in positive and negative emotions in cat-
egories Jobs and Politics, while Sports, Gaming,
and Religion differ only in positive emotions.

User-level variance. We hypothesize that, due
to the alternation of manic and depressive episodes,
users with bipolar disorder will have a higher vari-
ance across time in the use of emotion words than
users from control group. To verify this, we ran-
domly sampled 100 users with bipolar disorder and
100 control users from all the users in our dataset
with more than 100K words and split their com-
ments into monthly chunks. For each of the 200
users, we calculated the LIWC features for each
month and computed their standard deviations. We
then measured the difference between standard de-
viations for the two groups. Table 7 shows the re-
sults. We find that bipolar users have significantly
more variance in most emotion-expressive words,
which confirms our hypothesis.

7 Conclusion

We presented a preliminary study on bipolar dis-
order prediction from user comments on Reddit.
Our classifiers outperform the baselines and reach
accuracy and F1-scores of above 86%. Feature
analysis suggests that users with bipolar disorder
use more first-person pronouns and words associ-
ated with feelings. They also use more affective
words, words related to sadness and anxiety, but
also more positive words, which may be explained
by the alternating episodes. There is also a higher
variance in emotion words across time in users
with bipolar disorder. Future work might look into
the linguistic differences in manic and depressive
episodes, and propose models for predicting them.

76

References
Ian M. Anderson, Peter M. Haddad, and Jan Scott.

2012. Bipolar disorder. BMJ: British Medical Jour-
nal (Online), 345.

Charley Beller, Rebecca Knowles, Craig Harman,
Shane Bergsma, Margaret Mitchell, and Benjamin
Van Durme. 2014. Ima belieber: Social roles via
self-identification and conceptual attributes. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), volume 2, pages 181–186.

Adrian Benton, Margaret Mitchell, and Dirk Hovy.
2017. Multi-task learning for mental health using
social media text. arXiv preprint arXiv:1712.03538.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python: Ana-
lyzing Text with the Natural Language Toolkit. ”
O’Reilly Media, Inc.”.

Glen Coppersmith, Mark Dredze, and Craig Harman.
2014. Quantifying mental health signals in Twitter.
In Proceedings of the Workshop on Computational
Linguistics and Clinical Psychology: From Linguis-
tic Signal to Clinical Reality, pages 51–60.

Glen Coppersmith, Mark Dredze, Craig Harman, and
Kristy Hollingshead. 2015a. From ADHD to SAD:
Analyzing the language of mental health on Twitter
through self-reported diagnoses. In Proceedings of
the 2nd Workshop on Computational Linguistics and
Clinical Psychology: From Linguistic Signal to Clin-
ical Reality, pages 1–10.

Glen Coppersmith, Mark Dredze, Craig Harman,
Kristy Hollingshead, and Margaret Mitchell. 2015b.
CLPsych 2015 shared task: Depression and PTSD
on Twitter. In Proceedings of the 2nd Workshop on
Computational Linguistics and Clinical Psychology:
From Linguistic Signal to Clinical Reality, pages 31–
39.

Munmun De Choudhury, Scott Counts, and Eric
Horvitz. 2013. Social media as a measurement tool
of depression in populations. In Proceedings of the
5th Annual ACM Web Science Conference, pages 47–
56. ACM.

Munmun De Choudhury, Emre Kiciman, Mark Dredze,
Glen Coppersmith, and Mrinal Kumar. 2016. Dis-
covering shifts to suicidal ideation from mental
health content in social media. In Proceedings of
the 2016 CHI conference on human factors in com-
puting systems, pages 2098–2110. ACM.

Ethan Fast, Binbin Chen, and Michael S Bernstein.
2016. Empath: Understanding topic signals in large-
scale text. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems,
pages 4647–4657. ACM.

Matej Gjurković and Jan Šnajder. 2018. Reddit: A gold
mine for personality prediction. In Proceedings of

the Second Workshop on Computational Modeling
of Peoples Opinions, Personality, and Emotions in
Social Media, pages 87–97.

George Gkotsis, Anika Oellrich, Tim Hubbard,
Richard Dobson, Maria Liakata, Sumithra Velupil-
lai, and Rina Dutta. 2016. The language of men-
tal health problems in social media. In Proceedings
of the Third Workshop on Computational Lingusitics
and Clinical Psychology, pages 63–73.

Kishaloy Halder, Lahari Poddar, and Min-Yen Kan.
2017. Modeling temporal progression of emotional
status in mental health forum: A recurrent neural
net approach. In Proceedings of the 8th Workshop
on Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis, pages 127–135.

Ewa Kacewicz, James W. Pennebaker, Matthew Davis,
Moongee Jeon, and Arthur C. Graesser. 2014.
Pronoun use reflects standings in social hierar-
chies. Journal of Language and Social Psychology,
33(2):125–143.

Adam DI Kramer, Susan R. Fussell, and Leslie D. Set-
lock. 2004. Text Analysis as a tool for analyzing
conversation in online support groups. In CHI’04
Extended Abstracts on Human Factors in Comput-
ing Systems, pages 1485–1488. ACM.

George K. Mikros and Eleni K. Argiri. 2007. Investi-
gating topic influence in authorship attribution. In
PAN.

Matthew L. Newman, James W. Pennebaker, Diane S.
Berry, and Jane M. Richards. 2003. Lying words:
Predicting deception from linguistic styles. Person-
ality and social psychology bulletin, 29(5):665–675.

Merete Nordentoft, Preben Bo Mortensen, et al. 2011.
Absolute risk of suicide after first hospital contact
in mental disorder. Archives of general psychiatry,
68(10):1058–1064.

Minsu Park, Chiyoung Cha, and Meeyoung Cha. 2012.
Depressive moods of users portrayed in Twitter.
In Proceedings of the ACM SIGKDD Workshop
on healthcare informatics (HI-KDD), volume 2012,
pages 1–8. ACM New York, NY.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, and Vincent Dubourg. 2011. Scikit-learn:
Machine learning in Python. Journal of machine
learning research, 12(Oct):2825–2830.

James W. Pennebaker, Ryan L. Boyd, Kayla Jordan,
and Kate Blackburn. 2015. The development and
psychometric properties of LIWC2015. Technical
report.

James W. Pennebaker, Martha E. Francis, and Roger J.
Booth. 2001. Linguistic inquiry and word count:
LIWC 2001. Mahway: Lawrence Erlbaum Asso-
ciates, 71(2001):2001.

77

James W. Pennebaker and Laura A. King. 1999. Lin-
guistic styles: Language use as an individual differ-
ence. Journal of personality and social psychology,
77(6):1296.

Stephanie Rude, Eva-Maria Gortner, and James Pen-
nebaker. 2004. Language use of depressed and
depression-vulnerable college students. Cognition
& Emotion, 18(8):1121–1133.

Shekhar Saxena, Michelle Funk, and Dan Chisholm.
2013. World health assembly adopts comprehensive
mental health action plan 2013–2020. The Lancet,
381(9882):1970–1971.

Paula P. Schnurr, Stanley D. Rosenberg, and Thomas E.
Oxman. 1992. Comparison of TAT and free speech
techniques for eliciting source material in computer-
ized content analysis. Journal of personality assess-
ment, 58(2):311–325.

Judy Hanwen Shen and Frank Rudzicz. 2017. Detect-
ing anxiety on Reddit. In Proceedings of the Fourth
Workshop on Computational Linguistics and Clini-
cal Psychology—From Linguistic Signal to Clinical
Reality, pages 58–65.

Shannon Wiltsey Stirman and James W. Pennebaker.
2001. Word use in the poetry of suicidal and non-
suicidal poets. Psychosomatic medicine, 63(4):517–
522.

Allison M. Tackman, David A. Sbarra, Angela L.
Carey, M. Brent Donnellan, Andrea B. Horn,
Nicholas S. Holtzman, To’Meisha S. Edwards,
James W. Pennebaker, and Matthias R. Mehl.
2018. Depression, negative emotionality, and self-
referential language: A multi-lab, multi-measure,
and multi-language-task research synthesis. Journal
of personality and social psychology.

Michael Alan Taylor, Robyn Reed, and Sheri A
Berenbaum. 1994. Patterns of speech disorders in
schizophrenia and mania. Journal of Nervous and
Mental Disease.

Caroline B. Thomas and Karen R. Duszynski. 1985.
Are words of the Rorschach predictors of disease
and death? The case of “whirling.”. Psychosomatic
medicine.

Til Wykes, Josep Maria Haro, Stefano R. Belli, Carla
Obradors-Tarragó, Celso Arango, José Luis Ayuso-
Mateos, István Bitter, Matthias Brunn, Karine
Chevreul, and Jacques Demotes-Mainard. 2015.
Mental health research priorities for Europe. The
Lancet Psychiatry, 2(11):1036–1042.

78

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 79–84
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Topic-Specific Sentiment Analysis Can Help Identify Political Ideology

Sumit Bhatia
IBM Research AI
New Delhi, India

sumitbhatia@in.ibm.com

Deepak P
Queen’s University Belfast

Belfast, UK
deepaksp@acm.org

Abstract

Ideological leanings of an individual can of-
ten be gauged by the sentiment one expresses
about different issues. We propose a sim-
ple framework that represents a political ide-
ology as a distribution of sentiment polarities
towards a set of topics. This representation
can then be used to detect ideological leanings
of documents (speeches, news articles, etc.)
based on the sentiments expressed towards dif-
ferent topics. Experiments performed using a
widely used dataset show the promise of our
proposed approach that achieves comparable
performance to other methods despite being
much simpler and more interpretable.

1 Introduction

The ideological leanings of a person within the
left-right political spectrum are often reflected by
how one feels about different topics and by means
of preferences among various choices on partic-
ular issues. For example, a left-leaning person
would prefer nationalization and state control of
public services (such as healthcare) where privati-
zation would be often preferred by people that lean
towards the right. Likewise, a left-leaning person
would often be supportive of immigration and will
often talk about immigration in a positive man-
ner citing examples of benefits of immigration on
a country’s economy. A right-leaning person, on
the other hand, will often have a negative opinion
about immigration.

Most of the existing works on political ideol-
ogy detection from text have focused on utilizing
bag-of-words and other syntactic features to cap-
ture variations in language use (Sim et al., 2013;
Biessmann, 2016; Iyyer et al., 2014). We pro-
pose an alternative mechanism for political ide-
ology detection based on sentiment analysis. We
posit that adherents of a political ideology gener-
ally have similar sentiment toward specific topics
(for example, right wing followers are often posi-

tive towards free markets, lower tax rates, etc.) and
thus, a political ideology can be represented by a
characteristic sentiment distribution over different
topics (Section 3). This topic-specific sentiment
representation of a political ideology can then be
used for automatic ideology detection by compar-
ing the topic-specific sentiments as expressed by
the content in a document (news article, magazine
article, collection of social media posts by a user,
utterances in a conversation, etc.).

In order to validate our hypothesis, we con-
sider exploiting the sentiment information towards
topics from archives of political debates to build
a model for identifying political orientation of
speakers as one of right or left leaning, which
corresponds to republicans and democrats respec-
tively, within the context of US politics. This is
inspired by our observation that the political lean-
ings of debators are often expressed in debates
by way of speakers’ sentiments towards particu-
lar topics. Parliamentary or Senate debates of-
ten bring the ideological differences to the cen-
tre stage, though somewhat indirectly. Heated de-
bates in such forums tend to focus on the choices
proposed by the executive that are in sharp con-
flict with the preference structure of the opposition
members. Due to this inherent tendency of par-
liamentary debates to focus on topics of disagree-
ment, the sentiments exposited in debates hold
valuable cues to identify the political orientation
of the participants.

We develop a simple classification model
that uses a topic-specific sentiment summariza-
tion for republican and democrat speeches sep-
arately. Initial results of experiments conducted
using a widely used dataset of US Congress de-
bates (Thomas et al., 2006) are encouraging and
show that this simple model compares well with
classification models that employ state-of-the-art
distributional text representations (Section 4).

79

https://doi.org/10.18653/v1/P17

2 Related Work

2.1 Political Ideology Detection

Political ideology detection has been a relatively
new field of research within the NLP community.
Most of the previous efforts have focused on cap-
turing the variations in language use in text rep-
resenting content of different ideologies. Beiss-
mann et al. (2016) employ bag-of-word features
for ideology detection in different domains such as
speeches in German parliament, party manifestos,
and facebook posts. Sim et al. (2013) use a labeled
corpus of political writings to infer lexicons of
cues strongly associated with different ideologies.
These “ideology lexicons” are then used to ana-
lyze political speeches and identify their ideologi-
cal leanings. Iyyer at al. (2014) recently adopted a
recursive neural network architecture to detect ide-
ological bias of single sentences. In addition, topic
models have also been used for ideology detec-
tion by identifying latent topic distributions across
different ideologies (Lin et al., 2008; Ahmed and
Xing, 2010). Gerrish and Blei (2011) connected
text of the legislations to voting patterns of legis-
lators from different parties.

2.2 Sentiment Analysis for Controversy
Detection

Sentiment analysis has proved to be a useful tool
in detecting controversial topics as it can help
identify topics that evoke different feelings among
people on opposite side of the arguments. Mejova
et al. (2014) analyzed language use in controver-
sial news articles and found that a writer may
choose to highlight the negative aspects of the op-
posing view rather than emphasizing the positive
aspects of ones view. Lourentzou et al. (2015) uti-
lize the sentiments expressed in social media com-
ments to identify controversial portions of news
articles. Given a news article and its associated
comments on social media, the paper links com-
ments with each sentence of the article (by using
a sentence as a query and retrieving comments us-
ing BM25 score). For all the comments associated
with a sentence, a sentiment score is then com-
puted, and sentences with large variations in posi-
tive and negative comments are identified as con-
troversial sentences. Choi et al. (2010) go one step
further and identify controversial topics and their
sub-topics in news articles.

3 Using Topic Sentiments for Ideology
Detection

Let D = {. . . , d, . . .} be a corpus of political doc-
uments such as speeches or social media postings.
Let L = {. . . , l, . . .} be the set of ideology class
labels. Typical scenarios would just have two class
labels (i.e., |L| = 2), but we will outline our for-
mulation for a general case. For document d ∈ D,
ld ∈ L denotes the class label for that document.
Our method relies on the usage of topics, each of
which are most commonly represented by a prob-
ability distribution over the vocabulary. The set of
topics overD, which we will denote using T , may
be identified using a topic modeling method such
as LDA (Blei et al., 2003) unless a pre-defined set
of handcrafted topics is available.

Given a document d and a topic t, our method
relies on identifying the sentiment as expressed
by content in d towards the topic t. The sen-
timent could be estimated in the form of a cat-
egorical label such as one of positive, negative
and neutral (Haney, 2013). Within our mod-
elling, however, we adopt a more fine-grained
sentiment labelling, whereby the sentiment for a
topic-document pair is a probability distribution
over a plurality of ordinal polarity classes rang-
ing from strongly positive to strongly negative.
Let sdt represent the topic-sentiment polarity vec-
tor of d towards t such that sdt(x) represents the
probability of the polarity class x. Combining
the topic-sentiment vectors for all topics yields a
document-specific topic-sentiment matrix (TSM)
as follows:

Sd,T =



. . . sdt1(x) . . .
. . . sdt2(x) . . .
...

...
...


 (1)

Each row in the matrix corresponds to a topic
within T , with each element quantifying the prob-
ability associated with the sentiment polarity class
x for the topic t within document d. The topic-
sentiment matrix above may be regarded as a sen-
timent signature for the document over the topic
set T .

3.1 Determining Topic-specific Sentiments

In constructing TSMs, we make use of topic-
specific sentiment estimations as outlined above.
Typical sentiment analysis methods (e.g., NLTK

80

Sentiment Analysis1) are designed to determine
the overall sentiment for a text segment. Using
such sentiment analysis methods in order to de-
termine topic-specific sentiments is not necessar-
ily straightforward. We adopt a simple keyword
based approach for the task. For every document-
topic pair (t, d), we extract the sentences from d
that contain at least one of the top-k keywords as-
sociated with the topic t. We then collate the sen-
tences in the order in which they appear in d and
form a mini-document dt. This document dt is
then passed on to a conventional sentiment ana-
lyzer that would then estimate the sentiment po-
larity as a probability distribution over sentiment
polarity classes, which then forms the sdt(.) vec-
tor. We use k = 5 and the RNN based sentiment
analyzer (Socher et al., 2013) in our method.

3.2 Nearest TSM Classification

We now outline a simple classification model that
uses summaries of TSMs. Given a labeled training
set of documents, we would like to find the proto-
typical TSM corresponding to each label. This can
be done by identifying the matrix that minimizes
the cumulative deviation from those correspond-
ing to the documents with the label.

Sl,T = argmin
X

∑

d∈D∧ld=l

||X − Sd,T ||2F (2)

where ||M ||F denotes the Frobenius norm. It
turns out that such a label-specific signature ma-
trix is simply the mean of the topic-sentiment ma-
trices corresponding to documents that bear the re-
spective label, which may be computed using the
below equation.

Sl,T =
1

|{d|d ∈ D ∧ ld = l}|
∑

d∈D∧ld=l

Sd,T

(3)
For an unseen (test) document d′, we first com-

pute the TSM Sd′,T , and assign it the label corre-
sponding to the label whose TSM is most proximal
to Sd′,T .

ld′ = argmin
l
||Sd′,T − Sl,T ||2F (4)

1http://text-processing.com/demo/
sentiment/

3.3 Logistic Regression Classification

In two class scenarios with label such as
{left, right} or {democrat, republican} as we
have in our dataset, TSMs can be flattened into
a vector and fed into a logistic regression clas-
sifier that learns weights - i.e., co-efficients for
each topic + sentiment polarity class combination.
These weights can then be used to estimate the la-
bel by applying it to the new document’s TSM.

4 Experiments

4.1 Dataset

We used the publicly available Convote
dataset2 (Thomas et al., 2006) for our exper-
iments. The dataset provides transcripts of
debates in the House of Representatives of the
U.S Congress for the year 2005. Each file in the
dataset corresponds to a single, uninterrupted
utterance by a speaker in a given debate. We
combine all the utterances of a speaker in a
given debate in a single file to capture different
opinions/view points of the speaker about the
debate topic. We call this document the view
point document (VPD) representing the speaker’s
opinion about different aspects of the issue being
debated. The dataset also provides political
affiliations of all the speakers – Republican (R),
Democrat (D), and Independent (I). With there
being only six documents for the independent
class (four in training, two in test), we excluded
them from our evaluation. Table 1 summarizes
the statistics about the dataset and distribution of
different classes. We obtained 50 topics using
LDA from Mallet3 run over the training dataset.
The topic-sentiment matrix was obtained using
the Stanford CoreNLP sentiment API4 (Man-
ning et al., 2014) which provides probability
distributions over a set of five sentiment polarity
classes.

4.2 Methods

In order to evaluate our proposed TSM-based
methods - viz., nearest class (NC) and logistic re-
gression (LR) - we use the following methods in
our empirical evaluation.

2http://www.cs.cornell.edu/home/llee/
data/convote.html

3http://mallet.cs.umass.edu/
4https://nlp.stanford.edu/sentiment/

code.html

81

Training Set Test Set

Republican (R) 530 194
Democrat (D) 641 215

Total 1175 411

Table 1: Distribution of different classes in the Con-
Vote dataset.

Method R D Total

GloVe d2v 0.6391 0.6465 0.6430
TSM-NC 0.6907 0.4558 0.5672
TSM-LR 0.5258 0.7628 0.6504
GloVe-d2v + TSM 0.5051 0.7023 0.6088

Table 2: Results achieved by different methods on the
ideology classification task.

1. GloVe-d2v: We use pre-trained GloVe (Pen-
nington et al., 2014) word embeddings to
compute vector representation of each VPD
by averaging the GloVe vectors for all words
in the document. A logistic regression clas-
sifier is then trained on the vector representa-
tions thus obtained.

2. GloVe-d2v+TSM: A logistic regression clas-
sifier trained on the GloVe features as well as
TSM features.

4.3 Results

Table 2 reports the classification results for dif-
ferent methods described above. TSM-NC, the
method that uses the TSMvectors and performs
simple nearest class classification achieves an
overall accuracy of 57%. Next, training a logis-
tic regression classifier trained on TSMvectors as
features, TSM-LR, achieves significant improve-
ment with an overall accuracy of 65.04%. The
word embedding based baseline, the GloVe-d2v
method, achieves slightly lower performance with
an overall accuracy of 64.30%. However, we do
note that the per-class performance of GloVe-d2v
method is more balanced with about 64% accu-
racy for both classes. The TSM-LR method on
the other hand achieves about 76% for R class and
only 52% for the D class. The results obtained are
promising and lend weight to out hypothesis that
ideological leanings of a person can be identified
by using the fine-grained sentiment analysis of the
viewpoint a person has towards different underly-
ing topics.

4.4 Discussion
Towards analyzing the significance of the results,
we would like to start with drawing attention to
the format of the data used in the TSM methods.
The document-specific TSM matrices do not con-
tain any information about the topics themselves,
but only about the sentiment in the document to-
wards each topic; one may recollect that sdt(.) is a
quantification of the strength of the sentiment in d
towards topic t. Thus, in contrast to distributional
embeddings such as doc2vec, TSMs contain only
the information that directly relates to sentiment
towards specific topics that are learnt from across
the corpus. The results indicate that TSM meth-
ods are able to achieve comparable performance
to doc2vec-based methods despite usage of only a
small slice of informatiom. This points to the im-
portance of sentiment information in determining
the political leanings from text. We believe that
leveraging TSMs along with distributional embed-
dings in a manner that can combine the best of
both views would improve the state-of-the-art of
political ideology detection.

Next, we also studied if there are topics that are
more polarizing than others and how different top-
ics impact classification performance. We identi-
fied polarizing topics, i.e, topics that invoke oppo-
site sentiments across two classes (ideologies) by
using the following equation.

dist(t, R,D) = ||sR,t − sR,t||F (5)

Here, sR,t and sD,t represent the sentiment vec-
tors for topic t for republican and democrat
classes. Note that these sentiment vectors are the
rows corresponding to topic t in TSMs for the two
classes, respectively.

Table 3 lists the top five topics with most dis-
tance, i.e., most polarizing topics (top) and five
topics with least distance, i.e.,least polarizing top-
ics (bottom) as computed by equation 5. Note
that the topics are represented using the top key-
words that they contain according to the proba-
bility distribution of the topic. We observe that
the most polarizing topics include topics related
to healthcare (H3, H4), military programs (H5),
and topics related to administration processes (H1
and H2). The least polarizing topics include topics
related to worker safety (L3) and energy projects
(L2). One counter-intuitive observation is topic
related to gun control (L4) that is amongst the
least polarizing topics. This anomaly could be at-

82

Most polarizing topics

H1: republican congress majority administration leadership n’t vote
party republicans special
H2: administration process vote work included find n’t true fix carriers
H3: health programs education funding million program cuts care billion
year
H4: health insurance small care coverage businesses plans ahps
employees state
H5: military center n’t students recruiters policy houston men
universities colleges

Least polarizing topics

L1: enter director march years response found letter criminal paid
general
L2: corps nuclear year energy projects committee project million
funding funds
L3: osha safety workers commission health h.r employers occupational
bills workplace
L4: gun police industry lawsuits firearms dept chief manufacturers
dealers guns
L5: medal gold medals individuals reagan history legislation ronald king
limiting

Table 3: List of most polarizing (top) and least polarizing (bottom) topics as computed using equation 5.

tributed to only a few speeches related to this issue
in the training set (only 23 out of 1175 speeches
mention gun) that prevents a reliable estimate of
the probability distributions. We observed simi-
lar low occurrences of other lower distance top-
ics too indicating the potential for improvements
in computation of topic-specific sentiment repre-
sentations with more data. In fact, performing
the nearest neighbor classification (TSM −NC)
with only top-10 most polarizing topics led to im-
provements in classification accuracy from 57%
to 61% suggesting that with more data, better
TSM representations could be learned that are
better at discriminating between different ideolo-
gies.

5 Conclusions

We proposed to exploit topic-specific sentiment
analysis for the task of automatic ideology de-
tection from text. We described a simple frame-
work for representing political ideologies and doc-
uments as a matrix capturing sentiment distri-
butions over topics and used this representation
for classifying documents based on their topic-
sentiment signatures. Empirical evaluation over a
widely used dataset of US Congressional speeches
showed that the proposed approach performs on a
par with classifiers using distributional text repre-

sentations. In addition, the proposed approach of-
fers simplicity and easy interpretability of results
making it a promising technique for ideology de-
tection. Our immediate future work will focus
on further solidifying our observations by using
a larger dataset to learn better TSMs for different
ideologies. Further, the framework easily lends it-
self to be used for detecting ideological leanings of
authors, social media users, news websites, maga-
zines, etc. by computing their TSMs and compar-
ing against the TSMs of different ideologies.

Acknowledgments

We would like to thank the anonymous reviewers
for their valuable comments and suggestions that
helped us improve the quality of this work.

References
Amr Ahmed and Eric P. Xing. 2010. Staying informed:

Supervised and semi-supervised multi-view topical
analysis of ideological perspective. In EMNLP,
pages 1140–1150. ACL.

Felix Biessmann. 2016. Automating political bias pre-
diction. arXiv preprint arXiv:1608.02195.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

83

Yoonjung Choi, Yuchul Jung, and Sung-Hyon Myaeng.
2010. Identifying controversial issues and their sub-
topics in news articles. In Intelligence and Security
Informatics, Pacific Asia Workshop, PAISI 2010, Hy-
derabad, India, June 21, 2010. Proceedings, volume
6122 of Lecture Notes in Computer Science, pages
140–153. Springer.

Sean Gerrish and David M. Blei. 2011. Predicting leg-
islative roll calls from text. In Proceedings of the
28th International Conference on Machine Learn-
ing, ICML 2011, Bellevue, Washington, USA, June
28 - July 2, 2011, pages 489–496. Omnipress.

Carol Haney. 2013. Sentiment analysis: Providing cat-
egorical insight into unstructured textual data. So-
cial Media, Sociality, and Survey Research, pages
35–59.

Mohit Iyyer, Peter Enns, Jordan L. Boyd-Graber, and
Philip Resnik. 2014. Political ideology detection us-
ing recursive neural networks. In ACL (1), pages
1113–1122. The Association for Computer Linguis-
tics.

Wei-Hao Lin, Eric P. Xing, and Alexander G. Haupt-
mann. 2008. A joint topic and perspective model
for ideological discourse. In Machine Learning
and Knowledge Discovery in Databases, European
Conference, ECML/PKDD 2008, Antwerp, Belgium,
September 15-19, 2008, Proceedings, Part II, vol-
ume 5212 of Lecture Notes in Computer Science,
pages 17–32. Springer.

Ismini Lourentzou, Graham Dyer, Abhishek Sharma,
and ChengXiang Zhai. 2015. Hotspots of news ar-
ticles: Joint mining of news text & social media to
discover controversial points in news. In Big Data,
pages 2948–2950. IEEE.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In ACL (System Demon-
strations), pages 55–60. The Association for Com-
puter Linguistics.

Yelena Mejova, Amy X. Zhang, Nicholas Diakopoulos,
and Carlos Castillo. 2014. Controversy and senti-
ment in online news. CoRR, abs/1409.8152.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1532–1543. ACL.

Yanchuan Sim, Brice D. L. Acree, Justin H. Gross, and
Noah A. Smith. 2013. Measuring ideological pro-
portions in political speeches. In Proceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 91–101. Associa-
tion for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1631–1642, Seattle, Washington, USA.
Association for Computational Linguistics.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out
the vote: Determining support or opposition from
congressional floor-debate transcripts. In EMNLP
2007, Proceedings of the 2006 Conference on Em-
pirical Methods in Natural Language Processing,
22-23 July 2006, Sydney, Australia, pages 327–335.
ACL.

84

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 85–90
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Saying no but meaning yes: negation and sentiment analysis in Basque

Jon Alkorta
Computer Languages

and Systems
IXA group (UPV/EHU)

Koldo Gojenola
Computer Languages

and Systems
IXA group (UPV/EHU)

{jon.alkorta,koldo.gojenola,mikel.iruskieta}@ehu.eus

Mikel Iruskieta
Didactics of Language

and Literature Department
IXA group (UPV/EHU)

Abstract
In this work, we have analyzed the effects
of negation on the semantic orientation in
Basque. The analysis shows that negation
markers can strengthen, weaken or have no ef-
fect on sentiment orientation of a word or a
group of words. Using the Constraint Gram-
mar formalism, we have designed and eval-
uated a set of linguistic rules to formalize
these three phenomena. The results show that
two phenomena, strengthening and no change,
have been identified accurately and the third
one, weakening, with acceptable results.

1 Introduction
Negation is a morphosyntactic operation in which
a lexical item denies or inverts the meaning of an-
other lexical item or language construction (Loos
et al., 2004). The effect of the negation can be
the change of semantic orientation (SO) and, ac-
cording to Liu (2012), negation is called sentiment
shifters because they change the semantic orienta-
tion of a word or a sentence.

With the aim of calculating the semantic orien-
tation, the first step is to build a lexicon, but this is
not enough, to grasp the correct SO-value of Ex-
ample 1.

(1) [Irabazi+2 ezinik jarraitzen du Eibarrek]+2.
(KIR17)
[(The soccer team) Eibar continues without
winning+2]

+2.

Following the semantic lexicon Sentitegi (Alko-
rta et al., 2018)1, the semantic orientation of the
word irabazi (“to win”) is +2, and consequently,
of the sentence also is +2. But we can notice that
the semantic orientation of the sentence is clearly
negative. The negator ezin (“can not”) turns the
positive oriented word irabazi+2 (“to win”) into a
negative oriented one. Therefore, we think that ad-
dressing this phenomenon is crucial to obtain bet-
ter results in the calculation of the SO of texts.

1The semantic lexicon is available on the web at: http:
//ixa.si.ehu.es/node/11438

The main aim of this work is to study how
negation expressions and syntactic structures can
change the semantic orientation of words, and to
design a set of linguistic rules by means of Con-
straint Grammar (Karlsson et al., 2011) in order to
identify these phenomena. According to our cor-
pus study, different negation language forms can
strengthen, weaken or have no effect on semantic
orientation. These results go in the same direc-
tion as (Jiménez-Zafra et al., 2018b) where effects
of negation within its scope are studied. We have
centered our study on negation markers that unlike
negation in verbs and nouns and negative polarity
items, they only share information about negativ-
ity while others can share more information like
aspect of action (e.g. they denied going to the city).

This paper has been organized as follows: af-
ter presenting related work in Section 2, Section 3
describes methodological steps. Then, Section 4
presents theoretical framework, while Section 5
gives a linguistic analysis. Section 6 shows results
and error analysis, concluding with Section 7 and
proposing directions for future work.

2 Related Work
There is a variety of works about negation and
sentiment analysis in different languages and from
different approaches.

For English, Liu and Seneff (2009) have pre-
sented a work where a parse-and-paraphrase
paradigm is used to assign sentiment polarity for
product reviews. If negation is detected, its polar-
ity will be reversed (switch negation). If it has a
value of +5, it will be reversed to −5, and vice
versa. Following this, they have improved results
(recall was improved in 45 %). The treatment
of negation has been different in Taboada et al.
(2011). In their work, when a negator is identi-
fied, the polarity value is not reversed; instead it
is shifted toward the opposite polarity by a fixed
amount. This approach is called shift negation. In

85

https://doi.org/10.18653/v1/P17

Text Text span Dictionary words SO value
MUS20 Pogostkinak [ezin hobeki]+ atera zituen hobeki +2

Pogostkina took them out [in an unbeatable way]+ best, better
KIR17 [Irabazi ezinik]− jarraitzen du Eibarrek, Irabazi +2

Eibar continues [without winning]− to win
Table 1: Polarity extraction of words (step 2) and linguistic analysis (step 3).

the creation of the semantic orientation calculator
(SO-CAL tool), Taboada et al. (2011) have also
treated negation in combination with other linguis-
tic phenomena (like irrealis or intensifiers).

In Spanish, there are several works related to
negation and sentiment analysis. In the case of
Jiménez Zafra et al. (2015), firstly, they have ana-
lyzed what the effects of different negators in dif-
ferent sentences are. After that, they have created
linguistic rules defined by the previous analysis.
Finally, they developed a module that has been in-
cluded in their polarity classifier system, improv-
ing results between 2.25 % and 3.02 % depend-
ing on the resource. Vilares et al. (2015) have
used a syntactic approach for opinion mining on
Spanish reviews. This system treats negation tak-
ing into account the scope and polarity flip caused
by negation. According to their results, there is an
improvement, due to the implementation of nega-
tion, among other reasons.

Our work is related to (Taboada et al., 2011) and
(Jiménez Zafra et al., 2015) since it is based on a
linguistic analysis and also because a set of rules
that detect the negation language forms are cre-
ated. As far as we know, there is not any work
which analyzes negation in connection with senti-
ment analysis in Basque.2

3 Methodological steps
1- Negation corpus. We have extracted 359

negation instances of seven3 negation mark-
ers. They were extracted from a total of 96 re-
views of six different topics: movies, music,
literature, politics, sports and forecast. We
have selected those negation markers because
they are the most frequent in the corpus.

2- Polarity extraction of every instance. We
have created a polarity tagger, based on a
POS tagger (Ezeiza et al., 1998) to enrich
the corpus with POS information on a se-

2Altuna et al. (2017) also analyze negation but their point
of view is different, since they analyze events in Basque texts.

3The extracted negation markers from the Basque Opin-
ion Corpus (Alkorta et al., 2016) are the following: ez (“not”),
gabe (“without”), ezin (“can not”), salbu (“except (for)”),
izan ezik (“except (for)”), ezta (“not even, not either”) and
ezean (“in the absence of” or “unless”).

mantic oriented lexicon for Basque (Alkorta
et al., 2018), to assign the semantic orienta-
tion value (SO value, between −5 and +5)
to words, as shown in Table 1. There, the
adverb hobeki (“best”, “better”) and the verb
irabazi (“to win”), have a SO value of +2 in
the lexicon.

3- Linguistic analysis. We have analyzed
whether the negation markers can change the
semantic orientation and the SO value of sen-
tences. We have also tried to identify whether
there are other phenomena related to nega-
tion with or without effects on semantic ori-
entation. In Table 1, in MUS20, the nega-
tion marker appears near hobeki (“best”), an
adverb. The result of this combination is
strengthening. In contrast, in KIR17, the verb
irabazi (“to win”) is before the negator and
the result is weakening. These two examples
show the different performances of ezin(ik)
(“can not”). Consequently, in Table 1, for ex-
ample, this negation marker appears in two
different groups. The same methodology has
been used with other negation markers.

4- Constraint Grammar (CG3) rules for nega-
tion. Several rules have been proposed to de-
tect each group, in order to identify the ef-
fects of negation based on the linguistic anal-
ysis presented in Section 5.

5- Evaluation. We use F1 to evaluate the results
using a different set of 46 reviews from the
same corpus (Alkorta et al., 2016)4.
4 Theoretical framework
In this section, we explain the three most
important concepts, regarding our analysis:
i) scope (negation analysis) and ii) switch
and iii) shift negation (sentiment analysis ap-
proach to negation).

(2) Berez pianorako konposatutako poliptiko txiki
honek ez du bere naf kutsua galtzen−2

bertsio orkestratuan. (MUS01)
This small polyptych composed for the piano
does not lose−2 its naive sense
in the orchestral version.

4A part of the corpus is available on the web
at: http://ixa2.si.ehu.es/diskurtsoa/
fitxategiak.php

86

(3) −maitasun istorio konbentzional bat,
grazia+3 handirik+1 gabea−. (LIB07)
−a conventional love story,
without great+1 grace+3.5

According to Huddleston and Pullum (2002),
the scope of negation is the part of the mean-
ing that is affected by the negation marker,
changing or not their SO value. In the ex-
amples above, the scope is underlined. As
our study shows, there can be two kinds of
semantic orientation in scope and these can
be changed by negation markers. In Exam-
ple 2, the SO value of the verb galdu (“to
lose”) and of its scope is −2. The negation
weakens the SO value of the verb, reversing
its SO. But, in Example 3, the SO values of
the noun grazia (“grace”) +3 and the adjec-
tive handi (“great”) +1 assign a SO value of
+4 to the scope which is positive. The nega-
tor gabe (“without”) weakens the SO value.

According to Taboada et al. (2011), there
are two approaches in sentiment analysis to
weaken the negative SO value: i) switch
negation and ii) shift negation.

(4) This pub is [not good+3]
−3(switch)

−1(shift) but the
music from there is good+3.

In the switch negation approach, the SO value
of Example 4 is reversed. The SO value of the
adjective good is +3 while the reversed SO
value is−3. However, this criteria has a prob-
lem: if excellent is +5; not excellent would
be more positive (+1) than not good (−2),
but the SO value points to the contrary (not
excellent is more negative than not good).

Otherwise, in the shift negation, the differ-
ent negators have their own SO value and
the results depend on the interaction of both
SO values (the value of negation marker and
negated word). Taking into account Exam-
ple 4, the SO value of the negation no is−4 in
the dictionary; so, when it modifies the word
good, which has a SO value of +3, the sum
value of scope is −1. This is the way how
the shift approach solves the problem we de-
scribe in Example 4. We have decided to use
the shift negation approach assigning a ±4
SO value to the negators.
5 Linguistic analysis
In the theoretical framework of the shift nega-
tion, it has been considered that negation

5Bold is used to mark the negator, underline means the
scope of negation.

markers only weakens the SO value. Nev-
ertheless, we have identified two other func-
tions of these negation markers with low fre-
quency, but relevant anyway from our point
of view as the works of (Jiménez-Zafra et al.,
2018a) and (Jiménez-Zafra et al., 2018b)
show. As we observed in this study, the nega-
tion markers can strengthen, weaken or have
no effect in the SO value of its scope as Fig-
ure 1 shows.

Figure 1: The effects of negation on semantic ori-
entation according to negation markers.

The majority of negation markers usually
weaken the semantic orientation of scope.
But as we can see in Figure 1, the nega-
tion marker ezin (“can not”), for example,
can strengthen or weaken the semantic ori-
entation of scope. The weakening can be
understood in two ways: i) if the word or
scope of the semantic orientation is +5, +4,
−5 or −4, their semantic orientation will not
become negative because according to our
methodology (shift negation), due to our SO
value of the negators is ±4. In contrast, ii) if
the semantic orientation of scope or sentence
is between −3 and +3, their semantic orien-
tation will be reversed. iii) Finally, nega-
tion with conjunction, contrastive negation
and lexicalized structures do not change the
SO value of the scope.
5.1 Negation strengthening the SO
Among all the negation instances, we have
observed some cases where the semantic ori-
entation has been strengthened (1.96 %: 7
of 359). This happens when the negation
marker ezin (“can not”) modifies adjectives
or adverbs.

(5) Dena nahasten da maisulan
ezin ederragoa(+4) osatzeko. (MUS21)
Everything is mixed to create a masterpiece
that can not be more beautiful(+4).

In Example 5, the negator modifies the ad-
jective and, in this case, the negation with an
adjective in a comparative structure is used
to reinforce the positive SO value. The result

87

Example Negation marker Categorization Instances
6

ez

[(NP +)] ez [+ aux. (+ NP) + verb (+ NP)]
[(NP +) verb +] ez
[NP +] ez

214
18
13

ez [+ NP +] ez [+ NP] (...) (repetitive) 2
gabe [NP/VP/clause +] gabe 41

7 ezin [(NP) + verb +] ezin
ezin [(+ NP) +] verb [(+ NP)]

19
5

salbu [NP] + salbu 2
izan ezik [NP/clause] + izan ezik 1

ezta ezta + [NP/clause] 1
ez, ezin with any clear pattern 7
Total 323

Table 2: Negation weakening the semantic orientation.

of negating a positive chunk can not be more
beautiful is to be even more positive. In this
case, the masterpiece is very beautiful.
5.2 Negation weakening the SO
In the majority of cases, the SO value is
weakened due to negation. Several negation
markers can weaken the semantic orientation.
In our corpus, 89.98 % of cases (323 of 359)
show a weakening of scope.

(6) Horrek ez die eragotzi(−2) ordea, 57 milioi
euro ematea San Mames klub pribatuari!.
(POL30)
It does not prevent(−2) them, however, to
give 57 milion euros to San Mames private
club!

(7) Irabazi(+2) ezinik jarraitzen du Eibarrek,
baina oso puntu ona eskuratu du Getaferen
zelaian. (KIR17)
Eibar continues without winning(+2), but it
has achieved a very good point in Getafe’s
(football) field.

In Example 6, the default word order of
Basque (main verb + auxiliary verb) was
reversed in a typical negation structure (ez
“not” + auxiliary verb + main verb). In
this example, the negation marker ez (“not”)
has an effect on all the words of the sen-
tence, including the verb eragotzi (“prevent”)
which has a negative SO value (−2), weak-
ening its SO value. In Example 7, the nega-
tion marker ezin “can not” negates the verb
irabazi (“win”). Therefore, the negation
marker ezin (“can not”) works like an inten-
sifier does with adjectives and adverbs (Ex-
ample 5) while it has the opposite function
with verbs and nouns (Example 7). There-
fore, weakening negators can have a positive
or negative (±4) SO value, if the modified
chunk (scope) has a positive or negative SO
value. The same happens if the SO value is
positive +5, because the result of the weak-
ening (−4) will not change the polarity and

the SO value will still be positive +1. In con-
trast, if the SO value of the modified chunk
+3 or −3 or lower, the SO value will be re-
versed to a ±1. This happens in Example 6
and Example 7. In the first example, the SO
value of the scope is +2 (eragotzi (“prevent”)
−2 + ez (“not”) +4 = +2). In the second
one, the SO value of the scope is −2 (irabazi
(“win”) +2 + ez (“not”) −4 = −2).
5.3 Negation with no effect
Negation with no effect on semantic orien-
tation has happened in 8.08 % of our sam-
ple (27 of 359). In these cases, the negation
does not modify any word with a SO value
assigned. This can happen due to three rea-
sons: i) the negator appears with a conjunc-
tion, ii) the negator is a part of contrastive
negation and iii) the negator is part of a lex-
icalized structure (structures with their own
meaning and sometimes also corresponding
to dictionary entries). The scope concept
is applicable only in the case of contrastive
negation and the particle ez (“no”) with a con-
junction.

(8) Ikuspuntu politikotik(−1) ez ezik, ekonomiko-
tik(+3) ere Greziak esperantza ekarri du Eu-
ropako hegoaldeko beste herrietara, tartean
Euskal Herrira. (POL08)
Not only from the political point of view, but
also from the economic point of view, Greece
has also hoped for other parts of southern Eu-
rope, including the Basque Country.

(9) Sei puntu baino ez dituela, hamaseigarren
postuan da Reala sailkapenean. (KIR27)
With only six points, Real is in the sixteenth
position in the classification.

Example 8 shows a contrastive negation with
additive function (Silvennoinen, 2017). In
other words, the negation mark does not
negate the noun phrase, as in ikuspuntu poli-
tikotik(−1) (“from the political(−1) point of
view”), actually it functions as conjunction

88

Example Negation marker / lexicalized structure Instances
[verb/bai “yes”] + edo/edota/ala ez (ez with conjuction) 3

8 [NP] + ez ezik (contrastive negation) 2
9 baino/besterik ez 11

Others lexicalized structures 13
Total 29

Table 3: Negation without effects on semantic orientation.

and adds new information: ekonomikotik ere
(“also from the economic point of view”).
Structures of Table 3 have their own SO
value, they can be considered as dictionary
entries and they can appear in different posi-
tions in the sentence. In Example 9, the struc-
ture baino/besterik ez (“only”) is an adverb.
6 Evaluation
6.1 Evaluation methodology
To tag the negation changes of the SO value,
we have created negation rules based on pre-
vious studies.Rules have been implemented
using Constraint Grammar (CG3) (Karlsson
et al., 2011) to assign the correct value to the
negated structures. The corpus of 96 texts has
been tagged using the Basque morphosyntac-
tic disambiguator based on the CG formal-
ism (Aduriz et al., 1997). Then, a different
set of 48 texts of the Basque Opinion Corpus
has been used as test dataset to evaluate the
rules. After that, the results have been ana-
lyzed manually, observing if the words have
been annotated or not and, when annotated,
whether they have the correct annotation.
Negation effects Prec. Rec. F1

Strengthen 1.00 1.00 1.00
Weaken 0.93 0.80 0.86

No effect 0.97 1.00 0.98
Total 0.93 0.80 0.86

Negated elements Prec. Rec. F1

Negation markers 1.00 0.96 0.98
Lexicalized structures 0.96 1.00 0.98

Scope 0.91 0.75 0.82
Total 0.93 0.80 0.86

Table 4: General results of negation effects and
negated elements.

Most of the corpus was evaluated by one lin-
guist, but with the aim to know the reliability
of this evaluation a piece of the corpus (10
%) has been annotated by two linguists. Both
annotators have followed a guideline to eval-
uate the output of CG3 rules. According to
the results, the Cohen’s kappa score is 0.93
for the annotation of the words that belong
to negation and the kappa score is 0.69 for

the annotation of words that have been anno-
tated correctly, badly or is missed (which can
be considered as substantial in (Landis and
Koch, 1977)).
6.2 Results and error analysis
According to general results, the F1 of the
negation rules identifying elements related to
negation is 0.86 (Precision is 0.93 while re-
call is 0.80).

In accordance with weakening and scope er-
ror analysis, these elements show lower F1

score because they behave more irregularly.
The components as well as the length in
scope are more unpredictable. Moreover,
some negators apply to lists of words with
comma and, as some constraints in CG3 rules
correspond to punctuation marks, they have
not been detected. This suggests that the
rules need more precision. So, the punctu-
ation mark constraint is not enough. There-
fore, some syntactic information is needed to
detect these kind of structures.
7 Conclusions and Future Work
This work presents a negation analysis for
Basque sentiment analysis based on Con-
straint Grammar rules. According to this
study, the negation can affect the seman-
tic orientation (SO value) in different ways:
i) strengthening, ii) weakening or iii) hav-
ing no effect. According to our evaluation to
measure the identified words, the overall pre-
cision is 0.93, the recall 0.80 and the F1 score
0.86. In line with error analysis, the punc-
tuation mark constraint is not enough and
more precise rules are needed in the nega-
tion weakening. In the near future, i) we
want to implement these negation rules in a
tool for automatic Basque sentiment analysis
and ii) we want to continue with the analysis
of negation: analyzing the scope in a bigger
corpus and especially based on the Rhetorical
Structure Theory (RST) (Mann and Thomp-
son, 1987), studying if the position of negator
in rhetorical structure has any effect on senti-
ment analysis.

89

References
Itziar Aduriz, José Marı́a Arriola, Xabier Artola,

Arantza Dı́az de Ilarraza, Koldo Gojenola, and
Montse Maritxalar. 1997. Morphosyntactic disam-
biguation for basque based on the constraint gram-
mar formalism. Proceedings of Recent Advances
in NLP (RANLP97), pages 282–288, Tzigov Chark
(Bulgary).

Jon Alkorta, Koldo Gojenola, and Mikel Iruskieta.
2016. Creating and evaluating a polarity - balanced
corpus for Basque sentiment analysis. In IWoDA16
Fourth International Workshop on Discourse Analy-
sis, pages 58–62. Santiago de Compostela (Spain).

Jon Alkorta, Koldo Gojenola, and Mikel Iruskieta.
2018. SentiTegi: building a semantic oriented
Basque lexicon. In Proceedings of the CICLing
2018. Hanoi (Vietnam).

Marı́a Jesus Aranzabe Begoña Altuna and
Arantza Dı́az de Ilarraza. 2017. Euskarazko
ezeztapenaren tratamendu automatikorako azter-
keta. In Iñaki Alegria, Ainhoa Latatu, Miren Josu
Ormaetxebarria and Patxi Salaberri (pub.), II.
IkerGazte, Nazioarteko Ikerketa Euskaraz: Giza
Zientziak eta Artea, pages 127–134. Udako Euskal
Unibertsitatea (UEU), Bilbo (Spain).

Nerea Ezeiza, Iñaki Alegria, José Marı́a Arriola, Rubén
Urizar, and Itziar Aduriz. 1998. Combining stochas-
tic and rule-based methods for disambiguation in
agglutinative languages. In Proceedings of the
17th international conference on Computational
linguistics-Volume 1, pages 380–384. Association
for Computational Linguistics.

Rodney Huddleston and Geoffrey Keith Pullum. 2002.
The Cambridge grammar of English. Language.
Cambridge: Cambridge University Press.

Salud Marı́a Jiménez-Zafra, M. Teresa Martı́n-
Valdivia, M. Dolores Molina-González, and L. Al-
fonso Ureña-López. 2018a. Relevance of the SFU
Review SP-NEG corpus annotated with the scope
of negation for supervised polarity classification in
Spanish. Information Processing & Management,
54(2):240–251.

Salud Marı́a Jiménez Zafra, Eugenio Martı́nez Cámara,
Marı́a Teresa Martı́n Valdivia, and Marı́a Dolores
Molina González. 2015. Tratamiento de la Ne-
gación en el Análisis de Opiniones en Espanol.
Procesamiento del Lenguaje Natural, (54).

Salud Marı́a Jiménez-Zafra, Mariona Taulé, M. Teresa
Martı́n-Valdivia, L. Alfonso Ureña-López, and M.
Antónia Martı́. 2018b. SFU Review SP-NEG: a
Spanish corpus annotated with negation for sen-
timent analysis. A typology of negation patterns.
Language Resources and Evaluation, 52(2):533–
569.

Fred Karlsson, Atro Voutilainen, Juha Heikkilae,
and Arto Anttila. 2011. Constraint Grammar:

a language-independent system for parsing unre-
stricted text, volume 4. Walter de Gruyter.

J. Richard Landis and Gary G. Koch. 1977. The mea-
surement of observer agreement for categorical data.
Biometrics, pages 159–174.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language tech-
nologies, 5(1):1–167.

Jingjing Liu and Stephanie Seneff. 2009. Review sen-
timent scoring via a parse-and-paraphrase paradigm.
In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume
1-Volume 1, pages 161–169. Association for Com-
putational Linguistics.

Eugene Emil Loos, Susan Anderson, Dwight H. Day,
Paul C. Jordan, and J. Douglas Wingate. 2004. Glos-
sary of linguistic terms, volume 29. SIL Interna-
tional Camp Wisdom Road Dallas.

William C. Mann and Sandra A. Thompson. 1987.
Rhetorical Structure Theory: A theory of text orga-
nization. University of Southern California, Infor-
mation Sciences Institute.

Olli O. Silvennoinen. 2017. Not only apples but also
oranges: Contrastive negation and register. In Turo
Hiltunen, Joe McVeigh and Tanja Sily (edit.), Big
and Rich Data in English Corpus Linguistics: Meth-
ods and Explorations, VARIENG, Helsinki (Fin-
land).

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, and Manfred Stede. 2011. Lexicon-based
methods for sentiment analysis. Computational lin-
guistics, 37(2):267–307.

David Vilares, Miguel A. Alonso, and Carlos Gómez-
Rodrı́guez. 2015. A syntactic approach for opinion
mining on Spanish reviews. Natural Language En-
gineering, 21(1):139–163.

90

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 91–96
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Leveraging Writing Systems Change for Deep Learning Based Chinese
Emotion Analysis

Rong Xiang1, Yunfei Long1, Qin Lu1, Dan Xiong1, I-Hsuan Chen2

1Department of Computing, The Hong Kong Polytechnic University
csrxiang,csylong,csluqin,csdxiong@comp.polyu.edu.hk

2Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University
ihcucb@gmail.com

Abstract

Social media text written in Chinese commu-
nities contains mixed scripts including ma-
jor text written in Chinese, an ideograph-
based writing system, and some minor text
using Latin letters, an alphabet-based writ-
ing system. This phenomenon is called writ-
ing systems changes (WSCs). Past studies
have shown that WSCs can be used to ex-
press emotions, particularly where the social
and political environment is more conserva-
tive. However, because WSCs can break the
syntax of the major text, it poses more chal-
lenges in Natural Language Processing (NLP)
tasks like emotion classification. In this work,
we present a novel deep learning based method
to include WSCs as an effective feature for
emotion analysis. The method first identifies
all WSCs points. Then representation of the
major text is learned through an LSTM model
whereas the minor text is learned by a sepa-
rate CNN model. Emotions in the minor text
are further highlighted through an attention
mechanism before emotion classification. Per-
formance evaluation shows that incorporating
WSCs features using deep learning models can
improve performance measured by F1-scores
compared to the state-of-the-art model.

1 Introduction

Emotion analysis has been studied using differ-
ent NLP methods from a variety of linguistic per-
spectives such as semantic, syntactic, and cog-
nitive properties (Barbosa and Feng, 2010; Bal-
amurali et al., 2011; Liu and Zhang, 2012; Wil-
son et al., 2013; Joshi and Itkat, 2014; Long et
al., 2017). In many areas, such as Hong Kong
and the Chinese Mainland, social media text is of-
ten written in mixed text with major text written
in Chinese characters, an ideograph-based writ-
ing system. The minor text can be written in En-

glish, emoji, Pinyin1 (phonetic denotation for Chi-
nese), or other new Internet shorthand notations
using Roman characters of some Latin-based writ-
ing systems. Using mixed characters in different
writing systems is known as WSCs.

Generally speaking, WSCs refers to the use of
mixed text which switches between two or more
writing systems (Clyne, 2000; Lee and Liu, 2012).
A narrower definition, often referred to as code-
switching, is the use of more than one linguistic
variety in a manner consistent with the syntax and
phonology of each variety2. The use of alteration
of different systems or languages of symbols is
rooted in pragmatic and socio-linguistic motiva-
tions (Cromdal, 2001; Musk, 2012). The use of
WSCs is a case of Economy principle in language
(Vicentini, 2003) which is pursued by human be-
ing in various activities due to the innate indo-
lence. It aims at the maximum effect with the least
input. For instance, ’Good luck’ becomes more
popular than the Chinese version of ’祝你好运’
(Good luck) because inputting the English version
takes shorter time in expressing the same emotion.

Studies in social psychology (Bond and Lai,
1986; Heredia and Altarriba, 2001) also show that
WSCs is an effective and commonly used strat-
egy to express emotion or mark emotion change
especially in some society where social and politi-
cal environment is more conservative (Wei, 2003).
For instance, a new-born swear word ’zz’ is of-
ten used in place of the Chinese version of ’mo-
ron’. This is because ’zz’, which is the acronym
of the Pinyin ’zhi zhang (moron)’, looks less dis-
respectful lexically and more acceptable in social
networks. With the rapid growth of internation-
alization, Chinese youngsters like to use English
acronyms such as ’wtf’ (what the fuck) ’stfu’ (shut

1https://en.wikipedia.org/wiki/Pinyin
2https://en.wikipedia.org/wiki/Code-switching

91

https://doi.org/10.18653/v1/P17

the fuck up). People also use WSCs to express id-
iosyncrasies written in English or other languages
because text in other writing systems is much more
difficult to be censored. For example, the sensitive
term of democracy in Chinese (民主’min zhu’)
is often written as an intended misspelled Pinyin
minzu or the English word democracy. This pa-
per studies WSCs related textual features from the
orthography perspective to explore their effective-
ness as emotion indicators.

Previous studies in emotion analysis mostly rely
on emotion lexicon, context information, or se-
mantic knowledge to improve sentence level clas-
sification tasks. This linguistic knowledge is of-
ten used to transform raw data into feature vec-
tor, called feature engineering (Kanter and Veera-
machaneni, 2015). However, WSCs can break the
syntax of the major text and the switched minor
text also lacks linguistic cues in this type of so-
cial media data (Dos Santos and Gatti, 2014). This
makes feature engineering-based methods difficult
to work. Neologism in the Internet forums in-
creases the difficulty for both syntactic and seman-
tic analysis. In particular, newly coined phrases
tend to contain different types of symbols. Despite
the challenges, this type of datasets is rich in shifts
of writing systems orthographically. This charac-
teristic offers reliable clues for emotion classifica-
tion. Since WSCs is relatively common in real-
time on-line platforms like microblog in China
3. This work adopts a broader scope of WSCs
to include switching between two languages, and
change of writing systems in the same language
such as Chinese characters to Pinyin notations.
Notably, the accessibility of different character
sets and symbols, as well as the frequent expo-
sures to other languages and cultures characterize
the nature of such short and informal text.

This paper presents our work in progress which
uses a novel deep learning based method to in-
corporate textual features associated with WSCs
via an attention mechanism. More specifically,
the proposed Hybrid Attention Network (HAN)
method first identifies all WSCs points. The rep-
resentation of the major text is learned through
a Long-Short Term Memory (LSTM) model
whereas the representation of the minority text is
learned by a separate Convolution Neural Network
(CNN). Emotions expressed in the minor text are
further highlighted through an attention mecha-

3https://en.wikipedia.org/wiki/Microblogging

nism before emotion classification. The atten-
tion mechanism is achieved by projecting the ma-
jor text representation into attention vectors while
aggregating the representation of the informative
words from WSCs context.

2 The Hybrid Attention Network Model

Let D be the dataset as a collection of documents
for emotion classification. Each document di is an
instance in D. The goal of an emotion analysis
is to predict the emotion label for each di. The
set of emotion labels includes {Happiness, Sad-
ness, Anger, Fear, Surprise}. Let us use the term
WSC segments to refer to the minor WSC text
pieces. WSC segments can be easily marked in a
pre-processing step using code ranges of Chinese
characters and Romanized Pinyin or English text.

To make better use of WSCs scripts, a deep
learning based HAN model is proposed to explic-
itly assemble WSCs information in an attention
mechanism. Figure 1 shows the framework of
HAN. The LSTM model on the left side is used
to learn the representation of a document includ-
ing the WSC segments. This is because docu-
ments with WSCs are generally coherent and in-
tact despite few WSC segments that may break
the syntax. The CNN model on the right is used
to learn the representation of WSCs segments ex-
tracted from the sentence because they often occur
discontinuously without syntactic structure. The
outputs of both models are integrated into a hy-
brid attention layer before classification is carried
out.

Figure 1: Hybrid attention network framework

92

Using deep learning methods, the word repre-
sentation in di = ~w1, ..., ~wm, di, is learned us-
ing two networks. To distinguish the WSC units,
they are given designed switch labels ~ws

j (~ws
j ⊂di,

j = 1...k) and are extracted to be fed into the CNN
as an extra feature. di is fed into LSTM to gener-
ate the hidden vector ~h1,~h2...~hm from di. In Chi-
nese social media, WSCs segments are generally
dispersed sporadically. So, for di with k WSC seg-
ments, the convolution is calculated using a sliding
window of size 2n+ 1:

−−−→convp =
k+n∑

p=k−n

~ws
p, (1)

and

~Rwsc =

∑k
p=1
−−−→convp

k
. (2)

The WSC feature vector Rwsc is generated by
average pooling.

Attention model was introduced by Yang et
al.(2016) to show different contribution of differ-
ent words semantically. To include both the infor-
mation learned from LSTM and CNN, the consol-
idated representation, ~up, includes the representa-
tions of both ~hp, and the WSC representation vec-
tor ~Rwsc into a perceptron defined below:

~up = tanh(W~hp +Wwsc
~Rwsc + b). (3)

In order to re-evaluate the significance of word ~wp,
a coefficient vector ~U is introduced as an infor-
mative representation of the words in a network
memory. The representation of a word ~up and the
corresponding word-level context vector ~U is inte-
grated to obtain a normalized attention weight:

αp =
exp(~up · ~U)

∑
p exp(~up · ~U)

. (4)

The updated document representation ~v can be
generated as a weighted sum of the word vectors
given below:

~v =
∑

p

(αp
~hp), (5)

where ~v contains both document information and
WSCs representation with attention shall be used
in the final SoftMax method, producing the out-
put vector. Lastly, an argmax classifier is used to
predict the class label.

3 Performance Evaluation

A Chinese microblog dataset is used for perfor-
mance evaluation (Lee and Wang, 2015). We first
present the dataset with some analysis first and
then proceed to make performance comparison to
baseline systems on emotion classification.

3.1 Dataset and Statistics
The dataset for WSCs is collected from Chinese
microblog by Lee’s group (2015). It contains
8,728 instances with an average length of 48.8.
Every instance contains at least one WSCs script.
In previous studies, half is used as the training set
and the rest serves as the testing set.

The major text is written in Chinese characters.
The WSC segments contain English words and
Pinyin scripts, acronyms of Pinyin or other scripts.
The annotation of emotions in each instance al-
lows more than one class label. Each instance is
labeled independently by the five emotion classes,
happiness, sadness, anger, fear and surprise, based
on the Ekman model (1992) except for Disgust.
The emotion label can be contributed by Chinese
text (E1), WSCs (E2) or Both (E3). Some of the
instances have NULL emotion labels (E4). Out of
the 6 labels, 25% of all instances has the happiness
label, which is the most significant emotion. 16%
has the sadness label, the percentages of anger,
fear, surprise and NULL labels are 9%, 9%, 11%
and 30%, respectively. Below shows four example
instances in the three WSC types:

E1 Emotion: Happiness
这个年每天都吃好饱！初三来点小朋友的
最爱 麦当劳和pizza！！(We are so full for
every meal during Spring Festival! Will take
kids to their favorite, MacDonald and pizza!)

E2 Emotion: Anger
我们会因为金希澈开了微博而看到许多
无下限的nc发言。(We will see a lot of mo-
rons (”nc”) comments once Jin Xicheu opens
her Weibo.)(”nc” is short for Pinyin ”nao-
can”, which means moron.)

E3 Emotion: Happiness
真是速度啊，收到快递了。。happy!
(What a fast delivery, I got the parcel already,
happy!)

E4 Emotion: None
我在bean bar (I am in the bean bar.)

93

Hap Sad Anger Fear Surprise Avg. F1 Wgt. F1
SVM 0.693 0.560 0.640 0.549 0.593 0.607 0.623
CNN 0.675 0.618 0.671 0.596 0.603 0.633 0.641
LSTM 0.717 0.642 0.704 0.606 0.628 0.659 0.671
BAN 0.724 0.649 0.712 0.627 0.628 0.668 0.678
HAN 0.729 0.658 0.729 0.625 0.641 0.676 0.688

Table 1: Performance evaluation (best result: marked bold; 2nd best: underlined.)

3.2 Analysis of WSCs Linked to Emotions

According to the work of Lee and Wang (2015),
emotion words often serve as the cues of bilingual
context. However, many WSCs segments which
are not emotional words can also express emotion.
To gain more insight on different types of WSC
segments, we examine three types of WSCs: (1)
English emotion words found from the NRC emo-
tion lexicon (Mohammad and Turney, 2013), (2)
Pinyin/acronym segments, and (3) others which
include English words (no emotion), symbolic ex-
pressions, and emoji symbols, etc..

Figure 2 depicts their distribution in training
dataset in different emotion labels. Note that En-
glish emotion words only serve about 1/3 of all
WSCs for emotion. The largest group of WSC
is in the category of ’Others’. This means non-
emotion linked English words and symbols of
other orthographic forms place an important part
in emotion analysis of text with WSCs.

Figure 2: Distribution of different types of WSCs

3.3 Emotion Analysis

A group of experiments are implemented to exam-
ine the performance of different emotion classifi-
cation methods evaluated using average F1-score

and weighted F1-score4. The baseline algorithms
include BAN (Wang et al., 2016), the current state-
of-the-art emotion classification algorithm. Oth-
ers used in the comparison include SVM (Mullen
and Collier, 2004), CNN and LSTM (Rosenthal
et al., 2017). For all these baseline methods, WSC
segments are included in the text. The difference
compared to our HAN model is that we also sepa-
rately extract WSCs segments and feed them into
a separate CNN model.

Table 1 shows the performance evaluation re-
sult. From Table 1 we can draw a number of
observations. Firstly, the performance of SVM
is the worst since it lacks phrase level analytical
capability because each word is considered inde-
pendently in SVM. In other words, insufficient
amount of information is learned in such a simple
method. Secondly, the average weighted F1-score
of CNN is lower than that of LSTM, indicating
that the memory mechanism is effective in learn-
ing semantic information sequentially. The 3.0%
gap of weighted F1-score shows that the order of
words is valuable in emotion analysis. Thirdly, in
addition to the improvement by BAN compared
to CNN and LSTM, including WSCs in BAN can
give performance gains 0.7% increase in weighted
F1 measures. For the largest class Happy, the im-
provement is over 0.7% increase. Finally, com-
pared to BAN, our proposed HAN which makes
additional use of WSCs in a separate CNN gives
another 1.0% performance gain.

3.4 Effects of Different Types of Text

In this set of experiments, we investigate the effect
of three types of text, CN only (stands for Chi-
nese), WSC segments, and CN+WSCs which are
complete instances with both Chinese and WSC
segments. We take LSTM and BAN to be com-
pared to our proposed HAN.

Table 2 shows the performance evaluation of

4https//en.wikipedia.org/wiki/F1 score

94

Hap Sad Anger Fear Surprise Avg. F1 Wgt. F1
LSTM(WSCs) 0.631 0.546 0.682 0.589 0.529 0.595 0.598
LSTM(CN) 0.695 0.632 0.671 0.612 0.615 0.645 0.656
LSTM(CN+WSCs) 0.717 0.642 0.704 0.606 0.628 0.659 0.671
BAN(WSCs) 0.631 0.551 0.681 0.589 0.529 0.596 0.599
BAN(CN) 0.698 0.626 0.669 0.613 0.631 0.647 0.658
BAN(CN+WSCs) 0.724 0.649 0.712 0.627 0.628 0.668 0.678
HAN(CN+WSCs; WSCs) 0.729 0.658 0.729 0.625 0.641 0.676 0.688

Table 2: Performance using single writing system;best result is marked bold; second best is underlined.

Hap Sad Anger Fear Surprise Avg. F1 Wgt. F1
HAN(CN; WSCs) 0.629 0.613 0.682 0.588 0.531 0.606 0.613
HAN(CN+WSCs; CN) 0.720 0.646 0.698 0.624 0.616 0.661 0.673
HAN(CN+WSCs; WSCs) 0.729 0.658 0.729 0.625 0.641 0.676 0.688

Table 3: Performance by multiple writing systems;best result is marked bold; second best is underlined.

the three systems using different text types. Obvi-
ously, Chinese text carries more emotional infor-
mation than WSCs text. The use of both Chinese
and WCSs text gives better performance which
shows that both WSCs and Chinese text contribute
to the prediction task. However, by extracting
WSCs into a separate CNN and re-merging into
the attention layer, HAN still gives the best perfor-
mance. This is because we are able to extract more
emotion related information for the WSCs with a
separate CNN. The attention model also gives dual
consideration to WSCs. Nevertheless, note that
BAN(CN+WSCs) can be competitive when both
Chinese text and WSCs are learned.

To further analyze the effect of the two sub-
models of LSTM and CNN in HAN, we examine
the performance of HAN with different types of
text to be taken by the two sub-models. In Table 3,
the first type of text in the parenthesis denotes the
text for the LSTM sub-model. The second text is
used by the CNN sub-model. Note that in the first
combination, only Chinese text without WSCs is
used by the LSTM. Because this will break the
syntax of the Chinese text, the result is the worst.
In the second evaluation, the CNN sub-model is
fed with Chinese text only. Still its performance is
about 6% better than the first combination. Com-
paring HAN(CN+WSCs; CN) with the state-of-
the-art method BAN(CN+WSCs), we can see that
applying CNN to Chinese text will only introduce
more noise and will not help to make performance
improvement. Obviously, this gives more justi-
fication of using HAN(CN+WSCs; WSCs) as it
gives the best performance gain.

4 Conclusion and Future Work

This paper presents a work in progress of an HAN
model based on an LSTM model for emotion anal-
ysis in the context of WSCs in social media. We
argue that WSCs text is potentially informative in
emotion classification tasks such that they should
be used as additional information contributing to
deep learning based emotion classification mod-
els. Our proposed method offers a novel way to
integrate multiple types of writing systems into an
attention-based LSTM model. Along with WSCs
text, the descriptive text of the major writing sys-
tem is informatively valuable and semantic and af-
fective information can be captured by LSTM ef-
fectively. Furthermore, WSCs texts indeed contain
addition semantic and affective information which
can be captured by a CNN model. After combin-
ing the representation of both the complete text
and the WSCs, the two vectors are incorporated
as the final feature.

Future works include two directions. One is to
further evaluate the performance of HAN using
larger corpora as currently only one public acces-
sible corpus for writing systems for the Chinese
communities can be studied. Another direction is
to give more detailed study on how people use dif-
ferent types of WSCs to express emotions in cen-
sorship detection studies.

Acknowledgments

The work is partially funded by UGC under GRF
projects(PolyU 152111/14E & U152006/16E).

95

References
AR Balamurali, Aditya Joshi, and Pushpak Bhat-

tacharyya. 2011. Harnessing wordnet senses for su-
pervised sentiment classification. In Proceedings
of the conference on empirical methods in natural
language processing, pages 1081–1091. Association
for Computational Linguistics.

Luciano Barbosa and Junlan Feng. 2010. Robust sen-
timent detection on twitter from biased and noisy
data. In Proceedings of the 23rd International
Conference on Computational Linguistics: Posters,
pages 36–44. Association for Computational Lin-
guistics.

Michael H Bond and Tat-Ming Lai. 1986. Embarrass-
ment and code-switching into a second language.
Journal of Social Psychology, 126(2):179–186.

Michael Clyne. 2000. Constraints on code-switching:
How universal are they. The bilingualism reader,
pages 257–280.

Jakob Cromdal. 2001. Overlap in bilingual play: Some
implications of code-switching for overlap resolu-
tion. Research on Language and Social Interaction,
34(4):421–451.

Cı́cero Nogueira Dos Santos and Maira Gatti. 2014.
Deep convolutional neural networks for sentiment
analysis of short texts. In COLING, pages 69–78.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4):169–200.

Roberto R Heredia and Jeanette Altarriba. 2001. Bilin-
gual language mixing: Why do bilinguals code-
switch? Current Directions in Psychological Sci-
ence, 10(5):164–168.

Neha S Joshi and Suhasini A Itkat. 2014. A survey on
feature level sentiment analysis. International Jour-
nal of Computer Science and Information Technolo-
gies, 5:5422–5425.

James Max Kanter and Kalyan Veeramachaneni. 2015.
Deep feature synthesis: Towards automating data
science endeavors. In Data Science and Advanced
Analytics (DSAA), 2015. 36678 2015. IEEE Inter-
national Conference on, pages 1–10. IEEE.

Jyh-An Lee and Ching-U Liu. 2012. Forbidden city
enclosed by the great firewall: The law and power
of internet filtering in china. Minn. JL Sci. & Tech.,
13:125.

Sophia Lee and Zhongqing Wang. 2015. Emotion in
code-switching texts: Corpus construction and anal-
ysis. In Proceedings of the Eighth SIGHAN Work-
shop on Chinese Language Processing, pages 91–
99.

Bing Liu and Lei Zhang. 2012. A survey of opinion
mining and sentiment analysis. In Mining text data,
pages 415–463. Springer.

Yunfei Long, Lu Qin, Rong Xiang, Minglei Li, and
Chu-Ren Huang. 2017. A cognition based attention
model for sentiment analysis. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 473–482.

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a word-emotion association lexicon.
29(3):436–465.

Tony Mullen and Nigel Collier. 2004. Sentiment analy-
sis using support vector machines with diverse infor-
mation sources. In EMNLP, volume 4, pages 412–
418.

Nigel Musk. 2012. Performing bilingualism in wales.
Pragmatics. Quarterly Publication of the Interna-
tional Pragmatics Association (IPrA), 22(4):651–
669.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Alessandra Vicentini. 2003. The economy principle
in language. Notes and Observations from early
modern english grammars. Mots, Palabras, Words,
3:37–57.

Zhongqing Wang, Yue Zhang, Sophia Lee, Shoushan
Li, and Guodong Zhou. 2016. A bilingual atten-
tion network for code-switched emotion prediction.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 1624–1634.

Jennifer MY Wei. 2003. Codeswitching in campaign-
ing discourse: The case of taiwanese president chen
shui-bian. Language and Linguistics, 4(1):139–165.

Theresa Wilson, Zornitsa Kozareva, Preslav Nakov,
Sara Rosenthal, Veselin Stoyanov, and Alan Ritter.
2013. Sentiment analysis in twitter. In Proceedings
of the International Workshop on Semantic.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

96

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 97–106
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Ternary Twitter Sentiment Classification with
Distant Supervision and Sentiment-Specific Word Embeddings

Mats Byrkjeland Frederik Gørvell de Lichtenberg Björn Gambäck
Department of Computer Science

Norwegian University of Science and Technology
NO—7491 Trondheim, Norway

{matsbyr,frederikgdl}@gmail.com, gamback@ntnu.no

Abstract

The paper proposes the Ternary Sentiment
Embedding Model, a new model for creat-
ing sentiment embeddings based on the Hy-
brid Ranking Model of Tang et al. (2016),
but trained on ternary-labeled data instead
of binary-labeled, utilizing sentiment embed-
dings from datasets made with different distant
supervision methods. The model is used as
part of a complete Twitter Sentiment Analysis
system and empirically compared to existing
systems, showing that it outperforms Hybrid
Ranking and that the quality of the distant-
supervised dataset has a great impact on the
quality of the produced sentiment embeddings.

1 Introduction

Bengio et al. (2003) introduced word embed-
dings as a technique for representing words as
low-dimensional real-valued vectors capturing the
words’ semantic and lexical properties, based on
ideas dating back to the 1950s (Firth, 1957). Col-
lobert and Weston (2008) showed the utility of
using pre-trained word embeddings, and after the
introduction of word2vec (Mikolov et al., 2013),
which is much faster to train than its predecessors,
word embeddings have become ubiquitous. This
effectuated a dramatic shift in 2016 at the Inter-
national Workshop on Semantic Evaluation (Sem-
Eval), with eight of the top-10 Twitter Sentiment
Analysis systems using word embeddings.

Word embeddings learn the representation of a
word by looking at its contexts (word neighbours
in a text), making it difficult to discriminate be-
tween words with opposite sentiments that appear
in similar contexts, such as “good” and “bad”.
Hence, Tang et al. (2014) presented Sentiment-
Specific Word Embeddings (or Sentiment Embed-
dings), a model employing both context and senti-
ment information in word embeddings.

Training sentiment embeddings requires large
amounts of sentiment annotated data. Manual an-
notation is too expensive for this purpose, so fast,
automatic annotation is used to set low-quality
(weak) labels on large corpora; a procedure re-
ferred to as distant supervision. The traditional ap-
proach is to use occurrences of emoticons to guess
binary sentiment (positive / negative). Motivated
by the possible performance gains of focusing on
the ternary task (where tweets can also be classi-
fied as neutral), this paper compares distant super-
vision methods on a large corpus of tweets that
can be used to train sentiment embeddings. To this
end, a new model architecture was developed with
a new loss function trained on three-way classi-
fied distant supervised data. Various lexicon-based
sentiment classifiers are compared, with their per-
formance as distant supervision methods tested as
part of a complete Twitter Sentiment Analysis sys-
tem, evaluating both prediction quality and speed.

The paper is laid out as follows: Section 2 in-
troduces related work on word and sentiment em-
beddings. Section 3 describes the proposed model
for training ternary sentiment embeddings. Sec-
tion 4 introduces a set of distant supervision meth-
ods and a comparison between them. Section 5
explores the optimal setup for the Ternary Senti-
ment Embedding Model through hyperparameter
searches and dataset comparisons, while Section 6
compares the model against baselines and other
methods to establish its performance. Section 7
concludes and suggests future improvements.

2 Related Work

Recent years have seen a vast number of Twit-
ter Sentiment Analysis (TSA) systems, mainly be-
cause SemEval since 2013 has featured a TSA
task, providing training data and a platform to
compare different systems. This data will be uti-

97

https://doi.org/10.18653/v1/P17

lized here and the results below will be compared
to those of SemEval in Section 6.4. First, however,
the models most directly related to the present
work will be introduced: the Collobert and Weston
model (Collobert et al., 2011), three Sentiment
Embeddings models by Tang et al. (2014), and
their Hybrid Ranking Model (Tang et al., 2016).
These can be viewed as sequential refinements of
each other and as predecessors of the Ternary Sen-
timent Embedding Model described in Section 3.

The Collobert and Weston (C&W) Model:
Collobert et al. (2011) proposed a task-general
multilayer neural network language processing ar-
chitecture. It starts with a Lookup Layer, which
extracts features for each word, using a window
approach to tag one word at a time based on its
context. The input vector is then passed through
one or several Linear Layers that extract features
from a window of words, treated as a sequence
with local and global structure (i.e., not as a bag of
words). The following layers are standard network
layers: a HardTanh Layer adds some non-linearity
to the model (Collobert and Weston, 2008) and a
final Linear Layer produces an output vector with
dimension equal to the number of classes.

When learning word embeddings from context
information, the output vector has size 1. For each
context used to train the model, a corrupted con-
text is created by replacing the focus word with a
random word from the vocabulary. Both the cor-
rect and the corrupted context windows are passed
through the model, with the training objective that
the original context window should obtain a higher
model score than the corrupted by a margin of 1.
This can be formulated as a hinge loss function:
losscw(t, t

r) = max(0, 1− f cw(t) + f cw(tr))
where t and tr are the original and corrupted con-
text windows, and f cw(·) the model score.

Sentiment Embeddings: To improve word em-
beddings for sentiment analysis, Tang et al. (2014)
introduced Sentiment-Specific Word Embeddings
(SSWE). They enhanced the C&W word embed-
ding model by employing massive amounts of
distant-supervised tweets, assigning positive la-
bels to tweets containing positive emoticons and
negative to those containing negative emoticons.
Tang et al. used three strategies to incorporate
sentiment information in embeddings: two basic
models that only look at sentence sentiment polar-
ity, and a Unified Model which adds word context
and C&W’s corrupted context window training.

Basic Model 1 uses C&W’s window-based ap-
proach, but with the top linear layer’s output vec-
tor elements defining probabilities over labels. A
softmax activation layer is added to predict posi-
tive n-grams as [1, 0] and negative as [0, 1]. This
constraint is relaxed in Basic Model 2, which re-
moves the softmax layer to handle more fuzzy dis-
tributions and uses a ranking objective function:
lossr(t) = max{0, 1− δs(t)f r0 (t) + δs(t)f

r
1 (t)}

where f r0 and f r1 are the predicted positive and
negative scores, while δs(t) reflects the gold senti-
ment polarity of the context window t, with
δs(t) = {1:fg(t)=[1, 0]} ∧ {−1:fg(t)=[0, 1]}

Unified Model uses corrupted context window
training with two objectives: the original context
should get a higher language model score and be
more consistent with the gold polarity annotation
than the corrupted one. The loss function com-
bines word contexts and sentence polarity:
lossu(t, t

r)=α·losscw(t, tr)+(1−α)·lossus(t, tr)
where 0 ≤ α ≤ 1 weights the parts, losscw is the
C&W loss function, and with δs(t) as above:
lossus(t, t

r)=max{0, 1−δs(t)fu1 (t)+δs(t)fu1 (tr)}
Hybrid Ranking Model (Tang et al., 2016)
splits the top linear layer of the Unified Model
into a context-aware layer that calculates a con-
text score f cw and a sentiment-aware layer calcu-
lating a sentiment score f r for the input context
window. The objective function only compares
the predicted positive and negative score for the
correct context window when calculating the loss:

losshy = α · lossr + (1−α) · losscw

3 Ternary Sentiment Embedding Model

A new neural network model for training word
embeddings called the Ternary Sentiment Embed-
ding Model is proposed. The model extends the
Hybrid Ranking Model by Tang et al. (2016) for
training Sentiment-Specific Word Embeddings by
also looking at tweets labeled as “neutral”, and
consists of three bottom (core) layers and two top
layers that work in parallel, as shown in Figure 1.

Core Layers: The first layers identical to those
of the C&W model. As with that model, the ob-
jective of the context part of the Ternary Sentiment
Embedding Model is to assign a higher score to a
correct context window than a corrupted window:

lossc(t, t
r) = max(0,m− f c(t) + f c(tr)) (1)

98

Figure 1: Ternary Sentiment Embedding Model.
At the top are the Context Linear Layer and the new Ternary

Sentiment Linear Layer; in the middle HardTanh and Linear

layers, with the word context Lookup Layer at the bottom.

where m is the margin (m=1⇒ lossc= losscw),
t and tr the correct resp. corrupted context win-
dows, and f c(·) the context linear layer’s score.

Ternary Sentiment Linear Layer: A new top
linear layer is introduced to calculate sentiment
scores. It outputs a vector of size 3, representing
positive, negative and neutral scores for a given
context window. The objective is to give a higher
score to the value corresponding to the context’s
label than the other possible labels. A new margin
hinge loss function is used to train the model:

losss(t) = max(0,m− f sc (t) + fsi1(t))

+max(0,m− fsc (t) + fsi2(t))
(2)

where t is a context window, m the margin, fsc (·)
the sentiment score for the currently labelled sen-
timent of the input context, and fsi1(·) and fsi2(·)
the sentiment scores for the other two classes.

The model’s total loss function is a weighted
linear combination of the hinge losses for the Sen-
timent Linear and Context Linear layers:

loss(t, tr) = α·losss(t)+(1−α)·lossc(t, tr) (3)

Model Training: As in the C&W model, param-
eters of the neural network are trained by taking
the derivative of the loss through backpropagation.
Stochastic Gradient Descent (SGD) is used to up-
date the model parameters. This means that sam-
ples, in this case context windows created from
tweets, are randomly drawn from the training cor-
pus, and the parameters are updated for each sam-
ple passed through the model, according to:

wt = wt−1 − lr · gt (4)

where wt is the value of the parameter w at time t,
gt its gradient at time t, and lr the learning rate.

The model parameters are initialised as in Tang
et al. (2016). Lookup layer parameters are ini-
tialised with values from the uniform distribution
U(−0.01, 0.01), while hidden layer parameters
are initialised using fan-in (Collobert et al., 2011),
i.e., the number of inputs used by a layer, i. The
technique draws the initial parameters from a cen-
tred distribution with variance V = 1/

√
i. Fan-in

is also used for the learning rate, with lr for the
hidden layers in Eqn. 4 divided by the fan-in, i.

4 Distant Supervision of Tweets

The idea of distant supervision is to automatically
label data in order to be able to leverage large
amounts of it. These data are called distant su-
pervised or weakly annotated, as the quality is
not great, but the quantity is. To train sentiment
embeddings, large amounts of weakly annotated
tweets are needed. This section describes the ap-
proach of extracting weak labels from a corpus of
collected tweets (about 547 million), and explains
each of the sentiment analysis methods that are
compared for distant supervision use.

The outputs are ranked using SemEval’s mea-
sures FPN

1 (the average of the F1-scores for pos-
itive and negative samples) and AvgRec (the av-
erage of the recall scores for the three classes).
While FPN

1 and AvgRec have been used in Sem-
Eval for both binary and ternary classification, it is
debatable how representative they are for the lat-
ter. Hence, the Macro F1 metric used by Tang et al.
(2016) will also be calculated. It extends FPN

1 by
averaging the F1-scores of all three classes.

Emoticons and Emojis: Go et al. (2009) auto-
matically classified tweet sentiment using distant
supervision based on a few positive (‘:)’, ‘:-)’, ‘:)’,
‘:D’, ‘=)’) and negative (‘:(’, ‘:-(’, ‘: (’) emoticons,
while removing tweets containing both a positive
and negative emoticon. This method was reim-
plemented in Python and adapted to the ternary
task by classifying tweets containing none of the
emoticons as neutral. Further, since the sets of
emoticons used by Go et al. are quite sparse com-
pared to the vast amount of emojis and emoticons
available today, extended sets (“Emojis+”) were
also created, as shown in the Appendix.

99

Dataset Class. Dist. Pos. Neg. Neut.

2013-dev 1,228 959 353 198 408
2013-test 2,695 1,839 827 318 694
2013-train 7,109 5,411 2,171 878 2,362
2014-sarcasm 56 52 20 26 6
2014-test 1,460 997 556 134 307
2015-test 1,865 1,363 610 249 504
2015-train 352 281 103 39 139
2016-dev 1,657 1,051 453 207 391
2016-devtest 1,645 1,171 574 193 404
2016-test 16,771 12,072 4,328 1,899 5,845
2016-train 4,893 3,256 1,714 515 1,027

2013-2016-all 39,731 28,452 11,709 4,656 12,087

Table 1: Sentiment distribution in the datasets

AFINN, TextBlob and VADER: These meth-
ods respectively use the AFINN (Nielsen, 2011),1

TextBlob,2 and VADER (Hutto and Gilbert, 2014)
libraries to count tweet sentiment scores. For
AFINN, tweets with a 0 sentiment score were clas-
sified as neutral, while those with scores greater
and lower than 0 were classified as positive and
negative, respectively. For TextBlob, tweets with
subjectivity score less than a threshold θs were de-
fined as neutral; a threshold θp was set to clas-
sify tweets with polarity < −θp as negative and
those with polarity > θp as positive. VADER re-
turns a 3D vector where each element represents a
score for each sentiment class. The vector is nor-
malized so that positiveScore+negativeScore+
neutralScore = 1. Setting a confidence thres-
hold θc>0.5 acertains that the other scores are be-
low 0.5. If no score is > θc, the tweet is skipped.
VADER also gives a compound score, a single
sentiment score from −1 to 1 (most positive).

The methods’ hyperparameters were tuned
through grid searches, testing each value in in-
creasing steps of 0.1. VADER struggled to classify
positive and negative tweets as the threshold in-
creased, and performed best at θc=0.1. TextBlob
performed best with a low subjectivity threshold,
with θs = 0.1 and θp = 0.3 chosen for the final
classifier, as these values gave the best Macro F1.

Combo Average: An ensemble of the AFINN,
TextBlob, and VADER classifiers, with scores nor-
malised to be in the [−1, 1] range. For AFINN, its
score is divided by 5 · n (the number of words in
the tweet), since |5| is the highest score a word
can get. For VADER, the compound score is used,

1github.com/fnielsen/afinn
2github.com/sloria/textblob

Method F1 FPN
1 FPOS

1 FNEG
1 FNEU

1 ms

LC .570 .532 .593 .472 .646 0.93
Combo B .561 .532 .626 .437 .620 2.27
Combo A .557 .537 .628 .446 .598 2.26
TextBlob .541 .502 .643 .361 .619 0.48
AFINN .537 .542 .620 .465 .526 1.21
VADER .532 .524 .621 .428 .546 0.63
Emoji+ .259 .130 .101 .159 .517 0.11
Emoticon .251 .061 .086 .036 .630 0.09

Table 2: Distant supervision, SemEval 2013–2016

while TextBlob’s score is already normalised. The
scores are combined using a weighted average:
(a · afinn + b · vader + c · textblob)/(a + b + c).
A threshold θ is set so that tweets with score > θ
are classified positive, those with score <−θ neg-
ative, and all others neutral. Running a grid search
as above to select the method’s four parameters,
the combination achieving the top FPN

1 score was
{a= 0.0, b= 0.4, c= 0.4, θ = 0.2} (this is called
Combo A below), while the Macro F1 winner was
{a=0.3, b=0.1, c=0.1, θ=0.1} (Combo B).

Lexicon Classifier (LC): A Python port of the
Lexicon Classifier of Fredriksen et al. (2018), us-
ing their best performing lexicon and parameters.3

Evaluation: All manually annotated SemEval
datasets from 2013 to 2016 were downloaded.
They contain IDs for 50,333 tweets, but 10,251
of those had been deleted, while duplicates were
removed,4 leaving 39,731 tweets for later classi-
fier training (the second column of Table 1). For
the distant supervision, further filtering removed
retweets (i.e., copies of original tweets; including
retweets might lead to over-representation of cer-
tain phrases), tweets containing ° symbols (mostly
weather data), tweets containing URLs, and tweets
ending with numbers (often spam). Then 28,452
tweets remained for evaluating the distant super-
vision methods, distributed as in Table 1 (note that
only 16% of the total tweets are negative).

Comparisons of the methods with tuned param-
eters on all SemEval datasets merged into one (the
2013-2016-all dataset of Table 1) are shown in Ta-
ble 2. We see that the top Macro F1 score is 0.570,
which does not seem very impressive. However,
to our knowledge no previous sentiment analysis

3github.com/draperunner/fjlc
4If duplicate tweets with the same sentiment label were

found, only one was kept. If duplicate tweets were found
with different labels, both were deleted.

100

research has been evaluated against the complete
set of SemEval datasets, making the results hard
to compare to other work. Evaluating each dataset
individually, a trend could be observed with de-
creasing scores for later data, with a top Macro F1

score on the 2013-test set of 0.628 compared to
0.578 on the 2016-test set. This is consistent with
Fredriksen et al. (2018) who noted significantly
dropping scores for tests on 2016 data, attributing
this to those sets having more noise and annotation
errors than earlier datasets.

The runtimes (ms) in Table 2 were obtained on a
computer with four AMD Opteron 6128 CPUs and
125 GB RAM running Ubuntu 16.04 (note that the
given runtimes do not include saving to file). The
emoticon-based methods are very fast (0.09 and
0.11 ms/tweet), but their scores are substantially
worse than the others. The ensemble methods are
slow (2.26 and 2.27 ms/tweet), since they have to
calculate the score of each component method.

5 Optimising the Model

In order to find the best performing configuration
of the Ternary Sentiment Embedding Model, the
hyperparameters were tested one-by-one through
a search of manually selected values.

More than 500 million tweets had been col-
lected at the time of the start of the experiments,
with URLs, mentions, reserved words and num-
bers removed. The tweets were lower-cased and
elongated words reduced to contain a maximum
of three repeating characters. Using the distant
supervision methods described above, the col-
lection was iterated through, and the resulting
datasets saved. To create even datasets for each
method and label, three sets of 1M tweets from
each sentiment class were extracted from the total
datasets for each method (except for the Emoti-
con method, which only annotated 151,538 tweets
as negative, so its datasets were limited to 150k
tweets for each label). The model hyperparameter
searches were performed using the dataset created
by the Lexicon Classifier, since it was the top per-
former in Table 2. The following paragraphs give
the results for each of the hyperparameters.

Context Window Size: Testing with window
sizes in the range [1, 9] showed the best perform-
ing size to be 3 (Macro F1= 0.6325). Tweets are
typically short texts with informal language. It is
possible that larger context windows will lead to
the model considering excerpts that are too long

for tweet lingo, and would fit better for more for-
mal texts. However, the differences in the results
were too small to draw any conclusions.

Embedding Length is the dimension of each
word embedding vector. The larger the dimen-
sion, the more fine-grained information the vec-
tors can hold. {50, 75, 100, 125, 150} dimensions
were tested, with 150 performing best (Macro F1

= 0.6249), indicating that larger embeddings re-
sult in better scores for the model. This is no sur-
prise, as word embeddings as GloVe and word2vec
are commonly trained with dimensions of 200 or
300. However, a length of 100 was selected, since
larger embeddings only gave minor improvements
but severely increased processing time.

Hidden Layer Size: For the Ternary Sentiment
Embedding Model, the hidden layers are the Lin-
ear Layer and the HardTanh Layer. Experiments
show a minimal impact of varying the hidden
layer size ({10, 20, 30, 50, 100} neurons), hav-
ing a range on the score values of only 0.0046.
The best performance (Macro F1 = 0.6201) was
achieved with size 100. These results correspond
well to the claim by Collobert et al. (2011) that
the size of the hidden layer, given it is of sufficient
size, has limited impact on the generalisation per-
formance. However, the size of the hidden lay-
ers has a significant impact on training runtime, so
since the difference in score values were small, a
hidden layer size of 50 was used in the final model.

Alpha is the weighting between the sentiment
loss and the context loss in the combined loss
function (Eqn. 3) used when training the model.
α-values in the range [0.1, 1.0] were explored. The
best score (Macro F1= 0.6310) was achieved for
α = 0.2. This indicates that the contexts of the
words are more important than the sentiment of the
tweets. However, leaving out sentiment informa-
tion altogether (α=0) gave the by far worse score
(0.5400). Interestingly, leaving out context infor-
mation (α=1) did not perform as badly (0.6069).

Learning Rate states how fast the neural net-
work parameters are updated during backpropa-
gation. A small rate makes the network slowly
converge towards a possible optimal score, while
a large rate can make it overshoot the optimum.
Testing on values from 0.001 to 1.1, the best learn-
ing rate was 0.01 (Macro F1= 0.6231), although
the total range of the scores was only 0.0412.

101

Figure 2: Distance supervision scores / epochs
(Colour legend, top-to-bottom: Lexicon Classifier, Combo B,

Combo A, VADER, AFINN, TextBlob, Emoji+, Emoticon.)

Margin defines how the scores should be sepa-
rated in the loss functions of Eqn. 1 and Eqn. 2.
Larger margins lead to similar scores for each sen-
timent class giving a larger total loss, with the
model parameters being updated by a larger value
during backpropagation. Experimenting with mar-
gins in the range [0.5, 10.0], a value of 2.0 ob-
tained the best Macro F1 (0.6188). It is hard to
predict the impact of higher margins, but since the
loss is greater when sentiment scores are close,
this appears to give a better separation of words
from tweets belonging to each sentiment class.

Distant Supervision Method: Using the above-
selected hyperparameter values, the Ternary Sen-
timent Embedding Model was trained on the 3M
tweet datasets created by using each distant super-
vision method (450k tweets for the Emoticon
method). Performance over 1–20 epochs is shown
in Figure 2. A top Macro F1 score of 0.6440 was
obtained for LC after 10 epochs, but the scores
vary notably for each epoch. For a more robust
comparison, the Macro F1 scores were averaged
over epochs 10 to 20, with LC again perform-
ing best (0.6383), but followed closely by the en-
semble methods (Combo B: 0.6361, Combo A:
0.6352), VADER (0.6339), and AFINN (0.6296).

6 Evaluating the Final System

To evaluate the performance of the Ternary Sen-
timent Embedding Model, it was compared to the
Hybrid Ranking Model by Tang et al. (2016) us-
ing different distant supervision methods, as well
as to a range of baselines, among them other pop-
ular word embeddings models. Finally, the per-
formance of the total Twitter Sentiment Analysis
system was evaluated against the state-of-the-art.

The Twitter Sentiment Analysis system com-

Method F1 FPN
1 FPOS

1 FNEG
1 FNEU

1

Combo B .609 .595 .668 .522 .637
Combo A .608 .596 .667 .524 .633
LC .604 .587 .665 .509 .637
AFINN .602 .589 .660 .518 .628
VADER .596 .583 .656 .511 .623
TextBlob .584 .571 .657 .486 .608
Emoji+ .548 .525 .630 .419 .594
Emoticon .504 .481 .595 .368 .550

Table 3: Distant supervision method comparison

prises the Ternary Sentiment Embedding Model
and a linear kernel Support Vector Machine
(SVM). The C parameter of the SVM classifier
was set through a coarse search on values ranges
from 0.001 to 1000 with the word embeddings
produced by the Ternary Sentiment Embedding
Model using the LC distant supervision dataset
and trained for 20 epochs, followed by two finer
searches around the best value of 0.01, cover-
ing value ranges of [0.001, 0.009] and [0.01, 0.09],
with aC value of 0.006 giving the best performing
classifier. A small C means the classifier favours
more misclassified samples over separating sam-
ples by a large margin, indicating that it is hard to
avoid misclassifying some samples. However, the
differences in scores were very low even for large
variations of the parameter, meaning the samples
to classify are not easily linearly separable.

6.1 Comparing Distant Supervision Methods
The Ternary Sentiment Embedding Model was
trained for 20 epochs using the different distant
supervision methods and the produced sentiment
embeddings tested using the SVM classifier using
10-fold cross validation on the unfiltered 39,731
tweets from the 2013-2016-all dataset (i.e., all the
combined 2013–2016 SemEval datasets), 15,713
of which were positive (39.5%), 5,945 negative
(15.0%), and 18,073 neutral (45.5%). Table 3
shows different metrics for the tests, sorted by de-
scending Macro F1 score.

The Combo methods perform best in this com-
parison. By averaging over three methods, they
can overcome weaknesses of their components.
While the combo methods were not the top per-
formers in the comparison of the distant super-
vision methods in Table 2, the ability to balance
other weak classifiers seems to be important when
used as distant supervision method for the pro-
posed model. The results show that the Ternary
Sentiment Embedding Model performs best when

102

trained on data from a distant supervision method
that is good at classifying all tweets into all
three sentiment classes. The emoticon methods
and TextBlob have weaknesses when classifying
tweets into one or more of the classes, hence yield-
ing the worst results for the total system.

6.2 Comparison to Baselines

In order to see how well the final TSA system
performs, it was compared to some existing sen-
timent analysis methods. The systems were also
tested using 10-fold cross-validation on the unfil-
tered 2013-2016-all dataset (39,731 tweets). Ta-
ble 4 shows the results for each TSA system using
the Macro F1 metric.

‘Random Uniform’ and ‘Random Weighted’ are
two simple baselines, respectively created by pick-
ing a random label from a uniform probability dis-
tribution and by picking a random label from the
same distribution as in the training set. The distant
supervision classifiers are as above, except that the
Emoticons and Emoji+ methods add the variation
that tweets containing both negative and positive
emoticons are regarded as neutral.

The word embeddings for Ternary Sentiment
Embedding Model, GloVe and word2vec were all
trained on the same set of 3M tweets, with 1M
from each of the sentiment classes, assigned by
the Lexicon Classifier distant supervision method.
The GloVe model (Pennington et al., 2014) was
used to train word embeddings of dimension 100.
The word2vec (Mikolov et al., 2013) embeddings
were trained using both the Continuous Bag-of-
Words (CBOW) and the Continuous Skip-gram
model, also with 100 dimensions. Word embed-
dings were also produced using the Hybrid Rank-
ing Model of Tang et al. (2016) trained on a set
of 3M tweets classified with the LC method, but
using only tweets labelled as positive or nega-
tive when training word embeddings, with 1.5M
tweets of each class. All the word embeddings
were fed to the SVM classifier specified above.

As the results in Table 4 shows, the best Macro
F1 scores were achieved by the word embed-
ding systems. The word embeddings produced
by the Ternary Sentiment Embedding Model gave
slightly better results than the word embeddings
produced by the Continuous Bag-of-Words model,
however, the difference is small.

One of the strengths of the word2vec models
is that they require much less training time than

Model F1

Ternary Sentiment Embedding Model .6036
word2vec (CBOW) .6015
Hybrid Ranking Model (w/LC) .5919
word2vec (Skip-gram) .5886
LC .5706
GloVe .5662
Combo B .5621
Combo A .5579
AFINN .5381
VADER .5286
TextBlob .3826
Random Weighted .3315
Random Uniform .3174
Emoji+ .2542
Emoticon .2462

Table 4: The final Ternary Sentiment Embedding
Model compared to baselines (Macro F1-scores)

larger neural network models such as the Collobert
and Weston model and the Ternary Sentiment Em-
bedding Model. The word2vec models used ap-
proximately three minutes, while the Ternary Sen-
timent Embedding Model used 24 hours to train
on 3M tweets. This advantage of the word2vec
models means that they could be trained using a
much larger dataset, which would likely yield an
even better performance.

The word2vec models do not utilise sentiment
information of the tweets, which is necessary
to create sentiment embeddings with the Ternary
Sentiment Embedding Model. This is another ad-
vantage of the word2vec models, as they have no
need for a separate distant supervision method.
The word2vec models are, however, slightly out-
performed by the Ternary Sentiment Embedding
Model in terms of the final score, and with further
optimisation the difference could increase.

6.3 Comparison to Hybrid Ranking Model
In order to compare the distant supervision per-
formance of the sentiment embeddings produced
by the Ternary Sentiment Embedding Model and
the Hybrid Ranking Model of Tang et al. (2016),
both architectures were trained for 20 epochs on
3M tweets weakly annotated using the different
distant supervision methods of Section 4. The
Ternary Sentiment Embedding Model was trained
on tweets labelled as positive, negative or neu-
tral, with 1M of each, with the hyperparameters
stated in Section 5. The Hybrid Ranking Model
only utilises tweets labelled as positive or neu-
tral, and was as a result trained on 1.5M tweets
of each sentiment class, using the hyperparameters

103

Dataset Ternary Embedding Hybrid Ranking

AFINN .602 .578
Combo A .608 .587
Combo B .609 .592
Emoticon .504 .528
Emoji+ .548 .536
LC .604 .592
TextBlob .584 .575
VADER .596 .596

TSA system .655 .634

Table 5: Ternary Sentiment Embedding Model vs.
Tang et al.’s Hybrid Ranking (Macro F1-scores)

given by Tang et al. (2016). The produced senti-
ment embeddings were fed to the SVM classifier
and tested using 10-fold cross-validation over the
2013-2016-all SemEval dataset.

The results in Table 5 show that the Ternary
Sentiment Embedding Model outperforms the Hy-
brid Ranking Model using all but two of the eight
tested distant supervision methods. The Hybrid
Ranking Model only performs significantly better
than the proposed model on the Emoticon dataset.
The Hybrid Ranking Model is trained using only
tweets labelled as positive or negative, while the
Ternary Sentiment Embedding Model also utilises
neutral tweets. The Emoticon method performs
well for classifying tweets as positive or negative,
but not for neutral, meaning that the quality of the
positive and negative tweets is likely higher than
for neutral tweets. This possibly explains why the
Hybrid Ranking Model performs better when us-
ing this method.

When using the more sophisticated distant
supervision methods, the Ternary Sentiment Em-
bedding Model outperforms the Hybrid Ranking
Model, with the exception of VADER where the
scores are identical. This indicates that the pro-
posed model is able to better take advantage of
sentiment information from a larger set of tweets,
increasing performance when used for the ternary
sentiment classification task.

To compare the entire Twitter Sentiment Anal-
ysis system performance to that of Tang et al.
(2016), the unfiltered datasets from SemEval
2013 were chosen for the classifier optimisation,
with training on the 7,109 tweet 2013-train set
(distributed 2,660-1,010-3,439 positive-negative-
neutral) and testing on the 2013-dev set (1,228
tweets distributed 430-245-553), as this was the
validation set of the 2013 workshop.

Year Top SemEval result Ternary Embedding

2013 .6902 .61789
2016 .633 .580512
2017 .685 .62919

Table 6: Comparison to top results from differ-
ent SemEvals (FPN

1 scores). Subscripts denote the
ranking the system would have achieved each year.

Tang et al. (2016) trained sentiment embed-
dings on 5M positive and 5M negative distant-
supervised tweets, publishing the results produced
by their model when tested with a SVM classi-
fier on the SemEval 2013 test dataset, as presented
in the last line of Table 5.5 The results indi-
cate that the Ternary Sentiment Embedding Model
performs better on the ternary classification task
than the Hybrid Ranking Model, even though Tang
et al.’s embeddings were trained on a much larger
dataset than those used in the present work.

6.4 Comparison to SemEval

To see how the final Twitter Sentiment Analysis
system fares against the state-of-the-art, its perfor-
mance was compared to the published results of
SemEval 2013 Task 2B (Nakov et al., 2013), Sem-
Eval 2016 Task 4A (Nakov et al., 2016), and Sem-
Eval 2017 Task 4A (Rosenthal et al., 2017).

The system was trained using the training sets
provided by the respective workshop. For 2013,
the model was trained on 2013-train-A and tested
on 2013-test-A. SemEval 2016 and 2017 allowed
training on the training and development datasets
of previous years, so for 2016, the model was
trained on a combined 2013-2016-train-dev-A
dataset and tested on 2016-test-A, while for 2017,
the model was trained on all 2013-2016 datasets
and tested on 2017-test-A.

The results in Table 6 show that the Ternary
Sentiment Embedding Model does not match the
top systems of the different years. There are some
possible reasons to this: The SemEval systems
might have trained on other or more data than here.
As tweets have been deleted, not as many could be
downloaded as were available at the time of each
workshop. Also, the model is optimised for Macro
F1 score. Had it been optimised for FPN

1 , better
scores for this metric could have been obtained.

5Only the most similar systems are compared here; Tang
et al.’s results improved by using additional lexical features.

104

7 Conclusion and Future Work

The paper has proposed the Ternary Senti-
ment Embedding Model, a model for training
sentiment-specific word embeddings using dis-
tance supervision. The model is based on the Hy-
brid Ranking Model of Tang et al. (2016), but
considers the three classes positive, negative and
neutral instead of just positive and negative. Ex-
periments show the Ternary Sentiment Embedding
Model to generally perform better than the Hybrid
Ranking Model, and that the quality of the distant-
supervised dataset greatly impacts the quality of
the produced sentiment embeddings, and transi-
tively the Twitter Sentiment Analysis system.6

The Hybrid Ranking Model only performed sig-
nificantly better than the proposed model on the
Emoticon dataset. Tang et al. (2016) use a dis-
tant supervision method similar to the Emoticon
method, due to the high precision that method can
give. For a ternary model, however, it is not suffi-
cient to only find some tweets that are likely pos-
itive or negative, and a more sophisticated dis-
tant supervision method is essential. This also
means that a much larger and more varied corpus
of distant supervised tweets can be used for train-
ing, since no tweets are discarded. Consequently,
the Ternary Sentiment Embedding Model outper-
formed the Hybrid Ranking Model when using
more sophisticated distant supervision methods.

Both Hybrid Ranking and Ternary Sentiment
Embedding assume that all senses of a word are
synonyms and that all words in a tweet have the
same sentiment, ignoring their prior sentiment po-
larity. Ren et al. (2016) proposed a model for
training topic-enriched multi-prototype word em-
beddings that addresses the issue of polysemy,
significantly improving upon the results of Sem-
Eval 2013 on the binary classification task. Xiong
(2016) addressed the prior polarity problem by ex-
ploiting both a sentiment lexicon resource (Hu and
Liu, 2004) and distant supervised information in
a multi-level sentiment-enriched word embedding
learning method. Further work could look at ex-
tending the Ternary Sentiment Embedding Model
with the ability to discriminate sentiment of pol-
ysemous words in three classes, and to use word-
sense aware lexica in order to combine the works
of Ren et al. (2016) and Xiong (2016).

6To perform the experiments, several tools and programs
were developed, most of these are open sourced. See:
github.com/draperunner

Acknowledgements

Thanks to Valerij Fredriksen and Brage Ekroll
Jahren for providing their classifier code, to the or-
ganisers of the different SemEval sentiment analy-
sis tasks for collecting the data, to the anonymous
reviewers for comments that helped enrich the dis-
cussion of the results, and to Steven Loria, Finn
Årup Nielsen, Clayton J. Hutton and Eric Gilbert
for respectively providing the TextBlob, AFINN
and VADER libraries.

References
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1137–1155.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, pages 160–167, Helsinki, Fin-
land. ACM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

John Rupert Firth. 1957. A synopsis of linguistic the-
ory 1930–55. Studies in Linguistic Analysis, Special
Volume of the Philological Society.

Valerij Fredriksen, Brage Jahren, and Björn Gambäck.
2018. Utilizing large Twitter corpora to create sen-
timent lexica. In Proceedings of the 11th Interna-
tional Conference on Language Resources and Eval-
uation, pages 2829–2836, Miyazaki, Japan. ELRA.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N project report, Stanford University, CA,
USA.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 168–177,
New York, NY, USA. ACM.

Clayton J. Hutto and Eric Gilbert. 2014. VADER: A
parsimonious rule-based model for sentiment anal-
ysis of social media text. In Proceedings of the
Eighth International Conference on Weblogs and
Social Media, pages 216–225, Ann Arbor, MI, USA.
The AAAI Press.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

105

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. SemEval-
2016 Task 4: Sentiment analysis in Twitter. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 1–18,
San Diego, CA, USA. ACL.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva,
Veselin Stoyanov, Alan Ritter, and Theresa Wilson.
2013. SemEval-2013 Task 2: Sentiment analysis
in Twitter. In Proceedings of the 7th International
Workshop on Semantic Evaluation (SemEval 2013),
pages 312–320, Atlanta, GA, USA. ACL.

Finn Årup Nielsen. 2011. A new ANEW: Evalua-
tion of a word list for sentiment analysis in micro-
blogs. In Proceedings of the ESWC2011 Workshop
on ’Making Sense of Microposts’: Big things come
in small packages, volume 718 of CEUR Workshop
Proceedings, pages 93–98, Heraklion, Crete.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 1532–1543, Doha, Qatar. ACL.

Yafeng Ren, Ruimin Wang, and Donghong Ji. 2016. A
topic-enhanced word embedding for Twitter senti-
ment classification. Information Sciences, 369:188–
198.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. SemEval-2017 Task 4: Sentiment analysis
in Twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 493–509, Vancouver, Canada. ACL.

Duyu Tang, Furu Wei, Bing Qin, Nan Yang, Ting
Liu, and Ming Zhou. 2016. Sentiment embed-
dings with applications to sentiment analysis. IEEE
Transactions on Knowledge and Data Engineering,
28(2):496–509.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for Twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics, volume 1: Long Papers, pages 1555–1565, Bal-
timore, MD, USA. ACL.

Shufeng Xiong. 2016. Improving Twitter sentiment
classification via multi-level sentiment-enriched
word embeddings. CoRR, abs/1611.00126.

Appendix:
Positive and negative emoticons and emojis

The character combinations and Unicode charac-
ters used in the ‘Emoticons’ and ‘Emojis’ distant
supervision methods described in Section 4.

Positive Negative
Emoticons Emojis Emoticons Emojis

:) :-) :(DX
:) :D :-(:-/
=D :-] : (:/
:] :-3 :’(:-.
:3 :-> :-(>:\
:> 8-) :(>:/
8) :-} :-c :\
:} :o) :c =/
:c) :ˆ) :-< =\
=] =) :< :L
:-D 8-D :-[=L
8D x-D :[:S
xD X-D :-|| </3
XD =D >:[<\3
=3 B-ˆD :{ >.<
:-)) :’-) :@ v.v
:’) :-* >:(
:* :× D-’:
;-) ;) D:<
*-) *) D:
;-] ;] D8
;ˆ) :-, D;
;D <3 D=

106

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 107–115
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Linking News Sentiment to Microblogs: A Distributional Semantics
Approach to Enhance Microblog Sentiment Classification

Tobias Daudert and Paul Buitelaar
Insight Centre for Data Analytics, Data Science Institute, National University of Ireland, Galway

firstname.lastname@insight-centre.org

Abstract

Social media’s popularity in society and re-
search is gaining momentum and simultane-
ously increasing the importance of short tex-
tual content such as microblogs. Microblogs
are affected by many factors including the
news media, therefore, we exploit sentiments
conveyed from news to detect and classify sen-
timent in microblogs. Given that texts can deal
with the same entity but might not be vastly re-
lated when it comes to sentiment, it becomes
necessary to introduce further measures en-
suring the relatedness of texts while leverag-
ing the contained sentiments. This paper de-
scribes ongoing research introducing distribu-
tional semantics to improve the exploitation
of news-contained sentiment to enhance mi-
croblog sentiment classification.

1 Introduction

In our increasingly digital society, we are subject
to a deluge of unfiltered information not always
objective or unbiased. The popularity of social
media has made it a gateway to digital news con-
tent with 23% of the population in 2017 preferring
this medium as a source of news1. A particular
case is Twitter and with the rise in popularity of
this medium, short texts rich in information and/or
sentiment are becoming a relevant source of infor-
mation for the sharing of news stories (Mitchell
and Page, 2015). However, traditional news are
still important and at least as influential as digital
media; in 2017, 32% of the people worldwide ac-
cessed digital news directly on a news website1.
In Twitter, over 85% of the retweets contain news
mentions (Kwak et al., 2010). The diffusion of in-
formation is also crucial; people view what friends
share leading to a fast diffusion of information
with 75% of the total retweets occurring within a

1https://www.statista.com/chart/10262/
selected-gateways-to-digital-news-content/

day (Lerman and Ghosh, 2010; Kwak et al., 2010).
This effect, combined with a higher perceived trust
of shared information by friends, can lead to the
construction of opinions based on already opin-
ionated content (Zhao et al., 2011; Turcotte et al.,
2015).

The importance of microblogs and news arti-
cles, their similar instantaneous availability, and
their topic intersections lead us to explore how
news articles and microblogs affect each other
and, in detail, how the sentiments contained in
both affect each other. This paper presents on-
going research dealing with this question and
utilises distributional semantics, in detail, word
embeddings, the cosine similarity, and the word
mover’s distance, to improve the modeling of the
conveyance of news-contained sentiment on mi-
croblogs, aiming to enhance microblog sentiment
classification.

2 Background

In the financial domain, prior research has shown
the connection between sentiments and the mar-
ket dynamics, exposing the financial domain as a
relevant area for sentiment analysis in text (Van
De Kauter et al., 2015; Kearney and Liu, 2014).
Sentiments are contained in various forms of text
including news and microblogs. It has been shown
that positive news tend to lift markets whereas bad
news tend to lower the markets (Schuster, 2003;
Van De Kauter et al., 2015). Past research mainly
focuses on news, particularly news titles (i.e head-
lines) (Nassirtoussi et al., 2014; Kearney and Liu,
2014). However, not only sentiment contained in
news is an important factor for the markets. For
example, Bollen et al. (2011) linked changes in
public mood to value shifts in the Dow Jones In-
dustrial Index three to four days later. With an in-
creasing magnitude of instantly available informa-

107

https://doi.org/10.18653/v1/P17

tion, factors affecting people’s sentiment rise. This
includes other people’s textually-expressed senti-
ment since information is not always presented in
a neutral manner. However, the relation between
sentiments across different data sources, how they
affect each other, and how this can be leveraged for
sentiment classification has not been investigated
yet.

2.1 Linking Sentiments Across Data Sources

Daudert et al. (2018) goes a step in this direction
and exploits news sentiment to improve microblog
sentiment classification. Their work utilises an
entity-based approach which, given data anno-
tated with sentiment, an entity e, and a period
p, calculates the average sentiment for entity e
in period p. The authors used a news dataset
and calculated an average sentiment per company
for news published between March 11th and 18th

2016 which was then used as additional informa-
tion. Their assumption that within a certain pe-
riod sentiments regarding the same entity should
be similar across different data sources was ex-
amined. Using the average news sentiment per-
forms well in periods when there is an overall
sentiment other than neutral; in periods when the
overall sentiment is neutral or balanced, a more
sophisticated approach is needed. A neutral over-
all sentiment is achieved when positive and neg-
ative sentiment counteract with each other, inde-
pendently of the number of news where each senti-
ment is expressed, whilst a balanced overall senti-
ment is achieved when the number of positive and
negative news regarding a certain entity is similar.
Given this, it becomes important to take a deeper
look at news and microblogs as not all news are
equally important to each microblog dealing with
the same entity. Therefore, this research employs a
distributional semantics approach to remove noise
in terms of microblog-unrelated news sentiment
although dealing with the same entity. To the
best of our knowledge, only the previously men-
tioned work has started investigating the relations
between the sentiments and leveraged them for mi-
croblog sentiment classification, hence, there is no
research on the use of distributional semantics for
sentiment linking. On the other hand, research tar-
geting the field of semantic enrichment is avail-
able and it is particularly relevant when address-
ing the linking of news and microblogs (e.g. Guo
et al. (2013); Wei et al. (2014); Abel et al. (2011);

Tsagkias et al. (2011)). Abel et al. (2011) sug-
gests five different approaches of linking news to
tweets: 1) a strict URL-based strategy, 2) a lenient
URL-based strategy, 3) a bag-of-words strategy,
4) a hashtag-based strategy, and 5) an entity-based
strategy. Strategy 5) comes close to what has been
explored by Daudert et al. (2018) whereby our ap-
proach is inspired by 3), employing it as an add-
on to 5). Other related research considering the
combination of semantic similarity and sentiment
analysis are (Tang et al., 2016; Poria et al., 2016).
Poria et al. (2016) developed a Latent Dirichlet Al-
location algorithm considering the semantic simi-
larity between word pairs, instead of only utilis-
ing a word frequency measure, thus, capable of
capturing opinions and sentiments that are implic-
itly expressed in a text and, overall, contributing
to improved clustering. Tang et al. (2016) focused
on learning word embeddings defined not only by
context but also by sentiment. Their approach is
able to better capture nearest neighboring vectors
not only through their semantic similarity but also
favoring the same sentiment polarity. This novel
idea of utilising word embeddings to better cap-
ture polarity in documents was initially brought up
by Maas et al. (2011).

The work described in this paper aims to ad-
dress the existing knowledge gap concerning the
application of distributional semantics for senti-
ment linking and assigning.

3 Methodology

The work performed is divided into two parts:
the preparation of the data, and its use in a Ma-
chine Learning (ML) prediction model. Through-
out this paper, we implement the methodology de-
scribed by Daudert et al. (2018), utilising the same
datasets (section 3.1) and experimental setup (sec-
tion 3.4). We extend their previous work by im-
proving the method to link a news sentiment to a
microblog as well as to assign a news sentiment to
a microblog (section 3.2).

The aim of this research is to explore the rela-
tion of sentiments between news and microblogs,
hence, the linking of both data types becomes nec-
essary. To fulfill this task, we leverage a microblog
and a complimentary news dataset covering the
same period and entities. For each microblog in
the dataset, we model the sentiment conveyance
between the news sentiment and the microblogs
sentiment by assigning one news sentiment ac-

108

cording to each of the different methods as de-
scribed in 3.2; these are then used as additional
features for the Support Vector Machine (SVM).

This SVM is trained and tested with the datasets
mentioned in section 3.1, aiming to explore
whether the consideration of textual similarities
for modeling the conveyed news sentiment can
add value to the microblog sentiment classifica-
tion. To investigate this, we compare a classi-
fication (1) purely based on microblog messages
(table 2, MT) with (2) a classification based on
microblog messages and entity-based news sen-
timent (table 2, ES Agg.), and (3) classifications
based on microblog messages and context-based
news sentiment (table 2, columns highlighted in
gray).

Figure 1: Representation of dataset M and MRN,
subset A and B. The two links represent matching
entities in the datasets.

3.1 Data

This research makes use of two datasets: a mi-
croblog dataset (M) and a microblogs-related news
dataset (MRN), represented in Figure 1. Dataset
M contains microblogs from Twitter2 as well as
StockTwits3 and was initially created for the Se-
meval 2017 Task 5 - subtask 1 (Cortis et al., 2017);
dataset MRN contains the news titles, urls, time
and date, a sentiment score within the five classes
[-1.0, -0.5, 0.0, 0.5, 1.0], and, if available, a de-
scription. All news in MRN are related to at
least one microblog in dataset M. In total, MRN
contains 106 news covering 18 unique entities in
463 microblogs (defined as subset A below). For
dataset M, the sentiment scores are processed to
cluster data in three classes by transforming sen-
timent scores above 0.0 to 1.0, and scores lower
than 0.0 to -1.0. Moreover, two subsets of dataset
M were created according to the microblogs’ re-

2https://twitter.com
3https://stocktwits.com

Type Dataset M Subset A Subset B
Training 1,694 298 185
Test 794 165 92
Total 2,488 463 277

Table 1: Number of microblogs in dataset M, sub-
set A, and subset B. Subset A and B are extracted
from Dataset M.

lation to dataset MRN (see Table 1 and Figure 1).
Subset A contains microblogs which have a rela-
tion to one or multiple news; subset B contains mi-
croblogs from subset A which are retrieved from
Twitter. Subset B is necessary as dataset M con-
tains StockTwits not specifically collected in the
same period as the tweets. Figure 2 contains addi-
tional information regarding the annotation of both
dataset as well as subsets.

3.2 Assigning a News Sentiment to
Microblogs

All news in dataset MRN correspond to compa-
nies referred to in a minimum of one microblog
in dataset M. With this information, our goal is to
determine how to model the sentiment conveyance
between the news-contained sentiment and each
microblog given that news and microblogs might
contain the same entities but not be vastly related.
Considering the following example of two news
articles, one about Apple and Tim Cook’s private
life, and another one about Apple and the new
iPhone, the latter one’s sentiment should have a
higher impact on a microblog’s sentiment about
Apple’s new products since they are more related.
Using a purely entity based approach, both news
articles would be linked to the microblog and the
influence of both news on the assigned sentiment
would be equal as they deal with Apple.

This work considers the assumption that
“within a certain period, sentiments regarding the
same entity should be similar across different data
sources” (Daudert et al., 2018) and refines it with
the assumption that sentiments are particularly
similar if the textual context is similar. To lay the
foundation for future research applications and to
ensure a coherent understanding of the terminol-
ogy applied throughout this work, we define core
concepts as follows:

Linking - The linking of sentiment describes the
creation of relations between sentiments,
particularly their literal representations, by

109

Figure 2: Distribution of the annotated sentiment for dataset MRN, dataset M, subset A, and subset B.
The sentiment is represented by s.

matching pieces of text according to prede-
fined criteria such entities, text intersections,
or a degree of textual similarity. Hereby, we
assume that linked sentiments are either in-
fluenced by the same cause or affecting each
other.

Conveyance - The conveyance of sentiment de-
scribes the influence of the sentiment of one
text on the sentiment of another. Sentiment is
(indirectly) fully or partially transfered from
a piece of text A to a piece of text B.

Assigning - The assigning of sentiment models
the conveyance of sentiment from a text to
another. Given two linked sentiments and
the hypothesis that one is affecting the other,
or both are affected by the same cause, we
model the influence of text A’s sentiment on
text B’s sentiment; improvements of this as-
signment can be measured by an enhanced
sentiment detection for text B.

The aim behind this is the removal of noise in
terms of microblog-unrelated news, although deal-
ing with the same entity, as well as the reduction
of the impact of less-related news on the assigned
sentiment. To explore this, we compare four
context-based approaches with the entity-based
approach. The two context-based approaches em-
ploying a threshold for determining the relevance
of a news to a microblog’s sentiment (approach
1 and 3) aim at improving the sentiment linking
since they fully discard news below a certain simi-
larity value. The remaining two context-based ap-
proaches using a weighting scheme are reducing
the impact of less relevant news on a microblog’s
sentiment and are, hence, aiming at improving
the assigning of sentiment. This occurs in mul-
tiple steps: First, URLs in microblogs as well as
news titles and descriptions are removed. Second,
microblogs are tokenised employing the NLTK
TweetTokenizer (Bird and Loper, 2004); news ti-
tles and descriptions are tokenized using the Stan-
ford CoreNLP Tokenizer (Manning et al., 2014).

110

Measure
Features MT

ES
Agg.

TS Thr.
TS Wgt.

Agg.
WMD-S

Thr. Agg.
WMD-S

Wgt. Agg.
D

at
as

et
M

Micro F1-Score 0.8048 0.8060 0.8073 0.8060 0.8060 0.8060
Macro F1-Score 0.6349 0.6357 0.6369 0.6357 0.6357 0.6357
Weighted F1-Score 0.8018 0.8030 0.8044 0.8030 0.8030 0.8030
Euclidean Distance 23.9165 23.8328 23.7487 23.8328 23.8328 23.8328
Mean Error Squared 0.7204 0.7154 0.7103 0.7154 0.7154 0.7154

Su
bs

et
A

Micro F1-Score 0.6485 0.6545 0.6606 0.6545 0.6485 0.6485
Macro F1-Score 0.5547 0.5583 0.5633 0.5597 0.5547 0.5547
Weighted F1-Score 0.64167 0.6471 0.6539 0.6485 0.6416 0.6416
Euclidean Distance 14.9332 14.7986 14.6629 14.7986 14.9332 14.9332
Mean Error Squared 1.3515 1.3273 1.3030 1.3272 1.3515 1.3515

Su
bs

et
B

Micro F1-Score 0.7283 0.7283 0.7283 0.7391 0.75 0.7391
Macro F1-Score 0.6917 0.6917 0.6917 0.701 0.7077 0.701
Weighted F1-Score 0.7241 0.7241 0.7241* 0.7363 0.7463 0.7363
Euclidean Distance 9.8489 9.8489 9.8489 9.6437 9.434 9.6437
Mean Error Squared 1.0543 1.0543 1.0543 1.0109 0.9674 1.0109

Table 2: Scores obtained by the SVM model for dataset M, subset A, and B. MT abbreviates the message
text, ES the entity-based news sentiment, TS the news title and description text similarity, WMD-S the
word mover’s distance similarity. Thr. represents threshold, Wgt. weighted, and Agg. aggregated. A
p-value < 0.01 is achieved for all models with the exception of TS Thr. on subset B (marked with *)
which achieves a p-value < 0.05. The classifications based on microblog messages and context-based
news sentiment are represented in gray (columns 4-7).

We choose different tokenizers for microblogs and
news as the TweetTokenizer is specifically made
for microblogs while news require a tokenizer
adapted to a different structure and length. Third,
we convert the Stanford GloVe Twitter model
(Pennington et al., 2014) to Word2Vec (Mikolov
et al., 2013a) and obtain the word embeddings.
Having the word embeddings for microblogs and
news in place, the subsequent processing varied
depending on the context-based approach.

3.3 Context-based Approaches

We define context-based as an approach which
utilises the textual similarity between two data ar-
tifacts as a factor to modify the sentiment of one
of these, aiming at the generation of a sentiment
to be assigned for the other artifact, necessary to
model the sentiment conveyance.

In this work, we use microblog messages and
a concatenation of the news titles and descrip-
tions, if available, as our textual information. We
then measure the textual similarity and utilise it
as a factor to modify the news sentiment and sub-
sequently generate the news sentiment to be as-
signed (NSTBA). This generated sentiment is then
applied to model the sentiment conveyance be-

tween a news and a microblog.

NSTBAm = s(n1)+s(n2)
2 (1)

The first context-based approach generates the
NSTBA as an average of the sentiments of the
microblog-related news articles. Document em-
beddings are retrieved for each microblog and
news by averaging the word embeddings (Kart-
saklis, 2014). We employ the cosine similarity as
measure since vector offsets have been shown to
be effective (Mikolov et al., 2013b). To be con-
sidered as context-related, a cosine similarity of
at least 0.5 is required. For example, if two news
articles (n1, n2) are context-related to microblog
m, the two news sentiments (s) are added together
and then divided by 2.

NSTBAm = s(n1)∗sim(n1,m)+s(n2)∗sim(n2,m)
2

(2)
In contrast, the second context-based approach

does not exclude relations with a cosine similarity
lower than 0.5 but it uses the similarity score as
a weighting factor multiplying it with the respec-
tive news sentiment score. Thus, an average of
the similarity-weighted sentiments of the related-
news is created. As an example, if two news arti-
cles (n1, n2) are context-related to microblog m,

111

each news sentiment s(nx) is multiplied with the
respective similarity (sim) score of nx and m and
then divided by 2. The NSTBA is then aggregated
into the classes [-1.0, 0.0, 1.0] as this enhanced the
results.

The third approach utilises the word mover’s
distance (WMD) as described in (Kusner et al.,
2015). We choose the WMD as it is a promis-
ing, recently developed function to measure the
dissimilarity between two text documents. In our
data, the WMDs d are within the range of [3.5,
9.5]. In spirit of equation 1, we use a threshold of
6.5 which is located halfway between both turn-
ing points as a requirement to be considered as
context-related. As previously, the NSTBA has
been aggregated into three classes.

The fourth approach is also based on the WMD.
Since the WMD is not a similarity score but a dis-
tance theoretically ranging from 0 to unlimited, we
transformed it into a similarity score (WMD-S).
For WMDs ranging between [3.5, 9.5] in our data,
we converted them into a similarity score within
[0, 0.955] using the following formula:

sim(d) = 1− 1
−0.1(d−9.5)3+1

(3)

Initially, we also experimented with other func-
tions such as 1−d/9.5, however, function 3 repre-
sented a better approximation of a similarity score
for our data. First, word embeddings are used
to create the WMD between each microblog and
news. Then, this distance is transformed into a
similarity score using the formula above. Third
and in the spirit of equation 2, news sentiments are
weighted with the WMD-based similarity score.
However, here we also aggregated the NSTBA.

3.4 Experimental Setup
For consistency, we utilise a similar setup to Daud-
ert et al. (2018) for the preprocessing of the mi-
croblog texts, as well as for the SVM, and perfor-
mance measures. The preprocessing steps are as
follows:

1. URLs were replaced with < url >

2. Numbers were replaced with < number >

3. With WORD representing the original
hastag:

(a) hastags in upper case were replaced with
< hashtag > WORD < allcaps >

(b) the remaining cases were replaced with
< hashtag > WORD

4. Smileys and emoticons were replaced
with a description (e.g., becomes
slightly smiling face) 4

The processed text was then transformed into a un-
igram tf-idf representation.

The SVM model is trained and tested in six dis-
tinct approaches whereby approach three to six
utilise different methods to model the context-
based news sentiment: (1) a feature matrix repre-
senting the microblog messages; (2) a feature ma-
trix representing the microblog messages enriched
with the assigned entity-based news sentiment for
each microblog, and (3)-(6) a feature matrix repre-
senting the microblog messages enriched with the
assigned context-based news sentiment for each
microblog. We chose to balance the class weight
to get as close as possible to a neutral sentiment
setting; the iterations are set to 500 and the ran-
dom state to 42.

To test for statistical significance of the models,
we apply a permutation test under the null hypoth-
esis that the model has no effect in microblog sen-
timent classification (Ojala and Garriga, 2010).

4 Results

Table 2 shows the classification results on dataset
M, subset A, and subset B. Although the use
of an entity-based sentiment is already beneficial
to the results, the addition of textual similarity
measures further improves them. As the table
shows, utilising context-based approaches to in-
fluence to-microblogs-assigned news sentiments
enhances all measures in comparison to only us-
ing an entity-based average news sentiment. The
weighted F1-Score for dataset M is increased by
0.17% and the Euclidean distance is decreased by
7.04%. In comparison to only using the mes-
sage text (MT), the same scores are improved by
3.13% and 13.99%. For the subsets A and B the
weighted F1-Score increases by 1.06% and 3.07%,
and the Euclidean distance is decreased by 1.82%
and 8.25%, respectively. For subset A, in con-
trast to only using MT, the weighted F1-Score and
Euclidean distance are improved by 1.91% and
3.59%. This suggests the benefit of applying dis-
tributional semantics to the linking and assigning
of news sentiment to microblogs, shown by the
improvement on microblog sentiment classifica-

4http://www.unicode.org/emoji/charts/
full-emoji-list.html

112

tion. Additionally, all scores improve on dataset
M although only around 18.6% of the microblogs
in the dataset are related to news. Surprisingly,
utilising WMD-S improves all measures for sub-
set B, whereas the cosine similarity between the
document embeddings, together with the applica-
tion of a threshold of 0.5, delivers the best re-
sults for dataset M and subset A. Furthermore, our
approach outperforms the best score achieved in
the SemEval 2017 Task 5 - Track 1 competition
in which microblog sentiment analysis on a con-
tinuous scale was performed. Although our fo-
cus is to show the benefit of leveraging sentiment
across news and microblogs, classifying the sen-
timent into 3 classes, our model reaches a cosine
similarity of 0.869 on dataset M (table 2, column
TS Thr.) whereas Jiang et al. (2017) reach a cosine
similarity of 0.778.

5 Conclusion and Future Work

In this work, we utilise distributional semantics to
model the conveyance of sentiment between news
and microblogs. The achieved results suggest the
benefit of using textual similarities and word em-
beddings to enhance the sentiment linking and as-
signing, culminating in an improved microblog
sentiment classification. Our contributions are
threefold: First, we present novel research util-
ising distributional semantics, specifically, word
embeddings, the cosine similarity, and the word
mover’s distance, for the linking and assigning of
news-contained sentiment to microblogs; second,
we explore the use of the word mover’s distance as
similarity measure and; third, we suggest the bene-
fit of leveraging news sentiment together with sim-
ilarity methods for microblog sentiment classifi-
cation. Comparing the additional use of an entity-
based news sentiment with only the microblog text
as features (columns MT versus ES Agg.), our re-
sults show an improvement on microblog senti-
ment classification on dataset M and subset A,
while achieving a p-value<0.01. In case of sub-
set B, which has the most related news but the
least news in quantity, the performance remains
unchanged (columns MT versus ES Agg.). How-
ever, models utilising context-based news senti-
ment for an enhanced sentiment linking and as-
signing (columns TS Thr. and WMD-S Thr. Agg.)
improve the performance for subset B and also
reach the best scores for all three datasets. This
suggests that applying distributional semantics is

particularly fruitful when entity-based news senti-
ments have less impact on the sentiment analysis
on microblogs; this can be true in three cases:

1. The overall sentiments are neutral or bal-
anced. We balanced all sentiment classes,
however, the classifiers trained on context-
based sentiment outperform the one trained
on average entity-based news sentiment.

2. Only sparse related news exist. A classifier
utilising the average entity-based sentiment
as features achieves better results for dataset
M and subset A than one with only the mes-
sage text as features, however, on the smaller
subset B this does not occur. Furthermore,
when context-based sentiment is used as fea-
ture, the improvement on subset B becomes
the largest. This suggests that each mislead-
ing news sentiment, present on dataset M and
subset A, would have a noticeable impact on
the results.

3. Related news are noisy and contain, apart
from matching entities, unrelated informa-
tion. Nonetheless, training our classifier on
context-based sentiment outperforms the one
trained on the average entity-based senti-
ment, suggesting that more-related news have
a higher influence.

As future work, we aim to create a larger
dataset, referring to a single defined period, link-
ing microblogs and news. In addition, hybrid
models taking into account not only a threshold
for discarding noise but also a weighting scheme
could potentially improve the classification. In
this paper, we utilise the word mover’s distance
and the cosine similarity to measure the similar-
ity between two texts, however, other potentially
adequate methods for this task still require explo-
ration.

Acknowledgments

This publication has emanated from research
conducted with the financial support of Science
Foundation Ireland (SFI) under Grant Number
SFI/12/RC/2289, co-funded by the European Re-
gional Development Fund.

113

References
Fabian Abel, Qi Gao, Houben Geert-Jan, and Tao KE.

2011. Semantic Enrichment of Twitter Posts for
User Profile Contrunction on the Social Web. In
Proceedings of the Extended Semantic Web Confer-
ence, pages 375 – 389. Springer, Berlin, Heidelberg.

Steven Bird and Edward Loper. 2004. NLTK: The Nat-
ural Language Toolkit. In Proceedings of the ACL
2004 on Interactive poster and demonstration ses-
sions, volume 1, pages 31 – 34, Morristown, NJ,
USA. Association for Computational Linguistics.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011.
Twitter mood predicts the stock market. Journal of
Computational Science, 2(1):1–8.

Keith Cortis, Andre Freitas, Tobias Daudert, Manuela
Huerlimann, Manel Zarrouk, Siegfried Handschuh,
and Brian Davis. 2017. SemEval-2017 Task 5:
Fine-Grained Sentiment Analysis on Financial Mi-
croblogs and News. In Proceedings of the 11th
International Workshop on Semantic Evaluation
(SemEval-2017), pages 519–535.

Tobias Daudert, Paul Buitelaar, and Sapna Negi. 2018.
Leveraging News Sentiment to Improve Microblog
Sentiment Classification in the Financial Domain.
In Proceedings of the First Workshop on Economics
and Natural Language Processing, pages 49–54,
Melbourne, Australia. Association for Computa-
tional Linguistics.

Weiwei Guo, Hao Li, Heng Ji, and Mona Diab. 2013.
Linking Tweets to News: A Framework to Enrich
Short Text Data in Social Media. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics, pages 239–249.

Mengxiao Jiang, Man Lan, and Yuanbin Wu. 2017.
ECNU at SemEval-2017 Task 5: An Ensemble of
Regression Algorithms with Effective Features for
Fine-Grained Sentiment Analysis in Financial Do-
main. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 888–893.

Dimitri Kartsaklis. 2014. Compositional Operators
in Distributional Semantics. Springer Science Re-
views, 2(1-2):161–177.

Colm Kearney and Sha Liu. 2014. Textual sentiment
in finance: A survey of methods and models. Inter-
national Review of Financial Analysis, 33:171–185.

Matt J Kusner, Yu Sun, Nicholas I Kolkin, and Kilian Q
Weinberger. 2015. From Word Embeddings To Doc-
ument Distances. In Proceedings of The 32nd In-
ternational Conference on Machine Learning, vol-
ume 37, page 957 966.

Haewoon Kwak, Changhyun Lee, Hosung Park, and
Sue Moon. 2010. What is Twitter, a Social Net-
work or a News Media? In Proceedings of the In-
ternational World Wide Web Conference Committee
(IW3C2), pages 591 – 600.

Kristina Lerman and Rumi Ghosh. 2010. Informa-
tion Contagion: an Empirical Study of the Spread
of News on Digg and Twitter Social Networks. In
Proceedings of the Fourth International AAAI Con-
ference on Weblogs and Social Media, pages 90 –
97.

Andrew L Maas, Raymond E. Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. 2011.
Learning Word Vectors for Sentiment Analysis. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 142–150.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55 – 60.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient Estimation of Word
Representations in Vector Space. arXiv preprint
arXiv:1301.3781, pages 1–12.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. Proceedings of NAACL-HLT,
(June):746–751.

Amy Mitchell and Dana Page. 2015. The Evolving
Role of News on Twitter and Facebook. Technical
report, pewresearch.org.

Arman Khadjeh Nassirtoussi, Saeed Aghabozorgi, Teh
Ying Wah, and David Chek Ling Ngo. 2014. Text
mining for market prediction: A systematic review.
Expert Systems with Applications, 41(16):7653–
7670.

Markus Ojala and Gemma C. Garriga. 2010. Per-
mutation Tests for Studying Classifier Perfor-
mance. Journal of Machine Learning Research,
11(June):1833–1863.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe : Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), page 1532 1543.

Soujanya Poria, Iti Chaturvedi, Erik Cambria, and Fed-
erica Bisio. 2016. Sentic LDA: Improving on LDA
with semantic similarity for aspect-based sentiment
analysis. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN), volume
201, pages 4465–4473. IEEE.

Thomas Schuster. 2003. Meta-Communication and
Market Dynamics. Reflexive Interactions of Finan-
cial Markets and the Mass Media. SSRN eLibrary,
(July).

114

Duyu Tang, Furu Wei, Bing Qin, Nan Yang, Ting
Liu, and Ming Zhou. 2016. Sentiment Embeddings
with Applications to Sentiment Analysis. IEEE
Transactions on Knowledge and Data Engineering,
28(2):496–509.

Manos Tsagkias, Maarten de Rijke, and Wouter
Weerkamp. 2011. Linking online news and social
media. In Proceedings of the fourth ACM interna-
tional conference on Web search and data mining -
WSDM ’11, pages 565–574.

Jason Turcotte, Chance York, Jacob Irving,
Rosanne M. Scholl, and Raymond J. Pingree.
2015. News Recommendations from Social Media
Opinion Leaders: Effects on Media Trust and In-
formation Seeking. Journal of Computer-Mediated
Communication, 20(5):520 – 535.

Marjan Van De Kauter, Diane Breesch, and Veronique
Hoste. 2015. Fine-grained analysis of explicit and
implicit sentiment in financial news articles. Expert
Systems with Applications, 42(11):4999–5010.

Zhongyu Wei, Hong Kong, and Wei Gao. 2014. Uti-
lizing Microblogs for Automatic News Highlights
Extraction. In Proceedings of COLING 2014, the
25th International Conference on Computational
Linguistics, pages 872 – 883.

Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing He,
Ee-Peng Lim, Hongfei Yan, and Xiaoming Li. 2011.
Comparing Twitter and Traditional Media Using
Topic Models. In Proceedings of the European Con-
ference on Information Retrieval, pages 338–349.

Springer, Berlin, Heidelberg.

115

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 116–122
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Aspect Based Sentiment Analysis into the Wild

Caroline Brun, Vassilina Nikoulina∗

firstname.lastname@naverlabs.com
Naver Labs Europe, 6 chemin de Maupertuis, 38240 Meylan

Abstract

In this paper, we test state-of-the-art Aspect
Based Sentiment Analysis (ABSA) systems
trained on a widely used dataset on actual data.
We created a new manually annotated dataset
of user generated data from the same domain
as the training dataset, but from other sources
and analyse the differences between the new
and the standard ABSA dataset. We then anal-
yse the results in performance of different ver-
sions of the same system on both datasets. We
also propose light adaptation methods to in-
crease system robustness.

1 Introduction

The aim of Aspect Based Sentiment Analysis
(ABSA) is to detect fine-grained opinions ex-
pressed about different aspects of a given entity,
on user-generated comments.

Aspects are attributes of an entity, e.g. the
screen of a cell phone, the service for a restau-
rant, or the picture quality of a camera, and can be
described by an ontology associated to the entity.
ABSA includes therefore to identify aspects of an
entity, and the sentiment expressed by the writer
of the comment about different aspects. For exam-
ple, from a sentence extracted from a review about
a museum, an ABSA system could extract the fol-
lowing information: This museum hosts remark-
able collections, however, prices are quite high
and the attendants are not always friendly.
”collections”: aspect=museum#collection, polarity=positive;

”prices”: aspect=museum#price, polarity=negative;

”attendants”: aspect=museum#service, polarity=negative;

ABSA receives now a specific interest from the
scientific community, especially with the SemEval
dedicated challenges, (Pontiki et al., 2014), (Pon-
tiki et al., 2015), (Pontiki et al., 2016), that pro-
vided a framework to design and evaluate ABSA

∗Both authors contributed equally.

systems, for different domains, initially on English
but for 8 languages in the 2016 (last) edition. Be-
sides SemEval, other challenges focussing on the
task have been also launched recently, for exam-
ple TASS, dedicated to Spanish, (Villena-Román
et al., 2015b), (Villena-Román et al., 2015a),
(Cumbreras et al., 2016), or GermanEval, dedi-
cated to German ABSA, (Wojatzki et al., 2017).

Following this particular interest, the technol-
ogy performing ABSA becomes more and more
mature, however, experiments and evaluation are
restricted to a small number of academic datasets,
in relatively favorable settings. The goal of this
paper is to test a state-of-the-art ABSA system on
actual data, to evaluate the performance loss in
real-world application conditions, and to experi-
ment potential solutions to it. To achieve this goal,
we’ve created a new ABSA annotated dataset, de-
veloped on Foursquare data. We also performed
evaluation of the full ABSA processing chain (as
opposed to sub-tasks evaluation which is tradition-
ally performed). We also propose a weakly super-
vised method for aspect-based lexical acquisition
designed to improve the robustness of our initial
system.

2 Related Work

Most of the systems dedicated to ABSA use ma-
chine learning algorithms such as SVMs (Wag-
ner et al., 2014; Kiritchenko et al., 2014), or
CRFs (Toh and Wang, 2014; Hamdan et al., 2015),
which are often combined with semantic lexi-
cal information, n-gram models, and sometimes
more fine-grained syntactic or semantic informa-
tion. For example, (Kumar et al., 2016) proposed
a very efficient system on different languages of
SemEval2016. The system use information ex-
tracted from dependency graphs and distributional
thesaurus learned on the different domains and

116

https://doi.org/10.18653/v1/P17

languages of the challenge. Deep Learning meth-
ods are also emerging: for example, (Ruder et al.,
2016) proposed a method using multiple filters
CNNs and obtained competitive results on both
polarity and aspect detection tasks. However,
ABSA datasets are very costly to annotate by hu-
mans, and they are usually small, which is a prob-
lem for Deep Learning supervised methods.

3 Datasets

Usually, ABSA systems are tested on the same
dataset as they are developped on. One of the
widely used ABSA datasets was released in Se-
meval2016 challenge (Pontiki et al., 2016), in par-
ticular the dataset for restaurant domain. It is
based on the dataset of (Ganu et al., 2009) who ex-
tracted restaurant reviews from City Search New
York over year 2006. Since then, the notion of the
user review has evolved. Many factors may im-
pact the linguistic structure of a review, e.g. the
support it was written on (computer vs. smart-
phone), the age of the user, the location (US vs.
UK English), the user mother tongue (native vs.
non-native speakers), etc. How would a system
trained on Semeval2016 dataset perform on a new
data coming from different sources?

In order to assess ABSA real-world perfor-
mances, we manually annotated a completely new
dataset from Foursquare1 comments. We have ac-
cess to about 215K user reviews of restaurants all
over the world in English2. The reviews were writ-
ten during the period between 2009 to 2018. From
these reviews, we randomly selected 585 sam-
ples, which contain 1006 sentences and annotate
these sentences with the SemEval2016 annotation
guidelines for the restaurant domain. The annota-
tions have been performed by a single annotator,
expert linguist with a very good knowledge of the
SemEval2016 annotation guidelines, using BRAT,
(Stenetorp et al., 2012).

Each sentence contains annotations about:
1. Opinion Target Expression (OTE), i.e. the lin-
guistic expression (term) used in the text to re-
fer to the reviewed entity, annotated as “NULL”
if the aspect is implicit; 2. Aspect Categories,
i.e. the semantic categories of the opinionated as-
pects, which are part of a predefined ontology (12
semantic classes for the restaurant domain from

1https://foursquare.com/
2Countries with most of English comments include US,

UK, Australia, Canada, Indonesia, Malaysia, Philippines, In-
dia, Thailand

Dataset #Rev #S #W/S #A/S
Semeval 92 676 12.8 1.27

Foursquare 585 1006 8.0 1.15

Table 1: Dataset statistics: Semeval 2016 test set and
Foursquare dataset. #Rev: number of reviews, #S:
number of sentences, #W/S : number of words per
sentence, #A/S: number of <OTE, Aspect Category,
Polarity> tuples per sentence

(Pontiki et al., 2016)); 3. Sentiment Polarities: po-
larities (positive, negative or neutral) associated to
the tuple <OTE, Aspect Category>. An illustra-
tion of such annotation is given on figure 1.

<text>Their sake list was extensive,
but we were looking for Purple Haze,
which wasn’t listed but made for us
upon request!</text>
<Opinions>
<Opinion target="sake list"

category="DRINKS#STYLE_OPTIONS"
polarity="positive"/>

<Opinion target="NULL"
category="SERVICE#GENERAL"
polarity="positive"/>

</Opinions>

Figure 1: ABSA: an annotated sentence from the
Semeval-2016 training corpus

Table 1 gives some statistics about the
Foursquare and Semeval2016 datasets. One may
notice, that in average, Foursquare reviews are
shorter and therefore contain less aspects per sen-
tence. We believe this is due to the generalisation
of smart-phones (and other mobile devices) usage
over the world in the last decade, which influenced
the way users write. We release the Foursquare
dataset to the community in order to better assess
robustness of ABSA systems3.

4 Evaluation Procedure

We consider different evaluation measures. First,
we re-use the SemEval2016 ABSA evaluation
paradigm and scripts, where the evaluation was
run in two phases, phase A and phase B. In phase
A, raw reviews have to be annotated with aspects
(slot 1 of the challenge) and OTE (slot 2 of the
challenge). In phase B, gold annotations for phase
A, i.e. tuples <OTE, aspect>, have to be an-
notated with polarities (slot 3 of the challenge).

3http://www.europe.naverlabs.com/Research/Natural-
Language-Processing/Aspect-Based-Sentiment-Analysis-
Dataset

117

Thus, we evaluate separately the OTE detection,
aspect detection and finally, we evaluate the po-
larity of opinion detection on the ground truth of
phase A. The advantage of this evaluation proce-
dure is of course to assess the quality of the sys-
tems on each of the different subtasks involved
in the full ABSA system. However, these mea-
sures do not reflect the overall results such sys-
tems would obtain on the full chain of annotations
starting from raw data, in end-to-end application
settings. Therefore, we also propose to evalu-
ate the results obtained with the complete anno-
tation chain, i.e. computing F1-measure on the
triplets <OTE, Aspect, Polarity>. In addition,
we compute the F1-measure on the pairs <Aspect,
Polarity> at sentence level. This last measure can
be useful to assess ABSA general Aspect-Polarity
performance since many ABSA applications may
not require the OTE step. In what follows, we refer
to these measures as slot1,3 and slot1,2,3 to make
connection with the challenge tasks.

5 Baseline ABSA Systems

In our experiments, we use several baseline sys-
tems. Each of the systems consists in the follow-
ing pipeline of different components: 1. Opinion-
ated domain term extraction (OTE); 2. aspect cat-
egorization, for opinionated term (OT), and whole
sentence level; final aspect is predicted as a com-
bination of both; 3. polarity classification of each
aspect identified in the previous step. The differ-
ence between baselines lies in the implementation
of each component of the pipeline, and the level of
external resources involved.

5.1 Baseline-1

The first system is resource-rich system relying
on available syntactic and semantic parser, and
domain-specific semantic lexicons. It is based
on composite models combining sophisticated lin-
guistic features with machine learning algorithms.
The linguistic features are extracted via a NLP
pipeline (based on in-house parser) comprising
lexical semantic information, POS tagging, syn-
tactic parsing and a partial semantic parsing that
outputs semantic relations between polarity pred-
icates and their opinionated targets (OTE). These
linguistic features are then used by classifiers to
perform each step of the pipeline.

The OTE detection is performed with Condi-

tional Random Fields (implemented with CRF++4

toolkit), trained with some standard features (POS,
lemma, presence of upper-case letters, features
combining syntactic/semantic dependencies with
semantic lexicons, embedding-based features).

Aspect and polarity classification components
rely on the same features as for OTE, exclud-
ing embedding-based features, but extended with
bi-grams features. In addition, polarity classi-
fier feature representation is extended with entity
and attribute of aspect category (e.g. RESTAU-
RANT#PRICES results in two additional features:
(restaurant, prices)). Classification is performed
with CoreNLP (Manning et al., 2014) implemen-
tation of Maximum Entropy.

5.2 Baseline-2

The second baseline system (baseline-2) replaces
each component of the previous pipeline with neu-
ral network classifiers. Aspect classification and
polarity classification components are based on
multiple filters CNNs as in (Ruder et al., 2016).
OTE component is based on Bidirectional GRU
architecture (similar to (Jebbara and Cimiano,
2016)). All the components are implemented with
the keras (Chollet et al., 2015) library.

Since the size of the training data is relatively
small, we attempt to enrich an input with prior
knowledge to help the system to generalize bet-
ter. In order to do so, we enrich word representa-
tion with semantic lexicon features5, which are en-
coded as one-hot vector of dimension 100 and con-
catenated with word embedding. These new word
representations are fed to the same pipeline as
baseline-2. We’ll refer to this system as baseline-
2’.

Both baseline-2 and baseline-2’ are initialised
with pre-trained word embeddings.

5.3 Baseline Results

Common ressources between all baselines are pre-
trained word embeddings and semantic lexicon.
We use word2vec (Mikolov et al., 2013) 300-
dimensional Google News word embeddings, on
which some“noise” filtering has been performed.
Semantic lexicon was created semi-automatically
using existing polarity lexicons and capitalizing on
the annotated vocabulary present in the SemEval

4https://taku910.github.io/crfpp/
5This is close to the idea of sentic features (Jebbara and

Cimiano, 2016), integrating aspect categories and polarities,
rather than sentics.

118

Model Foursquare
s2 s1 s3 s1,3 s1,2,3

baseline-1 68.9 63.8 88.7 56.9 33.6
baseline-2 47.9 62.9 86.0 52.5 9.1
baseline-2’ 47.7 62.7 86.1 52.6 8.8

Semeval
baseline-1 75.3 70.4 87.3 63.0 37.1
baseline-2 61.1 69.9 80.2 54.9 12.0
baseline-2’ 61.0 68.8 78.7 53.8 11.8

Table 2: Performance of various baseline systems.
s1: Aspect Category detection (F1), s2: Opinion
Target Expression (F1), s3: Sentiment Polarity (Ac-
curacy). s1,3: Aspect,Polarity (F1), s1,2,3: As-
pect,OTE,Polarity (F1).

ABSA datasets. It contains ∼1000 words with as-
pect categories and/or polarities associated to each
word.

Results for all the baselines are summarized in
the table 2. Note, that for baseline-2,2’, we report
an average performance after executing the whole
pipeline 10 times.

First, we observe an important performance
drop in aspect prediction (tasks s2, s1) for the new
Foursquare dataset for both baselines. This is of
course related to the fact that this dataset is differ-
ent from the one the training has been performed
on. Thus, the aspects may not be expressed in
the same way, style of the reviews are different6.
However, for polarity prediction we observe bet-
ter results on Foursquare dataset than on Semeval
dataset. It can be explained by shorter length
of Foursquare comments, resulting in less aspect
mentions per sentence (rarely more that one opin-
ionated term per sentence), and thus less ambigu-
ity in polarity prediction.

The second observation is a pretty low overall
pipeline performance (s1,3 and s1,2,3). Although
our baseline-1 has pretty good performances on
each individual task (best, or close to best official
SemEval2016 results) when putting all together, it
results in 63.0 F1-score on aspect-polarity tuples.
The performance on <OTE, Aspect, Polarity> tu-
ples drops down to F1 of 37.1. This evaluation
procedure allows us to get an idea on what would
be “real-world” system performance, and also in-
dicates the capacities and limitations of the sys-
tem.

6a lot of emojis are used in Foursquare dataset, but not in
Semeval dataset

Finally, we note that baseline-1 (“ressource
rich” baseline) has the best performances from all
the baselines we explored (as expected). The per-
formances of baseline-2 and baseline-2’ are pretty
close on the Semeval dataset, but baseline-2 seems
to perform slightly better.

6 Exploring Additional Ressources for
Adaptation

One of the natural resources to explore for system
adaptation is a set non-annotated reviews. In our
case, we exploit all Foursquare reviews in English
we have access to.

6.1 Domain Specific Embeddings

First, we learn domain dependent words embed-
dings (300-dimensional) on the Foursquare restau-
rant data using Gensim (Řehůřek and Sojka, 2010)
implementation of word2vec. We filtered out the
words occurring less than 5 times, and used a con-
text window of 10 words, which resulted in 60K
word embeddings.

6.2 Weakly Supervised Lexical Acquisition

Among other components, our system relies on
semantic lexical ressources encoding domain as-
pect and polarity vocabulary, that were developed
semi-automatically, based on SemEval2016 train-
ing datasets. In order to enrich these lexicons,
we have adapted a semantic clustering method de-
scribed in (Pelevina et al., 2016)7. The core idea
of this approach is to induce a sense inventory
from existing word embeddings via clustering of
ego-networks of related words. An ego network
consists of a single node (ego) together with the
nodes they are connected to and the edges between
the connected nodes. Words referring to the same
sense tend to have a large number of connections,
and to be clustered together. The clustering is done
with the Chinese Whispers algorithm (Biemann,
2006).

In the case of the present experiments, we ini-
tialize the algorithm with a set of seed words to-
gether with their semantic aspect (e.g cider:drink,
tikka:food), in order to obtain clusters of aspect
words. We used 60 seed words randomly selected
from our existing semantic lexicon and learned
clusters from Foursquare embeddings. Table 4

7This method was initially experimented for word sense
disambiguation, but we directly adapted it for domain aspect
lexicon creation

119

Model Foursquare Semeval
s2 s1 s3 s1,3 s1,2,3 s2 s1 s3 s1,3 s1,2,3

baseline-1
baseline-1 68.9 63.8 88.7 56.9 33.6 75.3 70.4 87.3 63.0 37.1
f lex 69.2 64.1 88.8 57.1 33.8 76.4 70.4 86.6 63.5 38.1
f emb 66.7 63.8 88.7 57.3 34.1 75.3 70.5 87.1 63.4 37.4
f lex + f emb 67.1 64.3 88.8 57.3 33.9 75.8 70.7 86.6 63.5 37.7

baseline-2
baseline-2 47.9 62.9 86.0 52.5 9.1 61.1 69.9 80.2 54.9 12.0
f emb 54.5 66.4 87.1 56.7 9.1 61.7 69.7 80.6 54.7 11.3

baseline-2’
baseline-2’ 47.7 62.7 86.1 52.5 8.8 61.1 68.8 78.7 53.8 11.8
f lex 47.7 62.4 86.1 52.6 8.7 61.0 68.9 78.7 53.9 11.4
f emb 53.8 65.9 86.7 56.2 9.2 62.4 70.0 80.5 55.8 11.4
f lex + f emb 53.8 65.8 86.7 56.2 9.2 62.4 69.9 80.5 55.8 11.4

Table 3: Experimental results with foursquare embeddings and automatically acquired lexicon

Seed:Aspect Aspect Cluster
kimchi:food kimchee, bulgogi, galbi,

bibimbap, jigae, chigae, ...
waiter:service waitress, server, hostess,

nikki, melissa, kyle, kelly, ...
expensive:price over-priced, pricey, costly

pricy, cheap, spendy, ...

Table 4: Clusters learnt on Foursquare embeddings

gives some cluster examples. It’s interesting to ob-
serve that we obtain a cluster of first names, often
used to mention a waiter in Foursquare data, with
semantic class service.

We use these clusters of aspect words by con-
catenating them to the existing lexicon of the sys-
tem.

6.3 Experimental Results

We’ve performed following series of experiments
(summarized in table 3): 1. f lex: foursquare
lexicon extending existing lexicon (for systems
using lexicons); 2. f emb: all baselines with
foursquare embeddings replacing generic embed-
dings (GoogleNews-based) 3. f lex +f emb: com-
bination of the previous two. We observe light
improvements for baseline-1 which are especially
due to lexicon enrichment experiments. We
think that Foursquare embeddings didn’t bring
expected improvements for baseline-1 (embed-
dings are used only for OTE/s2 task, which in
it’s turn impacts s1 task), mostly because these

embeddings are much smaller and we lose some
non domain-specific knowledge when they replace
GoogleNews embeddings.

The impact of embedding is opposite for
baseline-2 experiments. Foursquare pretrained
embeddings bring important gains on Foursquare
dataset thus moving baseline-2 system above
baseline-1 for s1 evaluation. It also improves
(although less) system performance on Semeval
dataset. Automatically acquired lexicon on
baseline-2 systems seems to be very low. We plan
to explore other ways to integrate this knowledge
into deep learning framework.

7 Conclusion

In this work, we release a new ABSA dataset,
in order to better assess state-of-the-art systems
robustness; we also evaluate a full ABSA chain
of various systems, to reflect end-to-end perfor-
mances. We show that even for the systems with
good performances on individual ABSA subtasks,
an overall aspect/polarity F1 score drops down
to 63.0. Evaluation of various baselines on the
new dataset have shown that standard ABSA sys-
tems may suffer a significant decrease in perfor-
mance, especially for aspect detection. We’ve ex-
perimented with light adaptation methods integrat-
ing in-domain embeddings and automatically ac-
quired lexicons, and showed their impact on dif-
ferent systems. Both the new Foursquare ABSA
dataset and the evaluation script of the full pipeline
are distributed with the paper.

120

References
Chris Biemann. 2006. Chinese whispers: An efficient

graph clustering algorithm and its application to nat-
ural language processing problems. In Proceed-
ings of the First Workshop on Graph Based Meth-
ods for Natural Language Processing, TextGraphs-
1, pages 73–80, Stroudsburg, PA, USA. Association
for Computational Linguistics.

François Chollet et al. 2015. Keras. https://
keras.io.

Miguel Ángel Garcı́a Cumbreras, Julio Villena-Román,
Eugenio Martı́nez Cámara, Manuel Carlos Dı́az-
Galiano, Maria Teresa Martı́n-Valdivia, and Luis Al-
fonso Ureña López. 2016. Overview of TASS 2016.
In Proceedings of TASS 2016: Workshop on Senti-
ment Analysis at SEPLN co-located with 32nd SE-
PLN Conference (SEPLN 2016), Salamanca, Spain,
September 13th, 2016., pages 13–21.

G. Ganu, N. Elhadad, and A. Marian. 2009. Beyond
the stars: Improving rating predictions using review
text content. In Proceedings of the 12th Interna-
tional Workshop on the Web and Databases, Prov-
idence, Rhode Island.

Hussam Hamdan, Patrice Bellot, and Frederic Bechet.
2015. Lsislif: Crf and logistic regression for opinion
target extraction and sentiment polarity analysis. In
Proceedings of the 9th International Workshop on
Semantic Evaluation (SemEval 2015), pages 753–
758, Denver, Colorado. Association for Computa-
tional Linguistics.

Soufian Jebbara and Philipp Cimiano. 2016. Aspect-
Based Sentiment Analysis Using a Two-Step Neural
Network Architecture. In Semantic Web Challenges.
Third SemWebEval Challenge at ESWC 2016. Re-
vised Selected Papers, volume 641, pages 153–170.
Springer.

Svetlana Kiritchenko, Xiaodan Zhu, Colin Cherry, and
Saif Mohammad. 2014. Nrc-canada-2014: Detect-
ing aspects and sentiment in customer reviews. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 437–
442, Dublin, Ireland. Association for Computational
Linguistics and Dublin City University.

Ayush Kumar, Sarah Kohail, Amit Kumar, Asif Ek-
bal, and Chris Biemann. 2016. Iit-tuda at semeval-
2016 task 5: Beyond sentiment lexicon: Combin-
ing domain dependency and distributional seman-
tics features for aspect based sentiment analysis. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 1129–
1135, San Diego, California. Association for Com-
putational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119.

Maria Pelevina, Nikolay Arefyev, Chris Biemann, and
Alexander Panchenko. 2016. Making sense of word
embeddings. In Proceedings of the 1st Workshop on
Representation Learning for NLP, pages 174–183.

Maria Pontiki, Dimitrios Galanis, Haris Papageor-
giou, Ion Androutsopoulos, Suresh Manandhar, Mo-
hammad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, Véronique
Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeny Kotelnikov, Nuria Bel,
Salud Marı́a Jiménez-Zafra, and Gülşen Eryiǧit.
2016. SemEval-2016 task 5: Aspect based senti-
ment analysis. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation, SemEval
’16, San Diego, California. Association for Compu-
tational Linguistics.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
Semeval-2015 task 12: Aspect based sentiment anal-
ysis. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
486–495, Denver, Colorado. Association for Com-
putational Linguistics.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. Semeval-2014 task 4: As-
pect based sentiment analysis. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 27–35, Dublin, Ireland. As-
sociation for Computational Linguistics and Dublin
City University.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

S. Ruder, P. Ghaffari, and J. G. Breslin. 2016.
INSIGHT-1 at SemEval-2016 Task 5: Deep Learn-
ing for Multilingual Aspect-based Sentiment Analy-
sis. ArXiv e-prints.

Pontus Stenetorp, Sampo Pyysalo, Goran Topi,
Tomoko Ohta, and Sophia Ananiadou. 2012. Brat: a
web-based tool for nlp-assisted text annotation. In
Proceedings of the Association for Computational
Linguistics (ACL), pages 102–107.

Zhiqiang Toh and Wenting Wang. 2014. Dlirec: As-
pect term extraction and term polarity classifica-
tion system. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014), pages 235–240, Dublin, Ireland. Association

121

for Computational Linguistics and Dublin City Uni-
versity.

Julio Villena-Román, Janine Garcı́a-Morera, Miguel
Ángel Garcı́a Cumbreras, Eugenio Martı́nez-
Cámara, Maria Teresa Martı́n-Valdivia, and Luis
Alfonso Ureña López. 2015a. Overview of TASS
2015. In Proceedings of TASS 2015: Workshop on
Sentiment Analysis at SEPLN co-located with 31st
SEPLN Conference (SEPLN 2015), Alicante, Spain,
September 15, 2015., pages 13–21.

Julio Villena-Román, Eugenio Martı́nez-Cámara, Ja-
nine Garcı́a-Morera, and Salud M. Jiménez Zafra.
2015b. TASS 2014 - the challenge of aspect-based
sentiment analysis. Procesamiento del Lenguaje
Natural, 54:61–68.

Joachim Wagner, Piyush Arora, Santiago Cortes, Utsab
Barman, Dasha Bogdanova, Jennifer Foster, and
Lamia Tounsi. 2014. Dcu: Aspect-based polarity
classification for semeval task 4. In Proceedings of
the 8th International Workshop on Semantic Evalu-
ation (SemEval 2014), pages 392–397, Dublin, Ire-
land. Association for Computational Linguistics and
Dublin City University.

Michael Wojatzki, Eugen Ruppert, Sarah Holschnei-
der, Torsten Zesch, and Chris Biemann. 2017. Ger-
mEval 2017: Shared Task on Aspect-based Senti-
ment in Social Media Customer Feedback. In Pro-
ceedings of the GermEval 2017 Shared Task on
Aspect-based Sentiment in Social Media Customer
Feedback, pages 1–12, Berlin, Germany.

122

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 123–129
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

The Role of Emotions in Native Language Identification

Ilia Markov1, Vivi Nastase2, Carlo Strapparava3, Grigori Sidorov4

1INRIA, Paris, France
2University of Heidelberg, Heidelberg, Germany

3Fondazione Bruno Kessler, Trento, Italy
4Instituto Politécnico Nacional, Center for Computing Research, Mexico City, Mexico

ilia.markov@inria.fr, nastase@cl.uni-heidelberg.de,
strappa@fbk.eu, sidorov@cic.ipn.mx

Abstract

We explore the hypothesis that emotion is one
of the dimensions of language that surfaces
from the native language into a second lan-
guage. To check the role of emotions in native
language identification (NLI), we model emo-
tion information through polarity and emotion
load features, and use document representa-
tions using these features to classify the native
language of the author. The results indicate
that emotion is relevant for NLI, even for high
proficiency levels and across topics.

1 Introduction
Native Language Identification (NLI) is the task
of identifying the native language (L1) of a person
based on his/her writing in the second language
(L2). NLI can inform security, marketing and ed-
ucational applications by tuning pedagogical ma-
terials to L1s, and for this it is important to un-
derstand the phenomena that get transfered from
L1 to L2 (native language interference). Emotion
is one of these. Linguistics research (Dewaele,
2010) has focused on the way emotions are en-
coded in different text types and in different lan-
guages. How to express emotion appropriately is
related to the origin of the speaker (country, re-
gion), situational context in which social norms
might be different (formal vs. informal setting),
interlocutors (age, gender, social distance), topic.

As emotions are psychological constructions
of cultural meaning, there may be a misfit be-
tween emotions and social context when individ-
uals change cultural contexts or live two cultural
models (Leersnyder et al., 2011). The use of emo-
tions is considered both culture- and language-
specific (Wierzbicka, 1994, 1999). We hypothe-
size that this leads to different emotion signals in
writings in a second language, by authors with dif-
ferent native languages.

We test this hypothesis through multi-class clas-
sification of the L1 of the authors of essays writ-
ten in L2 in different experimental set-ups that
take into account proficiency levels and topics of
the written essays. We encode emotion infor-
mation using polarity and sentiment information
from the NRC Word-Emotion Association Lexi-
con (NRC emotion lexicon) (Mohammad and Tur-
ney, 2013), taking into account not only the fine-
grained (word-level) emotion information, but
also general aspects of the written material (over-
all high- or low-emotion load). The results show
that emotional information contributes to detect-
ing the native language of the speaker.

2 Related Work

Caldwell-Harris (2014) shows that emotion usage
depends on the language by focusing on differ-
ences in emotion usage in L1 and L2. The author
states that there is a correlation between the usage
of emotions and proficiency levels and the age a
language is acquired.

While emotion-based features have been used
in other NLP tasks, such as sentiment analy-
sis (Sidorov et al., 2013), classification of doc-
uments into the corresponding emotion cate-
gory (Wen and Wan, 2014), deception detec-
tion (Newman et al., 2003), among others, they are
an underexplored area of second language writing.

Torney et al. (2012) use psycholinguistic fea-
tures extracted by the Linguistic Inquiry and
Word Count (LIWC) tool (Pennebaker et al.,
2007) to identify the first language of an author,
where emotion-based features are included as part
of the feature vector, e.g., percentage of posi-
tive/negative emotion words. The LIWC feature
set used in the paper also contains other types of
features, e.g., personal concern categories (work,
leisure), paralinguistic dimensions (assents, fillers,

123

https://doi.org/10.18653/v1/P17

nonfluencies), which obscure the contribution of
the actual emotion features.

Rangel and Rosso (2013; 2016) investigate and
confirm the hypothesis that the use of emotions
depends on author’s age and gender. The au-
thors used a graph-based approach, where each
node and edge were represented by the corre-
sponding part-of-speech (POS) tag, then the repre-
sentation was enriched with semantic information,
emoticons, and with emotion information, which
included polarity of words (polarity of common
nouns, adjectives, adverbs or verbs in a sentiment
lexicon) and emotionally charged words (replac-
ing common nouns, adjectives, adverbs or verbs
with the emotion information from the Spanish
Emotion Lexicon (Sidorov et al., 2013)). The rep-
resentation combining all the features described
above was used with a SVM classifier.

Rangel and Rosso (2013; 2016) suggest that
there are commonalities in the use of emotions
across author age and gender. We examine the hy-
pothesis that there are commonalities in the use of
emotions in L2 across different L1s, suggested by
the linguistic and psycholinguistic studies (Leer-
snyder et al., 2011; Wierzbicka, 1999). We test
this by evaluating the impact of emotion-based
features on classifying the L1 of the authors of es-
says written in L2.

3 Emotion features for NLI
The best performing features for NLI are word
and character n-grams (Jarvis et al., 2013). They
cover – and obscure – a wide range of phenomena,
because language usage has multiple dimensions
that can reveal information such as age, gender,
cultural influences. In this study, we investigate
the impact of words that have an emotion signal,
since studies have shown that emotion is culture
specific (Wierzbicka, 1994, 1999), and thus could
be indicative of the native language of a speaker.

3.1 Datasets
We conduct experiments on two datasets com-
monly used in NLI research:

TOEFL11 (Blanchard et al., 2013): the ETS
Corpus of Non-Native Written English (TOEFL11)
contains 1,100 essays in English (avg. 348 to-
kens/essay) for each of the 11 L1s: Arabic (ARA),
Chinese (CHI), French (FRE), German (GER),
Hindi (HIN), Italian (ITA), Japanese (JPN), Ko-
rean (KOR), Spanish (SPA), Telugu (TEL), and

Turkish (TUR). The essays were written in re-
sponse to eight different writing prompts, all of
which appear in all 11 L1 groups. The dataset con-
tains information regarding the proficiency level
(low, medium, high) of the authors.

ICLE (Granger et al., 2009): the ICLEv2
dataset consists of essays written by highly-
proficient non-native college-level students of En-
glish. We used a 7-language subset of the cor-
pus normalized for topic and character encod-
ing (Tetreault et al., 2012; Ionescu et al., 2014) to
which we refer as ICLE. This subset contains 110
essays (avg. 747 tokens/essay after tokenization
and removal of metadata) for each of the 7 lan-
guages: Bulgarian (BUL), Chinese (CHI), Czech
(CZE), French (FRE), Japanese (JPN), Russian
(RUS), and Spanish (SPA).

3.2 Experiment setup
We used the (pre-)tokenized version of
TOEFL11 and tokenized ICLE with the Nat-
ural Language Toolkit (NLTK)1 tokenizer.
ICLE metadata was removed in pre-processing.
Each essay was represented through the sets of
features described below, using term frequency
(tf) and the liblinear scikit-learn (Pedregosa
et al., 2011) implementation of Support Vector
Machines (SVM) with OvR (one vs. the rest)
multi-class strategy. We report classification
accuracy on 10-fold cross-validation experiments.

3.3 Features
3.3.1 Part-of-speech tags and function words
POS tag n-grams and function words (FWs) are
considered core features in NLI research (Mal-
masi and Dras, 2015), not susceptible to topic bias,
unlike word and character n-grams (Brooke and
Hirst, 2011).

POS n-grams, n=1..3 POS features capture the
morpho-syntactic patterns in a text, and are in-
dicative of the L1, especially when used in com-
bination with other types of features (Cimino and
Dell’Orletta, 2017; Markov et al., 2017). POS tags
were obtained with TreeTagger (Schmid, 1999),
which uses the Penn Treebank tagset (36 tags).

Function words (FWs) n-grams, n=1..3 Func-
tion words clarify the relationships between the
content-carrying elements of a sentence, and intro-
duce syntactic structures like verbal complements,

1http://www.nltk.org

124

relative clauses, and questions (Smith and Witten,
1993). They are considered one of the most impor-
tant stylometric features (Kestemont, 2014). The
FW feature set consists of 318 English FWs from
the scikit-learn package (Pedregosa et al., 2011).
With respect to emotion features, FWs can ap-
pear as quantifiers, intensifiers (e.g., very good) or
modify the emotion expressed in other ways.

3.3.2 Emotion words
We use the 14,182 emotion words and their asso-
ciations with eight emotions (anger, fear, antici-
pation, trust, surprise, sadness, joy, and disgust)
and two sentiments (negative and positive) from
the NRC emotion lexicon (Mohammad and Tur-
ney, 2013). Table 1 presents the emotion words
statistics for our data.

TOEFL11 ICLE
L1 No. L1 % L1 No. L1 %

HIN 96,184 KOR 24.93 CZE 20,162 CHI 26.81
TEL 88,979 HIN 24.62 RUS 20,142 BUL 25.06
GER 88,268 CHI 24.32 BUL 18,939 JPN 24.74
CHI 87,486 TEL 24.19 SPA 17,187 RUS 24.72
TUR 83,945 JPN 24.15 CHI 16,794 FRE 23.88
KOR 82,878 TUR 23.90 FRE 16,750 CZE 23.81
FRE 82,454 FRE 23.30 JPN 16,234 SPA 23.33
SPA 81,497 GER 23.21
ITA 75,339 ITA 23.16
JPN 73,740 SPA 22.40
ARA 69,156 ARA 21.91

Table 1: Emotion words statistics (absolute number and
frequency) sorted from the highest to the lowest.

Before committing to analyzing emotion fea-
tures, we want to test whether emotion-loaded
words have any impact on the NLI task. The bag-
of-words (BoW) representation covers a variety of
phenomena, without distinguishing them and giv-
ing us insight into their individual impact on the
task. We represent our data using BoW varia-
tions – including and excluding words that have
an emotional dimension. To verify that the ef-
fect in classification is not just due to a smaller
feature set, we match the BoW size by removing
a selection of random words. Table 2 presents
the 10-fold cross-validation results (accuracy, %)
on the TOEFL11 and ICLE datasets, when using
emotion words and random words of such that the
BoW representations have the same size, as well
as the results when excluding emotion words and
the random words.2

The results in Table 2 show that emotion words
have higher impact on classification accuracy than
random words when evaluated in isolation. More-
over, the accuracy drop is higher when excluding

2Random words accuracy was calculated as average over
five experiments with five different sets of random words.

TOEFL11 ICLE
Features Acc., % No. Acc., % No.
BoW 68.65 61,339 80.65 20,032
Random words 36.15 8,187 70.21 6,465
Emotion words 46.75 8,187 72.86 6,465
BoW w/o random words 66.68 53,152 76.83 13,567
BoW w/o emotion words 63.11 53,152 75.19 13,567

Table 2: Performance of emotion words.

emotion words from the BoW approach than when
excluding random words, confirming that emotion
is a useful dimension for L1 classification, and not
just an effect of having additional features.

3.3.3 Emotion features
Having confirmed that due to cultural identity and
linguistic habits of an author’s native language, we
can distinguish the L1 of the author of an essay, we
proceed with a deeper analysis, for which we build
two types of emotion features.

Emotion polarity features (emoP) In the NRC
emotion lexicon, binary associations are provided
for each emotion word for 8 emotions (anger, fear,
anticipation, trust, surprise, sadness, joy, or dis-
gust) and two sentiments (negative or positive) –
e.g., good = “0100101011”. This representation is
used as a categorial feature (not a 10-dimensional
binary vector). It performed best compared to
other ways of encoding the emotion information
we tried, e.g., using a 10-dimensional binary vec-
tor or excluding the sentiment information.

The emoP features are added to the POS
and to POS & FW representations: the phrase
This is very good is represented through POS
& emoP unigrams as ‘DT’, ‘VBZ’, ‘RB’, ‘JJ-
0100101011’, or as 3-grams ‘DT VBZ RB’,
VBZ RB JJ-0100101011’, and as POS & FW
& emoP 3-grams as ‘This is very’, ‘is very JJ-
0100101011’.

Emotion load features (emoL) Speakers of dif-
ferent L1s may use a higher or lower number of
emotionally charged words than speakers of other
L1s, reflecting cultural customs or linguistic habits
of the respective cultures. We modeled this infor-
mation using three types of emotion load features:
(i) two binary features, emoL (binary) that capture
whether an essay has a high or low emotional load:
(a) we compute the average ratio of emotion words
in all essays in each dataset: for TOEFL11 this was
0.236 and for ICLE 0.246; (b) if the ratio of emo-
tion words in an essay was higher/lower than the
average, assigned it a “highly-emotional”/“low-
emotional” feature. We used this representation

125

to examine whether the polarity as such is infor-
mative. We also used more fine-grained emoL fea-
tures: (ii) the ratio of the emotion words in each
essay as a numeric feature (1 feature, emoL (1)),
and (iii) the ratio of each emotion/sentiment in
each essay (10 numeric features: 8 emotions and
2 sentiments, emoL (10)). Overall, three different
types of emoL features are examined.

4 Results and Discussion
Following previous studies on NLI (Markov
et al., 2018) and author profiling (Rangel and
Rosso, 2016), we provide the results when adding
emotion-based features to POS tag feature set. We
also experiment with POS and FW feature sets
similarly to, e.g., (Malmasi and Dras, 2015).

The 10-fold cross-validation results in terms of
accuracy (%) on the TOEFL11 and ICLE datasets
for POS and POS & FW n-gram (n = 1–3) rep-
resentations are shown in Tables 3 and 4, respec-
tively. The number of features (No.) is included.
Statistically significant gains/drops according to
McNemar’s statistical significance test (McNe-
mar, 1947) with α < 0.05 are marked with ‘*’.

The experimental results show that emotion fea-
tures, in particular the emoP features, significantly
contribute to the results for all the considered set-
tings, indicating that different cultures (as defined
by the authors’ L1) have different emotion word
usage. It is very interesting to note that despite be-
ing very general, the three types of emoL features –
13 features that characterize the emotional load of
a document – also improve the results in the major-
ity of settings, including when combined with the
emoP features. This supports the hypothesis that
some cultures use a bigger or smaller emotional
vocabulary. More fine grained emotional load fea-
tures could improve the results further.

To explore whether emotion usage depends on
specific topics, we conducted experiments for the
topics in the TOEFL11 dataset (Table 5).3 The im-
provement brought by the emotion-based features
does seem to depend on the topic, as some top-
ics more naturally elicit emotional reactions. The
highest improvements were achieved for P5 (car
usage) and P7 (young vs. old people comparison).
When combined with the POS & FW representa-
tion, emotion-based features are less helpful (not

3We did not conduct this experiment on the ICLE dataset,
since it has a higher number of topics, with a fewer number
of documents per topic, which would not allow us to learn
informative topic-specific models.

statistically significant improvements) for the top-
ics discussing traveling (P1), ideas vs. facts (P3),
and education (P4). Overall, adding emotion-
based features to POS and POS & FW represen-
tations leads to accuracy improvement for all the
topics present in the dataset.

The ability to choose the proper words to ex-
press oneself increases with the proficiency level.
From this perspective, identifying the L1 of au-
thors of essays in L2 using emotion words infor-
mation should be performed with better results.
On the other hand, we expect other linguistic char-
acteristics to become closer to a native L2 speaker,
and thus make identifying L1 harder. We exper-
iment with L1 classification separating the data
based on the three different proficiency levels in
TOEFL11. The results are included in Table 6.
With respect to the emotion features, medium and
high proficiency levels have a much better perfor-
mance. As postulated above, this could be ex-
plained by the different ability of the L1 speakers
to choose the words that express closely the mes-
sage and nuances they wish to convey.

5 Conclusions
We investigated the hypothesis that the use of
emotions is indicative of an author’s native lan-
guage. We used two types of emotion-based fea-
tures – one that captures the types of sentiments
expressed, the other captures the frequency of
emotion words in documents. We expected these
features to capture cultural characteristics and lin-
guistic habits from the authors’ L1. The fact that
adding these features to POS and function word
n-grams leads to improvements in predicting a
text’s author’s native language leads us to con-
clude that emotion characteristics from a native
language are “imported” into the production of L2.

The overall goal of this paper was to understand
the influence of various facets of L1 speakers’ lan-
guage and culture on their acquisition (and pro-
duction) of L2. These influences from L1 are not
under the author’s conscious control, and it is very
interesting to understand their nature. Emotion is
one of these. The fact that we explore the use of
emotions on learner corpora (“controlled environ-
ment”), with a specific task and specific require-
ment – and a (implied, not specifically requested)
more neutral style – should probably lower the ef-
fect of emotional influences from the L1 and its
culture. From that point of view, it is even more
remarkable that such an effect is detected.

126

Features TOEFL11 ICLE
Acc., % No. Acc., % No.

POS 1–3-grams (baseline) 40.16 17,483 62.86 11,755
POS 1–3-grams + emoL (binary) 40.60 17,485 62.86 11,757
POS 1–3-grams + emoL (1) 40.19 17,484 62.86 11,756
POS 1–3-grams + emoL (10) 40.41 17,493 62.99 17,765
POS 1–3-grams + emoL (binary) + emoL (1) + emoL (10) 40.65 17,496 62.60 11,768
Difference: 0.49* –0.26
POS 1–3-grams + emoP 50.36 216,090 67.66 90,920
Difference: 10.20* 4.80*
POS 1–3-grams + emotion-based features 50.28 216,103 67.79 90,933
Difference (with POS 1–3 + emoP): –0.08 0.13
Difference (with baseline): 10.12* 4.93*

Table 3: 10-fold cross-validation accuracy for POS 1–3-grams combined with emotion-based features. ‘*’ marks
statistically significant differences.

Features TOEFL11 ICLE
Acc., % No. Acc., % No.

POS 1–3-grams 40.16 17,483 62.86 11,755
POS & FW 1–3-grams (baseline) 64.06 411,599 74.42 138,170
Difference: 23.90* 11.56*
POS & FW 1–3-grams + emoL (binary) 64.10 411,601 74.42 138,172
POS & FW 1–3-grams + emoL (1) 64.10 411,600 74.42 138,171
POS & FW 1–3-grams + emoL (10) 64.09 411,609 74.42 138,180
POS & FW 1–3-grams + emoL (binary) + emoL (1) + emoL (10) 64.13 411,612 74.42 138,183
Difference: 0.07 0.00
POS & FW 1–3-grams + emoP 67.73 880,595 77.92 268,605
Difference: 3.67* 3.50*
POS & FW 1–3-grams + emotion-based features 67.85 880,608 78.31 268,618
Difference (with POS & FW 1–3 + emoP): 0.12 0.39
Difference (with baseline): 3.79* 3.89*

Table 4: 10-fold cross-validation accuracy for POS & FW 1–3-grams combined with emotion-based features. ‘*’
marks statistically significant differences.

P0 P1 P2 P3 P4 P5 P6 P7
POS 1–3-grams 33.74 39.26 38.54 39.89 42.40 38.29 42.08 38.15
POS 1–3-grams + emotion-based features 41.14 47.34 44.79 46.02 49.12 49.55 49.01 47.19
Difference: 7.40* 8.08* 6.25* 6.13* 6.72* 11.26* 6.93* 9.04*
POS & FW 1–3-grams 50.54 56.54 53.28 55.62 60.34 56.84 57.79 55.31
POS & FW 1–3-grams + emotion-based features 53.18 57.66 56.56 57.04 62.28 62.40 61.46 58.66
Difference: 2.64* 1.12 3.28* 1.42 1.94 5.56* 3.67* 3.35*
No. of emotion words: 99,606 75,308 116,795 118,427 122,741 129,837 107,924 139,288
Ratio: 0.213 0.239 0.222 0.226 0.238 0.239 0.243 0.274

Table 5: 10-fold cross-validation accuracy for each topic in the TOEFL11 dataset. ‘*’ marks statistically significant
differences.

Low Medium High
Acc., % No. Acc., % No. Acc., % No.

POS 1–3-grams 41.10 9,751 43.07 15,334 34.65 14,454
POS 1–3-grams + emotion-based features 44.56 51,108 52.64 152,059 42.58 136,783
Difference: 3.46* 9.57* L 7.93*
POS & FW 1–3-grams 52.40 91,340 66.52 288,658 54.25 242,880
POS & FW 1–3-grams + emotion-based features 54.13 155,725 69.09 585,083 57.20 491,342
Difference: 1.73 2.57* 2.95*
No. of emotion words: 62,223 475,665 372,025
Ratio: 0.228 0.235 0.242

Table 6: 10-fold cross-validation accuracy for each proficiency level. ‘*’ marks statistically significant differences.

127

References
Daniel Blanchard, Joel Tetreault, Derrick Hig-

gins, Aoife Cahill, and Martin Chodorow. 2013.
TOEFL11: A corpus of non-native English. ETS
Research Report Series, 2013(2):i–15.

Julian Brooke and Graeme Hirst. 2011. Native lan-
guage detection with ‘cheap’ learner corpora. In
Proceedings of the Conference of Learner Cor-
pus Research, pages 37–47, Louvain-la-Neuve, Bel-
gium. Presses universitaires de Louvain.

Catherine Caldwell-Harris. 2014. Emotionality dif-
ferences between a native and foreign language:
Theoretical implications. Frontiers in Psychology,
5(1055).

Andrea Cimino and Felice Dell’Orletta. 2017. Stacked
sentence-document classifier approach for improv-
ing native language identification. In Proceedings
of the 12th Workshop on Building Educational Ap-
plications Using NLP, pages 430–437, Copenhagen,
Denmark. ACL.

Jean-Marc Dewaele. 2010. Emotions in Multiple Lan-
guages. Basingstoke: Palgrave Macmillan.

Sylviane Granger, Estelle Dagneaux, Fanny Meunier,
and Magali Paquot. 2009. International Corpus of
Learner English v2 (ICLE). Presses Universitaires
de Louvain, Louvain-la-Neuve, Belgium.

Radu Tudor Ionescu, Marius Popescu, and Aoife
Cahill. 2014. Can characters reveal your native lan-
guage? A language-independent approach to native
language identification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1363–1373, Doha, Qatar.
ACL.

Scott Jarvis, Yves Bestgen, and Steve Pepper. 2013.
Maximizing classification accuracy in native lan-
guage identification. In Proceedings of the Eighth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 111–118, Atlanta,
GA, USA. ACL.

Mike Kestemont. 2014. Function words in authorship
attribution. From black magic to theory? In Pro-
ceedings of the 3rd Workshop on Computational Lin-
guistics for Literature, pages 59–66, Gothenburg,
Sweden. ACL.

Jozefien De Leersnyder, Batja Mesquita, and Hee-
jung S. Kim. 2011. Where do my emotions belong?
a study of immigrants’ emotional acculturation. Per-
sonality and Social Psychology Bulletin, 37(4):451–
463.

Shervin Malmasi and Mark Dras. 2015. Multilingual
native language identification. Natural Language
Engineering, 23(2):163–215.

Ilia Markov, Lingzhen Chen, Carlo Strapparava, and
Grigori Sidorov. 2017. CIC-FBK approach to native
language identification. In Proceedings of the 12th
Workshop on Building Educational Applications Us-
ing NLP, pages 374–381, Copenhagen, Denmark.
ACL.

Ilia Markov, Vivi Nastase, and Carlo Strapparava.
2018. Punctuation as native language interference.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 3456–3466,
Santa Fe, New Mexico, USA. The COLING 2018
Organizing Committee.

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153–157.

Saif Mohammad and Peter Turney. 2013. Crowdsourc-
ing a word-emotion association lexicon. Computa-
tional Intelligence, 29:436–465.

Matthew Newman, James Pennebaker, Diane Berry,
and Jane Richards. 2003. Lying words: Predicting
deception from linguistic styles. Personality and So-
cial Psychology Bulletin, 29(5).

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

James Pennebaker, Roger Booth, and Martha Fran-
cis. 2007. Linguistic Inquiry and Word Count:
LIWC2007. Austin, TX: LIWC.net.

Francisco Rangel and Paolo Rosso. 2013. On the iden-
tification of emotions and authors’ gender in Face-
book comments on the basis of their writing style.
In Proceedings of the First International Workshop
on Emotion and Sentiment in Social and Expres-
sive Media: Approaches and perspectives from AI,
volume 1096, pages 34–46, Torino, Italy. CEUR-
WS.org.

Francisco Rangel and Paolo Rosso. 2016. On the im-
pact of emotions on author profiling. Information
Processing & Management, 52(1):74–92.

Helmut Schmid. 1999. Improvements In Part-of-
Speech Tagging With an Application to German.
Springer.

Grigori Sidorov, Sabino Miranda-Jiménez, Francisco
Viveros-Jiménez, Alexander Gelbukh, Noé Castro-
Sánchez, Francisco Velásquez, Ismael Dı́az-Rangel,
Sergio Suárez-Guerra, Alejandro Treviño, and Juan
Gordon. 2013. Empirical study of machine learn-
ing based approach for opinion mining in tweets.
In Proceedings of the Mexican International Confer-
ence on Artificial Intelligence, volume 7629, pages
1–14, San Luis Potosı́. Mexico. Springer.

128

Tony C. Smith and Ian H. Witten. 1993. Language
inference from function words. Working papers,
https://hdl.handle.net/10289/9927.

Joel Tetreault, Daniel Blanchard, Aoife Cahill, and
Martin Chodorow. 2012. Native tongues, lost and
found: Resources and empirical evaluations in na-
tive language identification. In Proceedings of the
24th International Conference on Computational
Linguistics, pages 2585–2602, Mumbai, India. The
COLING 2012 Organizing Committee.

Rosemary Torney, Peter Vamplew, and John Yearwood.
2012. Using psycholinguistic features for profiling
first language of authors. Journal of the Association
for Information Science and Technology, 63(6).

Shiyang Wen and Xiaojun Wan. 2014. Emotion clas-
sification in microblog texts using class sequential
rules. In Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, pages 187–
193, Quebec, Canada. AAAI Press.

Anna Wierzbicka. 1994. Emotion, language, and cul-
tural scripts. Emotion and culture: Empirical stud-
ies of mutual influence, pages 133–196.

Anna Wierzbicka. 1999. Emotions across languages
and cultures: Diversity and universals. Cambridge
University Press.

129

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 130–139
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Self-Attention: A Better Building Block for Sentiment Analysis Neural
Network Classifiers

Artaches Ambartsoumian
School of Computing Science

Simon Fraser University
Burnaby, BC, CANADA
aambarts@sfu.ca

Fred Popowich
School of Computing Science

Simon Fraser University
Burnaby, BC, CANADA
popowich@sfu.ca

Abstract

Sentiment Analysis has seen much progress
in the past two decades. For the past few
years, neural network approaches, primarily
RNNs and CNNs, have been the most suc-
cessful for this task. Recently, a new cat-
egory of neural networks, self-attention net-
works (SANs), have been created which uti-
lizes the attention mechanism as the basic
building block. Self-attention networks have
been shown to be effective for sequence model-
ing tasks, while having no recurrence or convo-
lutions. In this work we explore the effective-
ness of the SANs for sentiment analysis. We
demonstrate that SANs are superior in perfor-
mance to their RNN and CNN counterparts by
comparing their classification accuracy on six
datasets as well as their model characteristics
such as training speed and memory consump-
tion. Finally, we explore the effects of various
SAN modifications such as multi-head atten-
tion as well as two methods of incorporating
sequence position information into SANs.

1 Introduction

Sentiment analysis, also know as opinion mining,
deals with determining the opinion classification
of a piece of text. Most commonly the classifi-
cation is whether the writer of a piece of text is
expressing a position or negative attitude towards
a product or a topic of interest. Having more than
two sentiment classes is called fine-grained sen-
timent analysis with the extra classes represent-
ing intensities of positive/negative sentiment (e.g.
very-positive) and/or the neutral class. This field
has seen much growth for the past two decades,
with many applications and multiple classifiers pro-
posed [Mäntylä et al., 2018]. Sentiment analy-
sis has been applied in areas such as social media
[Jansen et al., 2009], movie reviews [Pang et al.,
2002], commerce [Jansen et al., 2009], and health
care [Greaves et al., 2013b] [Greaves et al., 2013a].

In the past few years, neural network approaches
have consistently advanced the state-of-the-art tech-
nologies for sentiment analysis and other natural
language processing (NLP) tasks. For sentiment
analysis, the neural network approaches typically
use pre-trained word embeddings such as word2vec
[Mikolov et al., 2013] or GloVe[Pennington et al.,
2014] for input, which get processed by the model
to create a sentence representation that is finally
used for a softmax classification output layer. The
main neural network architectures that have been
applied for sentiment analysis are recurrent neural
networks(RNNs) [Tai et al., 2015] and convolu-
tional neural networks (CNNs) [Kim, 2014], with
RNNs being more popular of the two. For RNNs,
typically gated cell variants such as long short-term
memory (LSTM) [Hochreiter and Schmidhuber,
1997], Bi-Directional LSTM (BiLSTM) [Schuster
and Paliwal, 1997], or gated recurrent unit (GRU)
[Cho et al., 2014] are used.

Most recently, Vaswani et al. [Vaswani et al.,
2017] introduced the first fully-attentional archi-
tecture, called Transformer, which utilizes only
the self-attention mechanism and demonstrated
its effectiveness on neural machine translation
(NMT). The Transformer model achieved state-of-
the-art performance on multiple machine transla-
tion datasets, without having recurrence or con-
volution components. Since then, self-attention
networks have been successfully applied to a vari-
ety of tasks, including: image classification [Par-
mar et al., 2018], generative adversarial networks
[Zhang et al., 2018], automatic speech recognition
[Povey et al., 2017], text summarization [Liu et al.,
2018], semantic role labeling [Strubell et al., 2018],
as well as natural language inference and sentiment
analysis [Shen et al., 2018].

In this paper we demonstrate that self-attention
is a better building block compared to recurrence or
convolutions for sentiment analysis classifiers. We

130

https://doi.org/10.18653/v1/P17

extend the work of [Barnes et al., 2017] by explor-
ing the behaviour of various self-attention architec-
tures on six different datasets and making direct
comparisons to their work. We set our baselines
to be their results for LSTM, BiLSTM, and CNN
models, and used the same code for dataset pre-
processing, word embedding imports, and batch
construction. Finally, we explore the effectiveness
of SAN architecture variations such as different
techniques of incorporating positional information
into the network, using multi-head attention, and
stacking self-attention layers. Our results suggest
that relative position representations is superior to
positional encodings, as well as highlight the effi-
ciency of the stacking self-attention layers.

Source code is publicly available1.

2 Background

The attention mechanism was introduced by [Bah-
danau et al., 2014] to improve the RNN encoder-
decoder sequence-to-sequence architecture for
NMT [Sutskever et al., 2014]. Since then, it has
been extensively used to improve various RNN and
CNN architectures ([Cheng et al., 2016]; [Kokki-
nos and Potamianos, 2017]; [Lu et al., 2016]). The
attention mechanism has been an especially popu-
lar modification for RNN-based architectures due
to its ability to improve the modeling of long range
dependencies ([Daniluk et al., 2017]; [Zhou et al.,
2018]).

2.1 Attention
Originally [Bahdanau et al., 2014] described atten-
tion as the process of computing a context vector
for the next decoder step that contains the most
relevant information from all of the encoder hidden
states by performing a weighted average on the en-
coder hidden states. How much each encoder state
contributes to the weighted average is determined
by an alignment score between that encoder state
and previous hidden state of the decoder.

More generally, we can consider the previous
decoder state as the query vector, and the encoder
hidden states as key and value vectors. The output
is a weighted average of the value vectors, where
the weights are determined by the compatibility
function between the query and the keys. Note that
the keys and values can be different sets of vectors
[Vaswani et al., 2017].

1https://github.com/Artaches/SSAN-
self-attention-sentiment-analysis-
classification

The above can be summarized by the following
equations. Given a query q, values (v1, ..., vn), and
keys (k1, ..., kn) we compute output z:

z =
n∑

j=1

αj(vj) (1)

αj =
exp f(kj , q)∑n
i=1 exp f(ki, q)

(2)

αj is computed using the softmax function where
f(ki, q) is the compatibility score between ki and
q,

For the compatibility function, we will be us-
ing using the scaled dot-product function from
[Vaswani et al., 2017]:

f(k, q) =
(k)(q)T√

dk
(3)

where dk is the dimension of the key vectors. This
scaling is done to improve numerical stability as
the dimension of keys, values, and queries grows.

2.2 Self-Attention

Self-attention is the process of applying the atten-
tion mechanism outlined above to every position of
the source sequence. This is done by creating three
vectors (query, key, value) for each sequence posi-
tion, and then applying the attention mechanism for
each position xi, using the xi query vector and key
and value vectors for all other positions. As a result,
an input sequence X = (x1, x2, ..., xn) of words
is transformed into a sequence Y = (y1, y2, ..., yn)
where yi incorporates the information of xi as well
as how xi relates to all other positions in X . The
(query, key, value) vectors can be created by ap-
plying learned linear projections [Vaswani et al.,
2017], or using feed-forward layers.

This computation can be done for the entire
source sequence in parallel by grouping the queries,
keys, and values in Q, K, V matrices[Vaswani et al.,
2017].

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (4)

Furthermore, instead of performing self-
attention once for (Q,K,V) of dimension dmodel,
[Vaswani et al., 2017] proposed multi-head atten-
tion, which performs attention h times on projected
(Q,K,V) matrices of dimension dmodel/h. For each
head, the (Q,K,V) matrices are uniquely projected

131

to dimension dmodel/h and self-attetnion is per-
formed to yield an output of dimension dmodel/h.
The outputs of each head are then concatenated,
and once again a linear projection layer is applied,
resulting in an output of same dimensionality as per-
forming self-attention once on the original (Q,K,V)
matrices. This process is described by the follow-
ing formulas:

MultiHead(Q,K, V) =

Concat(head1, ...,headh)W
O (5)

where headi =

Attention(QWQ
i ,KW

K
i , V W

V
i) (6)

Where the projections are parameter matrices
WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk , W V

i ∈
Rdmodel×dv and WO ∈ Rhdv×dmodel .

2.3 Position Information Techniques

The attention mechanism is completely invariant
to sequence ordering, thus self-attention networks
need to incorporate positional information. Three
main techniques have been proposed to solve this
problem: adding sinusoidal positional encodings or
learned positional encoding to input embeddings,
or using relative positional representations in the
self-attention mechanism.

2.3.1 Sinusoidal Position Encoding

This method was proposed by [Vaswani et al.,
2017] to be used for the Transformer model. Here,
positional encoding (PE) vectors are created using
sine and cosine functions of difference frequen-
cies and then are added to the input embeddings.
Thus, the input embeddings and positional encod-
ings must have the same dimensionality of dmodel.
The following sine and cosine functions are used:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

where pos is the sentence position and i is the di-
mension. Using this approach, sentences longer
than those seen during training can still have posi-
tional information added. We will be referring to
this method as PE.

2.3.2 Learned Position Encoding
In a similar method, learned vectors of the same di-
mensionality, that are also unique to each position
can be added to the input embeddings instead of
sinusoidal position encodings[Gehring et al., 2017].
There are two downsides to this approach. First,
this method cannot handle sentences that are longer
than the ones in the training set as no vectors are
trained for those positions. Second, the further po-
sition will likely not get trained as well if the train-
ing dataset has more short sentences than longer
ones. Vaswani et al. [2017] also reported that these
perform identically to the positional encoding ap-
proach.

2.3.3 Relative Position Representations
Relative Position Representations (RPR) was in-
troduced by [Shaw et al., 2018] as a replacement
of positional encodings for the Transformer. Using
this approach, the Transformer was able to perform
even better for NMT. Out of the three discussed, we
have found this approach to work best and we will
be referring to this method as RPR throughout the
paper.

For this method, the self-attention mechanism is
modified to explicitly learn the relative positional
information between every two sequence positions.
As a result, the input sequence is modeled as a la-
beled, directed, fully-connected graph, where the
labels represent positional information. A tunable
parameter k is also introduced that limits the max-
imum distance considered between two sequence
positions. [Shaw et al., 2018] hypothesized that
this will allow the model to generalize to longer
sequences at test time.

3 Proposed Architectures

In this work we propose a simple self-attention
(SSAN) model and test it in 1 as well as 2 layer
stacked configurations. We designed the SSAN
architecture to not have any extra components in or-
der to compare specifically the self-attention com-
ponent to the recurrence and convolution compo-
nents of LSTM and CNN models. Our goal is to
test the effectiveness of the main building blocks.
We compare directly the results of two proposed
architectures, 1-Layer-SSAN and 2-Layer-SSAN, to
the LSTM, BiLSTM, and CNN architectures from
[Barnes et al., 2017].

SSAN performs self-attention only once, which
is identical to 1-head multi-head attention. SSAN

132

Figure 1: SSAN Model Architecture

takes in input word embeddings and applies 3 feed-
forward layers to obtain Q,K,V representations on
which self-attention is performed. The output of
the self-attention layer is passed through another
feed-forward layer. This process is done twice
for 2-Layer-SSAN, using the output of first layer
as input for the second. The output of the last
self-attention layer is averaged and a feed-forward
layer is then applied to create a sentence represen-
tation vector of fixed dimension dmodel. Finally, the
sentence representation vector is passed through
an output softmax layer that has an output dimen-
sion of dclasses. Dropout [Srivastava et al., 2014]
is applied on input word embeddings, output of
self-attention layers, on the sentence representa-
tion vector. The architecture is visualized in Figure
1. All feed-forward layers use ReLU [Nair and
Hinton, 2010] activation functions. For relative po-
sitional representation, we set the parameter k=10,
which is the maximum relative position considered
for each input sequence position.

Finally, we also show results for other, more
complex, self-attention architectures that are based
on the Transformer. We take a 2 layer Transformer
encoder as described by [Vaswani et al., 2017],
then just like for SSAN, average the output of the
second layer to create a sentence representation and
apply a feed-forward layer followed by an output
softmax layer. Dropout is applied as described in
[Vaswani et al., 2017] as well as on the sentence
representation vector.

4 Experiments

To reduce implementation deviations from pre-
vious work, we use the codebase from [Barnes
et al., 2017] and only replace the model and train-
ing process. We re-use the code for batch pre-
processing and batch construction for all datasets,
accuracy evaluation, as well as use the same word
embeddings2. All neural network models use cross-
entropy for the training loss.

All experiments and benchmarks were run using
a single GTX 1080 Ti with an i7 5820k @ 3.3Ghz
and 32Gb of RAM. For model implementations:
LSTM, BiLSTM, and CNN baselines are imple-
mented in Keras 2.0.8 [Chollet et al., 2015] with
Tensorflow 1.7 backend using cuDNN 5.1.5 and
CUDA 9.1. All self-attention models are imple-
mented in Tensorflow 1.7 and use the same CUDA
libraries.

4.1 Datasets

In order to determine if certain neural network
building blocks are superior, we test on six datasets
from [Barnes et al., 2017] with different properties.
The summary for dataset properties is in Table 1.

The Stanford Sentiment Treebank (SST-fine)
[Socher et al., 2013] deals with movie reviews,
containing five classes [very-negative, negative,
neutral, positive, very-positive]. (SST-binary) is
constructed from the same data, except the neutral
class sentences are removed, all negative classes are

2https://github.com/jbarnesspain/sota_
sentiment

133

Train Dev. Test
of

Classes

Average
Sent.

Length

Max
Sent.

Length

Vocab.
Size

Wiki
Emb.

Coverage

300D
Emb.

Coverage

SST-fine 8,544 1,101 2,210 5 19.53 57 19,500 94.4% 89.0%
SST-binary 6,920 872 1,821 2 19.67 57 17,539 95.0% 89.6%
OpeNER 2,780 186 743 4 4.28 23 2,447 94.2% 99.3%
SenTube-A 3,381 225 903 2 28.54 127 18,569 75.6% 74.5%
SenTube-T 4,997 333 1,334 2 28.73 121 20,276 70.4% 76.0%
SemEval 6,021 890 2,376 3 22.40 40 21,163 77.1% 99.8%

Table 1: Modified Table 2 from [Barnes et al., 2017]. Dataset statistics, embedding coverage of dataset
vocabularies, as well as splits for Train, Dev (Development), and Test sets. The ’Wiki’ embeddings are
the 50, 100, 200, and 600 dimension used for experiments.

grouped, and all positive classes are grouped. The
datasets are pre-processed to only contain sentence-
level labels, and none of the models reported in this
work utilize the phrase-level labels that are also
provided.

The OpeNER dataset [y Montse Cuadros y Seán
Gaines y German Rigau, 2013] is a dataset of hotel
reviews with four sentiment classes: very negative,
negative, positive, and very positive. This is the
smallest dataset with the lowest average sentence
length.

The SenTube datasets [Uryupina et al., 2014]
consist of YouTube comments with two sentiment
classes: positive and negative. These datasets con-
tain the longest average sentence length as well
as the longest maximum sentence length of all the
datasets.

The SemEval Twitter dataset (SemEval) [Nakov
et al., 2013] consists of tweets with three classes:
positive, negative, and neutral.

4.2 Embeddings

We use the exact same word embeddings as [Barnes
et al., 2017]. They trained the 50, 100, 200,
and 600-dimensional word embeddings using the
word2vec algorithm described in [Mikolov et al.,
2013] on a 2016 Wikipedia dump. In order to com-
pare to previous work, they also used the publicly
available Google 300-dimensional word2vec em-
beddings, which are trained on a part of Google
News dataset3. For all models, out-of-vocabulary
words are initialized randomly from the uniform
distribution on the interval [-0.25 , 0.25].

3https://code.google.com/archive/p/
word2vec/

4.3 Baselines

We take 5 classifiers from [Barnes et al., 2017] and
use their published results as baselines. Two of
the methods are based on logistic regression, Bow
and Ave, and 3 are neural network based, LSTM,
BiLSTM, and CNN.

The (Bow) baseline is a L2-regularized logistic
regression trained on bag-of-words representation.
Each word is represented by a one-hot vectors of
size n = |V |, where |V | is the vocabulary size.

The (Ave) baseline is also a L2-regularized lo-
gistic regression classifier except trained on the
average of the 300-dimension word embeddings
for each sentence.

The LSTM baseline, input word embeddings are
passed into an LSTM layer. Then a 50-dimensional
feed-forward layer with ReLU activations is ap-
plied, followed by a softmax layer that produces
that model classification outputs. Dropout [Sri-
vastava et al., 2014] is applied to the input word
embeddings for regularization.

The BiLSTM baseline is the same as LSTM, ex-
cept that a second LSTM layer is used to process
the input word embeddings in the reverse order.
The outputs of the two LSTM layers are concate-
nated and passed a feed-forward layer, following by
the output softmax layer. Dropout is applied identi-
cally as in LSTM. This modification improves the
networks ability to capture long-range dependen-
cies.

The final baseline is a simple CNN network. The
input sequence of n embeddings is reshaped to an
n×R dimensional matrixM , whereR is the dimen-
sionality of the embeddings. Convolutions with fil-
ter size of [2,3,4] are applied to M , following by a
pooling layer of length 2. As for LSTM networks, a

134

M
od

el

Dim
.

SST-fi
ne

SST-b
ina

ry

Ope
NER

Sen
Tub

e-A

Sen
Tub

e-T

Sem
Eva

l

M
ac

ro-
Avg

.

B
as

el
in

es

Bow 40.3 80.7 77.1 60.6 66.0 65.5 65.0

Ave 300 41.6 80.3 76.3 61.5 64.3 63.6 64.6

LSTM

50 43.3 (1.0) 80.5 (0.4) 81.1 (0.4) 58.9 (0.8) 63.4 (3.1) 63.9 (1.7) 65.2 (1.2)

100 44.1 (0.8) 79.5 (0.6) 82.4 (0.5) 58.9 (1.1) 63.1 (0.4) 67.3 (1.1) 65.9 (0.7)

200 44.1 (1.6) 80.9 (0.6) 82.0 (0.6) 58.6 (0.6) 65.2 (1.6) 66.8 (1.3) 66.3 (1.1)

300 45.3 (1.9) 81.7 (0.7) 82.3 (0.6) 57.4 (1.3) 63.6 (0.7) 67.6 (0.6) 66.3 (1.0)

600 44.5 (1.4) 83.1 (0.9) 81.2 (0.8) 57.4 (1.1) 65.7 (1.2) 67.5 (0.7) 66.5 (1.0)

BiLSTM

50 43.6 (1.2) 82.9 (0.7) 79.2 (0.8) 59.5 (1.1) 65.6 (1.2) 64.3 (1.2) 65.9 (1.0)

100 43.8 (1.1) 79.8 (1.0) 82.4 (0.6) 58.6 (0.8) 66.4 (1.4) 65.2 (0.6) 66.0 (0.9)

200 44.0 (0.9) 80.1 (0.6) 81.7 (0.5) 58.9 (0.3) 63.3 (1.0) 66.4 (0.3) 65.7 (0.6)

300 45.6 (1.6) 82.6 (0.7) 82.5 (0.6) 59.3 (1.0) 66.2 (1.5) 65.1 (0.9) 66.9 (1.1)

600 43.2 (1.1) 83.0 (0.4) 81.5 (0.5) 59.2 (1.6) 66.4 (1.1) 68.5 (0.7) 66.9 (0.9)

CNN

50 39.9 (0.7) 81.7 (0.3) 80.0 (0.9) 55.2 (0.7) 57.4 (3.1) 65.7 (1.0) 63.3 (1.1)

100 40.1 (1.0) 81.6 (0.5) 79.5 (0.9) 56.0 (2.2) 61.5 (1.1) 64.2 (0.8) 63.8 (1.1)

200 39.1 (1.1) 80.7 (0.4) 79.8 (0.7) 56.3 (1.8) 64.1 (1.1) 65.3 (0.8) 64.2 (1.0)

300 39.8 (0.7) 81.3 (1.1) 80.3 (0.9) 57.3 (0.5) 62.1 (1.0) 63.5 (1.3) 64.0 (0.9)

600 40.7 (2.6) 82.7 (1.2) 79.2 (1.4) 56.6 (0.6) 61.3 (2.0) 65.9 (1.8) 64.4 (1.5)

Se
lf

-A
tte

nt
io

n
M

od
el

s

1-Layer
SSAN + RPR

50 42.8 (0.8) 79.6 (0.3) 78.6 (0.5) 64.1 (0.4) 67.0 (1.0) 67.1 (0.5) 66.5 (0.6)

100 44.6 (0.3) 82.3 (0.3) 81.6 (0.5) 61.6 (1.3) 68.6 (0.6) 68.6 (0.5) 67.9 (0.6)

200 45.4 (0.4) 83.1 (0.5) 82.3 (0.4) 62.2 (0.6) 68.4 (0.8) 70.5 (0.4) 68.6 (0.5)

300 48.1 (0.4) 84.2 (0.4) 83.8 (0.2) 62.5 (0.3) 68.4 (0.8) 72.2 (0.8) 69.9 (0.5)

600 47.7 (0.7) 83.6 (0.4) 83.1 (0.4) 62.0 (0.4) 68.8 (0.7) 70.5 (0.8) 69.2 (0.5)

2-Layer
SSAN + RPR

50 43.2 (0.9) 79.8 (0.2) 79.2 (0.6) 63.0 (1.3) 66.6 (0.5) 67.5 (0.7) 66.5 (0.7)

100 45.0 (0.4) 81.6 (0.9) 81.1 (0.4) 63.3 (0.7) 67.7 (0.5) 68.7 (0.4) 67.9 (0.5)

200 46.5 (0.7) 82.8 (0.5) 82.3 (0.6) 61.9 (1.2) 68.0 (0.8) 69.6 (0.8) 68.5 (0.8)

300 48.1 (0.8) 83.8 (0.9) 83.3 (0.9) 62.1 (0.8) 67.8 (1.0) 70.7 (0.5) 69.3 (0.8)

600 47.6 (0.5) 83.7 (0.4) 82.9 (0.5) 60.7 (1.4) 68.2 (0.7) 70.3 (0.3) 68.9 (0.6)

Transformer
Encoder + RPR 300 47.3 (0.4) 83.8 (0.4) 84.2 (0.5) 62.0 (1.4) 68.2 (N1.6) 72.0 (0.5) 69.6 (0.8)

Transformer
Encoder + PE 300 45.0 (0.7) 82.0 (0.6) 83.3 (0.7) 62.3 (2.4) 66.9 (0.8) 68.4 (0.8) 68.0 (1.0)

1-Layer
SSAN 300 47.2 (0.5) 83.9 (0.7) 83.6 (0.6) 62.1 (2.5) 68.7 (1.0) 70.2 (1.2) 69.3 (1.1)

1-Layer
SSAN + PE 300 45.0 (0.3) 82.9 (0.2) 80.7 (0.6) 62.6 (2.3) 67.8 (0.4) 69.1 (0.3) 68.0 (0.7)

Table 2: Modified Table 3 from [Barnes et al., 2017]. Test accuracy averages and standard deviations (in
brackets) of 5 runs. The baseline results are taken from [Barnes et al., 2017]; the self-attention models
results are ours. Best model for each dataset is given in bold .

feed-forward layer is applied followed by an output
softmax layer. Here, dropout is applied to input
embeddings as well as after the convolution layers.

The LSTM, BiLSTM, and CNN baselines are
trained using ADAM [Kingma and Ba, 2014] with
cross-entropy loss and mini-batches of size 32. Hid-
den layer dimension, dropout amount, and the num-
ber of training epochs are tuned on the validation
set for each (model, input embedding, dataset) com-
bination.

4.4 Self-Attention Architectures

We use 1-Layer SSAN + RPR and 2-Layer SSAN
+ RPR to compare the self-attention mechanism
to the recurrence and convolution mechanisms in
LSTM, BiLSTM, and CNN models. We compare
these models using all word embeddings sizes.

Next, we explore the performance of a modified
Transformer Encoder described in 3. We do this
to determine if a more complex architecture that
utilized multi-head attention is more beneficial.

Finally, we compare the performance of using
positional encodings (+PE) and relative positional

135

Model # of Parameters GPU VRAM Usage (Mb)
Training
Time (s)

Inference Time
(s)

LSTM 722,705 419Mb 235.9s 7.6s
BiLSTM 1,445,405 547Mb 416.0s 12.7s
CNN 83,714 986Mb 21.1s 0.85s
1-Layer SSAN + RPR 465,600 381Mb 64.6s 8.9s
1-Layer SSAN + PE 453,000 381Mb 58.1s 8.5s
2-Layer SSAN + RPR 839,400 509Mb 70.3s 9.3s
Transformer + RPR 1,177,920 510Mb 78.2s 9.7s

Table 3: Neural networks architecture characteristics. A comparison of number of learnable parameters,
GPU VRAM usage (in megabytes) during training, as well as training and inference times (in seconds).

representations (+RPR) for the Transformer En-
coder and 1-Layer-SSAN architectures. We also
test 1-Layer SSAN without using any positional
information techniques.

For the self-attention networks, we simplify the
training process to only tune one parameter and
apply the same process to all models. Only the
learning rate is tuned for every (model, input em-
bedding) pair. We fix the number of batches to
train for to 100,000 and pick the model with high-
est validation accuracy. Each batch is constructed
by randomly sampling the training set. Model
dimensionality dmodel is fixed to being the same
as the input word embeddings. Learning rate is
tuned based on the size of dmodel. For dmodel di-
mensions [50, 100, 200, 300, 600] we use learning
rates of [0.15, 0.125, 0.1, 0.1, 0.05] respectively,
because the larger dmodel models tend to over-fit
faster. Dropout of 0.7 is applied to all models, and
the ADADELTA [Zeiler, 2012] optimizer is used
with cross-entropy loss.

5 Analysis

Table 2 contains the summary of all the experi-
mental results. For all neural network models we
report mean test accuracy of five runs as well as
the standard deviations. Macro-Avg results are the
average accuracy of a model across all datasets. We
focus our discussion on the Macro-Avg column as
it demonstrates the models general performance for
sentiment analysis.

Our results show general better performance for
self-attention networks in comparison to LSTM,
BiLSTM and CNN models. Using the same word
embedding, all of the self-attention models receive
higher Macro-Avg accuracy than all baseline mod-
els. 1-Layer-SSAN+RPR models generally perform

the best for all (input embeddings, dataset) com-
binations, and getting top scores for five out of
six datasets. Transformer Encoder+RPR also per-
forms comparatively well across all datasets, and
achieves top accuracy for the OpeNER dataset.

Using 2-Layer-SSAN+RPR does not yield bet-
ter performance results compared to 1-Layer-
SSAN+RPR. We believe that one self-attention
layer is sufficient as the datasets that we have tested
on were relatively small. This is reinforced by
the results we see from Transformer Encoder +
RPR since it achieves similar accuracy as 2-Layer-
SSAN+RPR and 1-Layer-SSAN+RPR while having
greater architectural complexity and more trainable
parameters, see Table 3.

Using relative positional representations for 1-
Layer-SSAN+RPR increases the Macro-Avg accu-
racy by 2.8% compared to using positional encod-
ings for 1-Layer-SSAN+PE, and by 0.9% compared
to using no positional information at all (1-Layer-
SSAN). Interestingly enough, we observe that using
no positional information performs better than us-
ing positional encodings. This could be attributed
once again to small dataset size, as [Vaswani et al.,
2017] successfully used positional encodings for
larger MT datasets.

Another observation is that SenTube dataset tri-
als achieve a low accuracy despite having binary
classes. This is unexpected as generally with a low
number of classes it is easier to train on the dataset
and achieve higher accuracy. We suspect that this
is because SenTube contains longer sentences and
very low word embedding coverage. Despite this,
SSANs perform relatively well on the SenTube-A
dataset, which suggests that they are superior at
capturing long-range dependencies compared to
other models.

136

Smaller dmodel SSAN models perform worse for
lower dimension input embeddings on SST-fine,
SST-binary and OpeNER datasets while still per-
forming well on SenTube and SemEval. This is
caused by the limitations of our training process
where we forced the network dmodel to be same size
as the input word embeddings and use the same
learning rate for all datasets. We found that work-
ing with smaller dimensions of dmodel the learn-
ing rate needed to be tuned individually for some
datasets. For example, using a learning of 0.15
for 50D models would work well for SenTube and
SemEval, but would under-fit for SST-fine, SST-
binary and OpeNER datasets. We decided to not
modify the training process for the smaller input
embeddings in order to keep our training process
simplified.

5.1 Model Characteristics

Here we compare training and test efficiency, mem-
ory consumption and number of trainable param-
eters for every model. For all models, we use the
SST-fine dataset, hidden dimension size of 300,
Google 300D embeddings, batch sizes of 32 for
both training and inference, and the ADAM opti-
mizer [Kingma and Ba, 2014]. The Training Time
test is the average time it takes every model to
train on 10 epochs of the SST-fine train set (2670
batches of size 32). The Inference Time test is the
average time it takes a model to produce predictions
for the validation set 10 times (344 batches of size
32). Table 3 contains the summary of model char-
acteristics. The GPU VRAM usage is the amount
of GPU video memory that is used during training.

CNN has the lowest number of parameters but
consumes the most GPU memory. It also has the
shortest training and inference time, which we at-
tributed to the low number of parameters.

Using relative position representations compared
to positional encoding for 1-Layer-SSAN increases
the number of trainable parameters by only 2.7%,
training time by 11.2%, and inference time by 4.7%.
These findings are similar to what [Shaw et al.,
2018] reported.

BiLSTM has double the number of parameters
as well as near double training and inference times
compared to LSTM. This is reasonable due to the
nature of the architecture being two LSTM lay-
ers. Much like BiLSTM, going from 1-Layer-SSAN
to 2-Layer-SSAN doubles the number of trainable
parameters. However, the training and inference

times only increase by 20.1% and 9.4% respec-
tively. This demonstrates the efficiency of the self-
attention mechanism due to it utilizing only matrix
multiply operations, for which GPUs are highly-
optimized.

We also observe that self-attention models are
faster to train than LSTM by about 3.4 times, and
5.9 times for BiLSTM. However, inference times
are slower than LSTM by 15.5% and faster than
BiLSTM by 41%.

6 Conclusion

In this paper we focused on demonstrating that self-
attention networks achieve better accuracy than
previous state-of-the-art techniques on six datasets.
In our experiments, multiple SSAN networks per-
formed better than CNN and RNN architectures;
Self-attention architecture resulted in higher ac-
curacy than LSTMs while having 35% fewer pa-
rameters and shorter training time by a factor of
3.5. Additionally, we showed that SSANs achieved
higher accuracy on the SenTube datasets, which
suggests they are also better at capturing long-term
dependencies than RNNs and CNNs. Finally, we re-
ported that using relative positional representation
is superior to both using positional encodings, as
well as not incorporating any positional informa-
tion at all. Using relative positional representations
for self-attention architectures resulted in higher
accuracy with negligible impact on model training
and inference efficiency.

For future work, we plan to extend the SSAN net-
works proposed to achieve state-of-the-art results
on the complete SST dataset. We are also interested
to see the behaviour of the models explored in this
work on much larger datasets, we hypothesize that
stacked multi-head self-attention architectures will
perform significantly better than RNN and CNN
counterparts, all while remaining more efficient at
training and inference.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful suggestions.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning
to align and translate. arXiv:1409.0473, 2014.

137

Jeremy Barnes, Roman Klinger, and Sabine Schulte im
Walde. Assessing state-of-the-art sentiment mod-
els on state-of-the-art sentiment datasets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, Copenhagen, Denmark, 2017.

Jianpeng Cheng, Li Dong, and Mirella Lapata. Long
short-term memory-networks for machine reading.
CoRR, abs/1601.06733, 2016. URL http://
arxiv.org/abs/1601.06733.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder–decoder ap-
proaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statis-
tical Translation, pages 103–111. Association for
Computational Linguistics, 2014. doi: 10.3115/v1/
W14-4012. URL http://www.aclweb.org/
anthology/W14-4012.

François Chollet et al. Keras. https://keras.io,
2015.

Michał Daniluk, Tim Rocktäschel, Johannes Welbl,
and Sebastian Riedel. Frustratingly short attention
spans in neural language modeling. arXiv preprint
arXiv:1702.04521, 2017.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. arXiv preprint
arXiv:1705.03122, 2017.

Felix Greaves, Daniel Ramirez-Cano, Christopher Mil-
lett, Ara Darzi, and Liam Donaldson. Harnessing
the cloud of patient experience: using social media
to detect poor quality healthcare. BMJ Qual Saf, 22
(3):251–255, 2013a.

Felix Greaves, Daniel Ramirez-Cano, Christopher Mil-
lett, Ara Darzi, and Liam Donaldson. Use of senti-
ment analysis for capturing patient experience from
free-text comments posted online. Journal of medi-
cal Internet research, 15(11), 2013b.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural Computation, 9(8):1735–
1780, 1997.

Bernard J Jansen, Mimi Zhang, Kate Sobel, and Ab-
dur Chowdury. Twitter power: Tweets as electronic
word of mouth. Journal of the American society for
information science and technology, 60(11):2169–
2188, 2009.

Yoon Kim. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.
Association for Computational Linguistics, 2014.
doi: 10.3115/v1/D14-1181. URL http://www.
aclweb.org/anthology/D14-1181.

Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. CoRR, abs/1412.6980,
2014.

Filippos Kokkinos and Alexandros Potamianos. Struc-
tural attention neural networks for improved senti-
ment analysis. arXiv preprint arXiv:1701.01811,
2017.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. Generating wikipedia by summarizing
long sequences. arXiv preprint arXiv:1801.10198,
2018.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi
Parikh. Hierarchical question-image co-attention
for visual question answering. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural In-
formation Processing Systems 29, pages 289–
297. Curran Associates, Inc., 2016. URL
http://papers.nips.cc/paper/6202-
hierarchical-question-image-co-
attention-for-visual-question-
answering.pdf.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781,
2013.

Mika V. Mäntylä, Daniel Graziotin, and Miikka
Kuutila. The evolution of sentiment analysis—a
review of research topics, venues, and top cited
papers. Computer Science Review, 27:16 –
32, 2018. ISSN 1574-0137. doi: https://doi.
org/10.1016/j.cosrev.2017.10.002. URL http:
//www.sciencedirect.com/science/
article/pii/S1574013717300606.

Vinod Nair and Geoffrey E Hinton. Rectified linear
units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814, 2010.

Preslav Nakov, Zornitsa Kozareva, Alan Ritter, Sara
Rosenthal, Veselin Stoyanov, and Theresa Wilson.
Semeval-2013 task 2: Sentiment analysis in twitter,
2013.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
Thumbs up?: Sentiment classification using ma-
chine learning techniques. In Proceedings of the
ACL-02 Conference on Empirical Methods in Nat-
ural Language Processing - Volume 10, EMNLP
’02, pages 79–86, Stroudsburg, PA, USA, 2002.
Association for Computational Linguistics. doi:
10.3115/1118693.1118704. URL https://doi.
org/10.3115/1118693.1118704.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz
Kaiser, Noam Shazeer, and Alexander Ku. Im-
age transformer. arXiv preprint arXiv:1802.05751,
2018.

138

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543, 2014. URL http://www.aclweb.org/
anthology/D14-1162.

Daniel Povey, Hossein Hadian, Pegah Ghahremani,
Ke Li, and Sanjeev Khudanpur. A time-restricted
self-attention layer for asr. 2017.

Mike Schuster and Kuldip K Paliwal. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing, 45(11):2673–2681, 1997.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
Self-attention with relative position representations.
CoRR, abs/1803.02155, 2018.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang,
Shirui Pan, and Chengqi Zhang. Disan: Directional
self-attention network for rnn/cnn-free language un-
derstanding. In AAAI Conference on Artificial Intel-
ligence, 2018.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for se-
mantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642, 2013.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from over-
fitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

Emma Strubell, Patrick Verga, Daniel Andor, David
Weiss, and Andrew McCallum. Linguistically-
informed self-attention for semantic role labeling.
CoRR, abs/1804.08199, 2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Se-
quence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc., 2014. URL
http://papers.nips.cc/paper/5346-
sequence-to-sequence-learning-
with-neural-networks.pdf.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. Improved semantic representations from
tree-structured long short-term memory networks.
arXiv preprint arXiv:1503.00075, 2015.

Olga Uryupina, Barbara Plank, Aliaksei Severyn,
Agata Rotondi, and Alessandro Moschitti. Sentube:
A corpus for sentiment analysis on youtube social
media. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation.
European Language Resources Association, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 5998–
6008. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/7181-
attention-is-all-you-need.pdf.

Rodrigo Agerri y Montse Cuadros y Seán Gaines y
German Rigau. Opener: Open polarity en-
hanced named entity recognition. Proce-
samiento del Lenguaje Natural, 51(0):215–
218, 2013. ISSN 1989-7553. URL http:
//journal.sepln.org/sepln/ojs/ojs/
index.php/pln/article/view/4891.

Matthew D Zeiler. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701, 2012.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Au-
gustus Odena. Self-attention generative adversarial
networks. arXiv preprint arXiv:1805.08318, 2018.

Yi Zhou, Junying Zhou, Lu Liu, Jiangtao
Feng, Haoyuan Peng, and Xiaoqing Zheng.
Rnn-based sequence-preserved attention
for dependency parsing. 2018. URL
https://www.aaai.org/ocs/index.
php/AAAI/AAAI18/paper/view/17176.

139

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 140–148
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Dual Memory Network Model for Biased Product Review Classification

Yunfei Long1*, Mingyu Ma1*, Qin Lu1, Rong Xiang1 and Chu-Ren Huang2

1Department of Computing, The Hong Kong Polytechnic University
csylong,csluqin,csrxiang@comp.polyu.edu.hk, derek.ma@connect.polyu.hk

2Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University
*These two authors contributed equally

churen.huang@polyu.edu.hk

Abstract

In sentiment analysis (SA) of product reviews,
both user and product information are proven
to be useful. Current tasks handle user pro-
file and product information in a unified model
which may not be able to learn salient fea-
tures of users and products effectively. In this
work, we propose a dual user and product
memory network (DUPMN) model to learn
user profiles and product reviews using sepa-
rate memory networks. Then, the two repre-
sentations are used jointly for sentiment pre-
diction. The use of separate models aims to
capture user profiles and product information
more effectively. Compared to state-of-the-
art unified prediction models, the evaluations
on three benchmark datasets, IMDB, Yelp13,
and Yelp14, show that our dual learning model
gives performance gain of 0.6%, 1.2%, and
0.9%, respectively. The improvements are also
deemed very significant measured by p-values.

1 Introduction

Written text is often meant to express sentiments
of individuals. Recognizing the underlying sen-
timent expressed in the text is essential to under-
stand the full meaning of the text. The SA commu-
nity is increasingly interested in using natural lan-
guage processing (NLP) techniques as well as sen-
timent theories to identify sentiment expressions
in the text.

Recently, deep learning based methods have
taken over feature engineering approaches to gain
further performance improvement in SA. Typi-
cal neural network models include Convolutional
Neural Network (CNN) (Kim, 2014), Recursive
auto-encoders (Socher et al., 2013), Long-Short
Term Memory (LSTM) (Tang et al., 2015a), and
many more.

Attention-based models are introduced to high-
light important words and sentences in a piece

of text. Different attention models are built us-
ing information embedded in the text including
users, products and text in local context (Tang
et al., 2015b; Yang et al., 2016; Chen et al., 2016;
Gui et al., 2016). In order to incorporate other
aspects of knowledge, Qian et al. (2016) de-
veloped a model to employ additional linguis-
tic resources to benefit sentiment classification.
Long et al.(2017b) and Mishra et al.(2016) pro-
posed cognition-based attention models learned
from cognition grounded eye-tracking data.

Most text-based SA is modeled as sentiment
classification tasks. In this work, SA is for prod-
uct reviews. We use the term users to refer to
writers of text, and products to refer to the tar-
gets of reviews in the text. A user profile is de-
fined by the collection of reviews a user writes.
Product information defined for a product is the
collection of reviews for this product. Note that
user profiles and product information are not in-
dependent of each other. That is one reason why
previous works use unified models. By common-
sense we know that review text written by a person
may be subjective or biased towards his/her own
preferences. Lenient users tend to give higher rat-
ings than finicky ones even if they review the same
products. Popular products do receive higher rat-
ings than those unpopular ones because the aggre-
gation of user reviews still shows the difference
in opinion for different products. While users and
products both play crucial roles in sentiment anal-
ysis, they are fundamentally different.

Reviews written by a user can be affected by
user preference which is more subjective whereas
reviews for a product are useful only if they are
from a collection of different reviewers, because
we know individual reviews can be biased. The
popularity of a product tends to reflect the general
impression of a collection of users as an aggre-
gated result. Therefore, sentiment prediction of a

140

https://doi.org/10.18653/v1/P17

product should give dual consideration to individ-
ual users as well as all reviews as a collection.

In this paper, we address the aforementioned is-
sue by proposing to learn user profiles and prod-
uct review information separately before mak-
ing a joint prediction on sentiment classification.
In the proposed Dual User and Product Memory
Network (DUPMN) model, we first build a hi-
erarchical LSTM (Hochreiter and Schmidhuber,
1997) model to generate document representa-
tions. Then a user memory network (UMN) and
a product memory network (PMN) are separately
built based on document representation of user
comments and product reviews. Finally, sentiment
prediction is learned from a dual model.

To validate the effectiveness of our proposed
model, evaluations are conducted on three bench-
marking review datasets from IMDB and Yelp
data challenge (including Yelp13 and Yelp14)
(Tang et al., 2015a). Experimental results show
that our algorithm can outperform baseline meth-
ods by large margins. Compared to the state-of-
the-art method, DUPMN made 0.6%, 1.2%, and
0.9% increase in accuracy with p-values 0.007,
0.004, and 0.001 in the three benchmark datasets
respectively. Results show that leveraging user
profile and product information separately can be
more effective for sentiment predictions.

The rest of this paper is organized as follows.
Section 2 gives related work, especially memory
network models. Section 3 introduces our pro-
posed DUPMN model. Section 4 gives the evalua-
tion compared to state-of-the-art methods on three
datasets. Section 5 concludes this paper and gives
some future directions in sentiment analysis mod-
els to consider individual bias.

2 Related Work

Related work includes neural network models and
the use of user/product information in sentiment
analysis.

2.1 Neural Network Models

In recent years, deep learning has greatly im-
proved the performance of sentiment analysis.
Commonly used models include Convolutional
Neural Networks (CNNs) (Socher et al., 2011),
Recursive Neural Network (ReNNs) (Socher et al.,
2013), and Recurrent Neural Networks (RNNs)
(Irsoy and Cardie, 2014). RNN naturally bene-
fits sentiment classification because of its ability to

capture sequential information in text. However,
standard RNNs suffer from the so-called gradi-
ent vanishing problem (Bengio et al., 1994) where
gradients may grow or decay exponentially over
long sequences. LSTM models are adopted to
solve the gradient vanishing problem. An LSTM
model provides a gated mechanism to keep the
long-term memory. Each LSTM layer is gen-
erally followed by mean pooling and the out-
put is fed into the next layer. Experiments in
datasets which contain sentences and long docu-
ments demonstrate that LSTM model outperforms
the traditional RNNs (Tang et al., 2015a,c). At-
tention mechanism is also added to LSTM mod-
els to highlight important segments at both sen-
tence level and document level. Attention mod-
els can be built from text in local context (Yang
et al., 2016), user/production information (Chen
et al., 2016; Long et al., 2017a) and other infor-
mation such as cognition grounded eye tracking
data (Long et al., 2017b). LSTM models with at-
tention mechanism are currently the state-of-the-
art models in document sentiment analysis tasks
(Chen et al., 2016; Long et al., 2017b).

Memory networks are designed to handle larger
context for a collection of documents. Memory
networks introduce inference components com-
bined with a so called long-term memory compo-
nent (Weston et al., 2014). The long-term memory
component is a large external memory to represent
data as a collection. This collective information
can contain local context (Das et al., 2017) or ex-
ternal knowledge base (Jain, 2016). It can also be
used to represent the context of users and products
globally (Tang et al., 2016). Dou uses (2017) a
memory network model in document level senti-
ment analysis and makes comparable result to the
state-of-the-art model (Chen et al., 2016).

2.2 Incorporating User and Product
Information

Both user profile and product information have
crucial effects on sentiment polarities. Tang et
al. (2015b) proposed a model by incorporating
user and product information into a CNN network
for document level sentiment classification. User
ids and product names are included as features in
a unified document vector using the vector space
model such that document vectors capture impor-
tant global clues include individual preferences
and product information.

141

Nevertheless, this method suffers from high
model complexity and only word-level preference
is considered rather than information at the seman-
tic level (Chen et al., 2016). Gui et al. (2016) in-
troduce an inter-subjectivity network to link users
to the terms they used as well as the polarities
of the terms. The network aims to learn writer
embeddings which are subsequently incorporated
into a CNN network for sentiment analysis. Chen
et al. (2016) propose a model to incorporate user
and product information into an LSTM with atten-
tion mechanism. This model is reported to pro-
duce the state-of-the-art results in the three bench-
mark datasets (IMDB, Yelp13, and Yelp14). Dou
(2017) also proposes a deep memory network to
integrate user profile and product information in a
unified model. However, the model only achieves
a comparable result to the state-of-the-art attention
based LSTM (Chen et al., 2016).

3 The DUPMN Model

We propose a DUPMN model. Firstly, document
representation is learned by a hierarchical LSTM
network to obtain both sentence-level representa-
tion and document level representation (Sunder-
meyer et al., 2012). A memory network model
is then trained using dual memory networks, one
for training user profiles and the other for training
product reviews. Both of them are joined together
to predict sentiment for documents.

3.1 Task Definition

Let D be the set of review documents for classi-
fication, U be the set of users, and P be the set
of products. For each document d(d ∈ D), user
u(u ∈ U) is the writer of d on product p(p ∈ P).
Let Uu(d) be all documents posted by u and Pp(d)
be all documents on p. Uu(d) and Pp(d) define the
user context and the product context of d, respec-
tively. For simplicity, we use U(d) and P (d) di-
rectly. The goal of a sentiment analysis task is to
predict the sentiment label for each d.

3.2 Document Embedding

Since review documents for sentiment classifica-
tion such as restaurant reviews and movie com-
ments are normally very long, a proper method to
embed the documents is needed to speed up the
training process and achieve better accuracy. In-
spired by the work of Chen (Chen et al., 2016), a
hierarchical LSTM network is used to obtain em-

bedding representation of documents. The first
LSTM layer is used to obtain sentence representa-
tion by the hidden state of an LSTM network. The
same mechanism is also used for document level
representation with sentence-level representation
as input. User and product attentions are included
in the network so that all salient features are in-
cluded in document representation. For document
d, its embedding is denoted as ~d. ~d is a vector rep-
resentation with dimension size n. In principle,
the embedding representation of user context of d,
denoted by Û(d), and product context P̂ (d) vary
depending on d. For easy matrix calculation, we
take m as our model parameter so that Û(d) and
P̂ (d) are two fixed n×m matrices.

3.3 Memory Network Structure

Inspired by the successful use of memory net-
works in language modeling, question answering,
and sentiment analysis (Sukhbaatar et al., 2015;
Tang et al., 2016; Dou, 2017), we propose our
DUPMN by extending a single memory network
model to two memory networks to reflect different
influences from users’ perspective and products’
perspective. The structure of the model is shown
in Figure 1 with 3 hops as an example although in
principle a memory network can have K compu-
tational hops.

The DUPMN model has two separate mem-
ory networks: the UMN and the PMN. Each hop
in a memory network includes an attention layer
Attentioni and a linear addition Σk. Since the
external memory Û(d) and P̂ (d) have the same
structure, we use a generic notation M̂ to denote
them in the following explanations. Each docu-
ment vector ~d is fed into the first hop of the two
networks (~d0=~d). Each ~dk−1(k= 1 K-1)
passes through the attention layer using an atten-
tion mechanism defined by a softmax function to
obtain the attention weights ~pk for document d:

~pk = Softmax(~dTk−1 ∗ M̂), (1)

And to produce an attention weighted vector~ak by

~ak =
m∑

i=0

pki ∗ ~Mi. (2)

~ak is then linearly added to ~dk−1 to produce the
output of this hop as ~dk.

After completing the Kth hop, the output ~duK in
UMN and ~dpK in PMN are joined together using

142

Document d (embedded by hierarchical LSTM)

Softmax
Sentiment
Prediction

WU

wU

U
M
N

WP

wP

U(d)
(embedded by

hierarchical LSTM)

...

^

P
M
N

P(d)
(embedded by

hierarchical LSTM)

...

^

d3

U d3

P

Attention Layer 3

d2

a3

Attention Layer 2

d1

a2

Attention Layer 1

d0

a1

Attention Layer 3

d2

a3

Attention Layer 2

d1

a2

Attention Layer 1

d0

a1

Input

Output
ATT WExternal

Memory

ak

dk-1

Attention Layer k

Figure 1: Structure for Proposed DUPMN Model

a weighted mechanism to produce the output of
DUPMN, OutputDUPMN , is given below:

OutputDUPMN = wU
~WU

~duK + wP
~WP

~dpK . (3)

Two different weight vectors ~Wu and ~Wp in For-
mula 3 can be trained for UMN and PMN. wU and
wP are two constant weights to reflect the relative
importance of user profile ~duK and product infor-
mation ~dpK . The parameters in the model includ-
ing ~WU , ~WP , wU and wP . By minimizing the
loss, those parameters can be optimized.

Sentiment prediction is obtained through a
Softmax layer. The loss function is defined
by the cross entropy between the prediction from
OutputDUPMN and the ground truth labels.

4 Experiment and Result Analysis

Performance evaluations are conducted on three
datasets and DUPMN is compared with a set of
commonly used baseline methods including the
state-of-the-art LSTM based method (Chen et al.,
2016; Wu et al., 2018).

4.1 Datasets
The three benchmarking datasets include movie
reviews from IMDB, restaurant reviews from
Yelp13 and Yelp14 developed by Tang (2015a).
All datasets are tokenized using the Stanford NLP
tool (Manning et al., 2014). Table 1 lists statistics
of the datasets including the number of classes,
number of documents, average length of sen-
tences, the average number of documents per user,
and the average number of documents per product.

IMDB Yelp13 Yelp14
#class 10 5 5
#doc 84,919 78,966 231,163
#users 1,310 1,631 4,818
#products 1,635 1,631 4,194
Av sen. len 24.56 17.37 17.25
Av docs/user 64.82 48.41 47.97
Av docs/prod 51.93 48.41 55.12
#p(0-50) 1,223 1,299 3,150
#p(50-100) 318 254 749
#p(100-150) 72 56 175
#p(150-200) 22 24 120

Table 1: Statistics of the three benchmark datasets

Since postings in social networks by both users
and products follow the long tail distribution (Ko-
rdumova et al., 2016), we only show the distribu-
tion of total number of posts for different products.
For example, #p(0-50) means the number of prod-
ucts which have reviews between the size of 0 to
50. We split train/development/test sets at the rate
of 8:1:1 following the same setting in (Tang et al.,
2015b; Chen et al., 2016). The best configuration
by the development dataset is used for the test set
to obtain the final result.

4.2 Baseline Methods

In order to make a systematic comparison, three
groups of baselines are used in the evaluation.
Group 1 includes all commonly used feature sets
mentioned in Chen et al. (2016) including Ma-
jority, Trigram, Text features (TextFeatures), and
AveWordvec. All feature sets in Group 1 except

143

IMDB Yelp13 Yelp14
Model Acc RMSE MAE Acc RMSE MAE Acc RMSE MAE

G1

Majority 0.196 2.495 1.838 0.392 1.097 0.779 0.411 1.060 0.744
Trigram 0.399 1.783 1.147 0.577 0.804 0.487 0.569 0.814 0.513
TextFeature 0.402 1.793 1.134 0.572 0.800 0.490 0.556 0.845 0.520
AvgWordvec 0.304 1.985 1.361 0.530 0.893 0.562 0.526 0.898 0.568

G2

SSWE 0.312 1.973 N/A 0.549 0.849 N/A 0.557 0.851 N/A
RNTN+RNN 0.400 1.734 N/A 0.574 0.804 N/A 0.582 0.821 N/A
CLSTM 0.421 1.549 N/A 0.592 0.729 N/A 0.637 0.686 N/A
LSTM+LA 0.443 1.465 N/A 0.627 0.701 N/A 0.637 0.686 N/A
LSTM+CBA 0.489 1.365 N/A 0.638 0.697 N/A 0.641 0.678 N/A

G3
UPNN 0.435 1.602 0.979 0.608 0.764 0.447 0.596 0.784 0.464
UPDMN 0.465 1.351 0.853 0.613 0.720 0.425 0.639 0.662 0.369
InterSub 0.476 1.392 N/A 0.623 0.714 N/A 0.635 0.690 N/A
LSTM+UPA 0.533 1.281 N/A 0.650 0.692 N/A 0.667 0.654 N/A

New DUPMN 0.539 1.279 0.734 0.662 0.667 0.375 0.676 0.639 0.351

Table 2: Evaluation of different methods; best result/group in accuracy is marked in bold; second best is underlined.

Majority use the SVM classifier.
Group 2 methods include the recently published

sentiment analysis models which only use context
information, including:

• SSWE (Tang et al., 2014) — An SVM model
using sentiment specific word embedding.

• RNTN+RNN (Socher et al., 2013) — A Re-
cursive Neural Tensor Network (RNTN) to
represent sentences.

• CLSTM (Xu et al., 2016) — A Cached
LSTM model to capture overall semantic in-
formation in long text.

• LSTM+LA (Chen et al., 2016) — A state-of-
the-art LSTM using local context as attention
mechanism at both sentence level and docu-
ment level.

• LSTM+CBA (Long et al., 2017b)— A
state-of-the-art LSTM model using cognition
based data to build attention mechanism.

Group 3 methods are recently published neural
network models which incorporate user and prod-
uct information, including:

• UPNN (Tang et al., 2015b) — User and prod-
uct information for sentiment classification at
document level based on a CNN network.

• UPDMN (Dou, 2017) — A deep memory
network for document level sentiment classi-
fication by including user and product infor-
mation in a unified model. Hop 1 gives the
best result, and thus K=1 is used.

• InterSub (Gui et al., 2016) — A CNN model
making use of user and product information.

• LSTM+UPA (Chen et al., 2016) — The
state-of-the-art LSTM including both local
context based attentions and user/product in
the attention mechanism.

For the DUPMN model, we also include two
variations which use only one memory network.
The first variation only includes user profiles in
the memory network, denoted as DUPMN-U. The
second variation only uses product information,
denoted as DUPMN-P.

4.3 Performance Evaluation
Four sets of experiments are conducted. The first
experiment compares DUPMN with other senti-
ment analysis methods. The second experiment
evaluates the effectiveness of different hop size K
of memory network. The third experiment eval-
uates the effectiveness of UMN and PMN in dif-
ferent datasets. The fourth set of experiment ex-
amines the effect of memory size m on the per-
formance of DUPMN. Performance measures in-
clude Accuracy (ACC), Root-Mean-Square-Error
(RMSE), and Mean Absolute Error (MAE) for our

144

model. For other baseline methods in Group 2 and
Group 3, their reported results are used. We also
show the p-value by comparing the result of 10
random tests for both our model and the state-of-
the-art model 1 in the t-test 2.

Compared to other state-of-the-art models
Table 2 shows the result of the first experiment.
DUPMN uses one hop (the best performer) with
m being set at 100, a commonly used memory size
for memory networks.

Generally speaking, Group 2 performs bet-
ter than Group 1. This is because Group 1
uses a traditional SVM with feature engineering
(Chang and Lin, 2011) and Group 2 uses more
advanced deep learning methods proven to be ef-
fective by recent studies (Kim, 2014; Chen et al.,
2016). However, some feature engineering meth-
ods are no worse than some deep learning meth-
ods. For example, the TextFeature model outper-
forms SSWE by a significant margin.

When comparing Group 2 and Group 3 meth-
ods, we can see that user profiles and product in-
formation can improve performance as most of the
methods in Group 3 perform better than methods
in Group 2. This is more obvious in the IMDB
dataset which naturally contains more subjectivity.
In the IMDB dataset, almost all models with user
and product information outperform the text-only
models in Group 2 except LSTM+CBA (Long
et al., 2017b). However, the two LSTM models in
Group 2 which include local attention mechanism
do show that attention base methods can outper-
form methods using user profile and product in-
formation. In fact, the LSTM+CBA model using
attention mechanism based on cognition grounded
eye-tracking data in Group 2 outperforms quite a
number of methods in Group 3. LSTM+CBA in
Group 2 is only inferior to LSTM+UPA in Group
3 because of the additional user profile and pro-
duction information used in LSTM+UPA.

Most importantly, the DUPMN model with both
user memory and product memory significantly
outperforms all the baseline methods including the
state-of-the-art LSTM+UPA model (Chen et al.,
2016). By using user profiles and product in-
formation in memory networks, DUPMN outper-
forms LSTM+UPA in all three datasets. In the

1We re-run experiment based on their public available
code on GitHub (https://github.com/thunlp/NSC).

2http://www.statisticshowto.com/probability-and-
statistics/t-test/

IMDB dataset, our model makes 0.6 % improve-
ment over LSTM+UPA in accuracy with p−value
of 0.007. Our model also achieves lower RMSE
value. In the Yelp review dataset, the improvement
is even more significant. DUPMN achieves 1.2%
improvement in accuracy in Yelp13 with p−value
of 0.004 and 0.9% in Yelp14 with p − value of
0.001, and the lower RMSE obtained by DUPMN
also indicates that the proposed model can predict
review ratings more accurately.

Effects of different hop sizes
The second set of experiments evaluates the ef-
fectiveness of DUPMN using different number of
hops K. Table 3 shows the evaluation results. The
number in the brackets after each model name in-
dicates the number of hops used. Two conclusions
can be obtained from Table 3. We find that more
hops do not bring benefit. In all the three models,
the single hop model obtains the best performance.
Unlike video and image information, written text
is grammatically structured and contains abstract
information such that multiple hops may introduce
more information distortion. Another reason may
be due to over-fitting by the additional hops.

Effects of DUPMN-U and DUPMN-P
Comparing the performance of DUPMN-U and
DUPMN-P in Table 3, it also shows that user
memory and product memory indeed provide dif-
ferent kinds of information and thus their useful-
ness are different in different datasets. For the
movie review dataset, IMDB, which is more sub-
jective, results show that user profile information
using DUPMN-U outperforms DUPMN-P as there
is a 1.3% gain compared to that of DUPMN-P.
However, on restaurant reviews in Yelp datasets,
DUPMN-P performs better than DUPMN-U indi-
cating product information is more valuable.

To further examine the effects of UMN and
PMN on sentiment classification, we observe the
difference of optimized values of the constant
weights wU and wP between the UMN and the
PMN given in Formula 3. The difference in their
values indicates the relative importance of the two
networks. The optimized weights given in Ta-
ble 4 on the three datasets show that user profile
has a higher weight than product information in
IMDB because movie review is more related to
personal preferences whereas product information

3Best results are marked in bold; second best are under-
lined in the table

145

IMDB Yelp13 Yelp14
Acc RMSE MAE Acc RMSE MAE Acc RMSE MAE

DUPMN-U(1) 0.536 1.273 0.737 0.656 0.687 0.380 0.667 0.655 0.361
DUPMN-U(2) 0.526 1.285 0.748 0.653 0.689 0.382 0.665 0.661 0.369
DUPMN-U(3) 0.524 1.295 0.754 0.651 0.692 0.388 0.661 0.667 0.374
DUPMN-P(1) 0.523 1.346 0.769 0.660 0.668 0.370 0.670 0.649 0.357
DUPMN-P(2) 0.517 1.348 0.775 0.656 0.680 0.380 0.667 0.656 0.364
DUPMN-P(3) 0.512 1.356 0.661 0.651 0.699 0.388 0.661 0.661 0.370
DUPMN(1) 0.539 1.279 0.734 0.662 0.667 0.375 0.676 0.639 0.351
DUPMN(2) 0.522 1.299 0.758 0.650 0.700 0.390 0.667 0.650 0.359
DUPMN(3) 0.502 1.431 0.830 0.653 0.686 0.382 0.658 0.668 0.371

Table 3: Evaluation of different memory network hops and user and product information utilization3

IMDB Yelp13 Yelp14
wU wP wU wP wU wP

0.534 0.466 0.475 0.525 0.436 0.564

Table 4: Average weight of UMN and PMN in different
datasets

has a higher weight in the two restaurant review
datasets. This result is consistent with the evalua-
tion in Table 3 on DUPMN-U and DUPMN-P.

Figure 2: Effect of different memory sizes

Effects of the memory size
Most social network data follows the long tail dis-
tribution. If the memory size to represent the data
is too small, some context information will be lost.
On the other hand, too large memory size which
requires more resources in computation and stor-
age may not introduce much benefit. Thus, the
fourth set of experiments evaluates the effect of di-
mension size m in the DUPMN memory networks.
Figure 2 shows the result of the evaluation for 1
hop configuration with memory size starting at 1

with 10 points at each increment until size of 75,
the increment set to 25 from 75 to 200 to cover
most postings. Results show that when memory
size increases from 10 to 100, the performance of
DUPMN steadily increases. Once it goes beyond
100, DUPMN is no longer sensitive to memory
size. This is related to the distribution of docu-
ment frequency rated by user/product in Table 1
as the average is around 50. With long tail dis-
tribution, after 75, not many new documents will
be included in the context. To improve algorithm
efficiency without much compromise on perfor-
mance, m can be any value that doubles the aver-
age. So, values between 100-200 in our algorithm
should be quite sufficient.

4.4 Case Analysis

The review text below is for a sci-fi movie which
has the golden label 10 (most positive). However,
if it is read as an isolated piece of text, identifying
its sentiment is difficult. The LSTM+LA model
gives it the rating of 1 (most negative), perhaps
because on the surface, there are many negative
words like unacceptable, criticize and sucks even
though the reviewer is praising the movie. Since
our user memory can learn that the reviewer is a
fan of sci-fi movies, our DUPMN model indeed
gives the correct rating of 10.

okay, there are two types of movie lovers: ... they expect

to see a Titanic every time they go to the cinema ... this movie

sucks? ... it is definitely better than other sci-fi the audio

and visual effects are simply terrific and Travolta’s perfor-

mance is brilliant-funny and interesting. what people expect

from sci-fi is beyond me ... the rating for Battlefield Earth

is below 2.5, which is unacceptable for a movie with such

146

craftsmanship. Scary movie, possibly the worst of all time -

..., has a 6! maybe we should all be a little more subtle when

we criticize movies... especially sci-fi.., since they have be-

come an endangered genre ... give this movie the recognition

it deserves.

5 Conclusion and Future Work

We propose a novel dual memory network model
for sentiment predictions. We argue that user pro-
file and product information are fundamentally
different as user profiles reflect more on subjec-
tivity whereas product information reflects more
on salient features of products at aggregated level.
Based on this hypothesis, two separate memory
networks for user context and product context are
built at the document level through a hierarchical
learning model. The inclusion of an attention layer
can further capture semantic information more ef-
fectively. Evaluation on three benchmark review
datasets shows that the proposed DUPMN model
outperforms the current state-of-the-art systems
with significant improvements shown in p-value
of 0.007, 0.004 and 0.001 respectively. We also
show that single hop memory networks is the most
effective model. Evaluation results show that user
profile and product information are indeed differ-
ent and have different effects on different datasets.
In more subjective datasets such as IMDB, the in-
clusion of user profile information is more impor-
tant. Whereas on more objective datasets such
as Yelp data, collective information of restaurant
plays a more important role in classification.

Future works include two directions. One direc-
tion is to explore the contribution of user profiles
and product information in aspects level sentiment
analysis tasks. Another direction is to explore how
knowledge-based information can be incorporated
to further improve sentiment classification tasks.

Acknowledgments

The work is partially supported by the research
grants from Hong Kong Polytechnic University
(PolyU RTVU) and GRF grant (CERG PolyU
15211/14E, PolyU 152006/16E).

References
Yoshua Bengio, Patrice Simard, and Paolo Frasconi.

1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks, 5(2):157–166.

Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm: a
library for support vector machines. ACM transac-
tions on intelligent systems and technology (TIST),
2(3):27.

Huimin Chen, Maosong Sun, Cunchao Tu, Yankai Lin,
and Zhiyuan Liu. 2016. Neural sentiment classifica-
tion with user and product attention. EMNLP.

Rajarshi Das, Manzil Zaheer, Siva Reddy, and
Andrew McCallum. 2017. Question answer-
ing on knowledge bases and text using universal
schema and memory networks. arXiv preprint
arXiv:1704.08384.

Zi-Yi Dou. 2017. Capturing user and product informa-
tion for document level sentiment analysis with deep
memory network. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 521–526.

Lin Gui, Ruifeng Xu, Yulan He, Qin Lu, and Zhongyu
Wei. 2016. Intersubjectivity and sentiment: From
language to knowledge. In IJCAI, pages 2789–
2795.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ozan Irsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. In EMNLP,
pages 720–728.

Sarthak Jain. 2016. Question answering over knowl-
edge base using factual memory networks. In Pro-
ceedings of the NAACL Student Research Workshop,
pages 109–115.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Svetlana Kordumova, Jan van Gemert, and Cees GM
Snoek. 2016. Exploring the long tail of social me-
dia tags. In International Conference on Multimedia
Modeling, pages 51–62. Springer.

Yunfei Long, Qin Lu, Rong Xiang, Minglei Li, and
Chu-Ren Huang. 2017a. Fake news detection
through multi-perspective speaker profiles. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), volume 2, pages 252–256.

Yunfei Long, Lu Qin, Rong Xiang, Minglei Li, and
Chu-Ren Huang. 2017b. A cognition based atten-
tion model for sentiment analysis. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 473–482.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In ACL (System Demon-
strations), pages 55–60.

147

Abhijit Mishra, Diptesh Kanojia, Seema Nagar, Kuntal
Dey, and Pushpak Bhattacharyya. 2016. Leveraging
cognitive features for sentiment analysis. In Pro-
ceedings of The 20th SIGNLL Conference on Com-
putational Natural Language Learning, pages 156–
166.

Qiao Qian, Minlie Huang, Jinhao Lei, and Xi-
aoyan Zhu. 2016. Linguistically regularized
lstms for sentiment classification. arXiv preprint
arXiv:1611.03949.

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 151–161. Association for
Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the conference on empirical
methods in natural language processing (EMNLP),
volume 1631, page 1642. Citeseer.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems, pages
2440–2448.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. Lstm neural networks for language model-
ing. In Thirteenth Annual Conference of the Inter-
national Speech Communication Association.

Duyu Tang, Bing Qin, and Ting Liu. 2015a. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1422–1432.

Duyu Tang, Bing Qin, and Ting Liu. 2015b. Learn-
ing semantic representations of users and products
for document level sentiment classification. In Proc.
ACL.

Duyu Tang, Bing Qin, and Ting Liu. 2015c. Learning
semantic representations of users and products for
document level sentiment classification. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1014–1023,
Beijing, China. Association for Computational Lin-
guistics.

Duyu Tang, Bing Qin, and Ting Liu. 2016. Aspect
level sentiment classification with deep memory net-
work. arXiv preprint arXiv:1605.08900.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In ACL (1), pages 1555–1565.

Jason Weston, Sumit Chopra, and Antoine Bor-
des. 2014. Memory networks. arXiv preprint
arXiv:1410.3916.

Zhen Wu, Xin-Yu Dai, Cunyan Yin, Shujian Huang,
and Jiajun Chen. 2018. Improving review represen-
tations with user attention and product attention for
sentiment classification. Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence
(AAAI-18).

Jiacheng Xu, Danlu Chen, Xipeng Qiu, and Xuangjing
Huang. 2016. Cached long short-term memory neu-
ral networks for document-level sentiment classifi-
cation. arXiv preprint arXiv:1610.04989.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

148

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 149–155
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Measuring Issue Ownership using Word Embeddings ∗

Amaru Cuba Gyllensten
RISE AI

amaru.cuba.gyllensten@ri.se

Magnus Sahlgren
RISE AI

magnus.sahlgren@ri.se

Abstract

Sentiment and topic analysis are common
methods used for social media monitoring.
Essentially, these methods answers questions
such as, “what is being talked about, regarding
X”, and “what do people feel, regarding X”.
In this paper, we investigate another venue for
social media monitoring, namely issue owner-
ship and agenda setting, which are concepts
from political science that have been used to
explain voter choice and electoral outcomes.
We argue that issue alignment and agenda set-
ting can be seen as a kind of semantic source
similarity of the kind “how similar is source
A to issue owner P, when talking about is-
sue X”, and as such can be measured using
word/document embedding techniques. We
present work in progress towards measuring
that kind of conditioned similarity, and intro-
duce a new notion of similarity for predic-
tive embeddings. We then test this method
by measuring the similarity between politi-
cally aligned media and political parties, con-
ditioned on bloc-specific issues.

1 Introduction

Social Media Monitoring (SMM; i.e. monitoring
of online discussions in social media) has be-
come an established application domain with a
large body of scientific literature, and consider-
able commercial interest. The subfields of Topic
Detection and Tracking (Allan et al., 1998; Srid-
har, 2015) and Sentiment Analysis (Turney, 2002;
Pang and Lee, 2008; Liu, 2012; Pozzi et al., 2016)
are both scientific topics spawned entirely within
the SMM domain. In its most basic form, SMM
entails nothing more than counting occurrences of
terms in data; producing frequency lists of com-
monly used vocabulary, and matching of term sets

∗This research was supported by the Swedish Research
Council under contract 2017-02429

related to various topics and sentiments. More so-
phisticated approaches use various forms of prob-
abilistic topic detection (such as Latent Dirichlet
Allocation) and sentiment analysis based on su-
pervised machine learning.

The central questions SMM seeks to answer are
“what do users talk about?” and “how do they feel
about it?”. Answers to these questions may pro-
vide useful insight for market research and com-
munications departments. It is apparent how prod-
uct and service companies may use such analysis
to gain an understanding of their target audience.
It is also apparent how such analysis may be used
in the context of elections for providing an indi-
cation of citizens’ opinions as manifested in what
they write in social media. There are numerous
studies attempting to use various forms of social
media monitoring techniques to predict the out-
come of elections, with varying success (Berming-
ham and Smeaton, 2011; Ceron et al., 2015).

Most notably, the recent examples of the inade-
quacy of standard opinion measuring techniques
to forecast the most recent US election and the
Brexit demonstrate that for certain questions re-
lated to measuring mass opinion, standard SMM
techniques may be inadequate. Political scientists
have used the concepts of agenda setting and is-
sue ownership to explain voter choice and elec-
tion outcomes (Klüver and naki Sagarzazu, 2016;
Kiousis et al., 2015; Stubager, 2018). In short, the
issue ownership theory of voting states that vot-
ers identify the most credible party proponent of a
particular issue and cast their ballots for that issue
owner (Bélanger and Meguid, 2008). Agenda set-
ting refers to the media’s role in influencing the
importance of issues in the public agenda (Mc-
combs and Reynolds, 2002). Note that current
social media monitoring techniques are unable to
measure these concepts in a satisfactory manner; it
does not suffice to measure the occurrence of cer-

149

https://doi.org/10.18653/v1/P17

tain keywords, since most parties tend to use the
same vocabulary to discuss issues, and sentiment
analysis does not touch upon the issue ownership
and agenda setting questions. What is needed for
measuring issue ownership and agenda setting is
a way to measure language use, i.e. when talking
about an issue, to which extent does the language
used align with issue owner A vs. issue owner B.

We argue that issue alignment can be seen
as a kind of semantic source similarity of the
kind “how similar is source A to issue owner P,
when talking about issue X”, and as such can be
measured using word/document embedding tech-
niques. To measure that kind of conditioned sim-
ilarity we introduce a new notion of similarity for
predictive word embeddings. This method enables
us to manipulate the similarity measure by weight-
ing the set of entities we account for in the pre-
dictive scoring function. The proposed method is
applied to measure similarity between party pro-
grams and various subsets of online text sources,
conditioned on bloc specific issues. The results
indicate that this conditioning disentangles simi-
larity. We can, for example, observe that while the
Left Party representation is, overall, similar to that
of nativist media, it differs significantly on nativist
issue, while this effect is not seen to the same ex-
tent on more mainstream left wing or right wing
media.

2 Vector Similarity

Vector similarity has been a foundational concept
in natural language processing ever sine the intro-
duction of the vector space model for information
retrieval by Salton (1971). In this model, queries
and document are represented as vectors in term
space, and similarity is expressed using cosine
similarity. The main reason for using cosine sim-
ilarity in the vector space model is that it normal-
izes for vector length; the fact that a document (or
query) contains a certain word is more important
than how many times it occurs in the document.

The vector space model was the main source
of inspiration for early work on vector semantics,
such as Latent Semantic Analysis (Deerwester
et al., 1990; Landauer and Dumais, 1997) and the
works on word space models by Schütze (1992,
1993). These works continued to embrace co-
sine similarity as the similarity metric of choice,
since length normalization is equally desired when
words are represented by vectors whose elements

encode (some function of) co-occurrences with
other words. Contemporary research on distribu-
tional semantics (Sahlgren, 2006; Bullinaria and
Levy, 2007; Turney and Pantel, 2010; Pennington
et al., 2014) still use largely the same mathemati-
cal machinery as the vector space model, and co-
sine similarity is still the preferred similarity met-
ric due to its simplicity and use of length normal-
ization. Even neural language models, which orig-
inate from the neural network community, employ
cosine similarity to quantify similarity between
learned representations (Mikolov et al., 2013; Bo-
janowski et al., 2017).

Word embeddings, as these techniques are
nowadays referred to, have been used extensively
in SMM, both for topic detection (Sridhar, 2015)
and for sentiment analysis (Severyn and Moschitti,
2015). To the best of our knowledge, only one
previous study (Dahlberg and Sahlgren, 2014) has
used word embeddings to analyze issue owner-
ship. However, that study relied on simple nearest
neighbor analysis using cosine similarity to study
language use in the Swedish blogosphere.

We believe that prediction-based word embed-
dings such as Word2Vec are amenable to another
notion of similarity, which we call predictive sim-
ilarity.

2.1 Predictive Similarity

Given a function f : A × B → R, we define the
predictive similarity of two items x, y ∈ A as the
correlation of f(x,b), and f(y,b), where b is a
random variable of type B:

psim(x, y) =
cov (f (x,b) , f (y,b))√

var (f (x,b)) var (f (y,b))
(1)

At a very general level, prediction based word
embeddings such as Word2Vec or FastText con-
sists of a scoring function s : C × T → R with an
objective function taking the following form:

∑

t×C∈D


∑

c∈C
l(s(c, t)) +

∑

n∈Nt,c

l(−s(n, t))


 (2)

where l is the logistic loss function l(x) = log(1+
e−x) and s being the model-specific scoring func-
tion that relates to the probability of observing the
target t in the context c. For the Skipgram vari-
ant of Word2Vec, this function s is simply the dot

150

orange
paint juice county

1 deep-red cranberry siskiyou
2 fuschia lime calaveras
3 lime-green caraway ventura
4 hand-woven fanta osceola
5 blue clove yolo
6 yellow zests mendocino
7 ocher coconut bernardino
8 linoleum peppercorns okanogan
9 duck-egg lemons okfuskee
10 rust-colored peach tuolumne

Table 1: Examples of predictive similarity neigh-
borhoods of “orange” conditioned on “paint”,
“juice”, and “county”, respectively. 2

product between a vector representation of the tar-
get word t, and a vector representation of the con-
text word c.

The predictive similarity has several interpreta-
tions for the Skipgram model, but the simplest one
is the one where we let f = s, i.e. we say that the
similarity of two words x and y is the correlation
between the scores they assign to target words b,
i.e. corr(s(x,b), s(y,b)). Since s is linear, this
correlation takes a fairly simple form: 1

cov(s(x,b), f(s,b))

= E
[(

xTb− xTb
)(

yTb− yTb
)]

= E
[(
xT
(
b− b

)) (
yT
(
b− b

))T]

= xTE
[(
b− b

) (
b− b

)T]
y

= xT var(b)y

psim(x, y) =
xT var(b)y√

xT var(b)x yT var(b)y

(3)

We argue that we can get a a notion of condi-
tioned similarity by estimating a weighted correla-
tion, where the weighting acts as the conditioning.

Table 1 shows a small example where we
queried the neighborhood of the word “orange”,
conditioned such that a single word (“paint”,
“juice”, and “county”, respectively) accounts for
half the weight in var(b), with all other words in
the vocabulary having equal weights.

1It might be interesting to note that this coincides with
cosine similarity if var(b) is a scalar multiple of the iden-
tity, i.e. if there is no correlation between dimensions and all
dimensions have the same variance.

Predictive similarity can easily be extended to
similar models, and for the purpose of this pa-
per in particular, we extend it to Doc2Vec (Le and
Mikolov, 2014), a model where the notion of con-
text is enriched by the source3 of the utterance.
The scoring function s then takes the following
form: s(t, c, d) = tT (c+ d), with d being a vector
representation of the source in question.

We argue that by using conditioned predictive
similarity on document embeddings we can an-
swer questions such as: “how similar is The BBC
to The Daily Mail, when talking about Climate
Change”. The end goal is to measure aggregate
similarity in specific issues: “when talking about
health policy, to which extent does the general lan-
guage use align with Source A, Source B, Source
C, et.c.”.

3 Experiments

To answer the language similarity question posed
by issue ownership we measure aggregate predic-
tive similarity between party platforms and var-
ious subsets of online text data, conditioned on
words pertaining to left wing issues, right wing is-
sues, nativist issues, and general political topics.

We built Doc2Vec embeddings (Le and
Mikolov, 2014) on Swedish online data from
2018 crawled by Trendiction and manually
scraped party platforms from the eight parties in
parliament and Feministiskt Initiativ (Feminist
Initiative).4 Doc2Vec requires us to define a
notion of source. For the data crawled by Trendic-
tion, we take the source to be the domain name of
the document, e.g. www.wikipedia.se, whereas for
the manually scraped party platforms, we assign
it the appropriate party identifier. The model was
trained using the Gensim package (Řehůřek and
Sojka, 2010) with embedding dimension 100 and
a context window of size 8.

In collaboration with the Political Science de-
partment at Gothenburg University we also ex-
tracted keywords for each party from their party
platform. We use these party specific keywords as
a crude proxy for issues: we let left wing issues be
defined by the union of left bloc party keywords,
right wing issues be defined by right bloc party
keywords, and nativist issues be defined by the

3By source we can mean a paragraph, document, or in our
case: domain name from which the utterance originates.

4A complete list of parties, their abbreviations, their En-
glish translations, and bloc affiliation can be found in Table
2.

151

Abbr. Name Translation Word count Bloc
V Vänsterpartiet The Left Party 15,383

LeftS Socialdemokraterna The Social Democrats 27,899
MP Miljöpartiet The Green Party 19,471
C Centern The Centre Party 68,136

Right
L Liberalerna The Liberals 64,276
KD Kristdemokraterna The Christian Democrats 16,494
M Moderaterna The Moderates 12,807
SD Sverigedemokraterna The Swedish Democrats 3,430 N/A (Nativist)
FI Feministiskt Initiativ Feminist Initiative 84,424 N/A

Table 2: Party abbreviations, names, translated names, word count, and bloc allegiance.

keywords of Sverigedemokraterna (The Swedish
Democrats), we also let the union of all keywords
be representative for general political discourse.
The parties’ bloc alignment and the size of the data
used to generate representations for them can be
seen in Table 2.

We let the conditioned predictive similarity be-
tween sources two x and y be defined by the fol-
lowing equation (Equation 4), i.e. a weighted vari-
ant of equation 3, where only words among the
given issues keywords are accounted for, as de-
scribed by Equation 5.

psim(x, y) =
xT var(t;w)y√

xT var(t;w)x yT var(t;w)y
(4)

wt =

{
1, t ∈ Issue keywords
0, t 6∈ Issue keywords

(5)

Above, x and y are document vectors and
var(t;wt) is the weighted covariance matrix of the
target word vectors. This is the equivalent of let-
ting s(d, c, t) = dT t, i.e. the case we ignore the
effect of context words.

Table 3 (next side) shows the average predictive
similarity between the political party platforms
and various online data sources, conditioned on
left wing party issues, right wing party issues, na-
tivist party issues, and general political discourse.
Average cosine similarity between the sources and
parties is also shown as a comparison.

4 Discussion

As can be seen in Table 3, there is a marked dif-
ference when conditioning on issues versus using
regular document — i.e. cosine — similarity. Fur-
thermore, we observe that conditioned similarity

seems to align left wing media with left wing par-
ties, nativist media with the Swedish Democrats,
but not align right wing media with right wing par-
ties. This effect can be made more apparent by
grouping the parties into blocs and fitting a simple
additive model for the similarities along all dimen-
sions (i.e. Media, Issues, and Bloc), as a way to
normalize for general Media, Issue, and Bloc sim-
ilarity. The results of this normalization, i.e. the
residuals, can be observed in Table 4. From this
one can see a small trend where left wing media
is similar to left wing parties, nativist media being
similar to the Swedish Democrats, and both left
wing media and right wing media being dissimilar
to the Swedish Democrats.

Furthermore, we see a strong dissimilarity be-
tween nativist media and all parties regarding na-
tivist issues. This is particularly true for parties
promoting liberal immigration policy: The Left
Party, The Social Democrats, The Green Party,
The Centre Party, and The Moderates are all cur-
rently or historically promoting liberal immigra-
tion policy at odds with nativist sentiment.

A shortcoming of the method used here is the
rather limited amount of party specific data: the
quality and the quantity of the text data used varies
drastically between parties, as can be seen in Ta-
ble 2. Using, for example, parliamentary debates,
opinion pieces, and other official party communi-
cation might improve data coverage.

5 Conclusion

In this paper we have introduced some very pre-
liminary results on how to measure similarities in
language use, conditioned on discourse, e.g. “how
similar is The BBC to The Daily Mail, when talk-
ing about Climate Change”. The end goal is to

152

V S MP C L KD M SD FI
Media Issues

Left wing

Left wing 0.43 0.35 0.25 0.20 0.36 0.35 0.45 0.47 0.36
Right wing 0.44 0.38 0.36 0.34 0.41 0.36 0.45 0.45 0.32
Nativist 0.43 0.40 0.42 0.36 0.42 0.39 0.42 0.45 0.37
All 0.42 0.35 0.31 0.28 0.38 0.36 0.42 0.44 0.36
Cos 0.50 0.48 0.48 0.46 0.51 0.47 0.53 0.49 0.44

Right wing

Left wing 0.25 0.24 0.31 0.25 0.31 0.27 0.35 0.34 0.16
Right wing 0.28 0.31 0.32 0.32 0.34 0.28 0.36 0.36 0.19
Nativist 0.29 0.32 0.36 0.34 0.38 0.34 0.36 0.36 0.21
All 0.26 0.27 0.31 0.30 0.34 0.30 0.35 0.34 0.18
Cos 0.44 0.45 0.44 0.47 0.51 0.47 0.51 0.45 0.41

Nativist

Left wing 0.36 0.17 0.04 0.05 0.30 0.31 0.34 0.48 0.32
Right wing 0.28 0.09 0.08 0.17 0.30 0.32 0.30 0.39 0.23
Nativist 0.05 -0.11 0.02 0.01 0.17 0.16 0.03 0.21 0.08
All 0.28 0.08 0.06 0.10 0.28 0.31 0.27 0.39 0.29
Cos 0.51 0.45 0.47 0.45 0.56 0.53 0.56 0.61 0.53

All News

Left wing 0.32 0.26 0.25 0.21 0.33 0.30 0.38 0.40 0.25
Right wing 0.33 0.30 0.30 0.31 0.36 0.32 0.38 0.40 0.24
Nativist 0.30 0.28 0.33 0.30 0.36 0.33 0.33 0.36 0.24
All 0.32 0.27 0.27 0.26 0.34 0.32 0.36 0.38 0.25
Cos 0.47 0.46 0.46 0.47 0.52 0.48 0.52 0.48 0.44

Social

Left wing 0.07 0.11 0.18 0.06 0.06 0.08 0.09 0.12 0.18
Right wing 0.20 0.28 0.31 0.22 0.18 0.14 0.20 0.17 0.26
Nativist 0.12 0.18 0.19 0.08 0.09 0.07 0.12 0.22 0.21
All 0.13 0.18 0.20 0.14 0.11 0.10 0.13 0.16 0.23
Cos 0.42 0.42 0.42 0.40 0.39 0.41 0.42 0.45 0.39

Table 3: Average predictive similarity (and cosine similarity) between political parties and various subsets
of the online sources.

153

Bloc Left Nativist Right
Media Issues

Left wing
Left wing -0.02 -0.02 -0.06
Nativist 0.09 -0.00 0.03
Right wing 0.02 -0.05 -0.02

Nativist
Left wing 0.02 0.18 0.04
Nativist -0.15 -0.06 -0.08
Right wing -0.03 0.08 0.05

Right wing
Left wing -0.02 -0.06 -0.02
Nativist 0.07 -0.02 0.07
Right wing 0.01 -0.06 -0.01

Table 4: Grouped and normalized predictive simi-
larity.

measure aggregate similarity in specific issues, an-
swering questions such as “when talking about
health policy, to which extent does the general lan-
guage use align with Source A, Source B, etc.”, and
use such an aggregate measure to study issue own-
ership at scale.

We believe that issue ownership and agenda set-
ting can be explored through the lens of language
use and similarity, but deem it necessary to con-
dition similarity to the specific issue at hand. The
reason for this is the need to distinguish between
level of engagement in an issue and agreement in
an issue: two sources that talk a lot about an issue
— e.g. health insurance — but in very different
ways should not be considered similar. Dually,
if a source very rarely talks about an issue, but
consistently does so in a way that is very similar
to the way some political party talks about it, we
consider it reasonable to believe that that source’s
opinion aligns with the political party in question
on that specific issue.

While we have not found a satisfactory, direct,
evaluation of this task, we do believe that the ex-
amples we put forward show some face validity
of the proposed method at measuring ideological
alignment.

6 Appendix

6.1 Left wing news sources
• Aftonbladet
• Arbetarbladet
• Dala-Demokraten
• Folkbladet
• ETC
• Arbetaren
• Flamman
• Bang
• Offensiv

• Proletären

6.2 Right wing news sources

• Dagens Industri
• Dalabygden
• Hallands Nyheter
• Axess
• Svensk Tidskrift
• Hemmets Vän
• Dagens Nyheter
• Göteborgs-Posten
• Helsingborgs Dagblad
• Nerikes Allehanda
• Sydsvenskan
• Upsala Nya Tidning
• Expressen
• Svenska Dagbladet
• Smålandsposten
• Norrbottens Kuriren

6.3 Nativist news sources

• Nordfront
• Samhällsnytt
• Fria Tider
• Nya Tider
• Samtiden

References

James Allan, Jaime Carbonell, George Doddington,
Jonathan Yamron, Yiming Yang, et al. 1998. Topic
detection and tracking pilot study: Final report.
In Proceedings of the DARPA broadcast news
transcription and understanding workshop, volume
1998, pages 194–218. Citeseer.

Éric Bélanger and Bonnie M. Meguid. 2008. Is-
sue salience, issue ownership, and issue-based vote
choice. Electoral Studies, 27(3):477 – 491.

Adam Bermingham and Alan Smeaton. 2011. On us-
ing twitter to monitor political sentiment and predict
election results. In Proceedings of the Workshop
on Sentiment Analysis where AI meets Psychology
(SAAIP 2011), pages 2–10.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

John A. Bullinaria and Joseph P. Levy. 2007. Ex-
tracting semantic representations from word co-
occurrence statistics: A computational study. Be-
havior Research Methods, 39(3):510–526.

154

Andrea Ceron, Luigi Curini, and Stefano M Iacus.
2015. Using sentiment analysis to monitor elec-
toral campaigns: Method mattersevidence from the
united states and italy. Social Science Computer Re-
view, 33(1):3–20.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005.

Stefan Dahlberg and Magnus Sahlgren. 2014. Issue
framing and language use in the swedish blogo-
sphere: Changing notions of the outsider concept.
In Bertie Kaal, Isa Maks, and Annemarie van El-
frinkhof, editors, From Text to Political Positions:
Text Analysis across Disciplines, pages 71–92. John
Benjamins.

Scott Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American Society for Information Science,
41(6):391–407.

Spiro Kiousis, Jesper Strömbäck, and Michael McDe-
vitt. 2015. Influence of issue decision salience on
vote choice: Linking agenda setting, priming, and
issue ownership. International Journal of Commu-
nication, 9(0).

Heike Klüver and Iñaki Sagarzazu. 2016. Setting the
agenda or responding to voters? political parties,
voters and issue attention. West European Politics,
39(2):380–398.

Thomas K Landauer and Susan T Dumais. 1997. A
solution to plato’s problem: The latent semantic
analysis theory of acquisition, induction, and rep-
resentation of knowledge. Psychological review,
104(2):211–240.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Bing Liu. 2012. Sentiment Analysis and Opinion Min-
ing. Morgan & Claypool Publishers.

Maxwell Mccombs and Amy Reynolds. 2002. News
influence on our pictures of the world. In Jen-
nings Bryant and Dolf Zillmann, editors, Media Ef-
fects. Advances in Theory and Research, pages 1–
18. Lawrence Erlbaum Associates.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and Trends in In-
formation Retrieval, 2(1-2):1–135.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Federico Alberto Pozzi, Elisabetta Fersini, Enza
Messina, and Bing Liu. 2016. Sentiment Analysis
in Social Networks, 1st edition. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Magnus Sahlgren. 2006. The Word-space model.
Ph.D. thesis, University of Stockholm (Sweden).

Gerard Salton. 1971. The SMART Retrieval System—
Experiments in Automatic Document Processing.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Hinrich Schütze. 1992. Dimensions of meaning. In
Proceedings of the 1992 ACM/IEEE Conference on
Supercomputing, Supercomputing ’92, pages 787–
796, Los Alamitos, CA, USA. IEEE Computer So-
ciety Press.

Hinrich Schütze. 1993. Word space. In Advances
in Neural Information Processing Systems 5, pages
895–902. Morgan Kaufmann.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Twitter sentiment analysis with deep convolutional
neural networks. In Proceedings of the 38th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 959–
962. ACM.

Vivek Kumar Rangarajan Sridhar. 2015. Unsupervised
topic modeling for short texts using distributed rep-
resentations of words. In Proceedings of the 1st
workshop on vector space modeling for natural lan-
guage processing, pages 192–200.

Rune Stubager. 2018. What is issue ownership and
how should we measure it? Political Behavior,
40(2):345–370.

Peter D. Turney. 2002. Thumbs up or thumbs down?:
Semantic orientation applied to unsupervised classi-
fication of reviews. In Proceedings of the 40th An-
nual Meeting on Association for Computational Lin-
guistics, ACL ’02, pages 417–424, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of se-
mantics. Journal of Artificial Intelligence Research,
37(1):141–188.

155

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 156–166
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Sentiment Expression Boundaries in Sentiment Polarity Classification

Rasoul Kaljahi
ADAPT

School of Computing
Dublin City University

rasoul.kaljahi@adaptcentre.ie

Jennifer Foster
ADAPT

School of Computing
Dublin City University

jennifer.foster@adaptcentre.ie

Abstract

We investigate the effect of using sentiment
expression boundaries in predicting sentiment
polarity in aspect-level sentiment analysis. We
manually annotate a freely available English
sentiment polarity dataset with these bound-
aries and carry out a series of experiments
which demonstrate that high quality sentiment
expressions can boost the performance of po-
larity classification. Our experiments with
neural architectures also show that CNN net-
works outperform LSTMs on this task and
dataset.

1 Introduction

Sentiment analysis is a much studied problem in
natural language processing research, yet it is far
from solved, especially when a fine-grained anal-
ysis is required. Aspect-based sentiment analy-
sis (Pontiki et al., 2014, 2015, 2016) is concerned
with multi-faceted opinions. Consider, for exam-
ple, a restaurant review which states that the food
was delicious but the place was too noisy. For
anyone using such a review to inform a decision
about where to dine, this aspect-based information
is more useful than one overall sentiment score.
In this work, we aim to improve the performance
of sentence-level aspect-based sentiment polarity
classification. We compare several neural archi-
tectures and we investigate whether identifying
and highlighting the parts of the sentence which
carry the sentiment can be beneficial for this task.

The data that we use in our experiments is an
English dataset used in the SemEval 2016 Task on
Aspect-Based Sentiment Analysis (Pontiki et al.,
2016), which consists of consumer reviews of
restaurants and laptops. Each sentence is anno-
tated with the aspect of the restaurant or laptop
that is being discussed in the sentence together
with the polarity of the sentiment towards that as-

pect. Some aspects are quite general to any prod-
uct or service, e.g. value for money, but many are
domain-specific, e.g. battery life and performance
for laptops, and ambience and food quality for
restaurants.

We first apply two very widely used neural
architectures – CNNs (LeCun et al., 1998) and
LSTMs (Hochreiter and Schmidhuber, 1997) – to
the problem of predicting the polarity towards an
aspect. We show that CNNs work better than
LSTMs, and experiment with two ways of com-
bining the two networks, neither of which provide
a significant improvement over CNNs. We com-
pare to those SemEval 2016 shared task systems
which also used a neural architecture, and confirm
that our systems are competitive.

Our next step is to provide a further layer of an-
notation to the data by marking those words in a
sentence which are contributing towards the sen-
timent. Once the data is annotated with senti-
ment expressions, we use the annotation to aug-
ment our baseline models and show that this infor-
mation increases polarity classification accuracy
by approximately six percentage points on aver-
age. We then experiment with multi-task learning
(Caruana, 1997; Collobert and Weston, 2008; Bin-
gel and Søgaard, 2017; Ruder, 2017) in order to
jointly learn sentiment expression boundaries and
polarities. However, we do not see an improve-
ment in polarity classification with our joint archi-
tecture.

The paper is organised as follows: in Section 2
we describe our data in more detail; in Section 3
we describe the architectures of our baseline sys-
tems and compare to other neural systems; in Sec-
tion 4, we describe the process of enriching the
original dataset with sentiment expression annota-
tions; in Section 5, our sentiment polarity classifi-
cation experiments involving this enriched dataset
are presented; we review related work on senti-

156

https://doi.org/10.18653/v1/P17

D Aspect Category Sentence Polarity
R food#prices But the pizza is way to expensive Neg
R ambience#general However , go for the ambience, and consider the Pos

food just a companion for a trip across the world !
R food#quality However , go for the ambience, and consider the Neu

food just a companion for a trip across the world !
L laptop#design features Only two USB ports Neg
L laptop#general It’s a lemon Neg
L laptop#general My first Mac computer and as many before me Pos

I just fall in love with it

Table 1: SemEval 2016 Task 5 Dataset Examples (D: domain, R: restaurant, L: laptop)

Laptop Restaurant
Train Test Train Test

sentences 2500 808 2000 676
aspect categories 2909 801 2507 859
% positive 56% 60% 66% 71%
% negative 37% 34% 30% 24%
% neutral 7% 6% 4% 5%

Table 2: Number of sentences, aspect categories
and their polarity distributions in the datasets

ment expression annotation and the use of senti-
ment expressions in sentiment polarity classifica-
tion in Section 6 before we summarise our findings
and provide some pointers for future work in Sec-
tion 7.

2 Data

The data used in our experiments consists of En-
glish consumer reviews (restaurants and laptops)
released as part of the SemEval 2016 Shared
Task on Aspect-Based Sentiment Analysis (Task
5, Subtask 1) (Pontiki et al., 2016). Each review
sentence has been labelled with a sentiment polar-
ity (positive, negative, neutral) towards an aspect
of the laptop or restaurant under review (so-called
aspect categories). Examples from the datasets are
shown in Table 1. Each aspect category is of the
form E#A, where E is an entity and A is some at-
tribute of that entity. There are 11 distinct aspect
categories in the restaurant dataset and 31 in the
laptop dataset.

The SemEval 2016 shared task, and its previous
iterations in 2014 and 2015, were concerned with
several sentence-level subtasks including identi-
fying aspect categories, opinion target expres-

sion(s)1 and sentiment polarities. We focus on the
polarity classification subtask, i.e. given a sen-
tence and an aspect category, we attempt to predict
the polarity of the sentiment expressed in the sen-
tence towards that aspect category. Table 2 shows
the number of sentences and aspect categories to-
gether with their polarity distribution in the train-
ing and test subsets of each domain. While some
sentences contain multiple aspect categories (see
the second and third examples in Table 1), most
contain only one.

3 Neural Architecture

We build our aspect-based sentiment polarity clas-
sification systems using deep neural networks in-
cluding Long Short-Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997) and
Convolutional Neural Networks (CNN) (LeCun
et al., 1998). The input layer for these systems
is the concatenation of an embedding layer, which
uses pre-trained GloVe (Pennington et al., 2014)
word embeddings2 (1.9M vocabulary Common
Crawl), concatenated with a one-hot vector which
encodes information about aspect categories. At
the output layer, we use a softmax function to
perform the classification into positive, negative
or neutral. The middle layers are then stacks of
LSTM or CNN layers, the depth of which is de-
termined via hyper-parameter tuning. A dropout
layer follows each LSTM or CNN layer to prevent

1Opinion target expressions are the words in the sentence
which refer to the aspect category, e.g. pizza in the first ex-
ample of Table 1. We do not make use of this information
since it is only available for those sentences where the aspect
category is explicitly expressed in the sentence, and is not
available at all for the laptop dataset.

2The embedding weights are not updated during training.

157

Laptop Restaurant
Dev Test Dev Test

lstm 77.71 75.61 80.42 83.59
cnn 78.47 77.82 79.14 84.90
chcnn+lstm 77.10 74.45 80.74 83.28
lstm+cnn 80.45 76.32 80.68 84.52
lstm+cnn(gse:aux) 86.63 83.73 86.12 89.87
lstm+cnn(gse:filtered) 84.65 83.98 86.69 87.97
lstm+cnn(gse:multitask) 78.47 75.99 81.77 84.71

Table 3: Accuracy of aspect-based sentiment polarity classification models (gse: using gold-standard
sentiment expressions, filtered: filtering non-SE tokens)

System Type Laptop Restaurant
Khalil and El-Beltagy (2016) CNN 77.40 85.44
Yanase et al. (2016) RNN 70.29 81.02
Chernyshevich (2016) MLP 77.90 83.90
Ruder et al. (2016b) CNN 78.40 82.10

Table 4: Test set accuracy of neural systems who participated in the SemEval 2016 polarity classification
task for aspect-based sentiment analysis

the models from overfitting.3

To tune the hyper-parameters, a development
set is randomly sub-sampled from each training
set. The list of tuned hyper-parameters and their
selected best values for each domain are given in
Appendix A. In addition to the tuned parameters,
we use the Adam (Kingma and Ba, 2014) algo-
rithm for optimization. The models are built us-
ing Keras4 with a TensorFlow5 backend. Note that
the evaluation of each architecture is performed
by three rounds of training and testing, and av-
eraging the resulting accuracy for each dataset.
This is done to handle the randomness introduced
throughout the model training.

3.1 LSTM vs. CNN

Due to their ability to remember information over
sequences of words, LSTMs are a natural choice
for many NLP tasks. Our first model uses one or
more (bidirectional) LSTM layers as the middle
layers between the input and output layers. Figure
1a shows the architecture of this model. The ac-
curacy of the model on the laptop and restaurant
datasets can be found in the first row of Table 3.

3Note that, to save space, the dropout layers are not shown
in the architecture diagrams in Fig. 1 (discussed in subse-
quent sections).

4https://keras.io/
5https://www.tensorflow.org/

Convolutional networks have also shown to be
useful in text classification tasks (Kim, 2014). We
build another model to investigate their effect in
aspect-based sentiment polarity classification. The
model is displayed in Figure 1b and its perfor-
mance is reported in the second row of Table 3 .
Comparing the accuracy of the LSTM and CNN
models, we can see that the CNN models most of
the time outperform LSTM models.

3.2 Combining LSTM and CNN

LSTM and CNN networks can be combined to
take advantage of the benefits of both. Ma and
Hovy (2016), for example, address sequence tag-
ging problems (POS tagging and Named En-
tity Recognition) using a CNN at the character
level, combining the resulting character embed-
dings with pre-trained word embeddings and feed-
ing it into a bidirectional LSTM network. The out-
put is then fed into a Conditional Random Field
(CRF) classifier to jointly classify labels for all
words in the sentence. Their combined archi-
tecture outperforms networks built using LSTMs
alone, especially on the NER task. In a similar
vein, Chiu and Nichols (2016) use CNNs to gen-
erate character-level features for NER and then
concatenate them with word embeddings before fi-
nally inputting them into an LSTM network. They
report new state-of-the-art performance using this

158

architecture, outperforming previous models rely-
ing on extensive feature engineering and external
resources.

Here, we experiment with two different ap-
proaches to combining CNN and LSTM networks.
In the first approach, we first apply CNN on
the character embeddings to extract the character-
level representations of each word. These vec-
tors are then concatenated with the word embed-
dings and sent to a LSTM. This is similar to
the approach used by Ma and Hovy (2016) and
Chiu and Nichols (2016), except that our prob-
lem is a regular classification one rather than se-
quence labelling. The architecture is depicted in
Figure 1c. Note that TimeDistributed is a wrap-
per used in Keras which applies a layer, with the
same weights, to every temporal step of the in-
put. As can be seen in Table 3, the resulting model
(chcnn+lstm) does not perform better than the
individual networks, and in fact has the lowest ac-
curacies on the laptop datasets.

In the second approach, the input data is first
fed to a LSTM network and then the output rep-
resentation is passed to a convolutional network.
This is different from the work described above in
that it does not use characters and it also places
the LSTM before the CNN, in order to allow the
LSTM to account for the original word order. Fig-
ure 1d shows the architecture of this network. The
performance of the model trained with this archi-
tecture is shown in Table 3 (lstm+cnn). This
model outperforms the chcnn+lstm one. Com-
pared to the best individual model (CNN), the accu-
racy increases on the laptop development set, de-
grades on the laptop test set and stays about the
same on the restaurant datasets.

3.3 Comparison to Other Systems

Table 4 shows the four neural systems who com-
peted in the sentence-level English polarity classi-
fication subtask of the SemEval 2016 aspect-based
sentiment analysis task. Two of the four systems
employed a CNN, one an LSTM and one a MLP.
Specifying just the network type is of course a
simplification because there are many differences
between the systems including the input embed-
dings, the hyper-parameters and the training data
(some systems combined the domains in training)
but it does serve to demonstrate that our neural
systems achieve competitive performance. Note,
however, that the best system on the restaurant

domain (Brun et al., 2016), with 88.13% accu-
racy, and on the laptop domain (Kumar et al.,
2016), with 82.77% accuracy, are non-neural sys-
tems which employed a range of linguistic infor-
mation as features. Ruder et al. (2016a) also show
that improvements can be achieved by not focus-
ing just on the sentence level and taking the con-
text sentences in the review into account also.

4 Sentiment Expressions

We define a sentiment expression to be the part
of the sentence which conveys the sentiment to-
wards a certain aspect of the item under discus-
sion. Thus, annotating a <sentence,aspect
category,polarity> triple involves high-
lighting those words in the sentences which ex-
press the sentiment towards the aspect category.
Table 5 shows the examples from Table 1 with the
sentiment expressions marked. We distinguish be-
tween neutral polarities where no opinion is ex-
pressed (1) and neutral polarities which represent
a “neutral” opinion (2). Only the latter type are
considered to contain sentiment expressions.

(1) We had lunch in that restaurant last week.

(2) The food was OK.

The annotation was carried out by two annota-
tors with a background in computational linguis-
tics, using the brat6 annotation tool. In mark-
ing the sentiment expression spans, the annota-
tors followed the general rule of thumb of being
concise while at the same time respecting phrase
boundaries so that the resulting sentiment expres-
sion was a self-contained, semantically coherent
phrase. In order to avoid annotator disagreement
over sometimes somewhat arbitrary span bound-
aries, rules about what to include in a span were
devised and documented in the annotation guide-
lines. For example, any preceding articles or auxil-
iaries are included before sentiment-bearing nouns
and verbs, e.g. the ease of setup versus ease of
setup, and is still not working versus still not work-
ing. The guidelines were calibrated at three stages.
At each stage, 100 items, 50 per domain, were ran-
domly selected and annotated. The disagreements
were then discussed and the guidelines were ad-
justed. After finalising the guidelines, the entire
dataset was divided between the two annotators
and annotated.

6http://brat.nlplab.org

159

(a) LSTM

Embeddings

(bs, psl, 300)

Aspect Category

(bs, psl, acc)

Concatenate

(bs, psl, 300+acc)

LSTM

(bs, hs)

Softmax

(bs, 3)

(b) CNN

Embeddings

(bs, psl, 300)

Aspect Category

(bs, psl, acc)

Concatenate

(bs, psl, 300+acc)

CNN

(bs, csc, fs)

Max Pooling

(bs, fs)

Softmax

(bs, 3)

Concatenate

(bs, fs*fc)

(c) Character-based CNN + LSTM

Aspect Category

(bs, acc)

Softmax

(bs, 3)

Concatenate

(bs, hc+acc)

TimeDistr (CNN)

(bs, psl, csc, fs)

TimeDistr (Max Pooling)

(bs, psl, fs)

(bs, psl, 300+(fs*fc))

Word Embeddings

(bs, psl, 300)

LSTM

(bs, hs)

TimeDistr (Character Embeddings)

(bs, psl, pcl, ced)

Concatenate

(bs, psl, fs*fc)

Concatenate

(d) LSTM + CNN

Embeddings

(bs, psl, 300)

Aspect Category

(bs, psl, acc)

Concatenate

(bs, psl, 300+acc)

CNN

(bs, csc, fs)

Max Pooling

(bs, fs)

Softmax

(bs, 3)

Concatenate

(bs, fs*fc)

LSTM

(bs, hs)

(e) SE as auxiliary input

Embeddings

(bs, psl, 300)

SE Flags

(bs, psl, serc)

(bs, psl, 300+serc+acc)

CNN

(bs, csc, fs)

Max Pooling

(bs, fs)

Softmax

(bs, 3)

Concatenate

(bs, fs*fc)

LSTM

(bs, hs)

Aspect Category

(bs, psl, acc)

Concatenate

(f) Multitask learning of polarity classifica-
tion and sentiment expressions extraction

Embeddings

(bs, psl, 300)

Aspect Category

(bs, psl, acc)

Concatenate

(bs, psl, 300+acc)

CNN

(bs, csc, fs)

Max Pooling

(bs, fs)

Softmax

(bs, 3)

Concatenate

(bs, fs*fc)

LSTM

(bs, hs)

LSTM

(bs, hs)

(bs, psl, 2)

TimeDistr(Softmax)

Figure 1: Architectures of the ABSA models; tuples are the shapes of the output tensors (bs: batch size,
psl: padded sequence length, acc: aspect category count, hs: hidden layer size, csc: convolution
step count, fs: filter size, fc: filter count, TimeDistr: distributing the layer over temporal steps of
the input with the same weights, CSC: convolution step count, serc: repetition count for the SE flag
(0 or 1 per token)). Note that the figures are only illustrative of the models and the middle layers are
underrepresented. The double arrows show multiple input and double lines show multiple nodes.

160

D Aspect Category Sentence Sentiment
R food#prices But the pizza is way to expensive Neg
R ambience#general However , go for the ambience, and consider the Pos

food just a companion for a trip across the world !
R food#quality However , go for the ambience, and consider the Neu

food just a companion for a trip across the world !
L laptop#design features Only two USB ports Neg
L laptop#general It’s a lemon Neg
L laptop#general My first Mac computer and as many before me Pos

I just fall in love with it

Table 5: SemEval 2016 Task 5 Dataset Examples with Sentiment Expressions (in bold)

Laptop Restaurant
P R F1 P R F1

81.63 91.58 86.32 89.67 91.61 90.63

Table 6: Inter-annotator agreement of sentiment
expression annotation measured using precision,
recall and F1 of sentiment expression span inter-
sections

Inter-annotator agreement was calculated on a
subset of 200 items, 100 per domain, where 100
items from each annotator’s subset was also an-
notated by the other annotator. We used preci-
sion, recall and F1 based on the intersection of the
sentiment expression spans annotated by the two
annotators, assuming the first annotator’s annota-
tions as gold-standard and the second annotator’s
as predicted.

The IAA scores, shown in Table 6, show a high
level of agreement between the two annotators.
The agreement on the restaurant dataset is partic-
ularly high, suggesting that the restaurant reviews
use more straightforward language than the lap-
top reviews (also reflected in the polarity classi-
fication results - see Section 3). Examining the
doubly annotated data, we see that, most of the
time, the disputed annotations overlap and the dis-
agreement is over how long the sentiment expres-
sion span should be. In fact, 122 out of the 200
samples in the laptop dataset and 142 out of 200
in the restaurant dataset were annotated in exactly
the same way by the two annotators.

An example disagreement can be seen in (3) and
(4). While the first annotator has decided that No
more Apple devices is enough to infer the negative
sentiment from the sentence, the second annota-

tor deems in my household to be also contributing.
With a binary overlap metric (correct for any over-
lap; wrong for no overlap), as used, for example,
by Breck et al. (2007) to evaluate expression ex-
traction, this example would have a perfect preci-
sion and recall score.

(3) No more Apple devices in my household.

(4) No more Apple devices in my household.

Concluding that the sentiment expressions have
been marked with a reasonable level of consis-
tency, we now go on to use these expression
boundaries in more sentiment polarity classifica-
tion experiments.

5 Using Sentiment Expressions in
Polarity Classification

We conduct experiments to examine the degree to
which sentiment expressions can help boost polar-
ity classification performance. We first measure
the upper bound of the improved performance us-
ing gold-standard sentiment expressions and ex-
periment with two alternative ways of encoding
the sentiment expression information. We then at-
tempt to use the sentiment expression annotation
in a multi-task setup, with the sentiment expres-
sion extraction as an auxiliary task and the polarity
classification as the main one. For all our exper-
iments we employ the combined LSTM/CNN ar-
chitecture described in Section 3.2 – lstm+cnn
in Table 3.

5.1 Using Gold-standard Sentiment
Expressions

To exploit sentiment expressions in polarity clas-
sification, we experiment with two approaches. In
the first approach, the sentiment expression is fed

161

into the model as an auxiliary input, in concate-
nation with the embeddings and aspect categories.
The architecture of this approach is illustrated in
Figure 1e. The sentiment expression annotation of
a sentence is encoded in a binary-valued vector of
size equal to the sentence length. For every token
inside the SE boundary, the binary value is 1 and
0 otherwise. In order to give more weight to this
information, the vector is vertically replicated n
times (seen as serc in Figure 1e) to form a ma-
trix. Table 3 shows the performance of this ap-
proach (lstm+cnn(gse:aux)). It can be seen
that the sentiment expressions consistently boost
the performance of polarity classification over all
four datasets, with an average improvement of six
percentage points.

The second approach works by filtering out the
non-sentiment-expression tokens in the sentence.
In other words, the input to the model is the se-
quence of sentiment expression tokens. The ar-
chitecture of this model is the same as that of
the combined LSTM and CNN depicted in Fig-
ure 1d, since only the input has changed from
the entire sentence to filtered tokens. The re-
sults for this approach are also shown in Table 3
(lstm+cnn(gse:filtered)). According to
the accuracy scores, using sentiment expressions
as auxiliary input is preferable to this filtering ap-
proach, as the latter obtains significantly lower
scores on two of the evaluation subsets, suggest-
ing that the sentiment expressions themselves do
not carry all the information relevant to the task.

Overall, both sets of results show that knowing
which words (if any) in the sentence are part of the
sentiment expression is a valuable source of infor-
mation for polarity classification, which is what
one might expect. The SE-augmented models are
better at handling the neutral cases, appearing to
learn to associate a lack of sentiment expressions
with this category. They are also better at han-
dling negative cases, particularly in the restaurant
dataset where the sentiment expression informa-
tion helps the system to move away from the ma-
jority positive class (see the polarity class distribu-
tion in Table 2).

5.2 Multitask Learning of Polarity and SE

One way to utilize the sentiment expressions in po-
larity classification is multitask learning of polar-
ity classification and sentiment expression extrac-
tion (Caruana, 1997). The idea is that sharing rep-

resentations between related tasks can help each
of them generalize better. Collobert and Weston
(2008) build a unified architecture to simultane-
ously learn several NLP problems including part-
of-speech tagging, chunking, named entity recog-
nition, semantic role labelling (SRL), semantic re-
latedness detection and language modelling. Their
model consists of convolutional networks on top
of a shared embedding layer along with individual
embedding layers for each task. They try various
combinations of these tasks and show that, SRL,
for example can benefit from other tasks such as
language modelling to achieve state-of-the-art per-
formance without the need for syntactic informa-
tion as is common in conventional SRL models.

We further investigate this approach by design-
ing a model that learns both tasks at the same time,
meaning that the two objective functions are opti-
mized simultaneously, but the main focus is learn-
ing the polarity classification and the sentiment
expression extraction is an auxiliary task. The
architecture of this model is displayed in Figure
1f. The model is built by combining LSTM and
CNN, where the input is first fed into a shared
LSTM layer between the two tasks. The output
of the LSTM layer is then sent to a CNN layer
which learns the polarity classification and to an-
other LSTM layer which learns to extract senti-
ment expressions. The sentiment expressions in
the output are represented in a vector of length 2
for each token, where being inside the SE is en-
coded by [1, 0] and being outside by [1, 0]. The
prediction for both tasks is achieved using a soft-
max layer at the end.

The results of this approach are shown in Ta-
ble 3 (lstm+cnn(gse:multitask)) . The
multitask approach fails to reach the level of per-
formance of the systems which uses gold sen-
timent expression boundaries as auxiliary input
(lstm+cnn(gse:aux)) or to filter the origi-
nal input (lstm+cnn(gse:filtered)), es-
pecially apparent on the laptop dataset. It should
however be noted that multitask learning elim-
inates the need for gold sentiment expression
boundaries at prediction time, so its comparison is
more meaningful with systems that use automati-
cally obtained sentiment expression boundaries.

6 Related Work

To the best of our knowledge, the only other
dataset containing manual annotations of opinion

162

expressions is MPQA (Wiebe et al., 2005). MPQA
annotates private states (Quirk et al., 1985), which
is a general term covering opinions, evaluations,
emotions and speculations. The annotations are
categorized into two types: direct subjective ex-
pressions and expressive subjective expressions,
the former mentioning the opinions explicitly and
the latter implicitly. For example, in (5), said is
a direct subjective and full of absurdities is an ex-
pressive subjective expression.

(5) “The report is full of absurdities,” Xirao-
Nima said.

Our annotation scheme does not differentiate be-
tween these two types, instead aiming at a sim-
pler guideline for annotating sentiment expres-
sions, where the main rule is to find the part of
the sentence which independently carries the sen-
timent. Therefore, said in (5) would be ignored
in our annotation as it does not help recognize
the sentiment towards The report. Instead, full
of absurdities would be annotated as the senti-
ment expression towards The report, as it is clearly
the source negative sentiment expressed by the
speaker (Xirao-Nima). Therefore, our definition
of sentiment expression is closer to the MPQA’s
expressive subjective expression.

A related work in terms of utilizing opinion
expressions for other opinion mining tasks is
(Johansson and Moschitti, 2013), who use fea-
tures extracted from MPQA opinion expressions
in product attribute identification (i.e. finding sen-
timent targets) and also document polarity clas-
sification. The features used in the second task
– which is more relevant to this work – include
the individual opinion expression words combined
with the polarity or type of the expressions. Their
results show that information extracted from opin-
ion expressions can help improve polarity classi-
fication compared to when only bag-of-word fea-
tures and sentiment polarity lexicons are used. Us-
ing a different dataset, a different type of opin-
ion expression and a different way of encoding
this knowledge (by marking expression bound-
aries), we provide further evidence that isolating
the opinion expression in an utterance helps in po-
larity classification.

7 Conclusion

A major contribution of the paper is an additional
set of manual annotations in the English SemEval

2016 Task 5 dataset in which those words in a
sentence which are contributing towards the ex-
pression of sentiment towards a particular aspect
are explicitly marked. In experiments with this
dataset, we demonstrate that knowledge of the
boundaries of sentiment expressions can simplify
the task of polarity classification. This knowl-
edge seems to have the effect of reducing noise
for the learner by de-emphasizing words in the in-
put that are not contributing towards the sentiment
and providing clues about how subjective a sen-
tence is.

Although the results of our multitasking exper-
iments were somewhat disappointing, our exper-
iments with gold sentiment expressions motivate
us to continue exploring ways of using sentiment
expressions in polarity classification. A pipeline
approach in which the sentiment expression ex-
traction is carried out before polarity classification
is also possible, and indeed several sentiment ex-
pression extraction systems have been built with
the MPQA dataset (Breck et al., 2007; Choi and
Cardie, 2010; Yang and Cardie, 2012; İrsoy and
Cardie, 2014). We plan to build a sentiment ex-
pression extraction system using our new set of
annotations and then investigate the effect of sub-
stituting gold sentiment expressions with automat-
ically predicted sentiment expressions.

The dataset reported in this work is avail-
able for use by other researchers, as a source of
train/test data for sentiment expression extraction
or joint polarity classification/sentiment expres-
sion extraction, as well as a potential source of lin-
guistic insights about expressions of sentiment in
this type of text.7

In addition to our sentiment expression data and
experiments, we have also compared the use of
LSTMs and CNNs and their combination for En-
glish aspect-based sentiment polarity classifica-
tion with the SemEval 2016 Task 5 dataset, con-
cluding that CNNs on their own or in combination
with an LSTM are a good choice.

Acknowledgments

This research is supported by Science Foundation
Ireland in the ADAPT Centre (Grant 13/RC/2106)
(www.adaptcentre.ie) at Dublin City University

7https://opengogs.adaptcentre.ie/rszk/
sea

163

References
Joachim Bingel and Anders Søgaard. 2017. Identi-

fying beneficial task relations for multi-task learn-
ing in deep neural networks. arXiv preprint
arXiv:1702.08303.

Eric Breck, Yejin Choi, and Claire Cardie. 2007. Iden-
tifying expressions of opinion in context. In Pro-
ceedings of the 20th International Joint Conference
on Artifical Intelligence, pages 2683–2688.

Caroline Brun, Julien Perez, and Claude Roux. 2016.
Xrce at semeval-2016 task 5: Feedbacked ensemble
modeling on syntactico-semantic knowledge for as-
pect based sentiment analysis. In Proceedings of the
10th international workshop on semantic evaluation
(SemEval-2016), pages 277–281.

Rich Caruana. 1997. Multitask learning. Mach.
Learn., 28(1):41–75.

Maryna Chernyshevich. 2016. Ihs-rd-belarus at
semeval-2016 task 5: Detecting sentiment polarity
using the heatmap of sentence. In Proceedings of
the 10th International Workshop on Semantic Evalu-
ation (SemEval-2016), pages 296–300. Association
for Computational Linguistics.

Jason P.C. Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4:357–370.

Yejin Choi and Claire Cardie. 2010. Hierarchical se-
quential learning for extracting opinions and their
attributes. In Proceedings of the ACL 2010 Confer-
ence Short Papers, pages 269–274.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, pages 160–167.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ozan İrsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 720–728.

Richard Johansson and Alessandro Moschitti. 2013.
Relational features in fine-grained opinion analysis.
Computational Linguistics, 39(3):473–509.

Talaat Khalil and Samhaa R. El-Beltagy. 2016.
Niletmrg at semeval-2016 task 5: Deep convolu-
tional neural networks for aspect category and senti-
ment extraction. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 271–276.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ayush Kumar, Sarah Kohail, Amit Kumar, Asif Ek-
bal, and Chris Biemann. 2016. Iit-tuda at semeval-
2016 task 5: Beyond sentiment lexicon: Combin-
ing domain dependency and distributional seman-
tics features for aspect based sentiment analysis. In
Proceedings of the 10th international workshop on
semantic evaluation (SemEval-2016), pages 1129–
1135.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074, Berlin, Germany.
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Maria Pontiki, Dimitris Galanis, Haris Papageor-
giou, Ion Androutsopoulos, Suresh Manandhar, AL-
Smadi Mohammad, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, et al. 2016.
Semeval-2016 task 5: Aspect based sentiment anal-
ysis. In Proceedings of the 10th international work-
shop on semantic evaluation (SemEval-2016), pages
19–30.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
Semeval-2015 task 12: Aspect based sentiment anal-
ysis. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
486–495.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. Semeval-2014 task 4: As-
pect based sentiment analysis. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 27–35.

Randolph Quirk, Charles Ewart Eckersley, and Jan
Svartvik. 1985. A Comprehensive Grammar of the
English Language. Longman.

Sebastian Ruder. 2017. An overview of multi-
task learning in deep neural networks. CoRR,
abs/1706.05098.

164

Sebastian Ruder, Parsa Ghaffari, and John G. Breslin.
2016a. A hierarchical model of reviews for aspect-
based sentiment analysis. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 999–1005. Association
for Computational Linguistics.

Sebastian Ruder, Parsa Ghaffari, and John G. Bres-
lin. 2016b. Insight-1 at semeval-2016 task 5:
Deep learning for multilingual aspect-based senti-
ment analysis. In SemEval@NAACL-HLT.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language Resources and Evalu-
ation, 1(2):0.

Toshihiko Yanase, Kohsuke Yanai, Misa Sato, Toshi-
nori Miyoshi, and Yoshiki Niwa. 2016. bunji at
semeval-2016 task 5: Neural and syntactic models
of entity-attribute relationship for aspect-based sen-
timent analysis. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 289–295. Association for Computa-
tional Linguistics.

Bishan Yang and Claire Cardie. 2012. Extracting opin-
ion expressions with semi-markov conditional ran-
dom fields. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, pages 1335–1345.

165

A Model Hyper-parameters

di
re

ct
io

n

ep
oc

hs

ba
tc

h
si

ze

#L
ST

M
la

ye
rs

L
ST

M
la

ye
rs

iz
e

C
N

N
fil

te
rs

iz
es

#C
N

N
fil

te
rs

le
ar

ni
ng

ra
te

ac
tiv

at
io

n

dr
op

ou
tr

at
e

ch
ar

.e
m

be
d.

di
m

.

lstm bi 100 128 1 50 - - 0.01 tanh 0.3 -
cnn - 200 64 - - [2,3,4]128 0.05 tanh 0.5 -
lstm+cnn bi 100 32 1 50 [3,4,5]256 0.001 tanh 0.5 -
chcnn+lstm bi 50 32 2 50 [3] 64 0.001 tanh 0.3 50
lstm+cnn(gse:aux) bi 100 32 1 100 [2,3,4]256 0.001 tanh 0.5 -
lstm+cnn(gse:filtered) bi 100 32 2 100 [3,4,5]128 0.001 tanh 0.3 -
lstm+cnn(gse:multitask) uni 100 32 2 100 [3,4,5] 64 0.001 tanh 0.3 -

Hyper-parameters of the polarity classification models tuned on the laptop development set

di
re

ct
io

n

ep
oc

hs

ba
tc

h
si

ze

#L
ST

M
la

ye
rs

L
ST

M
la

ye
rs

iz
e

C
N

N
fil

te
rs

iz
es

#C
N

N
fil

te
rs

le
ar

ni
ng

ra
te

ac
tiv

at
io

n

dr
op

ou
tr

at
e

ch
ar

.e
m

be
d.

di
m

.

lstm bi 100 128 1 100 - - 0.005 tanh 0.3 -
cnn - 200 32 - - [2,3,4] 64 0.001 tanh 0.3 -
lstm+cnn bi 100 64 1 100 [2,3,4] 64 0.001 tanh 0.3 -
chcnn+lstm bi 50 64 2 100 [3] 32 0.001 tanh 0.3 20
lstm+cnn(gse:aux) bi 100 32 1 50 [2,3,4]128 0.001 tanh 0.5 -
lstm+cnn(gse:filtered) bi 100 64 1 100 [3,4,5]128 0.001 tanh 0.5 -
lstm+cnn(gse:multitask) uni 100 32 2 50 [3,4,5]128 0.001 tanh 0.3 -

Hyper-parameters of the polarity classification models tuned on the restaurant development set

166

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 167–175
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Exploring and Learning Suicidal Ideation Connotations on Social Media
with Deep Learning

Ramit Sawhney1, Prachi Manchanda1, Puneet Mathur1,
Raj Singh1, and Rajiv Ratn Shah 4

1Netaji Subhas Institute of Technology, NSIT-Delhi
ramits.co,prachim.co,rajs.co@nsit.net.in, pmathur3k6@gmail.com

2Indraprastha Institute of Information Technology, IIIT-Delhi
rajivratn@iiitd.ac.in

Abstract
The increasing suicide rates amongst youth
and its high correlation with suicidal ideation
expression on social media warrants a deeper
investigation into models for the detection of
suicidal intent in text such as tweets to en-
able prevention. However, the complexity of
the natural language constructs makes this task
very challenging. Deep Learning architec-
tures such as LSTMs, CNNs, and RNNs show
promise in sentence level classification prob-
lems. This work investigates the ability of
deep learning architectures to build an accu-
rate and robust model for suicidal ideation de-
tection and compares their performance with
standard baselines in text classification prob-
lems. The experimental results reveal the
merit in C-LSTM based models as compared
to other deep learning and machine learn-
ing based classification models for suicidal
ideation detection.

1 Introduction

The Centre of Disease Control and Prevention[], in
the US, reports that, overall, suicide is the eleventh
leading cause of death for all US Americans, and
is the third leading cause of death for young peo-
ple 15-24 years. According to the World Health
Organisation(WHO)[], in the last 45 years, sui-
cide rates have increased by 60% worldwide. Sui-
cide attempts are up to 20 times more frequent
than completed suicides. Cases of suicide occur
due to many complex sociocultural factors and is
more likely to occur during periods of socioeco-
nomic, family and individual crisis such as loss
of a loved one, unemployment, sexual orienta-
tion, difficulties with developing one’s identity,
disassociation from one’s community or other so-
cial/belief group, and honour.

The Internet is a powerful source that people
turn to when seeking help while having any sui-
cidal thoughts. Understanding how people inter-
act with the Internet in such situations can go a
long way in an attempt to prevent such suicides.
The availability of suicide-related material on the
Internet plays an important role in the process of
suicide ideation. Due to this increasing availabil-
ity of content on social media websites (such as
Twitter, Facebook and Reddit etc.), there is an ur-
gent need to identify affected individuals and offer
help.

In the past, few attempts such as (O’Dea et al.,
2015), (Sueki, 2015) and (Jashinsky et al., 2014)
have been made to identify patterns in the lan-
guage used on social media that express suici-
dal ideation. However, very few attempts have
been made to employ deep learning classifiers that
separate text not related to suicide from text that
clearly indicates the author exhibiting suicidal in-
tent. In this paper, three deep learning based archi-
tectures (Vanilla-RNN, LSTM, and C-LSTM) are
compared in the task of sentence classification for
the crucial task of detecting suicidal ideation.

The main contributions of this paper can be
summarized as follows:

1. Generation of a lexicon of suicide-related
words and phrases by scraping suicide web
forums to gather tweets for dataset creation.

2. The creation of a labeled dataset for learn-
ing the patterns in tweets exhibiting suicidal
ideation by manual annotation.

3. Exploration of the performance of three deep
learning based architectures for the suicide
ideation detection task and compared with

167

https://doi.org/10.18653/v1/P17

three baselines in terms of four evaluation
metrics.

2 Related Work

Media communication can have both positive and
negative influence on suicidal ideation. A sys-
tematic review of all articles in PsycINFO, MED-
LINE, EMBASE, Scopus, and CINAH from 1991
to 2011 for language constructs relating to self-
harm or suicide by Daine et al. (2013) concluded
that internet may be used as an intervention tool
for vulnerable individuals under the age of 25.
However, not all language constructs containing
the word suicide indicate suicidal intent, specific
semantic constructs may be used for predicting
whether a sentence implies self-harm tendencies
or not.

A suicide note analysis method for automated
the identification of suicidal ideation was built
using binary support vector machine classifiers
by Desmet and Hoste (2013) using fine-grained
emotion detection for classifier optimization with
lexico-semantic features for optimization. In
2014, Huang et al. (2014) used rule-based methods
with a hand-crafted unsupervised classification for
developing a real-time suicidal ideation detection
system deployed over Weibo1, a microblogging
platform. By combining both machine learning
and psychological knowledge, they reported an
SVM classifier as having the best performance of
different classifiers. Some semantic constructs are
associated with lifetime suicidal ideation as com-
pared to others. A cross-sectional study of suicidal
intent in 220,848 Twitter users in their 20s in Japan
(Sueki, 2015) concluded that language framing
was important for identifying suicidal markers in
the text. For example: want to suicide was found
to be associated more frequently with a lifetime
suicidal intent than want to die in similar sen-
tences. Several of these studies emphasized the in-
fluencing power of social media and internet in the
study of suicide ideation. (Sawhney et al., 2018a)
demonstrated the use of ensembles to approach the
detection of suicidal mentions on social media.

One of the most concerning issues with suicide-
related content on Twitter is the propagation of
harmful ideas through social network graphs. A
study by Grandjean (2016) performed a classifi-
cation of users by influence in digital communi-
ties based on graph density and vectors of cen-

1http://www.scmp.com/topics/weibo

trality. The study primarily concluded that some
users (nodes) in a social network graph had higher
influence factor than others. Ueda et al. (2017)
collected 1 million tweets following the suicides
of 26 prominent figures in Japan between 2010
and 2014 and investigated if media coverage of
suicides is correlated with an increase in the ac-
tual number of suicides. The reciprocal connectiv-
ity between authors of suicidal content suggested
a ripple effect in tightly-coupled virtual commu-
nities (Colombo et al., 2016) thereby concluding
that Twitter is an effective source for investigation
of virtual self-harm markers and appropriate inter-
vention. Tweet mining has been successfully been
applied in detecting social problems on the web as
indicated by Mathur et al. (2018a,b,c) and Mahata
et al. (2018).

3 Data

3.1 Data Collection

One of the foremost challenges in the domain of
suicidal ideation detection is the lack of avail-
ability of a public dataset due to privacy and
anonymity concerns borne out of social stigma as-
sociated with mental illness and suicide. Moti-
vated by the need to create a fresh dataset, the
primary requirement of developing a suicidal lan-
guage for data collection was identified. Rather
than developing a word list to represent this lan-
guage, a corpus of words and phrases were devel-
oped using anonymized data from known Suicide
web forums (Burnap et al., 2015). These forums
were identified by Recupero et al. (2008) as ded-
icated for suicidal issues with related discussions
in this subject. Between 3rd December 2017 and
31st January 2018, four of these Suicide forums
were scraped for the user posts and human anno-
tators were asked to identify if these posts had any
suicidal intent. In addition to this, user posts (con-
taining tags of ’suicide’) from the micro-blogging
websites, Tumblr and Reddit were collected and
added to this collection.

This resulted in the following composition of
posts: 300 from each of the Suicide forums and
2000 posts randomly selected from the Tumblr and
Reddit posts. These were subsequently human
annotated based on them having a suicidal intent
or not. Then, Term Frequency/Inverse Document
frequency (Ramos et al., 2003) (TF-IDF) method
was applied to this set of manually annotated texts
to identify terms which appear frequently in the

168

suicidal suicide not worth living slit my wrist
kill myself can’t go on ready to jump cut my wrist
my suicide note want to die sleep forever slash my wrist
my suicide letter be dead suicide plan do not want to be here
end my life better off without me bold want it to be over
never wake up better off dead bold want to be dead
suicide pact don’t want to be here tired of living nothing to live for
die alone go to sleep forever die now ready to die
wanna die wanna suicide commit suicide not worth living
why should I continue living take my own life thoughts of suicide I wish I were dead
to take my own life suicide ideation depressed kill me now

Table 1: Words/Phrases linked with Suicidal Intent

Suicidal Non-suicidal
I want to kill myself Visit the #SuicideAwarenessCampaign this weekend

I failed again. I can’t do this anymore. The movie was so bad, I wanted to kill myself.
When did I get addicted? Kill me now! 1 girl commits suicide from EY Square Rooftop
My husband has Cancer. I want to die. Finish this sentence: Before I die I want to —

My mental illness leaves me only to suicide An honest talk about the recent suicides in the city.
Suicide is my only really option... My friend attempted suicide. Weeks later I got this mail.

Life sucks. #gonnasuicide #onthebridge Idk man. Social media is suicide. Please kill urself

Table 2: Examples of human annotation of tweets

H1 H2 H3

H1 − 0.61 0.48
H2 0.61 − 0.51
H3 0.48 0.51 −

Table 3: Cohen’s Kappa for three annotators
H1, H2 and H3

texts belonging to the suicidal ideation class and
less frequently in the non-ideation class. These
terms play a role in differentiating between the two
classes. Finally, manual annotators were asked to
remove any terms from this list which were not
based on suicidal intent as well as duplicate terms.
This gave a final lexicon of 108 terms consisting
of but not limited to the phrases/words of Table 1.

The public Streaming API 2 offered by the mi-
croblogging website Twitter allows programmatic
collection of tweets as they occur, filtered by spe-
cific criteria. Using the same, anonymized data
was collected from Twitter. This content contained
self-classified suicidal ideation (i.e. text posts
tagged or ’hash-tagged’ with a word or phrase
present in the generated corpus).

2https://developer.twitter.com/en/docs

The tweets retrieved from Twitter using the API
contain extraneous information. It can be associ-
ated with a URL, user mention, media files(image,
audio, and video), timestamp, number of retweets.
For the tasks in this paper, the text from each
tweet was extracted while the rest of the infor-
mation about the tweet was discarded. Although
the tweets were collected from the ’Stream’ based
on a suicidal language earlier developed, the exact
sentiment of the tweets was unknown. Tweets con-
sisting of suicidal terms could be related to other
things as well. Eg. suicidal awareness campaign
and prevention, a news report consisting of a third
person’s suicide, sarcasm etc. This made a man-
ual annotation of the dataset imperative for better
accuracy.

3.2 Data Annotation

The final dataset consisting of 5213 text sentences
from different tweets was then, manually anno-
tated. Three human annotators were asked to clas-
sify the texts from the dataset based on binary
criterion (Does this text imply self-harm inflicting
tendencies or suicidal intent?). This means that
the annotators were asked to select one of the two
categories (Suicidal or Non-suicidal) and to se-

169

lect Suicidal in case of ambiguity. The suicidal
criterion means that the tweet is a clear display
of suicidal intent by the user. The suicide is im-
minent and not conditional unless some event is
a clear risk factor eg: depression, bullying, sub-
stance abuse. On the other hand, the non-suicidal
criteria is the default category for all the texts,
i.e. they show no evidence or ambiguous evidence
towards suicidal intent. They might include sar-
casm, news reports or suicidal awareness texts.
The classification is more clearly explained using
examples in Table 2.

A satisfactory agreement between the annota-
tors (e.g., 0.51 for H2 and H3) can be inferred
from Table 3.

As a result, 822 tweets in the dataset (ie.,
15.76% of the dataset) were annotated to be sui-
cidal while the rest were classified into ’Non-
Suicidal’.

4 Methodology

4.1 Preprocessing
Preprocessing involves filtering the input text to
improve the accuracy of the proposed methodol-
ogy by eliminating redundant features and noise.
This is achieved by applying a series of filters,
based on Xiang et al. (2012), in the order given
below to process the raw tweets prior to learning
the word embeddings.

1. Removal of non-English tweets using Ling-
Pipe (Baldwin and Carpenter, 2003) with
Hadoop.

2. Removal of URLs in tweets.

3. Identification and elimination of user men-
tions in tweet bodies having the format of
@username as well as retweets in the format
of RT.

4. Removal of all hashtags with length > 10 due
to a great volume of hashtags being concate-
nated words, which tends to amplify the vo-
cabulary size inadvertently and leads to re-
dundant features.

5. Condensation of three or more than three
repetitive letters into a single letter, e.g.
dieeee to die. Similar heuristics have been
used in other work such as (Go et al., 2009).

6. Stopword removal.

7. Removal of tokens that are not a sequence of
letters, - or ’. This includes removal of num-
bers, terms such as h31100oo, etc, which do
not represent words.

4.2 Distributed Word Representation
A distributed language representation X consists
of an embedding for every vocabulary word in
space S with dimension D, the dimension of the
latent representation space. The embeddings are
learned to optimize an objective function defined
on the original text, such as the likelihood of word
occurrences. An interesting implementation to
get the word embeddings is the word2vec model
(Mikolov et al., 2013a) which is used here.

word2vec is a group of related models that are
used to produce word embeddings. These mod-
els are shallow, two-layer neural networks that are
trained to reconstruct linguistic contexts of words.
word2vec takes as its input a large corpus of text
and produces a vector space, typically of several
hundred dimensions, with each unique word in the
corpus being assigned a corresponding vector in
the space. Word vectors are positioned in the vec-
tor space such that words that share common con-
texts in the corpus are located in close proximity
to one another in the space.

Generating word embeddings from text corpus
is an unsupervised process. To get high-quality
embedding vectors, a large amount of training data
is necessary. After training, each word, including
all hashtags, is represented by a real-valued vec-
tor which can be given as input to a deep learning
based model.

4.3 Deep Learning Models
An efficient model to classify sequential informa-
tion of arbitrary length is a Recurrent Neural Net-
work(RNN) (Elman, 1990) model.

However, the gradient vector of RNNs with
transition functions of this form can grow or decay
exponentially over long sequences (Hochreiter
et al., 2001) which makes it difficult to learn long
distance correlations.

Long Short Term Memory (Hochreiter and
Schmidhuber, 1997) prevents this vanishing or
explosion gradient seen in the RNN and is thus,
preferred over RNN. The LSTM has a memory
cell which consists of four main components:
input, output, forget gates and candidate memory
cell. The forget gates control the information that

170

Figure 1: The architecture of C-LSTM for sentence
modeling taken from (Zhou et al., 2015). Blocks
of the same color in the feature map layer and
window feature sequence layer corresponds to fea-
tures for the same window. The dashed lines con-
nect the feature of a window with the source fea-
ture map. The final output of the entire model is
the last hidden unit of LSTM.

is to be sent to the next time step. The memory
cell stores the data at each step and thus ensures
long-distance correlations. The output at each
time step depends on the input of that step, the
output from the previous time step, the forget
gates and the data in the memory cell.

The LSTM architecture is similar to a standard
RNN. At each time step, the output of the module
is controlled by a set of gates in Rd as a function
of the old hidden state ht1 and the input at the cur-
rent time step xt: the forget gate ft, the input gate
it and the output gate ot. These gates collectively
decide how to update the current memory cell Ct

and the current hidden state ht. We use d to denote
the memory dimension in the LSTM and all vec-
tors in this architecture share the same dimension.

LSTMs are well-suited to classify, process
and predict time series and capture long-term
dependencies in sentences along with a relative
insensitivity to gap length unlike alternative
models such as RNNs and hidden Markov Models
(Eddy, 1996) make it an excellent choice for the
identification of suicidal ideation in tweets.

In a C-LSTM Model (Zhou et al., 2015), CNN
and LSTM are stacked in a semantic sentence
modelling. As is shown in Figure 1, the CNN is
applied to text data and consecutive window fea-
tures which are extracted are fed into the LSTM

model which enables it to learn long-range de-
pendencies from higher-order sequential features.
The one-dimensional convolution involves a filter
vector sliding over a sequence and detecting fea-
tures at different positions. The C-LSTM model
uses multiple filters to generate multiple feature
maps which are rearranged as feature representa-
tions for each window. The new successive higher-
order window representations then are fed into
LSTM. The output of the hidden state at the last
time step of the LSTM is regarded as the docu-
ment representation. The efficient spatial encod-
ing and automatic feature extraction by the CNN
layer combined with the efficient text classifica-
tion by LSTMs motivate this study to explore the
C-LSTM model for suicidal ideation identifica-
tion.

4.4 Classification
Suicidal Ideation detection is formulated as a su-
pervised binary classification problem. For every
tweet ti ∈ D, the dataset, a binary valued variable
yi ∈ {0, 1} is introduced, where yi = 1 denotes
that the tweet ti exhibits Suicidal Ideation. To
learn this, the classifier must determine whether
any sentence in ti possesses a certain structure or
keywords that mark the existence of any possible
Suicidal thoughts. The word embeddings derived
from the previous step are used to train a classi-
fication model to identify tweets exhibiting suici-
dal ideation. Three Deep Learning based archi-
tectures, namely, vanilla RNN, vanilla LSTM and
C-LSTM, are explored for the suicidal ideation de-
tection task. The architectural is presented in the
following section.

The following steps are executed on every tweet
ti ∈ D:

1. Word Embeddings. Top-N frequent words oc-
curring in a tweet are encoded to form an em-
bedding layer utilizing the 300-dimensional
word2vec embeddings.

2. Sentence Embeddings. For the C-LSTM
model, a one dimensional CNN and max-
pooling layer are added after the embedding
layer. These sentence embeddings are then
fed into the LSTM layer.

3. Classification. Ultimately, the model feeds
the learned sentence embeddings (C-LSTM)
or word embeddings (Vanilla RNN or LSTM)
to a deep neural network (RNN or LSTM).

171

Model Accuracy Precision Recall F1 Score
LR: Character n-grams 0.669 0.663 0.753 0.702
LR: TF-IDF 0.727 0.767 0.778 0.772
LR: Bag of Words 0.737 0.712 0.788 0.748
SVM: Character n-grams 0.682 0.676 0.763 0.713
SVM: TF-IDF 0.732 0.724 0.793 0.758
SVM: Bag of Words 0.730 0.712 0.801 0.733
RNN 0.737 0.720 0.817 0.753
LSTM 0.789 0.745 0.874 0.796
C-LSTM 0.812 0.787 0.872 0.827

Table 4: Classification Results in terms of Evaluation metrics.

5 Experiment Settings

5.1 Baselines
In order to offer fair comparisons to other com-
petitive models, and validate the proposed Deep
Learning model, experiments are conducted with
baselines. Hand-crafted features are extracted
from tweets and are fed into a linear classifier.
Multinomial logistic regression (Böhning, 1992)
is used as a classifier with the three feature ex-
traction models given below. Support Vector
Machines have also been used for feature ex-
traction based suicide-ideation classification prob-
lems, and hence are also used as baselines to com-
pare performance. 10-fold cross-validation is per-
formed to report results in terms of the evaluation
metrics presented in the following subsections.

1. Character n-grams. State-of-the-art method
(Cavnar et al., 1994) for sentence level classi-
fication using up to 3-grams from each tweet.

2. TF-IDF. Text Frequency - Inverse Document
Frequency (TF-IDF) are commonly used fea-
tures for text classification.

3. Bag of Words. A bag-of-words model (Sriram
et al., 2010) is constructed by selecting the
50,000 most frequent words from the training
tweets. The count of each word is used to
create a feature vector for classification.

5.2 Model Architectures and Parameters
For the classification task, both a RNN and a
LSTM are trained using 10-fold cross-validation
to identify the best hyper-parameter settings. Pre-
Trained word2vec word embeddings that were
trained on 100 billion words from Google News
are employed as features for classification. These

vectors have a dimensionality of 300 and were
trained using the continuous bag-of-words archi-
tecture (Mikolov et al., 2013b). The experiment
settings pertaining to both are presented below:

1. RNN. Vanilla RNN with h = 128 units, 32
dense units, a dropout rate of 0.1.

2. LSTM. Vanilla LSTM with h = 128 memory
units, 32 dense units, a dropout probability of
0.2.

3. C-LSTM. Convolution Layer (mask size =
5, filter maps= 128)→ Max-Pooling Layer
(mask size = 2) → LSTM layer (h =
128) → Dropout Layer with dropout prob-
ability = 0.2.

ReLU (Nair and Hinton, 2010) was used for ac-
tivation the CNN layers in C-LSTM, and Dense
layer with single neuron and sigmoid activation
was used for all the models. Dropout layers were
added to all models to avoid over-fitting. A batch
size of 64 was chosen, and the models were trained
for a total of 10 epochs. The Adam Optimizer
(Kingma and Ba, 2014) was used to minimize log
loss.

5.3 Evaluation Metrics
The Baselines and Deep learning models above
are compared with each other in terms of the fol-
lowing metrics:

1. Precision =
tp

tp+fp

2. Recall = tp
tp+fn

3. F1 score =
2tp

2tp+fp+fn

4. Accuracy =
tp+tn

tp+tn+fp+fn

172

where, tp is the number of true positives, tn is the
number of true negatives, fp is the number of false
positives, and fn is the number of false negatives.

5.4 Results and Analysis

Table 4 shows the results of the baselines as well
as deep learning models on the suicide ideation de-
tection task in terms of the evaluation metrics. The
first six rows show results for baseline methods,
whereas the bottom three rows focus on proposed
deep learning models. The results shown are ob-
tained using 10-fold cross validation.

As the table shows, C-LSTM perform performs
significantly better than the baseline methods as
well as vanilla LSTM and RNN. This is attributed
to the ability of LSTMs to learn how to forget past
observations makes them more robust to noise,
and better able to capture long-term dependen-
cies in a tweet combined with the efficient en-
coding of the one-dimensional spatial structure in
the sequence of words for tweets which further
serve as input to the LSTM layer. RNNs are com-
parable to both TF-IDF and Bag of words mod-
els with Multinomial logistic Regression and Sup-
port Vector Machines. Among the baselines, the
TF-IDF model combined with multinomial logis-
tic regression is better than the others. Surpris-
ingly, standard feature extraction methods coupled
with a linear classifier perform comparatively well
as compared to RNNs that involve a much larger
amount of computation. However, there is a vast
improvement with the incorporation of LSTM and
C-LSTM which easily compensates for the addi-
tional computation involved.

5.5 Error Analysis

A brief error analysis is presented in this subsec-
tion to highlight some of the tweets both annota-
tors and the proposed models that gave erroneous
results.

• Subtle references Life is so meaningless to
me right now, should prolly end it The mod-
els were unable to identify the subtle hints to-
wards suicidal ideation.

• Uncertainty Friends are worrying about me
committing suicide. It is unclear for both an-
notators and the system to identify the nature
of this tweet due to the lack of explicit suici-
dal intent.

• Unfamiliarity I finally found a whole bot-
tle full of pills, im sorry The current train-
ing dataset lacks in terms of suicidal ideation
phrases and would need updates to cover
broader aspects and learn the context between
topics such as pill overdose and suicides.

6 Conclusion and Future Work

In this paper, three Deep Learning based mod-
els, particularly RNN, LSTM, and C-LSTM are
employed for the task of suicidal ideation detec-
tion in tweets. For this purpose, a lexicon of
terms was first generated by scraping and manu-
ally annotating anonymized data from known sui-
cide Web forums. A dataset of tweets was col-
lected using the Twitter REST API by using search
queries corresponding to the generated lexicon.
Human annotators labeled tweets with suicidal in-
tent present or absent, which were then used to
train both three machine learning-based baseline
models as well as the three proposed deep learn-
ing models. A quantitative comparison between
the various models revealed the effectiveness of a
C-LSTM based model in suicidal ideation detec-
tion in tweets. This was attributed to the ability
of CNNs to spatially encode the tweets into a one-
dimensional structure to be fed into LSTMs along
with the ability of LSTMs to capture long-term de-
pendencies. In the future, this work can be ex-
tended by investigating other deep learning based
architectures for the tasks of suicidal ideation de-
tection on Twitter as well as other Web forums and
Social media. Also, nature-inspired heuristics can
be explored for efficient feature selection as done
by Sawhney et al. (2018b,c).

References
Breck Baldwin and Bob Carpenter. 2003. Ling-

pipe. Available from World Wide Web: http://alias-i.
com/lingpipe.

Dankmar Böhning. 1992. Multinomial logistic regres-
sion algorithm. Annals of the Institute of Statistical
Mathematics, 44(1):197–200.

Pete Burnap, Walter Colombo, and Jonathan Scour-
field. 2015. Machine classification and analysis of
suicide-related communication on twitter. In Pro-
ceedings of the 26th ACM conference on hypertext
& social media, pages 75–84. ACM.

William B Cavnar, John M Trenkle, et al. 1994. N-
gram-based text categorization. Ann arbor mi,
48113(2):161–175.

173

Gualtiero B Colombo, Pete Burnap, Andrei Hodorog,
and Jonathan Scourfield. 2016. Analysing the con-
nectivity and communication of suicidal users on
twitter. Computer communications, 73:291–300.

Kate Daine, Keith Hawton, Vinod Singaravelu, Anne
Stewart, Sue Simkin, and Paul Montgomery. 2013.
The power of the web: a systematic review of stud-
ies of the influence of the internet on self-harm and
suicide in young people. PloS one, 8(10):e77555.

Bart Desmet and VéRonique Hoste. 2013. Emotion de-
tection in suicide notes. Expert Systems with Appli-
cations, 40(16):6351–6358.

Sean R Eddy. 1996. Hidden markov models. Current
opinion in structural biology, 6(3):361–365.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Martin Grandjean. 2016. A social network analysis of
twitter: Mapping the digital humanities community.
Cogent Arts & Humanities, 3(1):1171458.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi,
Jürgen Schmidhuber, et al. 2001. Gradient flow in
recurrent nets: the difficulty of learning long-term
dependencies.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Xiaolei Huang, Lei Zhang, David Chiu, Tianli Liu,
Xin Li, and Tingshao Zhu. 2014. Detecting suici-
dal ideation in chinese microblogs with psycholog-
ical lexicons. In Ubiquitous Intelligence and Com-
puting, 2014 IEEE 11th Intl Conf on and IEEE 11th
Intl Conf on and Autonomic and Trusted Comput-
ing, and IEEE 14th Intl Conf on Scalable Computing
and Communications and Its Associated Workshops
(UTC-ATC-ScalCom), pages 844–849. IEEE.

Jared Jashinsky, Scott H Burton, Carl L Hanson, Josh
West, Christophe Giraud-Carrier, Michael D Barnes,
and Trenton Argyle. 2014. Tracking suicide risk fac-
tors through twitter in the us. Crisis: The Jour-
nal of Crisis Intervention and Suicide Prevention,
35(1):51.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Debanjan Mahata, Jasper Friedrichs, Rajiv Ratn Shah,
and Jing Jiang. 2018. Did you take the pill?-
detecting personal intake of medicine from twitter.
arXiv preprint arXiv:1808.02082.

Puneet Mathur, Meghna Ayyar, Sahil Chopra, Simra
Shahid, Laiba Mehnaz, and Rajiv Shah. 2018a.
Identification of emergency blood donation request
on twitter. In Proceedings of the Third Workshop
On Social Media Mining for Health Applications.

Puneet Mathur, Ramit Sawhney, Meghna Ayyar, and
Rajiv Shah. 2018b. Did you offend me? classifica-
tion of offensive tweets in hinglish language. In Pro-
ceedings of the Second Workshop on Abusive Lan-
guage Online.

Puneet Mathur, Rajiv Shah, Ramit Sawhney, and De-
banjan Mahata. 2018c. Detecting offensive tweets in
hindi-english code-switched language. In Proceed-
ings of the Sixth International Workshop on Natural
Language Processing for Social Media, pages 18–
26.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013a. Distributed represen-
tations of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference
on machine learning (ICML-10), pages 807–814.

Bridianne O’Dea, Stephen Wan, Philip J Batterham,
Alison L Calear, Cecile Paris, and Helen Chris-
tensen. 2015. Detecting suicidality on twitter. In-
ternet Interventions, 2(2):183–188.

Juan Ramos et al. 2003. Using tf-idf to determine word
relevance in document queries. In Proceedings of
the first instructional conference on machine learn-
ing, volume 242, pages 133–142.

Patricia R Recupero, Samara E Harms, and Jeffrey M
Noble. 2008. Googling suicide: surfing for suicide
information on the internet. The Journal of clinical
psychiatry.

Ramit Sawhney, Prachi Manchanda, Raj Singh, and
Swati Aggarwal. 2018a. A computational approach
to feature extraction for identification of suicidal
ideation in tweets. In Proceedings of ACL 2018, Stu-
dent Research Workshop, pages 91–98.

Ramit Sawhney, Puneet Mathur, and Ravi Shankar.
2018b. A firefly algorithm based wrapper-penalty
feature selection method for cancer diagnosis. In
International Conference on Computational Science
and Its Applications, pages 438–449. Springer.

174

Ramit Sawhney, Ravi Shankar, and Roopal Jain.
2018c. A comparative study of transfer functions
in binary evolutionary algorithms for single objec-
tive optimization. In International Symposium on
Distributed Computing and Artificial Intelligence,
pages 27–35. Springer.

Bharath Sriram, Dave Fuhry, Engin Demir, Hakan Fer-
hatosmanoglu, and Murat Demirbas. 2010. Short
text classification in twitter to improve information
filtering. In Proceedings of the 33rd international
ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 841–842. ACM.

Hajime Sueki. 2015. The association of suicide-related
twitter use with suicidal behaviour: a cross-sectional
study of young internet users in japan. Journal of
affective disorders, 170:155–160.

Michiko Ueda, Kota Mori, Tetsuya Matsubayashi, and
Yasuyuki Sawada. 2017. Tweeting celebrity sui-
cides: Users’ reaction to prominent suicide deaths
on twitter and subsequent increases in actual sui-
cides. Social Science & Medicine, 189:158–166.

Guang Xiang, Bin Fan, Ling Wang, Jason Hong, and
Carolyn Rose. 2012. Detecting offensive tweets
via topical feature discovery over a large scale twit-
ter corpus. In Proceedings of the 21st ACM inter-
national conference on Information and knowledge
management, pages 1980–1984. ACM.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis C. M. Lau. 2015. A C-LSTM neural network for
text classification. CoRR, abs/1511.08630.

175

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 176–181
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

UTFPR at IEST 2018:
Exploring Character-to-Word Composition for Emotion Analysis

Gustavo H. Paetzold
Federal University of Technology - Paraná / Brazil

ghpaetzold@utfpr.edu.br

Abstract

We introduce the UTFPR system for the
Implicit Emotions Shared Task of 2018:
A compositional character-to-word recur-
rent neural network that does not exploit
heavy and/or hard-to-obtain resources. We
find that our approach can outperform mul-
tiple baselines, and offers an elegant and
effective solution to the problem of ortho-
graphic variance in tweets.

1 Introduction

Emotion analysis has become one of the most
prominent tasks in Natural Language Processing
(NLP) in recent years. It can be framed as either
a regression task, where one wants to gauge the
degree of some emotion, such as how optimistic a
certain opinion is with respect to a given matter,
or a classification task, where one wants to decide
on which type of emotion is being conveyed, such
as happiness, fear, anger, etc. The task is particu-
larly interesting for industry applications, since it
can potentially allow for institutions to automati-
cally assess the public opinion on things like ini-
tiatives, products, etc. The task can also be applied
in many interesting natural language domains. For
instance, one can try to determine whether a cer-
tain restaurant review posted in a major news out-
let favors the establishment, or whether a certain
tweet about a celebrity or institution conveys sup-
port or disdain.

The type of target domain can greatly influence
how an emotion analysis system is structured. If
the targets are formally written and well revised

c© 2018 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

articles from newspapers and magazines, then one
can expect to find only orthographically correct
words and appropriately structured sentences in
the input. The authors of tweets, on the other hand,
often use many distinct orthographic variants of
the same word (ex: you, u, youu), tend to have
less regard for form, and use non-textual symbols
to express meaning, such as emojis. Also, articles
tend to be much longer than tweets, which have a
size limit of just a few hundred characters. Sys-
tems for the later type of domain must address a
lot of challenges that systems for the former do not
have to, which can compel them to be much more
complex.

The SeerNet system (Duppada et al., 2018), one
of the best performing systems of the SemEval
2018 shared task on affect in tweets (Mohammad
et al., 2018), is a great example of that. In this
shared task, participants were asked to create both
regression (for emotion intensity) and classifica-
tion (for emotion decision) systems for emotion
analysis in English, Arabic, and Spanish. In or-
der to overcome the challenge of analyzing tweets,
the SeerNet system resorts to a wide range of
specialized resources, such as special tokenizers
and embedding models for tweets, emoji analyz-
ers, and even off-the-shelf systems trained on large
amounts of curated data. Though undoubtedly ef-
fective, the SeerNet has a very complex architec-
ture that would be difficult to replicate, specially
for under-resourced languages.

In an effort to offer a simpler solution to emo-
tion analysis in tweets, we present the UTFPR sys-
tem submitted to Implicit Emotions Shared Task
(IEST) of 2018 (Klinger et al., 2018). Ours is
a character-to-word recurrent neural network ar-
chitecture that offers an elegant solution to ortho-
graphic variance within tweets, and does not rely

176

https://doi.org/10.18653/v1/P17

on any resources other than the input provided by
the shared task organizers. We describe our ap-
proach in what follows.

2 Task Description

The UTFPR system is a contribution to the IEST
2018 shared task, hosted at the 9th Workshop on
Computational Approaches to Subjectivity, Senti-
ment & Social Media Analysis (WASSA 2018).
In this shared task, participants were tasked with
classifying tweets with respect to the emotion they
convey.

The task organizers provided participants a
training set composed of 153, 383 instances, a trial
set with 9, 591 instances, and an unlabeled test set
with 28, 757 instances. Each instance is composed
of a tweet with a target emotion word replaced with
a [#TRIGGERWORD#] marker, and an emotion
label. There are six possible emotions in this setup:
joy, sad, disgust, anger, surprise, and fear.

The organizers also provided a wide array of
external resources that could complement the sys-
tems created, such as emotion dictionaries, lexi-
cons, datasets from previous tasks, etc.

3 Preliminary Experiment

Before conceiving the final version of the UTFPR
system, we conducted a preliminary experiment
with baseline classification models in order to test
some model design options, and hence guide the
creation of the UTFPR approach. More specifi-
cally, we assessed two design options with respect
to input:

• Structure: Since each instance contains
an omitted target emotion word, we tested
whether it is more productive to address the
entire tweet as a bag of words, or to individ-
ually model the words to the left and right of
the target.

• Enhancement: We also tested whether or not
it is helpful to complement the training set
with data gathered in unsupervised fashion.

3.1 Experimental Setup
In this section, we delve into the details of how our
preliminary experiment was structured.

Data: We used 90% of the training data from the
shared task for training, and 10% for testing. No-
tice that we did not use the trial data for testing

because the labels had not been made available at
the time this experiment was conducted.

Models: We tested three types of machine learn-
ing models; logistic regression, decision trees, and
random forests. All these models were imple-
mented with the help of scikit-learn1.

Input Features: We tried two types of fea-
tures; TF-IDF weights from a bag-of-words model
trained over our input training data (TF-IDF), and
the average word embedding values of the words
in the tweet (Embeddings). We used the 300-
dimension word embeddings model of Paetzold
and Specia (2016), which was trained using the
CBOW model (Mikolov et al., 2013) over a cor-
pus of 7̃ billion words from assorted sources, such
as news articles, subtitles, tweets, etc.

Input Structure: We tested two types of inputs
to the models; one in which we calculate and con-
catenate two separate feature representations of the
words to the left and right of the target (Separate),
and another in which we calculate only one feature
representation of all words in the tweet aside from
the target (Joint).

Input Enhancement: We tested two variants of
each model; one trained only on our training data
(TR), and another trained on the training data
plus a set of 1, 774, 423 automatically extracted
complementary instances (TR+E). To produce the
complementary instances we first extracted all
morphological variants and synonyms of the words
“joy”, “sad”, “disgust”, “anger”, “surprise”, and
“fear”, then looked for sentences containing these
words in the same 7 billion word corpus used to
train our embeddings. Finally, we replaced the
emotion word in each sentence with [#TRIGGER-
WORD#], and assigned the appropriate emotion
label to the instance.

3.2 Preliminary Results

The macro F-score obtained by each variant tested
is featured in Table 1. The results reveal that,
across almost all scenarios, modeling the words to
the left and right of the target (Separate) without
data enhancement (TR) yields the most promising
results.

1http://scikit-learn.org
177

TF-IDF Embeddings
Joint Separate Joint Separate

TR TR+E TR TR+E TR TR+E TR TR+E
Logistic Regression 0.270 0.406 0.277 0.220 0.139 0.095 0.160 0.058

Decision Trees 0.201 0.165 0.213 0.191 0.112 0.101 0.155 0.145
Random Forests 0.228 0.186 0.243 0.219 0.122 0.096 0.177 0.166

Table 1: Preliminary experiment results. Each cell represents the macro F-score obtained by a given model.

4 The UTFPR System

The UTFPR system is a compositional character-
to-word recurrent neural network model that at-
tempts to address the challenges of working with
tweets in an elegant way. Guided by the findings
from our preliminary experiment, we structured
our as illustrated in Figure 1.

First, the words to the left and right of the tar-
get word, which we henceforth refer to as left and
right contexts, are passed through a character em-
bedding layer. The embeddings are then passed
onto a bidirectional GRU network that produce a
numerical representation for each word in the sen-
tence. The representations of the words in the left
and right contexts are then passed on to two sep-
arate bidirectional GRU networks, which in turn
produce a final representation of each context. Fi-
nally, these representations are concatenated and
passed on to a final perceptron layer, which pre-
dicts the most likely emotion based on softmax.

The model uses no external resources other than
the sentence itself as input, and because it is a neu-
ral model, it can be configured with respect to the
size of embeddings, type of recurrent layers used,
number of layers, activation function, etc. We de-
scribe our experiments and configuration of the
UTFPR system in what follows.

5 Experimental Setup

For our experiments, we configure the UTFPR sys-
tem as follows:

• Character embedding size: 25

• RNN layer type: Gated Recurrent Units
(GRU)

• RNN layer depth: 2

• RNN layer size: 50

• Dropout proportion: 50%

• Loss function: Cross-entropy

• Framework used: PyTorch2

As mentioned in section 2, we submited the
UTFPR system to the IEST 2018 shared task. We
trained the UTFPR system over the entire train-
ing set provided by the organizers, and validated
it over the trial set. Our final submission was
the model resulting from iteration with the lowest
cross-entropy error on the trial set.

In order to offer some points of comparison and
highlight the importance of some design decisions
made when creating UTFPR, we trained two other
variants of UTFPR:

• UTFPR-C: A version of UTFPR without the
character-to-word layers. Instead, it uses as
input word embeddings extracted from the
word embeddings model described in section
3.

• UTFPR-CD: A version of UTFPR-C trained
without dropout.

Due to the limited amount of computing re-
sources available to us, we were not able to train
any more variants of UTFPR. We also include in
our performance comparison all the baseline mod-
els described in section 3, the baselines provided
by the IEST 2018 organizers, and the 5 systems
with the highest macro F-scores in the shared task.

6 Results

Table 2 showcases the micro and macro Precision,
Recall, and F-scores of our UTFPR variants, as
well the IEST 2018 baselines and top 5 systems.
Although our approach did not manage to reach the
top of the leaderboards, the results do highlight the
impact of some design decisions made when creat-
ing the final UTFPR system. As it can be noticed,
incorporating dropout and adding a character-to-
word encoder to our model slightly increases its
performance. While the complete UTFPR system
2https://pytorch.org

178

Figure 1: Architecture of the UTFPR system

Micro Macro
P R F P R F

Amobee - - - - - 0.714
IIIDYT - - - - - 0.710

NTUA-SLP - - - - - 0.703
UBC-NLP - - - - - 0.693

Sentylic - - - - - 0.692
BOW MaxEnt - - - - - 0.599
“Joy” Always - - - - - 0.051
UTFPR-CD 0.541 0.541 0.541 0.550 0.544 0.541

UTFPR-C 0.545 0.545 0.545 0.551 0.546 0.545
UTFPR 0.568 0.568 0.568 0.575 0.569 0.569

Table 2: Official micro and macro scores obtained by the UTFPR systems. Bold-case scores showcase the highest scores
obtained by the UTFPR systems. The first five lines showcase the scores for the top 5 IEST 2018 systems, and the following
two the ones for the IEST 2018 baselines.

179

TF-IDF Embeddings
Joint Separate Joint Separate

TR TR+E TR TR+E TR TR+E TR TR+E
Logistic Regression 0.496 0.403 0.500 0.406 0.255 0.093 0.293 0.104

Decision Trees 0.369 0.304 0.387 0.351 0.211 0.188 0.284 0.267
Random Forests 0.418 0.346 0.449 0.405 0.232 0.182 0.332 0.310

Table 3: Macro F-scores obtained by our baseline models on the official IEST 2018 test set.

managed to place 23rd in the competition, either
of its two variants would place 26th.

Table 3 features the macro F-score results ob-
tained by the baseline systems described in section
3 on the IEST 2018 test set. The results are consis-
tent with the ones in Table 1, which brings some
reassurance with respect to the usefulness of our
preliminary experiment. Nonetheless, none of the
baseline systems managed to outperform the more
elaborate UTFPR systems.

7 Analysis

In addition to our performance comparison, we
also conducted complementary analyses that al-
lowed us to delve into the merits and limitations
of the UTFPR system. First we produced its con-
fusion matrix, which is illustrated in Table 4. Al-
though the mistakes made by the UTFPR system
are well spread out throughout the matrix, it can
be noticed that, despite the labels in the reference
set being present in even proportions, the UTFPR
model is slightly biased towards the anger and sur-
prise labels.

Finally, we conducted an experiment compar-
ing the robustness of the three UTFPR variants de-
scribed in section 5 (UTFPR, UTFPR-C, UTFPR-
CD). For this experiment, we first created an or-
thographically “jammed” version of the IEST 2018
test set. For each tweet in the test set, we randomly
selected 75% of its words, and then either du-
plicated (50% chance) or removed (50% chance)
a randomly selected letter. We then trained the
UTFPR variants on the regular IEST 2018 train-
ing and trial set, and tested them over our jammed
test set.

The results in Table 5 show that adding the com-
positional character-to-word encoder to our model
greatly increases its robustness with respect to or-
thographic variance. While jamming the words
cost the UTFPR-C and UTFPR-CD variants up-
wards of 14, 3% in macro F-score, the performance
of our complete UTFPR system only dropped by

2, 2%.

8 Conclusions

In this contribution, we introduced the UTFPR
emotion analysis system for the IEST 2018 shared
task. Unlike current state-of-the-art approaches,
our model does not rely on external resources, and
employs instead a single compositional recurrent
neural network that learns representations of sen-
tences based on its words, and of words based on
its characters.

Through our experiments we found that, al-
though the UTFPR system cannot compete with
more elaborate, resource-heavy approaches, it
does offer a promising solution to the task that is
very robust to orthographic variance. In the future,
we aim to create more sophisticated variants of
the UTFPR approach that incorporate other cost-
effective sources of information to better inform
the model and hence increase its performance.

9 Acknowledgments

We would like to thank the Federal University of
Technology - Paraná for supporting this contribu-
tion.

References
Duppada, Venkatesh, Royal Jain, and Sushant Hiray.

2018. Seernet at semeval-2018 task 1: Domain
adaptation for affect in tweets. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 18–23. Association for Computational
Linguistics.

Klinger, Roman, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Analy-
sis. Association for Computational Linguistics.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

180

joy sad disgust anger surprise fear % Ref.
joy 2790 595 295 646 563 357 18.24%

sad 343 2582 451 467 316 181 15.09%

disgust 203 524 2784 429 677 177 16.67%

anger 399 417 435 2530 686 327 16.67%

surprise 290 296 478 442 2971 315 16.66%

fear 323 326 275 523 660 2684 16.66%

% Pred. 15.12% 16.48% 16.41% 17.52% 20.42% 14.05% -

Table 4: Confusion matrix of the UTFPR system. Lines represent reference labels and columns represent predictions. The last
column and line feature the occurrence proportion of each emotion in the reference and predicted label set, respectively.

Micro Macro
P R F P R F

UTFPR-CD 0.400 0.400 0.400 0.414 0.403 0.398
UTFPR-C 0.408 0.408 0.408 0.414 0.407 0.404

UTFPR 0.546 0.546 0.546 0.552 0.547 0.547

Table 5: Official micro and macro scores obtained by the UTFPR systems on the jammed test set. Bold-case scores showcase
the highest scores obtained by the UTFPR systems.

Mohammad, Saif, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. Semeval-
2018 task 1: Affect in tweets. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 1–17. Association for Computational
Linguistics.

Paetzold, Gustavo H. and Lucia Specia. 2016. Unsu-
pervised lexical simplification for non-native speak-
ers. In Proceedings of the 13th AAAI Conference on
Artificial Intelligence, pages 3761–3767.

181

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 182–188
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

HUMIR at IEST-2018: Lexicon-Sensitive and Left-Right
Context-Sensitive BiLSTM for Implicit Emotion Recognition

Behzad Naderalvojoud, Alaettin Ucan and Ebru Akcapinar Sezer
Department of Computer Engineering

Hacettepe University, Turkey
{n.behzad, aucan, ebru}@hacettepe.edu.tr

Abstract

This paper describes the approaches used in
HUMIR system for the WASSA-2018 shared
task on the implicit emotion recognition. The
objective of this task is to predict the emotion
expressed by the target word that has been ex-
cluded from the given tweet. We suppose this
task as a word sense disambiguation in which
the target word is considered as a synthetic
word that can express 6 emotions depending
on the context. To predict the correct emo-
tion, we propose a deep neural network model
that uses two BiLSTM networks to represent
the contexts in the left and right sides of the
target word. The BiLSTM outputs achieved
from the left and right contexts are consid-
ered as context-sensitive features. These fea-
tures are used in a feed-forward neural net-
work to predict the target word emotion. Be-
sides this approach, we also combine the BiL-
STM model with lexicon-based and emotion-
based features. Finally, we employ all mod-
els in the final system using Bagging ensemble
method. We achieved macro F-measure value
of 68.8 on the official test set and ranked sixth
out of 30 participants.

1 Introduction

Textual emotion recognition has received increas-
ing attention in the natural language processing
and computational linguistics in the recent decade.
It aims to identify the emotion expressed by the
given text based on two emotion models: cat-
egorical model and dimensional model (Russell
2003). While the categorical one uses discrete
emotional categories such as Ekman’s six basic
emotions (Ekman, 1992), the dimensional one de-
fines emotions in a k-dimensional space; each di-
mension represents an attribute of the emotion
such as valence, arousal and dominance. How-
ever, the objective of the Implicit Emotion Shared
Task (IEST) is to predict the emotion expressed

by the target word excluded from the given tweet
instead of the emotion expressed by the tweet
(Klinger et al., 2018). This task is organized based
on the categorical model over 6 emotion categories
as anger, disgust, fear, joy, sadness, and surprise.

Many approaches have been proposed for tex-
tual emotion recognition task. In general, these
approaches can be grouped into 3 main cate-
gories: rule-based approaches, machine learning
approaches and deep learning approaches. Rule
based approaches exploit linguistic lexical re-
sources like WordNet-Affect (Strapparava et al.,
2004) as well as unsupervised techniques such
as Latent Semantic Analysis (LSA) in rule-based
classifiers (Kim et al., 2010; Lee et al., 2010). The
second group of the approaches employs machine
learning algorithms –such as support vector ma-
chines, naive Bayes, random forest, logistic re-
gression, etc– to classify a text into emotion cat-
egories (Liew and Turtle, 2016). This group of
approaches needs an extensive feature engineering
as well as domain knowledge. Furthermore, in this
group, many of emotion lexicons which are gener-
ated manually or automatically play an important
role in extracting emotion-specific features. For
instance, (Mohammad et al., 2013) proposes an
SVM classifier based on a variety of feature sets
extracted from manually and automatically gener-
ated sentiment lexicons and (Köper et al., 2017)
exploits several lexicon-based features and em-
ploys them in the random forest classifier.

Unlike the previous approach, deep learning
methods do not require any extensive feature en-
gineering and can automatically extract features
from raw text. Long Short-Term Memory (LSTM)
and Convolutional Neural Network (CNN) are the
basis of many approaches in deep learning for
emotion recognition (Abdul-Mageed and Ungar,
2017; Kalchbrenner et al., 2014). The key ob-
jective of the both LSTM and CNN methods is

182

https://doi.org/10.18653/v1/P17

to handle the semantic compositionality and to
model the compositional changes on the text se-
mantic according to its syntactic and semantic
structure. However, some methods train CNN and
LSTM models jointly (Stojanovski et al., 2016)
or use a CNN followed by a LSTM (Wang et al.,
2016; Köper et al., 2017).

In this paper, we suppose the target word as a
synthetic ambiguous word that can express 6 emo-
tions depending on the context. To predict the cor-
rect emotion, we propose 7 deep neural network
models that use three context-sensitive, lexicon-
based and emotion-weight features. The influence
of these features is investigated over the proposed
deep neural network models where they are em-
ployed to identify the context-dependent emotion
of the target word.

2 System Description

In this section, we describe our proposed system to
predict the emotion expressed by the target word
which has been excluded from the tweet. In this
system, we employ 6 deep neural network mod-
els along with a multi-layer perceptron (MLP) and
combine them into a single predictive model us-
ing an ensemble method. All the models are ob-
tained from 4 different approaches namely BiL-
STM, Lexicon-BiLSTM, Left-Right BilSTM and
Lexicon-MLP. In these models, three kinds of fea-
tures are extracted from a tweet and feed into a
feed forward neural network: (1) context-sensitive
features that are extracted from hidden state vec-
tors of the BiLSTM network, (2) lexicon-based
features that are obtained from AffectiveTweets
Weka package (Mohammad and Bravo-Marquez,
2017) and (3) emotion-weight features that are
computed by a feature evaluation metric proposed
in (Naderalvojoud et al., 2015). In the following
sections, we will describe our models and explain
how they use these features to predict the emotion
of the target word.

2.1 Feature Sets

The first feature set is obtained from the output of
the Bidirectional Long Short-Term Memory (BiL-
STM) network. BiLSTM is a variant of Recurrent
Neural Network that uses LSTM cells to model a
sequence. It encodes a tweet once from the be-
ginning to end (left-to-right) and once from end
to beginning (right-to-left). As a result, it maps
a tweet to a pair of hidden state vectors. These

vectors are used as context-sensitive features in
our system to learn the semantic composition ef-
fects. The second kind of features are extracted
from different sentiment and emotion lexicons.
We have used 45 lexicon-based features extracted
from the AffactiveTweet of Weka package. The
details of these features can be found in (Moham-
mad and Bravo-Marquez, 2017). We also pro-
pose 6 emotion-weight features (corresponding to
6 emotion classes) as the third feature set. This
feature set indicates the emotional weights of a
certain tweet with respect to emotion classes. We
first calculate the relatedness degree of words to
each emotion class using PNF metric proposed in
(Naderalvojoud et al., 2015) as Eq. 1:

PNF (t, c) = 1 +
P (t|c)− P (t|c̄)
P (t|c) + P (t|c̄) (1)

In Eq. 1, P (t|c) and P (t|c̄) denotes the oc-
currence probability of term t given and not
given emotion class c, respectively. Thus, each
word in the vocabulary set is represented by a 6-
dimensional emotion-vector. Finally, to calculate
the emotion-weight features for a tweet, we sum
up the emotion vectors of individual words within
the tweet.

2.2 Emotion-Specific Word Embedding

In our system, we have employed 200-
dimensional pre-trained word embeddings which
have been trained on 2B tweets using GloVe
embedding model1 (called as TwitterGloVe). The
distributed representation of words (also called
as word embedding) is the basis of deep learning
methods in NLP applications. Word embeddings
represent words in the compact real value vectors
in which the semantic and syntactic information
of words are embedded into the vector space.
This kind of representation provide us an inherent
notion of relationships between words and we can
detect words that are semantically similar to each
other. However, the words that express opposite
sentiment/emotion may have similar vectors in
this space (Tang et al., 2014; Yu et al., 2017). At
the same time, the lexical variations in the social
media data make a challenge for dealing with
out-of-vocabulary (OOV) words. For example,
almost 3.5K out of 25K words in our vocabulary
set were not matched to any word embedding.

1http://nlp.stanford.edu/data/glove.twitter.27B.zip

183

To deal with these two problems, we gener-
ate a simple BiLSTM model (which will be fur-
ther presented in Section 2.4) to predict the emo-
tion of the target word. In this model, we ini-
tialize the weight-matrix of the embedding layer
with pre-trained word embeddings and assign to
all OOV words random vectors created from a
uniform distribution over [-0.25, 0.25]. We tune
the embedding matrix during training. Finally,
we employ the embedding matrix of the models
achieved from epochs 1, 2 and 5 as our emotion-
specific embeddings. We then repeat the same ex-
periment using our emotion-specific embeddings
with 50 epochs, however they are not tuned dur-
ing training. Table 1 shows the results obtained
from 3 emotion-specific embeddings as well as
the TwitterGloVe. From this table, the embed-
dings achieved from the first epoch is the best. As
the embeddings have been trained over the train-
ing data, well-tuned embeddings cause model to
be overfit. Thus, we consider the embeddings
achieved from the first epoch as the final system
embeddings.

Model-WordEmbedding Acc %
BiLSTM-Emotion-Specific-WE-1 66.53
BiLSTM-Emotion-Specific-WE-2 66.30
BiLSTM-Emotion-Specific-WE-5 62.62
BiLSTM-TwitterGloVe 66.35

Table 1: The accuracy of BiLSTM model using 4 word
embeddings on the development set

2.3 Lexicon-based Multi-Layer Perceptron

To evaluate the importance of lexicon-based fea-
tures as well as emotion-weight features, we use a
simple multi-layer perceptron (MLP) model with
3 input, hidden and output layers. Two different
models are trained by using two sets of features.
While a tweet is represented using 45 lexicon-
based features in the first model, they are rep-
resented by adding emotion-weight features into
our prior feature set in the second one. Thus,
the inputs of the first and the second models are
45 and 51-dimensional vectors. We set the num-
ber of hidden units as twice the input and assign
them ReLU activation function. Finally, we ap-
ply dropout with a rate of 0.5 to the output of the
hidden layer and pass them to the output. The
output layer consists of 6 units with sigmoid ac-
tivation function. Table 2 shows the best accuracy

achieved from each of two models on the develop-
ment set. From this table, we observe that adding 6
emotion-weight features to our lexicon-based fea-
tures increases the accuracy from 37.54 to 49.81.
Hence, we select the second model for the final
system and also consider both feature sets in the
other models. In order to make a comparison with
linear models, we also used libSVM with linear
kernel function in this experiment. As seen, MLP
outperforms SVM when using 45 lexicon-based
features.

Model Acc %
libSVM with 45 features 34.71
MLP with 45 features 37.54
MLP with 51 features 49.81

Table 2: The accuracy of SVM and MLP on the devel-
opment set

2.4 Lexicon-Sensitive BiLSTM
In this section, we describe 2 types of deep neural
network models using BiLSTM to predict the tar-
get word emotion. First, we create a simple 4-layer
neural network namely input, embedding, BiLSTM
and output layers. Each tweet is represented se-
quentially using 25K most frequent words. Those
words out of vocabulary are treated as unknown
word (UNK). However, the target word is not con-
sidered as UNK. In all tweets, the target word is
supposed as a single particular word that can ex-
press all of the 6 emotions. In this model, pre-
trained emotion-specific word vectors (described
in Section 2.2) are used in the embedding layer.
Here, a tweet which is represented as a sequence
of word vectors is given to the BiLSTM layer
in which the dimension of the hidden vectors in
LSTM is 256. In order to avoid overfitting, we
apply dropout (Srivastava et al., 2014) with a rate
of 0.5 to the input of the BiLSTM layer. Finally,
the output layer with 6 softmax units predicts the
emotion of the target word.

In the second model, the lexicon-based and
emotion-weight features are fed into the prior BiL-
STM model. The output of the BiLSTM layer
is concatenated with 51-dimensional feature vec-
tor described in Section 2.3. Here, we actually
employ all the three kinds of feature sets stated
in Section 2.1 and predict the emotion of the tar-
get word by using these features through a feed
forward neural network. We again apply dropout
with a rate of 0.4 to the input of the feed forward

184

Seq. Input (79)

Embedding Layer
(79-200)

BLSTM Layer (512)

Output (Softmax Layer) (6)

Lexicon+emotion-weight
Input Features (51)

Concat. layer (563) with dropout 0.4

Figure 1: The architecture of Lexicon-BiLSTM ap-
proach

neural network. Figure 1 depicts the overall archi-
tecture of the proposed model. This approach is
called as Lexicon-BiLSTM in our experiments.

2.5 Left-Right Context-Sensitive BiLSTM

In the three previous approaches, we actually clas-
sified each tweet according to the emotion of the
target word. However, in the fourth approach, we
suppose the target word as a synthetic ambiguous
word that can express 6 emotions depending on the
context. Thus, our objective is to disambiguate the
emotion expressed by this synthetic word in the
given context (tweet). To this end, we consider
the left and the right sides of the target word sep-
arately. We extract two semantic vectors from the
context of the target word by applying BiLSTM
model to its left and right sides. Hence, we call
this approach as Left-Right context-sensitive BiL-
STM (LR-BiLSTM). This exactly corresponds to
the output of the BiLSTM layer in the two pre-
vious models when only left or right context of
the target word is considered as input. These two
vectors together represent the semantic signature
of the context in which target word has been oc-
curred. By relying on these two vectors, we create
a feed forward neural network to predict the emo-
tion of the target word. In this network, the con-
catenation of two semantic vectors are considered
as input. The input is given to a hidden layer in
which the number of units is the half of the input
length. ReLU activation function is used in the
hidden layer as well as two dropouts over its in-
put and output with rates of 0.5, 0.3 respectively.
Finally, the output layer using 6 softmax units pre-
dicts the emotion of the target word given its left
and right contexts. Figure 2 summarizes this ap-
proach and shows the architecture of this model.

Left Seq.Input (61)

Shared Embedding Layer (79-200)

Left BLSTM (512)

Output (Softmax Layer) (6)

Right Seq.Input (69)

Right BLSTM (512)

Hidden Layer (ReLU) (512) with dropout 0.3

Concat. layer (1024) with dropout 0.5

Figure 2: The architecture of LR-BiLSTM approach

2.6 Ensemble Approach-Final System

We proposed 4 different approaches in three pre-
vious subsections. While 2 approaches leverage
lexicon-based and emotion-weight features, two
others only use hidden state vectors of the BiL-
STM model. In order to use the advantages of all
proposed models in the final system, we combine
them using Bagging ensemble method (Breiman,
1996) to obtain an aggregated predictor. In this
method, we take an average of the outputs of the
proposed models and make a vote when predicting
the emotion of the target word. Here, the output of
each model is a 6-dimensional vector (one output
per class). Thus, N models generate a matrix M
with the shape of N × 6. The output of the en-
semble method is a 6-dimensional vector which is
obtained by taking average of each column of ma-
trix M. The class voting is done according to the
maximum value of the result vector.

For the final system, we create 7 models based
on 4 approaches proposed in Sections 2.3, 2.4
and 2.5: Four models are generated from LR-
BiLSTM approach using different settings and
three models are generated from each of Lexicon-
MLP, BiLSTM and Lexicon-BiLSTM approaches.
The four models of the LR-BiLSTM approach is
generated by the 4 following settings: (1) with-
out hidden layer, with GloVeTwitter embedding
(called as LR-BiLSTM-1); (2) without hidden
layer, with emotion-specific embedding (called
as LR-BiLSTM-2); (3) hidden layer with 300
units and emotion-specific embedding (called as
LR-BiLSTM-3); (4) hidden layer with 512 units
and emotion-specific embedding (called as LR-

185

BiLSTM-4). The architecture of LR-BiLSTM-4
is exactly the same as Figure 2. We use all these
models in our final system since all of them in-
creases the overall accuracy. For example, the
system accuracy decreases to 67.4 without using
Lexicon-MLP model.

3 Implementation Details

We used Keras library2 with TensorFlow back-
end to implement all the proposed models. Be-
fore training, we removed all urls, usernames
and newlines inside a tweet and employed NLTK
toolkit3 to tokenize tweets. All hyperparameters
were tuned based on the development set with 50
epochs. We trained all models over training data
provided by the shared task organizer (Klinger
et al., 2018) and selected the best model based on
the accuracy achieved from the development set.
Table 3 shows the best results obtained by each of
the proposed models.

Model Dev-Macro F1 Dev-Acc
Lex-BiLSTM 66.5 66.68
LR-BiLSTM-1 65.4 65.49
LR-BiLSTM-2 65.7 65.81
LR-BiLSTM-3 66.8 66.94
LR-BiLSTM-4 67.3 67.38
BiLSTM 66.4 66.53
Lex-MLP 49.7 49.81
Final-system 67.9 68.02

Table 3: The best results on the development set

4 Empirical Evaluation and Discussion

We evaluate the proposed models on the shared
task official test set. Table 4 shows the results ac-
cording to the shared task evaluation measures –
micro and macro averaged F-measure– over all 6
emotion classes. According to the results, the pro-
posed Left-Right context-sensitive BiLSTM ap-
proach (i.e. LR-BiLSTM-3 and LR-BiLSTM-4)
achieves the best official score of 67.8 among
other individual models. The macro F1-score in-
creases to 68.6 when using all models in our en-
semble system.

According to the macro-F1 score achieved
from BiLSTM and Lexicon-BiLSTM models, we
can observe that two sets of lexicon-based and

2https://keras.io/
3https://www.nltk.org/

emotion-weight features improve the performance
of BiLSTM model. However, this growth is not
seen in all classes. For example, in two joy
and sad classes, BiLSTM model performs better
than Lexicon-BiLSTM. In addition, the macro and
micro averaged F-measure values obtained from
the Lexicon-MLP (see Table 4) indicate that the
lexicon-based and emotion-weight features are ef-
fective on less than 50% of test instances. This can
raise two facts about the test set (1) a small number
of affective clue words are used in the tweets (2)
the syntactic structure of the context changes the
emotions expressed by the affective clue words in
the tweets. This issue will be further discussed in
Section 4.1.

Another important finding is that all models
give a weak performance on the anger and sur-
prise emotions. The confusion matrix shown in
Table 5 indicates that our final system predicts
tweets as anger instead of surprise in 402 cases
and vice versa in 519 cases. These are the highest
False Negative (FN) errors with respect to anger
and surprise emotion classes and show that these
two emotions occur in similar contexts. It means
that the senses expressed by these two emotion
classes are much similar to each other in some
tweets in which our system cannot distinguish
them from each other. Moreover, from Table 5,
anger and surprise emotions constitute the high-
est portion of the FN errors in the other emotion
classes. They are bold in Table 5.

4.1 Error Analysis
We analyze the errors of the final system from two
different aspects. In the first one, none of the mod-
els predict the correct emotion, whereas in the sec-
ond one at least one model predict correctly. Here,
we give two examples for each case, respectively:

• Ex.1 “I don’t understand why everyone’s
[#TRIGGERWORD#] when Miley shows
her body she’s comfortable so why should it
matter to you?”

• Ex.2 “it is quite [#TRIGGERWORD#] that
you think that is awesome.”

• Ex.3 “Cold coffee is really only [#TRIG-
GERWORD#] when you expect it to be hot.
Otherwise, it’s just as good.”

• Ex.4 “@USERNAME making me [#TRIG-
GERWORD#] because she’s better than me
at everything”

186

Models F1-score over emotion classes Mic-avg Mac-avg
surp. disg. sad fear anger joy (official)

Lex-BiLSTM 63.7 67.5 64.9 70.3 60.5 76.2 67.4 67.2
LR-BiLSTM-1 61.8 65.5 63.6 68.2 58.6 75.1 65.6 65.5
LR-BiLSTM-2 61.7 66.3 62.8 68.9 59.1 74.9 65.8 65.6
LR-BiLSTM-3 63.8 68.1 66.3 71.0 60.2 77.3 68.0 67.8
LR-BiLSTM-4 64.2 68.3 65.6 70.8 60.9 76.9 67.9 67.8
BiLSTM 63.6 67.0 65.2 69.5 59.5 76.3 67.0 66.9
Lex-MLP 42.7 53.5 45.4 50.8 43.2 61.1 49.6 49.4
Final-system 64.9 69.0 66.4 71.6 62.3 77.6 68.8 68.6

Table 4: The performance of all models on the official test set

Predict
Real surp. disg. sad fear anger joy
surp. 3310 367 183 303 402 227
disg. 554 3246 312 158 380 144
sad 236 384 2762 207 430 321
fear 494 177 192 3337 368 223
anger 519 336 297 326 3033 283
joy 289 103 228 203 336 4087

Table 5: Confusion matrix for final system

Table 6 indicates the predictions of the pro-
posed models for the four above examples along
with their true emotion labels. From the confu-
sion matrix (Table 5) the biggest number of er-
rors occurs when our system predict a tweet as
surprise, whereas the true emotion is disgust (554
cases). Hence, the three of above examples were
selected from the disgust class and last one was
selected from sad. In Ex.1, it is observed that
most of the models predict the emotion of the tar-
get word as surprise. However, Lexicon-MLP and
LR-BiLSTM-2 predict it as joy and anger, respec-
tively. Since Lexicon-MLP only use the lexicon-
based and emotion-weight features, it cannot pre-
dict correctly when the emotion of the target word
depends on the syntactic and semantic structures
of the tweet. Thus, it predicts an opposite emotion
(i.e. joy) for Ex.1. Moreover, you can see an am-
biguity among surprise, anger and disgust in this
example. In Ex.2, there is an irony that makes dif-
ficult the recognition of the target word emotion.
Although the Ex.3 is similar to Ex.1, our context-
sensitive BiLSTM approach (LR-BiLSTM-4) pre-
dicts the correct emotion. In Ex.4, you can see a
challenge between anger and sad emotions. All
the proposed models predict the emotion of the
target word as anger except for LR-BiLSTM-3

which correctly predicts the target word emotion
as sad. Here, we believe that a mixed emotion is
inferred from the given context in Ex.4. However,
the length of tweets is limited, thus it makes diffi-
cult the disambiguation task for the implicit emo-
tion recognition.

Predictor Ex.1 Ex.2 Ex.3 Ex.4
Lex-BiLSM surp. sad surp. anger
LR-BiLSTM-1 surp. surp. surp. anger
LR-BiLSTM-2 anger surp. disg. anger
LR-BiLSTM-3 surp. surp. disg. sad
LR-BiLSTM-4 surp. sad disg. anger
BiLSTM surp. surp. surp. anger
Lex-MLP joy surp. surp. anger
Final-sys surp. surp. surp. anger
True emotion disg. disg. disg. sad

Table 6: The predictions of models on 4 samples of
tweets in the test set

5 Conclusion

In this paper, we proposed 6 deep neural network
models as well as a MLP based on 3 kinds of
feature sets, lexicon-based, emotion-weight and
context-sensitive. The combination of all these
models in our ensemble system achieved the best
result on the official test set of IEST shared task.
However, the results indicate that the model ob-
tained from our proposed LR-BiLSTM approach
outperforms the other individual models on the
implicit emotion recognition task. Our results also
showed that the Lexicon-BiLSTM approach per-
forms better than BiLSTM by relying on the both
lexicon-based and emotion-weight features.

187

References
Muhammad Abdul-Mageed and Lyle Ungar. 2017.

Emonet: Fine-grained emotion detection with gated
recurrent neural networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 718–728.

Leo Breiman. 1996. Bagging predictors. Machine
learning, 24(2):123–140.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4):169–200.

Nal Kalchbrenner, Edward Grefenstette, and Phil
Blunsom. 2014. A convolutional neural net-
work for modelling sentences. arXiv preprint
arXiv:1404.2188.

Sunghwan Mac Kim, Alessandro Valitutti, and
Rafael A Calvo. 2010. Evaluation of unsupervised
emotion models to textual affect recognition. In
Proceedings of the NAACL HLT 2010 Workshop on
Computational Approaches to Analysis and Gener-
ation of Emotion in Text, pages 62–70. Association
for Computational Linguistics.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. IEST: WASSA-
2018 Implicit Emotions Shared Task. In Proceed-
ings of the 9th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, Brussels, Belgium. Association for
Computational Linguistics.

Maximilian Köper, Evgeny Kim, and Roman Klinger.
2017. IMS at EmoInt-2017: emotion intensity pre-
diction with affective norms, automatically extended
resources and deep learning. In Proceedings of
the 8th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 50–57.

Sophia Yat Mei Lee, Ying Chen, and Chu-Ren Huang.
2010. A text-driven rule-based system for emotion
cause detection. In Proceedings of the NAACL HLT
2010 Workshop on Computational Approaches to
Analysis and Generation of Emotion in Text, pages
45–53. Association for Computational Linguistics.

Jasy Suet Yan Liew and Howard R Turtle. 2016. Ex-
ploring fine-grained emotion detection in tweets. In
Proceedings of the NAACL Student Research Work-
shop, pages 73–80.

Saif M Mohammad and Felipe Bravo-Marquez. 2017.
WASSA-2017 shared task on emotion intensity.
arXiv preprint arXiv:1708.03700.

Saif M Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. NRC-Canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

Behzad Naderalvojoud, Ebru Akcapinar Sezer, and
Alaettin Ucan. 2015. Imbalanced text categoriza-
tion based on positive and negative term weight-
ing approach. In International Conference on Text,
Speech, and Dialogue, pages 325–333. Springer.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Dario Stojanovski, Gjorgji Strezoski, Gjorgji Mad-
jarov, and Ivica Dimitrovski. 2016. Finki at
semeval-2016 task 4: Deep learning architecture for
twitter sentiment analysis. In Proceedings of the
10th International workshop on semantic evaluation
(SemEval-2016), pages 149–154.

Carlo Strapparava, Alessandro Valitutti, et al. 2004.
Wordnet affect: an affective extension of wordnet.
In Lrec, volume 4, pages 1083–1086. Citeseer.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1555–
1565.

Jin Wang, Liang-Chih Yu, K Robert Lai, and Xue-
jie Zhang. 2016. Dimensional sentiment analysis
using a regional CNN-LSTM model. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), volume 2, pages 225–230.

Liang-Chih Yu, Jin Wang, K Robert Lai, and Xuejie
Zhang. 2017. Refining word embeddings for sen-
timent analysis. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 534–539.

188

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 189–194
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

NLP at IEST 2018: BiLSTM-Attention and LSTM-Attention via Soft
Voting in Emotion Classification

Qimin Zhou, Zhengxin Zhang, Hao Wu*
School of Information Science and Engineering, Yunnan University

Chenggong Campus, Kunming, P.R. China
{zqmynu,zzxynu}@gmail.com, haowu@ynu.edu.cn

Abstract

This paper describes our method that compet-
ed at WASSA2018 Implicit Emotion Shared
Task. The goal of this task is to classify the
emotions of excluded words in tweets into six
different classes: sad, joy, disgust, surprise,
anger and fear. For this, we examine a BiL-
STM architecture with attention mechanism
(BiLSTM-Attention) and a LSTM architecture
with attention mechanism (LSTM-Attention),
and try different dropout rates based on these
two models. We then exploit an ensemble
of these methods to give the final prediction
which improves the model performance signif-
icantly compared with the baseline model. The
proposed method achieves 7th position out of
30 teams and outperforms the baseline method
by 12.5% in terms of macro F1.

1 Introduction

Sentiment analysis is a hot and vital research area
in the field of natural language processing. It aims
at detecting the sentiment expressed in the context
written by the authors. Many advanced deep learn-
ing models have been exploited to address this is-
sue in recent years (Cambria, 2016; Kim, 2014).
The rise of social media, such as twitter and face-
book, has fueled the interest of researchers in this
field. Twitter is one of the most popular and in-
fluential social media all over the world, which at-
tracts over more than 300 million users with over
500 million tweets every day 1. Therefore, it has
received great attention in research communities
as a data source due to its easy accessibility of da-
ta and diversity of the content (Pak and Paroubek,
2010).

In this shared task, given tweets are incomplete
because that certain emotion words are removed
from these tweets. These words belong to one of

1http://www.internetlivestats.com/twitter-statistics/

the following classes: sad, happy, disgusted, sur-
prised, anger and afraid, or a synonym of one of
them. The goal of the task of WASSA2018 is to
classify the emotion of the excluded words into
one of the above-mentioned emotions according
to the incomplete tweets. All the data given by
WASSA2018 are in English.

For this task, we put forward to two differen-
t models: one is LSTM-Attention which mainly
consists of LSTM (Li and Qian, 2016) and at-
tention mechanism (Bahdanau et al., 2014; Lai
et al., 2015), the other is BiLSTM-Attention which
mainly consists of BiLSTM and attention mecha-
nism. We have tried different dropout (Srivasta-
va et al., 2014) rates to get different classification
results on each model. To further better the pre-
dictive performance, our final method employs an
ensemble of these models, with a strategy called
soft voting.

The remainder of the paper is structured as fol-
lows: we provide the detailed architecture of pro-
posed methods in Section 2. We present evalua-
tion metrics and experimental results in Section 3.
And we conclude our works and point to the future
works in Section 4.

2 Methodology

In this section, we describe the details of our pro-
posed methods, including data preprocessing, neu-
ral networks and ensemble strategy.

2.1 Data Preprocessing
As data released by WASSA2018 is crawled from
the internet, raw tweets may contain a lot of use-
less (even misleading) information, such as some
punctuations and abbreviations. Therefore, we
perform a few preprocessing steps to improve the
quality of raw data for the ongoing study: (1) The
positions in the tweets where the emotion word-
s have been removed are marked with [#TRIG-

189

https://doi.org/10.18653/v1/P17

GERWORD#] (see Figure 1), so we remove them
from the raw data. (2) We remove the useless link
”http : //url.removed” and some meaningless
punctuations such as semicolon and colon. (3)
We restore some abbreviations in the tweets, e.g.,
substituting ”have” for ”’ve”. (4) All character-
s are then transformed into lowercase. (5) The
TweetTokenizer 2 tool is used to split tweets in-
to a list of words. We try to remove stopwords
via nltk.corpus 3, but there is no performance im-
provement, so we ignore this processing.

Figure 1: An example of raw tweets

2.2 Neural Networks
Our models consist of an embedding layer, a L-
STM or BiLSTM layer, an attention layer and t-
wo dense layers. Figure 2 shows the architecture
of the BiLSTM-Attention model. For the LSTM-
Attention model, it shares the same architecture
with the BiLSTM-Attention model, except that the
BiLSTM layer is replaced with the LSTM layer.

2.2.1 Embedding Layer
To extract the semantic information of tweets,
each tweet is firstly represented as a sequence of
word embeddings. Denote s as a tweet with n
words and each word is mapping to a global vector
(Mikolov et al., 2013), then we have:

s = [~e1 ‖ ~e2 ‖ ~e3 ‖ ... ‖ ~en], (1)

where vector ~ei represents the vector of i-th word
with a dimension of d. The vectors of word em-
beddings are concatenated together to maintain
the order of words in a tweets. Consequently, it
can overcome deficits of bag-of-words techniques.
For our methods, Word2vec-twitter-model, a pre-
trained word embedding model using Word2vec
technique (Mikolov et al., 2013) on tweets is ex-
ploited. The embedding dimension of Word2vec-
twitter-model is d=400.

2.2.2 LSTM/Bidirectional-LSTM Layer
In this emotion classification task, we model the
twitter messages using Recurrent Neural Network

2http://www.nltk.org/api/nltk.tokenize.html
3http://www.nltk.org/api/nltk.corpus.html

(RNN), to be exact, we respectively examine L-
STM and Bidirectional LSTM (Zeng et al., 2016)
to process the tweets. LSTM firstly introduced by
(Hochreiter and Schmidhuber, 1997) has proven
to be stable and powerful for modeling long-time
dependencies in various scenarios such as speech
recognition and machine translations. Bidirection-
al LSTM (Graves and Schmidhuber, 2005; Graves
et al., 2013) is an extension of traditional LST-
M to train two LSTMs on the input sequence.
The second LSTM is a reversed copy of the first
one, so that we can take full advantage of both
past and future input features for a specific time
step. We train both LSTM and Bidirectional LST-
M networks using back-propagation through time
(BPTT) (Chen and Huo, 2016). After the em-
bedding layer, the sequence of word vectors is
fed into a single-layer LSTM or Bidirectional L-
STM to achieve another representation of h =
LSTM/BiLSTM(s). In order to maintain con-
sistency of dimensions, the number of neurons is
configured as 400 in both the LSTM Layer and the
BiLSTM Layer.

2.2.3 Attention layer
Generally, not all words in a tweet contribute e-
qually to the representation of tweet, so we lever-
age word attention mechanism to capture the dis-
tinguished influence of the words on the emotion
of tweet, and then form a dense vector (Yang et al.,
2017) considering the weights of different word
vectors. Specifically, we have:

uti = tanh(Whti + b),

αti =
exp(uT

tiuw)∑n

j=1
exp(uT

tjuw)
,

st =
∑

i αtihti.

(2)

t represents t-th tweet, i represents i-th word in the
tweet and n is the number of words in a tweet. hti
represents the word annotation of the i-th word in
the t-th tweet which fed to a one-layer MLP to get
uti as a hidden representation of hti. More specif-
ically hti is the concatenation output of the LST-
M/BiLSTM layer in our model. W is a weight
matrix of the MLP, and b is a bias vector of the
MLP. Then we measure the importance of word-
s through the similarity between uti and a word
level context vector uw which is randomly initial-
ized. And after that, we get a normalized impor-
tance weight αti through a softmax function. αti

is the weight of the i-th word in the t-th tweet. The
bigger αti is, the more important the i-th word is

190

Figure 2: The architecture of BiLSTM-Attention model

for emotion representation. Finally, we represen-
t the sentence vector st as a weighted sum of the
word annotations.

2.2.4 Dense Layers
The attention layer is followed by two dense lay-
ers with different sizes of neurons. The output
of attention layer is fed into the first dense layer
with 400 hidden neurons. The activation function
of this layer is tanh. And in order to avoid po-
tential overfitting problem, dropout is utilized be-
tween these two dense layers. And we try different
dropout rates to find the best configurations. The
output is then fed into the second dense layer with
6 hidden neurons, and the activation function in
this layer is softmax. So we can obtain the prob-
ability that the excluded word belongs to each of
the six classes.

2.3 Ensemble Strategy

Ensemble strategies (Dietterich, 2000) have been
widely used in various research fields because of
their ascendant performance. Ensemble strategies
train multiple learners and then combine them to
achieve a better predictive performance. Many
ensemble strategies have been proposed, such as
Voting, Bagging, Boosting, Blending, etc 4. In
our methods, a simple but efficient ensemble s-
trategy called soft voting is utilized. It means that
for a classification problem, soft voting returns the
class label of the maximum of the weighted sum

4http://scikit-learn.org/stable/modules/ensemble.html

of the predicted probabilities. We assign a weight
equally to each classifier, then the probability that
a sample belongs to a certain class is the weight-
ed sum of probabilities that this sample belongs to
this class predicted by all classifiers. And the class
with the highest probability is the final classifica-
tion result. It can be defined as Eq.3 (Zhou, 2012):

Hj(x) =
1

T

T∑

i=1

hji (x). (3)

i represents i-th classifier, T is the total number of
classifier. j is the class label where j is an integer
between 0 and 5, because there are 6 classes in our
task. x is a sample. hji (x) represents the i-th clas-
sifier’s predictive probability towards the sample
x on the j-th class label, it is a probability which
is between 0 and 1. Finally, Hj(x) represents the
probability that the sample x belongs to j-th class
after ensembling.

3 Experiments

3.1 Evaluation Metrics
To evaluate the classification performance, there
are two available metrics: macro average and mi-
cro average. In this task, we use macro average
to measure the performance of proposed methods.
Macro average is the arithmetic mean of the per-
formance metrics for each class, e.g. precision and
recall (Ting, 2011). Precision is the fraction of
relevant instances among the retrieved instances,
while recall is the fraction of relevant instances

191

that have been retrieved over the total amount of
relevant instances 5. More specifically, macro F1
score is utilized as a measurable indicator of clas-
sification performance. The F1 score can be inter-
preted as a weighted average of the precision and
recall. The relative contributions of precision and
recall to the F1 score are equal. The formula of F1
score can be defined as Eq.4:

F1 =
2 ∗ precision ∗ recall
precision+ recall

. (4)

3.2 Experiment Results
Our system is implemented on Keras with a Ten-
sorflow backend 6. For experiments, we use
the datasets downloaded from WASSA2018, they
mainly include three splits: 153,383 tweets in the
training set, 9,591 tweets in the validation set and
28,757 tweets in the test set. We train our model
on the training set, and then tune the hyper param-
eters of models on the validation set.

For training, the mini-batch size is set at 128
and the max length of sentences (namely, the num-
ber of words in a tweet) is configured as 37 to en-
sure the same length of each tweet. Namely, if
the length of a tweet is less than 37, it will be
padded with zero; otherwise, it will be truncat-
ed from the tail. And the dropout rates that we
have tried are ranged from 0.1 to 0.6 with a step of
0.1. In our models, the categorical-crossentropy
based loss function and the gradient descent algo-
rithm with Adaptive Moment Estimation (Kingma
and Ba, 2014) are used to learn the model param-
eters of neural networks as well as the word vec-
tors. The default parameters of Adaptive Moment
Estimation is learning rate=0.001, beta 1=0.9,
beta 2=0.999, eposilon=1e-08.

The experimental results on different emotion
classes are shown in Table 1. There are three eval-
uation metrics of each emotion class, namely pre-
cision, recall and F1 score. Apparently, our system
works best on the emotion class named joy in ter-
m of all the metrics. And the F1 score on the class
called anger is the lowest.

The experimental results of different models in
our system are shown in Table 2. Obviously, all of
our models outperform the baseline model dramat-
ically. More specifically, the BiLSTM-Attention
model performs slightly better than the LSTM-
Attention model because BiLSTM can learn more
features than LSTM.

5https://en.wikipedia.org/wiki/Precision-and-recall
6https://keras.io

Classes Precision Recall Macro average F1
sad 0.685 0.622 0.652
joy 0.773 0.778 0.776

disgust 0.701 0.673 0.687
surprise 0.620 0.683 0.650
anger 0.618 0.627 0.623
fear 0.722 0.722 0.722

Table 1: Experimental Results on Different Classes

Model Dropout Macro average F1
Baseline - 0.599

BiLSTM-Attention

0.1 0.659
0.2 0.662
0.3 0.655
0.4 0.659
0.5 0.658
0.6 0.659

LSTM-Attention

0.1 0.656
0.2 0.659
0.3 0.661
0.4 0.660
0.5 0.652
0.6 0.654

Ensemble - 0.685

Table 2: Experimental Results on Different Models

To achieve better performance, we utilize a sim-
ple ensemble method called soft voting. Briefly s-
peaking, if a class gets the highest weighted sum
of probabilities from various models, then it is the
final class which our sample belongs to. After
ensembling the LSTM-Attention model and the
BiLSTM-Attention model with different dropout
rates, the macro F1 score reaches to 0.685. These
results demonstrate that the ensemble approach
boosts the classification performance dramatical-
ly.

Figure 3 shows the predictive accuracy which is
measured by F1 score as a function of epoch when
dropout rate is 0.2. The accuracy of our model is
optimal when the epoch is equal to 2, so we set the
epoch to 2 in our final model.

Figure 3: impact of epoch

192

4 Conclusion & Future work

We have presented a deep learning based ap-
proach for implicit emotion analysis task which
can be seen as a classification task. We explore
LSTM model and BiLSTM model both equipped
with attention mechanism using different dropout
rates and leverage ensemble method to boost the
classification performance. Experimental result-
s demonstrate that our system is effective for this
implicit emotion classification task.

As for future works, it can follow three direc-
tions. Firstly, we intend to try different ensem-
ble methods like hard voting and stacking to find
which one is the most suitable for our task. Sec-
ondly, we would like to combine word embed-
ding and char embedding (Santos and Guimaraes,
2015) together with different weights. Also we
can utilize some new embedding algorithms like
ELMo embeddings 7. Finally, we plan to explore
more textual features like emotion icons to gain
better performance.

Acknowledgments

This work is partially supported by the National
Natural Science Foundation of China (61562090)
and the Graduate Research Innovation Found
Projects of Yunnan University (YDY17113).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arX-
iv:1409.0473.

Erik Cambria. 2016. Affective computing and senti-
ment analysis. IEEE Intelligent Systems, 31(2):102–
107.

Kai Chen and Qiang Huo. 2016. Training deep bidi-
rectional lstm acoustic model for lvcsr by a context-
sensitive-chunk bptt approach. IEEE/ACM Trans-
actions on Audio, Speech and Language Processing
(TASLP), 24(7):1185–1193.

Thomas G Dietterich. 2000. Ensemble methods in ma-
chine learning. In International workshop on multi-
ple classifier systems, pages 1–15. Springer.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on, pages 6645–6649. IEEE.

7https://allennlp.org/elmo

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5-6):602–610.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Lst-
m can solve hard long time lag problems. In Ad-
vances in neural information processing systems,
pages 473–479.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for tex-
t classification. In AAAI, volume 333, pages 2267–
2273.

Dan Li and Jiang Qian. 2016. Text sentiment analysis
based on long short-term memory. In IEEE Interna-
tional Conference on Computer Communication and
the Internet, pages 471–475.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. arXiv preprint arX-
iv:1301.3781.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREc, volume 10, pages 1320–1326.

Cicero Nogueira dos Santos and Victor Guimaraes.
2015. Boosting named entity recognition with
neural character embeddings. arXiv preprint arX-
iv:1505.05008.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Kai Ming Ting. 2011. Precision and recall. In En-
cyclopedia of machine learning, pages 781–781.
Springer.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2017. Hierarchical
attention networks for document classification. In
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1480–1489.

Ying Zeng, Honghui Yang, Yansong Feng, Zheng
Wang, and Dongyan Zhao. 2016. A convolution
bilstm neural network model for chinese event ex-
traction. In Natural Language Understanding and
Intelligent Applications, pages 275–287. Springer.

193

Zhi-Hua Zhou. 2012. Ensemble methods: foundations
and algorithms. Chapman and Hall/CRC.

194

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 195–200
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

SINAI at IEST 2018: Neural Encoding of Emotional External Knowledge
for Emotion Classification

Flor Miriam Plaza-del-Arco† Eugenio Martı́nez-Cámara♣
M. Teresa Martı́n-Valdivia† L. Alfonso Ureña- López†

†Department of Computer Science,
Advanced Studies Center in ICT (CEATIC)

Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
♣Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI)

University of Granada, Spain
{fmplaza, maite, laurena}@ujaen.es, emcamara@decsai.ugr.es

Abstract

In this paper, we describe our participation in
WASSA 2018 Implicit Emotion Shared Task
(IEST 2018). We claim that the use of emo-
tional external knowledge may enhance the
performance and the capacity of generaliza-
tion of an emotion classification system based
on neural networks. Accordingly, we submit-
ted four deep learning systems grounded in a
sequence encoding layer. They mainly differ
in the feature vector space and the recurrent
neural network used in the sequence encoding
layer. The official results show that the sys-
tems that used emotional external knowledge
have a higher capacity of generalization, hence
our claim holds.

1 Introduction

Emotions play an important role in human beings
due to what we notice and remember is not the
mundane but events that evoke feelings like joy,
sadness, surprise, and disgust. Emotions relate us
to others as a form of interpersonal communica-
tion, they introduce us to the world as well as the
motivational force for what is best and worst in
human behavior.

Emotion mining is part of the Sentiment Anal-
ysis (SA) and consists of recognizing emotions
mainly from text. According to Ekman (1992), the
basic emotions expressed by humans are: joy, sad-
ness, surprise, fear, disgust and anger. Emotion
recognition is still in its infancy and still has a ling
way to proceed (Yadollahi et al., 2017). The high
rate at which users share their opinions on news
articles, blogs, microblogs and social networking
sites, make this king of media even more attrac-
tive to measure specific emotions towards current
affairs. Recognizing emotion is extremely im-
portant for some text-based communication tools
(Wu et al., 2006), e.g., the dialog system is a
kind of human machine communication system

that uses only text input and output. Recognizing
the users emotional states enables the dialog sys-
tem to change the response and answer types (Lee
et al., 2002). Text is still the main communica-
tion tool on the Internet. In online chat, the users
emotional states can be used to control the dialog
strategy.

In this paper, we describe the four systems sub-
mitted to the IEST shared-task of the WASSA
Workshop (Klinger et al., 2018). The shared task
consists of predicting the implicit emotion ex-
pressed in a tweet, and the labels of emotion are:
sadness, joy, disgust, surprise, anger, or fear. We
tackled the challenge as a multi-classification task,
and we claim that the use of emotional external
knowledge may enhance the performance and the
capacity of generalization of the classification sys-
tems. We submitted four systems based on deep
learning. Two of them do not use emotional exter-
nal knowledge, and the other two do. The official
results show that those systems with emotional ex-
ternal knowledge have a higher capacity of gener-
alization as we hypothesized.

The rest of the paper is organized as follows.
Section 2 describes the dataset used by our sys-
tems. Section 3 presents the details of the pro-
posed systems. Section 4 displays the results and
analyses them. We conclude in Section 5 with re-
marks and future work.

2 Dataset

The evaluation dataset (Klinger et al., 2018) is an-
notated on a scale of six emotions, namely: sad-
ness, joy, disgust, surprise, anger, or fear. To run
our experiments, we used this dataset as follows.
During pre-evaluation period, we trained our mod-
els on the train set, and evaluated our different ap-
proaches on the dev set. During evaluation period,
we trained our models on the train and dev sets,

195

https://doi.org/10.18653/v1/P17

Dataset Tweets

Train 153383
Dev 9591
Test 28757

Table 1: Number of tweets for each dataset.

and tested the model on the test set. The size of
the datasets is in Table 1.

3 System description

The aim of the shared task is the classification of
the implicit emotion of an input tweet. However,
the word that explicitly expresses the emotion was
remove from the input tweets. Accordingly, two
specific features may be incorporated in the clas-
sification system: (1) the position of the removed
word with emotion meaning; and (2) emotional
external knowledge. Since our claim is that the
use of emotional external knowledge can enhance
the classification of emotions, we only considered
the second specific feature, namely the incorpora-
tion of emotional external knowledge.

We designed a neural architecture built upon
a sequence encoding approach, which is able to
perform the classification with or without emo-
tional external knowledge. We submitted four sys-
tems, which share a common structure composed
of three modules: (1) language representation or
features lookup module; (2) sequence encoding
module; and (3) non linear classification module.
The four systems differ in the first and second
modules. The details of the modules and the dif-
ferencies of the four systems are described in the
following subsections.

3.1 Features lookup module

Regarding our claim, we defined a feature vec-
tor space for the training and the evaluation that
is composed of: (1) unsupervised vectors of word
embeddings; and (2) one-hot vector representation
of emotional features.

Vectors of word embeddings A set of vectors of
word embeddings is the representation of the ideal
semantic space of words in a real-valued continu-
ous vector space, hence the relationships between
vectors of words mirror the linguistic relationships
of the words. Vectors of word embeddings are a
dense representation of the meaning of a word,

thus each word is linked to a real-valued contin-
uous vector of dimension demb.

There are freely available several pre-trained sets
of vectors of word embeddings grounded in differ-
ent approaches to represent the context of a word,
such as C&W (Collobert et al., 2011), word2vect
(Mikolov et al., 2013) and Glove (Pennington
et al., 2014). Since the genre of the input docu-
ments is social media, Twitter, the use of a set of
embeddings trained on tweets is advisable. There-
fore, we specifically used the set of pre-trained
vectors of word embeddings of Glove1 that is
trained on tweets. The most relevant characteris-
tics of that set are: (1) the size of the vocabulary is
1.2 million of words; (2) all the words are lower-
case.

Emotional external knowledge Two of the sub-
mitted systems used emotional external knowl-
edge. We encoded the external emotional knowl-
edge with a one-hot encoding approach, hence the
emotional categories considered were represented
as a one-hot vector. Accordingly, the feature vec-
tor space is enlarged with the size of the additional
components or dimensions corresponding to the
emotional categories (d=demb+demo).

To obtain the emotional external knowledge we
use the following emotional lexicons:

NRC Word-Emotion Association Lexicon
(EmoLex) (Mohammad and Turney, 2010). This
lexicon has a list of English words associated to
one or more of the following emotions: anger,
fear, anticipation, trust, surprise, sadness, disgust,
joy. Since the emotional external knowledge is
encoded as one-hot vector, the corresponding
emotion is set to 1 of those words that are in the
lexicon. The results is a vector of eight emotion
values. In case the word belongs to one or more
emotions, all the emotions to which it belongs are
taken into account.
Emoji lexicon We use this lexicon to identify the
emojis present in text using some faces of an emoji
lexicon.2 This lexicon contains a list of emojis but
it is not labeled with emotion. Thus, we manually
annotated some emojis to one of the Ekman emo-
tions: joy, anger, fear, disgust, surprise, sadness
(Ekman, 1992). After this process, we obtained

1https://nlp.stanford.edu/projects/
glove/

2https://github.com/erunion/
emoji-lexicon

196

a lexicon with 72 emojis labelled by the Ekman
emotions. The distribution of emojis by Ekman
emotions is shown in Table 2.

Emotion Number of Emojis

Joy 39
Sad 15
Anger 8
Fear 6
Surprise 3
Disgust 1

Table 2: Number of emojis for each Ekman emotion.

We tokenized the input tweets with the Twitter-
aware tokenizer of NLTK3 in order to project them
in the feature vector space defined by the vector of
word embeddings and emotional features. Con-
sequently, each tweet (t) is transformed in a se-
quence of n words (w1:n = {w1, . . . , wn}). The
size of the input sequence (n) was defined by the
mode of the lengths of the inputs in the training
data, hence sequences shorter than n were trun-
cated. After the tokenization, the first layer of
our architecture model is an feature lookup layer,
which makes the projection of the sequence of
tokens into the feature vector space. Therefore,
the output of the features lookup layer is the ma-
trix WE ∈ IRd×n, WET

1:n = (we1, . . . ,wen),
where wei ∈ IRd. The parameters of the embed-
ding lookup layer are not updated during the train-
ing.

3.2 Sequence encoding module

The aim of the sequence encoding layer is the gen-
eration of high level features, which condense the
semantic meaning of the entire sentence. We used
an RNN layer because RNNs can represent se-
quential input in a fixed-size vector and paying
attention to the structured properties of the input
(Goldberg, 2017). RNN is defined as a recursive
R function applied to a input sequence. The input
of the function R is an state vector si−1 and an el-
ement of the input sequence, in our case a word
vector (wei). The output of R is a new state vector
(si), which is transformed to the output vector yi

by a deterministic function O. Equation 1 summa-

3https://www.nltk.org/api/nltk.
tokenize.html#nltk.tokenize.casual.
TweetTokenizer

rizes the former definition.

RNN(we1:n, s0) = y1:n

yi = O(si)

si = R(wei, si−1);

(1)

wei ∈ IRdin , si ∈ IRf(dout),yi ∈ IRdout

From a linguistic point of view, each vector (yi)
of the output sequence of an RNN condenses the
semantic information of the word wi and the previ-
ous words ({w1, . . . , wi−1}). However, according
to the distributional hypothesis of language (Har-
ris, 1954), semantically similar words tend to have
similar contextual distributions, roughly speaking,
the meaning of a word is defined by its contexts.
An RNN can only encode the previous context of
a word when the input of the RNN is the sequence
we1:n. However, the input of the RNN can be also
the reverse of the previous sequence (wen:1). Con-
sequently, we can elaborate a composition of two
RNNs, the first one encode the sequence from the
beginning to the end (forward, f), and a second
one from the end to the beginning (backward, b),
therefore the previous and the following context of
a word is encoded. This elaboration is known as
bidirectional RNN (biRNN), whose definition is
in Equation 2.

biRNN(we1:n) = [RNNf (we1:n, s
f
0);

RNNb(wean : 1, sb0)] (2)

The four systems submitted are based on the use
of a specific gated-architecture of RNN, namely
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997). Figure 1 shows the ar-
chitecture of these models. The specific details
of the sequence encoding layer of each submitted
system are described as what follows.

NoEMoLSTM The sequence encoding layer is
composed of one LSTM RNN. The input is the
feature space only defined by the matrix of vectors
of word embeddings (WE ∈ IRdemb). The out-
put is all the output vectors of all the words of the
sequence, hence the output is the sequence y1:n,
yi ∈ IRdout .

EmoLSTM This sequence encoding layer is sim-
ilar to the previous one, however the input is a
feature space composed of vectors of word em-
beddings and emtotional features, mathematically

197

A good computer !

Input context

 (Emo) Embeddings Lookup

 LSTM or BiLSTM

Dense (relu)

Max Pooling

Dense (softmax)

Output: Emotion

 Flatten

Figure 1: Neural model, where Emo represents the
EmoLSTM and EmoBiLSTM models.

WE ∈ IRdemb+demo . As NoEMoLSTM, the out-
put is all the output vectors of all the words of the
sequence, hence the output is the sequence y1:n,
yi ∈ IRdout .

NoEMoBiLSTM It only differs from NoEMoL-
STM in the RNN layer. In this case the RNN layer
is an BiLSTM layer. Since an BiLSTM is the com-
position of two LSTMs, the output units returned
of NoEMoBiLSTM is larger than the one of NoE-
MOLSTM, specifically y1:n, yi ∈ IRdout·2.

EmoBiLSTM As EmoLSTM, it incor-
porates emotional external knowledge
(WE ∈ IRdemb+demo), and as NoEMoBiLSTM,
the encoding layer is an BiLSTM RNN, therefore
the output is the sequence y1:n, yi ∈ IRdout·2.

3.3 Non linear classification module

The sequence representation of the tweets is then
classified by two fully connected layers with
ReLU as activation function, and additional layer
activated by the softmax function. The layers acti-
vated by ReLU have different hidden units or out-
put neurons (dense1 and dense2, see Table 3).
With the aim of selecting the most relevant fea-
tures, the output of the first full connected layer
is processed by a max pooling layer. The size
of the pooling layer was 2, and it was applied to
every step, i.e. the strides size is 1. Since the
four sequence encoding layers return an output se-

Hyper NoEMo-
LSTM

EMo-
LSTM

NoEMo-
BiLSTM

EMo-
BiLSTM

n 27 27 27 27
demb+demo 200 214 200 214
dout 128 128×2 128 128×2
dense1 128 128 128 128
dense2 64 64 64 64
dr1 0.5 0.5 0.5 0.5
dr2 0.5 0.5 0.5 0.5
L2 r 0.0001 0.0001 0.0001 0.0001

Table 3: Hyperparater values of the systems submitted.

quence y1:n ∈ IRn×dout , after the max pooling
layer, the sequence is flattened to a single vector
y ∈ IRn·dout . The number of hidden units of the
softmax layer matches the number of emotion cat-
egories of the task.

In order to avoid overfitting, we add a dropout
layer (Hinton et al., 2012) after each fully con-
nected layer with a dropout rate value dr. Be-
sides, we applied an L2 regularization function to
the loss function with a regularization value (r).
Moreover, the training is stopped in case the loss
value does not improve in 3 epochs.

The training of the network was performed by
the minimization of the cross entropy function,
and the learning process was optimized with the
Adam algorithm (Kingma and Ba, 2015) with its
default learning rate. The training was performed
following the minibatches approach with a batch
size of 64, and the number of epochs was 30.

For the sake of the replicability of the experi-
ments, Table 3 shows the values of the hyperpara-
ments of the network, and the source code of our
experiments is publicly available.4

3.4 Internal baseline

We also developed an internal baseline for evalu-
ating the performance of the neural networks mod-
els. Our internal baseline was a linear classifi-
cation system, namely Support Vector Machines
(SVM). The feature space is composed of the uni-
grams of the training set weighted by the TF-IDF
metric, and the number of unigrams of each emo-
tional category considered. The results reached by
our internal baseline are in Table 4 with the name
EmoSVM.

4https://github.com/fmplaza/WASSA-2018

198

Development Test

System M. Prec M. Recall M. F1 M. Prec M. Recall M. F1

Amobee1 - - - - - 71.4%
EmoSVM 49.99% 50.1% 50.02% 49.77% 49.84% 49.69%
EmoLSTM21 56.11% 56.13% 55.96% 58.41% 58.3% 58.30%
NoEMoLSTM21 56.60% 56.46% 56.43% 58.25% 58.17% 58.11%
EmoBiLSTM22 56.42% 56.3% 56.17% 57.92% 57.97% 57.94%
NoEMoBiLSTM26 55.17% 55.24% 55.12% 56.41% 54.7% 54.68%

Table 4: Dev. and Test results reached by our systems and by the best system in the competition. The superscripts
specify the rank of the systems in the competition.

4 Analysis of results

We performed our experiments in the pre-
evaluation phase and evaluation phase, and
we used the official competition metric macro-
averaged F1-score as evaluation measure. More-
over, we computed the Macro Precision, Macro
Recall and Macro F1. This results are shown in
Table 4.

First, we assessed our internal baseline
(EmoSVM), which set a lower bound during
the development or pre-evaluation phase. Since
the number of classes is 6, the performance
of our internal baseline is acceptable, and we
also conclude the its generalization capacity is
acceptable.

The submitted systems, which are based on
deep learning, outperformed EmoSVM with the
development and test data. Regarding the results
reached with the development subset, the mod-
els that did not use emotional external knowledge
reached higher results that those ones that used ex-
ternal knowledge. However, those systems that
used emotional external knowledge (EmoLSTM
and EmoBiLSTM) outperformed the ones that did
not use external knowledge on the evaluation data,
which means that the emotional external knowl-
edge enhance the capacity of generalization of the
classification models, as we expected.

Regarding the performance of LSTM and BiL-
STM, the use of LSTM as sequence encoding
module resulted in a higher capacity of generaliza-
tion, because BiLSMT reached higher results with
the development data, but LSTM reached higher
results with the evaluation data. Therefore, we
conclude that the use of LSTM as sequence en-
coding module and emotional external knowledge
allow to reach good results in the task of emo-

tion classification, which allow us to confirm our
claim.

Finally, the best system of the task (Amobee)
has reached 71.4% of F1-score in the evaluation
phase, since we do not know the evaluation mea-
sures corresponding to the pre-evaluation phase,
in Table 4 they appear as “-”. Our best system
(EmoLSTM) hold the 22 position in the ranking
with 58.3% in F1-score.

5 Conclusions

We described the participation of the SINAI lab
in the IEST shared task of the WASSA Workshop.
We submitted four systems based on deep learn-
ing. The systems mainly differ in the sequence en-
coding module, and the feature vector space. We
compare the performance of LSTM and BiLSTM
as sequence encoding module, and the use of emo-
tional external knowledge. The results show that
the use of LSTM and emotional external knowl-
edge give a higher capacity of generalization to the
classification model.

As future work, we will study how to improve
the use of external knowledge in the task of emo-
tion classification, as well as, how to automatically
select the most relevant features. Hence, we will
study the development of an Attention module in
our models. Furthermore, we will research how to
add relevant linguistic information to our models,
as the influence of negation in the classification of
emotions.

Acknowledgments

This work has been partially supported by
Fondo Europeo de Desarrollo Regional (FEDER),
REDES project (TIN2015-65136-C2-1-R) and
SMART-DASCI project (TIN2017-89517-P) from
the Spanish Government. Eugenio Martı́nez

199

Cámara was supported by the Juan de la Cierva
Formación Programme (FJCI-2016-28353) from
the Spanish Government.

References
Ronan Collobert, Jason Weston, Léon Bottou, Michael

Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4):169–200.

Yoav Goldberg. 2017. Neural Network Methods for
Natural Language Processing. Morgan & Claypool
Publishers.

Zellig S. Harris. 1954. Distributional structure.
WORD, 10(2-3):146–162.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference for Learning Representations,
San Diego, 2015.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Chul Min Lee, Shrikanth S Narayanan, and Roberto
Pieraccini. 2002. Combining acoustic and language
information for emotion recognition. In Seventh In-
ternational Conference on Spoken Language Pro-
cessing.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Saif M Mohammad and Peter D Turney. 2010. Emo-
tions evoked by common words and phrases: Us-
ing mechanical turk to create an emotion lexicon. In
Proceedings of the NAACL HLT 2010 workshop on

computational approaches to analysis and genera-
tion of emotion in text, pages 26–34. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Chung-Hsien Wu, Ze-Jing Chuang, and Yu-Chung Lin.
2006. Emotion recognition from text using semantic
labels and separable mixture models. ACM trans-
actions on Asian language information processing
(TALIP), 5(2):165–183.

Ali Yadollahi, Ameneh Gholipour Shahraki, and Os-
mar R Zaiane. 2017. Current state of text sentiment
analysis from opinion to emotion mining. ACM
Computing Surveys (CSUR), 50(2):25.

200

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 201–204
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

EmoNLP at IEST 2018: An Ensemble of Deep Learning Models and
Gradient Boosting Regression Tree for Implicit Emotion Prediction in

Tweets

Man Liu

liumanlalala@gmail.com

Abstract

This paper describes our system submitted
to IEST 2018, a shared task (Klinger et al.,
2018) to predict the emotion types. Six emo-
tion types are involved: anger, joy, fear, sur-
prise, disgust and sad. We perform three dif-
ferent approaches: feed forward neural net-
work (FFNN), convolutional BLSTM (Con-
BLSTM) and Gradient Boosting Regression
Tree Method (GBM). Word embeddings used
in convolutional BLSTM are pre-trained on
470 million tweets which are filtered using
the emotional words and emojis. In ad-
dition, broad sets of features (i.e. syntac-
tic features, lexicon features, cluster features)
are adopted to train GBM and FFNN. The
three approaches are finally ensembled by the
weighted average of predicted probabilities of
each emotion label.

1 Introduction

Twitter is an active social networking platform.
It is estimated that nearly 500 million tweets are
sent per day1. As a short message where people
can convey their emotions, twitter data is particu-
lar interesting for emotional detection. The task
of WASSA 2018 Implicit Emotion Shared Task
is aimed to predict the emotion underlying in the
tweets. The emotional types that are supposed to
predict are ”Anger, Fear, Sadness, Joy, Surprise,
Disgust”. In each tweet, the emotional expression
is implicit, that is, a certain emotional word is re-
moved. The removed emotional words could be
one of the following:”sad”, ”happy”, ”disgusted”,
”surprised”, ”angry”, ”afraid” or a synonym of
one of them. For example, given the tweet ”It’s
[#TARGETWORD#] when you feel like you are
invisible to others.”, the system should predict the
label of this tweet as ”Sadness”. Moreover, the

1https://en.wikipedia.org/wiki/Twitter

system can not only be useful for implicit emo-
tion detection but also for various NLP applica-
tions. For example, this system can be used to
detect the emotions in movie reviews which do
not have the sentimental word but actually express
sentimental polarities. In this paper, we describe
our approaches and experiments to solve this prob-
lem. Our system is an ensemble of three classifi-
cation approaches combined with a weighted av-
erage of predicted probabilities. Whilst, two of
the three approaches are neural network models
and the other is a gradient boosting regression tree
model (Section 3). The rest of the paper is struc-
tured as follows: Section 2 discusses in brief the
dataset for the task. Section 3 gives an explana-
tion about the details of various approaches used
in our system. Section 4 shows the results and dis-
cussions about them. Finally, we draw the conclu-
sion about our participation in the Section 5.

2 Data

The dataset provided in this task contains the tweet
text and the target emotions which are the pre-
dicted labels. The gold labels of test set are given
only in the evaluation period. In the training data,
there are 153383 tweets for training, 9591 tweets
in the development dataset and 28757 in the test
dataset. We also make use of external dataset
which contains 640 million tweets. The external
data is used for training the word embedding as
the input of the deep learning model.

3 Proposed system

Our system is an ensemble of three different mod-
els. We demonstrate the separate models followed
by the ensemble method. We tokenize each tweet
with the tokenization tool tweetokenize 2. Since

2https://github.com/jaredks/tweetokenize

201

https://doi.org/10.18653/v1/P17

Figure 1: Architecture of ConBLSTM.

all the hashtags have been removed, we make no
changes about hashtags.

3.1 Approach 1: convolutional BLSTM

To capture the sentence-level features and lex-
ical information hiding in the tweets, we uti-
lize a convolutional BLSTM model without any
hand-crafted features. convolutional BLSTM has
showed strong advancement in various NLP do-
mains (Zeng et al., 2016), (Eger et al., 2017).

Input features: We trained word embedding on
470 million emotion related tweets using GloVe
method. The 470 million emotion related tweets
are filtered from 640 million tweets. The fil-
tering process are based on a pre-built emotion
word list which was extracted from NRC Word-
Emotion Association Lexicon (Mohammad and
Turney, 2013). With NRC Word-Emotion Asso-
ciation Lexicon, we extract the word which has at
least one positive emotion. In addition, emojis are
incorporated into the pre-built emotion word list
because emojis as another expression of emotions
are helpful for the emotion prediction. The emoji
list is extracted from python package emoji3. Then
the filtered tweets are used to train the word em-
bedding. Considering the experiment efficiency
and performance, we finally select the trained
word embedding with dimension 100.

3https://pypi.org/project/emoji/

Architecture: After loading the pre-trained
GloVe word embedding, we apply 3 convolutional
layers with filter sizes 3, 5, 7. We concatenate
the respective vectors and feed them into the for-
ward and backward LSTM layers. The output of
the BLSTM layer is put into the softmax layer to
compute the probabilities of each emotion. The fi-
nal predicted emotion type is the one with the max
probabilities. Figure 1 is used to illustrate the ar-
chitecture of this model.

Training: The epoch and filter number in each
layer in the final experiment are chosen based on
the result of pre-experiments. The epoch is 100
and the filter number in the 3 convolutional layers
are 512. The output dimension of BLSTM is 128
which is also selected based on pre-experiments.

3.2 Approach 2: Feed-forward neural neural
network

Inspired by the previous work of Pranav et al.
2017 (Goel et al., 2017), which is a system to pre-
dict the emotional intensity, we choose feed for-
ward neural network due to its advantage of effi-
ciency and effectivity in the classification task. We
spell out the architecture as follows:

Input features: Given a tokenized sentence
with words {w0, w1, w2..., wn}, the first step is
to extract word-level and character-level represen-
tations by vectorizing word and character ngrams.
The next step is to extract a fixed length sentiment
feature representation. Each tweet is represented
as a sentence vector by concatenating broad sets
of character-level representations, word-level rep-
resentations and sentiment feature representations.
To handle with the problem that the length of each
tweet vector varies, we utilize the SciKit-Learn
tool DictVectorizer4 and CountVectorizer5. We
adopted features including character ngram fea-
ture, POS feature, cluster feature, negation feature,
word ngram feature, counting feature and lexicon
feature. Details of these features are explained in
Liu (2018). A variety of sentiment lexicons are ex-
plored in the lexical features6. All these features
are concatenated as the input features. Dimension

4http://scikit-learn.org/stable/modules/generated/
sklearn.feature extraction.DictVectorizer.html

5http://scikit-learn.org/stable/modules/generated/
sklearn.feature extraction.text.CountVectorizer.html

6NRC Emotion Lexicon; NRC Hashtag Sentiment Lex-
icon; MaxDiff Twitter Lexicon; MPQA Effect Lexicon;
MPQA Subjectivity Lexicon; Harvard Inquirer Lexicon;
Bing Liu Lexicon; Loughran McDonald Lexicon; Amazon
Laptop Review Lexicon; Sentiment140 Lexicon.

202

Figure 2: Architecture of feed forward neural network
(FFNN). 34042 shows the number of input tweets.

of each sentence vector is not fixable and depen-
dent on the corpus. For the training dataset with
153383 samples, the dimension of each sentence
vector is 41298.

Architecture: Firstly, sentence vectors are fed
into the input layer and then passed to four hidden
layers (L1, L2, L3, L4). L1, L2 and L3 are all fol-
lowed by dropout (p=0.5) to avoid over-fitting and
co-adaptation of features (Srivastava et al., 2014).
Activation functions in the hidden layers are Relu
(Maas et al., 2013). L4 is followed by a soft-
max neuron which predicts the probability of each
emotion. We use Figure 2 to illustrate the archi-
tecture of this network.

Training: Parameters are optimized in the neu-
ral network by performing 5-fold cross validation.
We use a batch size of 128 and 100 epochs. The
optimization algorithm is Adam (Kingma and Ba,
2014) with the default parameter setting in Keras7.

3.3 Approach 3: GBM

The input features of this models are same with
those of the previous model feed forward neu-
ral network. Input features are concatenated and
fed into the model Gradient Boosting Regression
Tree (GBM). GBM previously shows efficiency

7https://keras.io

and power to take use of broad sets of sentimen-
tal features in predicting the type of emojis (Liu,
2018). In this task, despite of implication of the
emotion words, GBM still has a comparable per-
formance. From the previous experiments, we
choose two hyperparameters to tune and use 300
trees and 64 leaves per tree in this model. Besides,
we set learning rate to 0.1 and minimal number of
data in one leaf to 20. The tool we used to build
GBM model is lightGBM (Ke et al., 2017).

3.4 Ensemble of the three approaches

Out final submitted system is ensembled by the
previously described three approaches. We com-
pute the weighted average of the predicted proba-
bilities and determine the final label using the max
probability. Due to the time limit, our submit-
ted system does not use the global optimization of
ensemble weights. After submitting, we tune the
weights of each model with intensive experiments.
The final weights for our system are: 2 (FFNN), 2
(ConBLSTM) and 1 (GBM), while the weights of
submitted system are 4 (FFNN), 2 (ConBLSTM)
and 1 (GBM).

4 Result and discussion

We compare the results achieved by our indi-
vidual approaches, the ensemble system and the
WEKA Baseline system which is the official base-
line model for this task. The official score of our
submitted system is 0.621. Table 1 and 2 shows
the results of our systems with the best weight set-
tings on development and test dataset. From ta-
ble 1, we can find the ensemble model achieves
the best performance compared with the single
model and FFNN+BLSTM ensemble model. Ap-
proach 1 (ConBLSTM) achieves the lowest scores
among the three approaches. Table 2 illustrates
that among all the individual emotions, our sys-
tem performs best on ”Joy” which has the most
labels in both the development dataset and the test
dataset.

5 Conclusion and future work

In this paper, we propose an ensemble system to
predict the implicit emotion of tweets. Three ap-
proaches are exploited: convolutional BLSTM,
feed forward neural network and gradient boosting
regression tree. To ensure the replicability, each
approach is detailed about the architecture and the
input features. In the future work, we will carry

203

Development Test
System P R F1 P R F1

Feed Forward NN 0.61 0.61 0.61 0.62 0.61 0.62
ConBLSTM 0.55 0.55 0.55 0.55 0.55 0.55

GBM 0.62 0.62 0.62 0.62 0.62 0.62
Feed Forward NN + BLSTM 0.61 0.61 0.61 0.63 0.63 0.63

Ensemble Model 0.64 0.63 0.63 0.64 0.64 0.64
Baseline 0.60 0.60 0.60 0.60 0.60 0.60

Table 1: Test and Development results on our system.

Development Test
Label P R F1 P R F1
Anger 0.57 0.57 0.57 0.53 0.53 0.53

Disgust 0.65 0.62 0.64 0.66 0.66 0.66
Fear 0.64 0.68 0.66 0.65 0.70 0.67
Joy 0.78 0.72 0.75 0.76 0.72 0.74

Sadness 0.65 0.58 0.61 0.65 0.57 0.61
Surprise 0.56 0.64 0.60 0.56 0.64 0.60

Table 2: Results on different labels.

out experiments with different dimensions of word
embedding as well as different embedding meth-
ods, i.e. word2vector. Due to the time limit, the
experiments lack feature analysis with which the
final result may be improved. We plan to exper-
iment different sets of features to find out which
feature sets are more helpful. Finally, we would
test more ensemble methods as well as the effec-
tiveness of each approach in the ensemble system.

References
Steffen Eger, Erik-Lân Do Dinh, Ilia Kuznetsov, Ma-

soud Kiaeeha, and Iryna Gurevych. 2017. Eelection
at semeval-2017 task 10: Ensemble of neural learn-
ers for keyphrase classification. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 942–946.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boost-
ing decision tree. In Advances in Neural Informa-
tion Processing Systems, pages 3146–3154.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A

method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Man Liu. 2018. Emonlp at semeval-2018 task 2: En-
glish emoji prediction with gradient boosting regres-
sion tree method and bidirectional lstm. In Proceed-
ings of The 12th International Workshop on Seman-
tic Evaluation, pages 390–394.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng.
2013. Rectifier nonlinearities improve neural net-
work acoustic models. In Proc. icml, volume 30,
page 3.

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a word-emotion association lexicon.
29(3):436–465.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ying Zeng, Honghui Yang, Yansong Feng, Zheng
Wang, and Dongyan Zhao. 2016. A convolution
bilstm neural network model for chinese event ex-
traction. In Natural Language Understanding and
Intelligent Applications, pages 275–287. Springer.

204

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 205–210
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

HGSGNLP at IEST 2018: An Ensemble of Machine Learning and Deep
Neural Architectures for Implicit Emotion Classification in Tweets

WenTing Wang1, Man Lan2

1Alibaba Group, WenYi West Road #969, Hangzhou City
2Department of Computer Science and Technology,
East China Normal University, Shanghai, P.R.China

nantiao.wwt@alibaba-inc.com, mlan@cs.ecnu.edu.cn

Abstract

This paper describes our system designed for
the WASSA-2018 Implicit Emotion Shared
Task (IEST). The task is to predict the emo-
tion category expressed in a tweet by remov-
ing the terms angry, afraid, happy, sad, sur-
prised, disgusted and their synonyms. Our fi-
nal submission is an ensemble of one super-
vised learning model and three deep neural
network based models, where each model ap-
proaches the problem from essentially differ-
ent directions. Our system achieves the macro
F1 score of 65.8%, which is a 5.9% perfor-
mance improvement over the baseline and is
ranked 12 out of 30 participating teams.

1 Introduction

In Natural Language Processing, emotion recog-
nition is concerning of associating words, phrases
or documents with predefined emotion categories,
such as Anger, Anticipation and Sadness (Ekman,
1999; Plutchik, 2001). Most of previous research
works on emotion recognition (Wang et al., 2012;
Bestgen and Vincze, 2012; Suttles and Ide, 2013;
Recchia and Louwerse, 2015; Hollis et al., 2017)
presumes emotion words or their representations
are accessible. Such models might fail to learn as-
sociations for more subtle descriptions and there-
fore fail to predict the emotion when overt emotion
words are not available.

The WASSA-2018 Implicit Emotion Shared
Task (IEST) (Klinger et al., 2018) aims to predict
the emotion category of a given tweet when the ex-
plicit emotion word, or trigger words, is removed.
The emotion category can be one of six classes:
Anger, Disgust, Fear, Joy, Sadness and Surprise.
For examples:

1. “It’s [#TARGETWORD#] when you feel like
you are invisible to others.”

2. “We are so [#TARGETWORD#] that people
must think we are on good drugs or just really
good actors.”

In the above 2 examples, with the help of com-
mon sense or world knowledge, implicit emotion
still can be inferred from context as Sadness and
Joy. The [#TARGETWORD#] tokens in the ex-
amples indicate the position of the removed word
in the given tweet.

Our submitted system is an ensemble of four
broad sets of approaches combined using a
weighted average of the separate predictions. One
approach uses traditional lexicon-based method to
train a logistic regression classifier, while the re-
maining three approaches rely on representing the
input tweet as a word vector and using neural net-
work based architectures to give the emotion cate-
gory for the tweet.

The rest of the paper is structured as follows.
Section 2 describes the features used in our sys-
tem. Section 3 explains the various approaches
used by our ensemble model and the way we com-
bined the predictions. Section 4 states the ex-
periment results and discusses the implications of
those results. We conclude our work in Section 5.

2 Features

2.1 Word
The current word and its lowercase format are
used as features. To provide additional context
information, word n-grams and character n-grams
are also used.

2.2 Word Embeddings
Word embeddings are trained from large unlabeled
raw tweets to be used as input to neural network
model as well as for generating word clusters.

From an initial collection of 1.6 billion tweets,
the collection is filtered to only include tweets that

205

https://doi.org/10.18653/v1/P17

Arguments Value
–oaa 6

–loss function logistic
–passes 10
–ngram b3
–skips b2
–affix +3b,-1b

-l 0.3

Table 1: Vowpal Wabbit command line arguments
used to train the model. The namespace b denotes
lowercase word feature.

contain emotion word found in the NRC Emotion
Lexicon. In addition, the word to the left and
right of the emotion word are constrained to those
words found in the training data. This constraint is
used to remove tweets containing generic context
such as “happy birthday”. After filtering, the final
tweet collection contains 11 million tweets.

From this tweet collection, word embeddings
are generated following the steps described in Toh
and Su (2016). Besides using the previous two
approaches (Gensim and GloVe tool), the fastText
tool (Bojanowski et al., 2017)1 is also used to gen-
erate word embeddings.

2.3 Word Cluster
K-means clusters are generated from the word em-
beddings using the K-means implementation of
Apache Spark MLlib. From the K-means clus-
ters, word cluster features are generated. For each
word, the cluster id that the word belongs to is
used as a feature.

3 Approaches

This section describes the four approaches used to
generate the emotion predictions.

3.1 Approach 1: Lexicon Model
The Vowpal Wabbit tool2 is used to train a mul-
ticlass classifier using the one-against-all setting
(--oaa).

The features used to train the classifier include
the words in the tweet (both original and lowercase
format) and word clusters where 5 different word
clusters are used.

Table 1 shows the command line arguments
used to train the Vowpal Wabbit model.

1https://fasttext.cc/
2https://github.com/JohnLangford/vowpal wabbit/wiki

Arguments Value
-lr 0.05

-epoch 40
-loss softmax
-neg 5

-wordNgrams 5
-bucket 30000000

-dim 100
-minn 10
-maxn 10

Table 2: fastText command line arguments used to
train the model.

3.2 Approach 2: fastText Model

The fastText tool is used to train a text classi-
fier using the supervised subcommand (Joulin
et al., 2017).

The lowercase words in the tweet are used to
train the classifier.

Table 2 shows the command line arguments
used to train the fastText model.

3.3 Approach 3: Convolutional Neural
Network Model

Convolutional Neural Network (CNN) has been
shown to work well for sentence-level classifica-
tion tasks (Kim, 2014). Here we detail the archi-
tecture of our network.

Input and Embedding Layer: Each tweet is
preprocessed by (1) normalizing emoji to text3;
(2) normalizing hyper links and @mentions to
someurl and someuser; and (3) splitting hashtag
chunks into separate words4. Then the tweet is
converted into a concatenated vector and padded
to an equal length (or truncated if the tweet is
longer than the pre-defined length). The input
vector is fed to the embedding layer (i.e. pre-
trained glove.twitter.27B vectors), which converts
each word into a distributional vector.

CNN Layer: The concatenated vector represen-
tation of the tweet is then fed to CNN. The number
of hidden units is set to be 256. We apply tanh as
activation and dropout with a rate of 0.2.

Output Layer: The output of CNN is flattened
and then passed to a fully connected layer. Finally,
a softmax layer was added on top of the fully con-
nected layer. The network is trained by minimiz-

3https://pypi.org/project/emoji
4https://pypi.python.org/pypi/wordsegment

206

Figure 1: The architectures of our three neural models. (a) is the neural model for Approach 3. (b) is the
neural model for Approach 4. (c) is the neural model for Approach 5.

ing the categorical cross-entropy error with RM-
SProp for parameter optimization.

Figure 1 (a) shows the model architecture of the
CNN model.

3.4 Approach 4: Sequence Modeling using
CNN and LSTM

Long-short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) architecture is an ad-
vanced version of RNN and has been success-
ful in the NLP domain on various tasks (Graves
and Schmidhuber, 2005; Graves and Jaitly, 2014).
Combining CNN and LSTM has also been found
to be quite successful in (Zhou et al., 2015; Goel
et al., 2017). In this approach, we attempt to use
CNN to extract regional features and then use Bi-
LSTM to capture compositional semantics from
both forward and backward directions of word se-
quence.

Since the input, embedding, CNN layers are the
same as Approach 2, we only detail the architec-
tures of the following different layers.

Bi-LSTM with Pooling Layer: We use bi-
directional LSTMs followed by some pooling
layer to model the output from CNN layer. The

number of hidden units is set to be 300. We ap-
ply relu as activation and dropout with a rate of
0.2. The outcomes from max pooling and average
pooling are concatenated.

Output Layer: The concatenated output of Bi-
LSTM with Pooling layer is then passed to a fully
connected layer. Finally, a sigmoid layer was
added on top of the fully connected layer. The
network is trained by minimizing the categorical
cross-entropy error with Adam for parameter opti-
mization.

Figure 1 (b) shows the model architecture of the
sequence model.

3.5 Approach 5: Residual LSTM Model

Residual LSTM (Kim et al., 2017) adds an addi-
tional spatial shortcut path from lower layers to
better deal with vanishing gradients. It provides
efficient training of deep networks with multiple
LSTM layers and has been successfully applied
to speech recognition and NER tasks (Tran et al.,
2017). The formulation is as follows:

ilt = σ(W l
xix

l
t +W l

hih
l
t−1 + wl

cic
l
t−1 + bli) (1)

207

System anger disgust fear joy sadness surprise macro average
Lexicon 0.58 0.65 0.68 0.74 0.61 0.62 0.65
fastText 0.55 0.63 0.66 0.72 0.59 0.60 0.62

CNN 0.56 0.58 0.63 0.68 0.55 0.55 0.60
CNN-LSTM 0.57 0.63 0.66 0.70 0.58 0.59 0.62
Res-LSTM 0.48 0.58 0.58 0.68 0.50 0.52 0.56
Ensemble 0.58 0.67 0.69 0.74 0.63 0.64 0.66

(excluding Res-LSTM)

Table 3: Performance comparison between individual models and ensemble model on trial data. Our final
ensemble model includes lexicon, fastText, CNN and CNN-LSTM models.

f lt = σ(W l
xfx

l
t +W l

hfh
l
t−1 +wl

cfc
l
t−1 + blf) (2)

clt = f lt · clt−1 + ilt · tanh(W l
xcx

l
t +W l

hch
l
t−1 + blc)

(3)

olt = σ(W l
xox

l
t +W l

hoh
l
t−1 + wl

coc
l
t + blo) (4)

rlt = tanh(clt) (5)

ml
t =W l

o · rlt (6)

hlt = olt · (ml
t + xlt) (7)

Where l represents layer index and ilt, f
l
t and

olt are input, forget and output gates respectively.
xlt is an input from (l − 1)th layer, hlt−1 is a out-
put layer at time t − 1 and clt−1 is an internal cell
state at t − 1. And a short cut from a prior output
layer hl−1

t is added to a projection output ml
t via

W l
hx

l
t =W l

hh
l−1
t

Figure 1 (c) shows the model architecture of our
residual LSTM model. Two Bi-LSTM layers are
included and the number of hidden units is set to
be 512. We apply relu as activation and dropout
with a rate of 0.2. The network is then trained
by minimizing the categorical cross-entropy error
with Adam for parameter optimization.

3.6 Ensemble Model
To combine the predictions of the five models
mentioned above, we compute the weighted aver-
age of the category probabilities of the four mod-
els. The trial data is used to select the optimal
weight of each model. The selected emotion cate-
gory is the category that has the highest weighted
average.

4 Experiments and Results

4.1 Dataset and Evaluation Metric

The task organizers provide a training dataset (i.e.
153k instances) and a small blind trial dataset (i.e.
9.6k instances) for system building. Then a period
of 1 week is given for submitting the predictions
on a blind test dataset (i.e. 29k instances).

Macro-averaged F1 score is chosen to be the of-
ficial evaluation metric.

4.2 Results on Trial Data and Analysis

The optimal setting for each model is decided
using cross validation on training dataset. Then
the weighted average is computed from individual
predictions to generate the predictions for the final
ensemble model using trial dataset as described in
Section 3.6. Table 3 shows the trial results for all
individual models and ensemble model.

We observe that the Lexicon approach achieves
the best score among all approaches. Among the
four deep neural models, CNN+LSTM and fast-
Text achieve better score of 62% compared to
CNN and Residual-LSTM, which demonstrates
that both the combination of long sequence and
regional features and the word n-grams capture ef-
fective information. Since the residual LSTM net-
work does not perform as expected, we did not in-
clude it into our final ensemble model.

We also observe that the ensemble model
achieves the best performance compared with each
individual model and offers equal or better per-
formance across all the emotions, which indi-
cates that the four approaches do complement each
other quite well.

4.3 Official Results on Test Data

Table 4 reports our official results on test data.
Among the individual emotions, our ensemble

208

Label TP FP FN Precision Recall F1
anger 2814 1922 1980 0.594 0.587 0.591

disgust 3168 1537 1626 0.673 0.661 0.667
fear 3292 1455 1499 0.693 0.687 0.690
joy 3949 1342 1297 0.746 0.753 0.750
sad 2547 1290 1793 0.664 0.587 0.623

surprise 3212 2229 1580 0.590 0.670 0.628
Micro Average 18982 9775 9775 0.660 0.660 0.660

Macro Average 0.660 0.657 0.658

Table 4: Official results for our submission.

System anger disgust fear joy sadness surprise macro average
Our Submission 0.59 0.67 0.69 0.75 0.62 0.63 0.658 (12)

Baseline 0.52 0.62 0.63 0.70 0.56 0.57 0.599
Amobee 0.64 0.72 0.75 0.82 0.69 0.68 0.714 (1)
IIIDYT 0.64 0.71 0.75 0.80 0.69 0.68 0.710 (2)

NTUA-SLP 0.63 0.71 0.74 0.79 0.69 0.67 0.703 (3)

Table 5: Performance comparison between our system, official baseline system and top-ranked systems
on IEST shared task. The number in parentheses are the official rankings.

model gives the best performance for Joy, fol-
lowed by Fear and Disgust.

We also compare the results achieved by our
submitted ensemble system, official baseline sys-
tem and top-ranked systems in Table 5. Our en-
semble model achieves average f1-macro score of
65.8%, which beats the baseline model by 5.9%.
However, the top-ranked systems all incorporate
models trained in previous emotion related tasks
(e.g. SemEval 2018: Affective in Tweets) as addi-
tional features. This probably is the reason for our
performance gap.

5 Conclusion and Future Work

In this paper, we propose a hybrid framework to
predict the emotion category in tweets when no
explicit emotion words are presented. The pro-
posed approach combines lexicon based logistic
regression classifier, fastText, Convolutional Neu-
ral Networks and Sequence Modeling using CNN
and LSTM, allowing us to explore the different di-
rections each methodology can take. Our system
HGSGNLP, submitted to the IEST 2018 Shared
Task, beats the baseline system by 5.9% on the test
set.

Compared to the best systems, there is still
room for improvement. In the future, we
would like to experiment with some other filters

provided in AffectiveTweets package (Mo-
hammad and Bravo-Marquez, 2017) such as
TweetToSentiStrengthFeatureVector.
We would also experiment with incorporating
lexicon features to existing neural networks.

References
Yves Bestgen and Nadja Vincze. 2012. Checking

and bootstrapping lexical norms by means of word
similarity indexes. Behavior research methods,
44(4):998–1006.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Paul Ekman. 1999. Basic emotions. Handbook of cog-
nition and emotion, pages 45–60.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Alex Graves and Navdeep Jaitly. 2014. Towards end-
to-end speech recognition with recurrent neural net-
works. In International Conference on Machine
Learning, pages 1764–1772.

209

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5-6):602–610.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Geoff Hollis, Chris Westbury, and Lianne Lefsrud.
2017. Extrapolating human judgments from skip-
gram vector representations of word meaning. The
Quarterly Journal of Experimental Psychology,
70(8):1603–1619.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431. Association for Computational
Linguistics.

Jaeyoung Kim, Mostafa El-Khamy, and Jungwon Lee.
2017. Residual lstm: Design of a deep recurrent ar-
chitecture for distant speech recognition. In INTER-
SPEECH.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751. As-
sociation for Computational Linguistics.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, pages 34–49. Association for Com-
putational Linguistics.

Robert Plutchik. 2001. The nature of emotions: Hu-
man emotions have deep evolutionary roots, a fact
that may explain their complexity and provide tools
for clinical practice. American scientist, 89(4):344–
350.

Gabriel Recchia and Max M Louwerse. 2015. Repro-
ducing affective norms with lexical co-occurrence
statistics: Predicting valence, arousal, and domi-
nance. The Quarterly Journal of Experimental Psy-
chology, 68(8):1584–1598.

Jared Suttles and Nancy Ide. 2013. Distant supervision
for emotion classification with discrete binary val-
ues. In International Conference on Intelligent Text
Processing and Computational Linguistics, pages
121–136. Springer.

Toh, Zhiqiang and Su, Jian. 2016. NLANGP at
SemEval-2016 Task 5: Improving Aspect Based
Sentiment Analysis using Neural Network Fea-
tures. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 282–288. Association for Computational Lin-
guistics.

Quan Tran, Andrew MacKinlay, and Antonio Ji-
meno Yepes. 2017. Named entity recognition with
stack residual lstm and trainable bias decoding. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 566–575. Asian Federation of
Natural Language Processing.

Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan,
and Amit P Sheth. 2012. Harnessing twitter”
big data” for automatic emotion identification. In
Privacy, Security, Risk and Trust (PASSAT), 2012
International Conference on and 2012 Interna-
tional Confernece on Social Computing (Social-
Com), pages 587–592. IEEE.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis Lau. 2015. A c-lstm neural network for text clas-
sification. arXiv preprint arXiv:1511.08630.

210

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 211–216
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

DataSEARCH at IEST 2018: Multiple Word Embedding based Models
for Implicit Emotion Classification of Tweets with Deep Learning

Yasas Senarath
University of Moratuwa,

Sri Lanka
wayasas.13@cse.mrt.ac.lk

Uthayasanker Thayasivam
University of Moratuwa,

Sri Lanka
rtuthaya@cse.mrt.ac.lk

Abstract

This paper describes an approach to solve im-
plicit emotion classification with the use of
pre-trained word embedding models to train
multiple neural networks. The system de-
scribed in this paper is composed of a sequen-
tial combination of Long Short-Term Memory
and Convolutional Neural Network for feature
extraction and Feedforward Neural Network
for classification. In this paper, we success-
fully show that features extracted using multi-
ple pre-trained embeddings can be used to im-
prove the overall performance of the system
with Emoji being one of the significant fea-
tures. The evaluations show that our approach
outperforms the baseline system by more than
8% without using any external corpus or lex-
icon. This approach is ranked 8th in Im-
plicit Emotion Shared Task (IEST) at WASSA-
2018.

1 Introduction

Emotion classification is a major area of interest
within the field of Sentiment Analysis (SA). So-
cial media is a great source of emotional content
since people are willing to publish their views on
them. Twitter is one such platform which enables
users to publish micro-blogs otherwise known as
Tweets. Although, the tweets are limited by the
number of characters, when viewed as a group it
can be very significant. Every day, on average,
around 500 million tweets are tweeted on Twit-
ter. This has attracted much interest from both
academia and industries to study about opinions
in tweets.

Tweets can generally be considered to contain
textual content. However, tweet text is usually in-
formal containing much casual forms and emoji,
thus bringing challenges in research.

Implicit emotions play a major challenge in
emotion identification process in tweets. This is

due to the informal nature of the tweet and lack of
methods to properly model such sentences. Here
the term “implicit emotion” can be defined as the
emotion conveyed in the text without stating the
words denoting the emotion directly.

There is an effect of implicit emotions on opin-
ion analysis tasks such as emotion identifica-
tion and emotional intensity prediction. How-
ever, techniques for modeling implicit emotions
in tweets lack the sufficient performance. There-
fore, this study makes a major contribution to re-
search by exploring methods for properly model-
ing a tweet.

Implicit Emotion Shared Task (IEST) (Klinger
et al., 2018) hosted by WASSA-20181 poses a sim-
ilar task of finding the emotion expressed in a
tweet out of six basic emotions without the use
of the word denoting the emotion. This paper
presents our approach to solve the above problem.
We were ranked 8th in the competition related to
this task.

Artificial Neural Networks (ANN) has shown to
perform better than conventional machine learn-
ing algorithms and has been used in variety of
Natural Language Processing tasks (Young et al.,
2017). One of the primary objectives of using neu-
ral networks is to model the non-linear relation-
ships in data, which is observed in textual content
frequently. Up to now, a number of studies con-
firmed the effectiveness of neural networks as fea-
ture extractors rather than the final classifier for
opinion mining. A variety of neural network clas-
sifiers has been applied to similar tasks such as
emotion identification, polarity classification, and
other text classification tasks. Feedforward Neural
Networks (FNN), Convolutional Neural Networks
(CNN) (Kim, 2014), Long Short-Term Memory
(LSTM) (Tran and Cheng, 2018; Socher et al.,

1http://implicitemotions.wassa2018.com

211

https://doi.org/10.18653/v1/P17

2013) networks are commonly used in recent re-
lated work. Furthermore, researchers have studied
much complex forms of Neural Networks by com-
bining CNN and LSTM in different ways.

The rest of the paper is organized as follows:
Section 2 will provide a brief description on the
dataset, Section 3 describes the system architec-
ture, Section 4 reports the results and analysis of
our system, finally we conclude our work in Sec-
tion 5 along with a discussion on further improve-
ments.

2 Dataset

The dataset is labeled based on the emotion word
present in the tweet before replacing that emotion
word in the text with a placeholder. The dataset
is labeled for six basic emotions: Anger, Sad, Joy,
Fear, Disgust and Surprise. The complete details
of the dataset can be found in the task description
paper (Klinger et al., 2018).

3 System Description

The system consists three different components:
the preprocessor, feature extractor and classifier.
In this study we considered that effective classi-
fier trained on the training dataset could be used
as a feature extractor as well. This section will
be subdivided to accommodate the stated compo-
nents separately.

3.1 Preprocessing
The tweets contained in the dataset are prepro-
cessed to an extent. In the dataset, the URLs were
replaced with “http://url.removed”, mentions with
“@USERNAME” and new lines with “[NEW-
LINE]”. Additionally, we have performed follow-
ing preprocessing on the dataset: changing target
term “[#TRIGGERWORD#]” to “ trigger ” and
“[NEWLINE]” to “ newline ”. These changes
were performed to correct the tokenization. We
have used TweetTokenizer 2 available in python
NLTK library for tokenization. In addition to
NLTK tokenizer we evaluated our system using a
dictionary based tokenizer.

3.2 Feature Extraction
A number of techniques have been developed to
extract features for the classifier, some of which
are trained on the dataset in order to create fea-
tures explicitly. The most basic feature unit is the

2https://www.nltk.org/api/nltk.tokenize.html

ID Model Corpus Corpus Size Dim
TW2V Word2Vec Twitter 400M tweets 400

GW2V Word2Vec
Google
News

100B words 300

WFT fastText Wiki 16B tokens 300

WSFT fastText
Wiki
Subword

16B tokens 300

TGv Glove Twitter 2B tweets 200
E2V Word2Vec Twitter 1661 emoji 300

Table 1: Embedding Models used in Experiments

words. We used words to obtain the Word Vectors
from multiple word embedding models trained on
different corpses. Although our best performing
system was based on word embeddings we devel-
oped and evaluated other features as well. In this
section we will describe all the features that we
have tried out.

Word Vectors: Table 1 summarizes all of the
word embedding models we used in our imple-
mentation. It illustrates the word embedding tech-
niques and the dataset it is trained on and its spe-
cific features as well. Additionally, it provides
an identifier which we will be using to identify
that word embedding in the next sections. Tweets
can be represented as a word vector using the
word2vec approach (Mikolov et al., 2013). GW2V
has been obtained by training Word2vec on part
of Google News dataset3. Similarly, Godin et al.
(2015) has provided a word2vec model trained
on twitter dataset (TW2V)4. Furthermore, fast-
Text (Joulin et al., 2016) models are trained on
trained on UMBC webbase corpus and statmt.org
news dataset with and without subword infoma-
tion (WSFT and WFT)5 (Mikolov et al., 2018).
Glove (Pennington et al., 2014) embedding (TGv)
has been trained on twitter corpus containing two
billion tweets6. Eisner et al. (2016) has released
emoji2vec (E2V)7 a pre-trained embedding model
for all Unicode emoji. Intended means of using
E2V is as an extension to GW2V.

Transfer Features: Features generated by
training a neural classifier on the training dataset,
obtained from the last layer (layer before the out-
put later).

3https://code.google.com/archive/p/word2vec/
4https://www.fredericgodin.com/software/
5https://fasttext.cc/docs/en/english-vectors.html
6https://nlp.stanford.edu/projects/glove/
7https://github.com/uclmr/emoji2vec

212

Figure 1: High-level LSTM-CNN Architecture

Section Parameter Value
LSTM Num. of units 250

CNN
Num. of filters 350
Kernel Sizes 2, 3, 5

Pooling Method Max

Dense Layer
Num. of units 50
Activation ReLU

Output Layer
Num. of Units 6
Activation Softmax

Table 2: Network Parameters for LSTM-CNN

3.3 Classifiers

The trial data provided in the competition is rea-
sonably large for evaluating the model perfor-
mance. As described in Section 3.2, different com-
binations of feature extractors were used. Follow-
ing the feature extraction process, extracted fea-
tures were used to train various neural networks.

3.3.1 LSTM-CNN
Two of the commonly used techniques to model
text documents are Convolutional Neural Net-
works (CNN) and Long short-term memory
(LSTM) networks. Rather than developing the
neural network with CNN and LSTM separately,
the proposed system is developed using a combi-
nation of CNN and LSTM. Figure 1 illustrates the
proposed LSTM-CNN architecture. The hyper pa-
rameters selected for this network are tabulated in
Table 2.

The network parameters are learned by opti-
mizing the categorical cross-entropy between ac-
tual and predicted category. Optimization is per-

Section Parameter Value

Hidden Layer 1
Num. of Units 50
Activation ReLU

Hidden Layer 2
Num. of Units 25
Activation ReLU

Table 3: Network parameters for FNN

formed through back propagation via mini-batch
gradient descent. A batch size of 256 was used
with 5 epochs to train the network. Furthermore, a
dropout layer with dropout rate 0.2 is used before
the dense layer when training. Adam optimization
algorithm (Kingma and Ba, 2014) is used in this
study for optimization . We have trained and eval-
uated the system with each of the word embedding
models stated in Table 1.

Figure 2: High-level FNN Architecture

3.3.2 Feed-forward neural network
Previous studies has shown that feed-forward neu-
ral network (FNN), can be used for modeling text

213

ID Features Trial Set Test Set
Macro

Precision
Macro
Recall

Macro
F1

Macro
Precision

Macro
Recall

Macro
F1

MTW2V TW2V 65.9 65.5 65.5 67.1 67.0 67.0
ME2V GW2V + E2V 63.7 63.6 63.6 65.6 65.1 65.2
MGW2V GW2V 64.4 62.6 62.9 65.4 63.7 63.8
MWTF WTF 65.3 64.1 64.3 65.5 65.1 65.2
MWSTF WSTF 62.5 62.0 62.0 63.9 62.2 62.5
MTGv TGv 63.4 63.2 63.2 63.9 63.9 63.9

Baseline 60.1 60.1 60.1 - - 59.8

Table 4: Evaluation of LSTM-CNN for different word embeddings

Features Macro
Precision

Macro
Recall

Macro
F1

F (MTW2V)
++F (ME2V)

68.0 67.8 67.8

F (MTW2V)
++F (MWTF)

67.9 67.8 67.8

F (ME2V)
++F (MWTF)

67.1 66.7 66.8

F (ME2V)
++F (MTW2V)
++F (MWTF)

68.3 68.1 68.1

Baseline - - 59.8
IEST@WASSA
2018 Best

- - 71.45

Table 5: Results of FNN for different feature combina-
tions

documents (Bengio et al., 2003). Furthermore,
Tang et al. (2014) has used deep neural network
for learning sentiment-specific word embedding.

The proposed architecture of FNN is shown in
Figure 2 and related hyper-parameters used in final
system are provided in Table 3.

Training parameters of the FNN is similar to
that of LSTM-CNN model. Dropout layers were
used in training after each hidden layer with
dropout rate of 0.5. Features used to train the FNN
are transfered from dense layer of LSTM-CNN
models trained with different embedding mod-
els. Several feature vectors obtained from LSTM-
CNN are concatenated and provided as input to
FNN. The final system used features from LSTM-
CNN models trained with embeddings: TW2V,
GW2V + E2V and WFT.

3.3.3 Optimization
Hyper-parameters of the neural networks should
be optimized to gain better performance. They
were selected based on the results on the trial
set and were optimized with both manual pro-
cesses and with Tree of Parzen Estimators
(TPE) (Bergstra et al., 2011). However, due to the
lack of processing power and time limitations we
were not able to perform a comprehensive analysis
on different hyper-parameter variations.

3.3.4 Implementation Details
Python is used to implement the system with
Keras (Chollet et al., 2015) with Tensor-
flow (Abadi et al.) as the backend and
Scikit-learn (Pedregosa et al., 2011) being the
mostly used external libraries. Hyper-parameter
optimization is performed with Hyperopt li-
brary (Bergstra et al., 2013). Any hyper-parameter
not mentioned in Section 3 defaults to their default
values in respective library. Furthermore, we made
our source code and trained models available on-
line 8.

4 Evaluation and Discussion

The first set of analyses examined the impact of
LSTM-CNN models trained with different word
embedding models. The results of the LSTM-
CNN analysis are set out in Table 4. The train
set evaluation is performed by training model on
training dataset evaluating on trial set. Test set
training data comprised of both training data and
trial data.

It is apparent from this Table 4 that the model
has performed similarly for both trial dataset and
test dataset, achieving similar/ better F1 scores and
variations from one feature to another. We observe

8https://github.com/ysenarath/opinion-lab

214

the best performance of the system when using
Word2vec trained on twitter. This could be due
to the fact that it contains in-domain vocabulary.
What stands out in the table is the improvement of
results of MGW2V with inclusion of Emoji2Vec.
It can thus be suggested that Emoji provide a sub-
stantial support to finding emotion in implicit con-
text. Furthermore, we observe that MWTF per-
forms better than MWSTF and can be suggested
that sub-word information provided by the embed-
ding is not important in crating the model. An-
other noteworthy observation is that all the mod-
els indicated in Table 4 outperforms the baseline
model in both trial and test cases, thus proving the
effectiveness of the proposed model itself for im-
plicit emotion prediction task.

In the next part of the analysis we used FNN
trained using features extracted from LSTM-CNN
models. Table 5 provides the evaluation results of
these models on the test set. ‘++’ is used to repre-
sent vector concatenation operation and f(M) de-
notes a function that extracts the learned features
form model M from the last dense layer in the
neural network for a given input text. The evalua-
tions are performed using the three best perform-
ing LSTM-CNN models: MTW2V , MWTF and
ME2V . We have omitted MGW2V for this anal-
ysis since the word vector used to train MGW2V is
already contained in ME2V .

Results from Table 4 can be compared with the
results in Table 5 which shows that the perfor-
mance (precision, recall and F1) of models in the
latter has improved than the individual model vari-
ants. Closer inspection of the Table 5 shows that
the best models are obtained when features from
MTW2V and ME2V are used together. The overall
best performance is obtained when features from
MTW2V , ME2V and MWTF are concatenated to-
gether.

5 Conclusion

This study is set out to propose a system for im-
plicit emotion classification with state-of-the-art
neural network classifiers. Additionally we in-
vestigate the effectiveness of combinations of dif-
ferent pre-trained embedding for implicit emotion
classification of Tweets. In this study, a LSTM and
a CNN are combined sequentially and trained with
different pre-trained word embeddings to be used
as a feature generator for a secondary feedforward
neural network classifier to make the final classi-

fication. The results of this study indicate that the
system performs well in implicit emotion identifi-
cation and beats the baseline system by about 8%
on the test set.

Furthermore the experiments support the idea
that features extracted from several pre-trained
word embedding models can be effectively com-
bined to improve the overall classification per-
formance . The most obvious finding to emerge
from this study are that in-domain word embed-
dings and Emoji embeddings contribute in im-
proving performance of implicit emotion classi-
fication. The generalisability of these results is
subject to certain limitations. For instance, this
research does not focus on fine-tuning the model
architectures to different word-embeddings. Al-
though this gives a general ground in comparing
word-embeddings for this task, it does not provide
the justification for individual capabilities. Further
research will have to be conducted in order to de-
termine the best configurations for individual word
embeddings and feature combinations to improve
the overall performance of the system.

Acknowledgments

The research was supported by the DataSEARCH
research centre for data science, engineering, and
analytics at University of Moratuwa, Sri Lanka.
We thank all the contributions made by the group
to this research. We would also like to thank the
organizers of IEST at WASSA-2018 for organiz-
ing this shared task.

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. Tensorflow: a system for large-scale machine
learning.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

James Bergstra, Dan Yamins, and David D Cox. 2013.
Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms.
Citeseer.

James S Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. 2011. Algorithms for hyper-parameter
optimization. In Advances in neural information
processing systems, pages 2546–2554.

215

François Chollet et al. 2015. Keras. https://
github.com/fchollet/keras.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Multimedia
lab @ acl wnut ner shared task: Named entity recog-
nition for twitter microposts using distributed word
representations. In Proceedings of the Workshop on
Noisy User-generated Text, pages 146–153.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on

empirical methods in natural language processing,
pages 1631–1642.

Duyu Tang, Furu Wei, Bing Qin, Ting Liu, and Ming
Zhou. 2014. Coooolll: A deep learning system for
twitter sentiment classification. In Proceedings of
the 8th international workshop on semantic evalua-
tion (SemEval 2014), pages 208–212.

Nam Khanh Tran and Weiwei Cheng. 2018. Mul-
tiplicative tree-structured long short-term memory
networks for semantic representations. In Proceed-
ings of the Seventh Joint Conference on Lexical and
Computational Semantics, pages 276–286.

Tom Young, Devamanyu Hazarika, Soujanya Poria,
and Erik Cambria. 2017. Recent trends in deep
learning based natural language processing. arXiv
preprint arXiv:1708.02709.

216

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 217–223
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

NL-FIIT at IEST-2018: Emotion Recognition utilizing Neural Networks
and Multi-level Preprocessing

Samuel Pecar, Michal Farkas, Marian Simko, Peter Lacko, Maria Bielikova
Slovak University of Technology in Bratislava

Faculty of Informatics and Information Technologies
lkovičova 2, 842 16 Bratislava, Slovakia

{samuel.pecar, michal.farkas, marian.simko, peter.lacko
maria.bielikova}@stuba.sk

Abstract
In this paper, we present neural models sub-
mitted to Shared Task on Implicit Emotion
Recognition, organized as part of WASSA
2018. We propose a Bi-LSTM architecture
with regularization through dropout and Gaus-
sian noise. Our models use three different
embedding layers: GloVe word embeddings
trained on Twitter dataset, ELMo embeddings
and also sentence embeddings. We see pre-
processing as one of the most important parts
of the task. We focused on handling emojis,
emoticons, hashtags, and also various short-
ened word forms. In some cases, we pro-
posed to remove some parts of the text, as
they do not affect emotion of the original sen-
tence. We also experimented with other modi-
fications like category weights for learning and
stacking multiple layers. Our model achieved
a macro average F1 score of 65.55 %, signif-
icantly outperforming the baseline model pro-
duced by a simple logistic regression.

1 Introduction

Both text reconstruction and sentiment analysis
are well studied and highly practical areas of re-
search in the field of natural language processing.
Recently, there have been significant advances and
improvements (Buechel and Hahn, 2017), at least
partly due to the wider adoption of neural net-
works (Köper et al., 2017).

As it is, Implicit Emotion Recognition, as pro-
posed by organizers of WASSA 2018 workshop
(Klinger et al., 2018), can be seen both as a text
reconstruction and as a sentiment analysis task.
This is possible because, in this task, sentiment of
a sentence should be equal to the missing word.
In practice, the difference is marginal, neverthe-
less for both these tasks bi-directional LSTMs are
widely used.

In recent years, there have been several com-
petitions, papers and shared tasks dealing with

emotion recognition and classification (Moham-
mad et al., 2018; Mohammad and Bravo-Marquez,
2017). Dealing with noisy and ungrammatical
user-generated text can be also challenging in
other high-level NLP tasks like summarization
(Pecar, 2018).

In this paper, we present a neural network ar-
chitecture with special focus on the preprocessing
phase. We believe preprocessing can have signif-
icant impact on accuracy of each system in nat-
ural language processing. We explored many se-
tups and also different types of regularization as
dropout, Gaussian noise, kernel and activity regu-
larization – L1 and L2, and also recurrent dropout
within LSTM cells. We also experimented with
three different types of embedding layers – GloVe,
ELMo and various sentence representations. Fi-
nally, we explored impact of different setups on
model accuracy. In this paper, we report on results
of these experiments.

2 Preprocessing

We are aware that preprocessing of input is one of
the most important phases in natural language pro-
cessing. This need is also highlighted when using
user generated content which is more difficult to
process. We can distinguish our preprocessing in
a few stages displayed in Figure 1. We also eval-
uate different setups of our preprocessing in the
results section.

Word-level Cleaning Word-level cleaning con-
sists of several rules to handle various forms of
words in language. Especially, we focused on han-
dling short forms of auxiliaries and also its nega-
tive variations. We split negative auxiliaries into
its full form (e.g. don’t as do not, isn’t as is not).
We also handled non negative auxiliaries and ex-
panded them into their full form (e.g. ’ll as will).
In analysis of original dataset we decided to also

217

https://doi.org/10.18653/v1/P17

Word-level Cleaning

Character-level Cleaning

Emoji and Emoticon Processing

Hashtag Processing

Figure 1: Preprocessing pipeline

omit some of the words which do not affect clas-
sification (e.g. @username, http://url.removed).
The [NEWLINE] sign was replaced by sentence
endings followed by space.

Character-level Cleaning Similarly to word-
level cleaning, this phase consists of several rules
operating on character-level preprocessing. We
can describe this preprocessing in several cate-
gories, such as: currency handling, character es-
caping, replacing, and removing. In currency han-
dling, we replaced signs for pounds, dollars, euros
and yens with its word form. Other currency signs
were replaced with the word ’currency’. Character
replacing consists of unification of different forms
used for apostrophe and as quotation marks. In
character escaping, we surrounded characters like
apostrophe, quotation mark, colon, dash, and caret
with white-spaces to separate them from words
and make tokenization easier. Finally, we decided
to remove other unmentioned punctuation marks.
We also considered removing all numbers as they
often do not determine any sentiment.

Emoji and Emoticons Processing Handling
emoticons and emojis is a more extensive part in
our preprocessing phase. The first step consists
of replacing emoticons (punctuation, numbers and
characters used to create pictorial icons) with their
emoji equivalent (only one unicode character). In
phase of handling emojis, we removed all char-
acters which modify original emoji with gender
or skin color. We also tried to categorize emoji
into categories (Figure 2). This step helped us
to reduce amount of emojis used in text. We re-

placed emojis symbolizing sport, moon, earth, an-
imal, fruit, food, lag, music, flower, plant, drink,
dress, money with their category word surrounded
by colon (Figure 2). Another categories were pro-
duced by unification of different emojis with sim-
ilar sense.

Figure 2: Emoji categorization

Finally, we surround all emojis with white-
spaces. This step can significantly help in tok-
enization, as emojis were sometimes recognized
as part of words and also group of emojis were
recognized as one token.

Hashtags Processing The last phase of prepro-
cessing consists of handling hashtags. We ex-
amined different options of hashtag handling. In
our final setup, we replaced only those hashtags,
which can be found in word embeddings in their
form without hash sign. We suppose removing
other, unknown hashtags should be also consid-
ered as one of the step within hashtag processing.
We also considered splitting hashtags into words
but some of the separated words can bring differ-
ent sentiment as the original hashtag. Hence, we
decided to omit this step.

218

Figure 3: Emoji replacing

Examples of preprocessed texts are displayed in
Figure 4. We can see examples of each preprocess-
ing step described in this chapter.

3 Model

In this shared task, we experimented with many
different setups, based on a different embedding
layer and also different neural layers on top of an
embedding layer.

3.1 Embedding Layer
We experimented some of the commonly used
embedding layers like Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014) or ELMo
(Peters et al., 2018) but also sentence embeddings
like Universal Sentence Encoder (Cer et al., 2018)
and InferSent (Conneau et al., 2017). For en-
coding input words, we used various pre-trained
word embeddings available online like GloVe em-
beddings1. With GloVe embeddings, we experi-
mented with domain specific embeddings trained
on Twitter data but also with embeddings trained
on data extracted by CommonCrawl. We have
also experimented with recent ELMo embeddings,

1https://nlp.stanford.edu/projects/glove/

however these experiments were done addition-
ally, after submission deadline. We used pre-
trained model of ELMo available online2.

Both GloVe and ELMo embeddings were in-
cluded in model in such way that they can be fur-
ther fine-tuned. However, available implementa-
tion of InferSent is done in Torch and integrating
that model into Keras model proved to be prob-
lematic, this is mainly due to their use of custom
layer. Hence, we encoded sentences into their vec-
tors outside of the model and stored it in a separate
file. We are considering a whole tweet as a single
sentence and have a file that has a label and an
embedding of the entire tweet. On the other hand,
both variants of USE are available as a Tensorflow
module3 4. This enables us to use them as an em-
bedding layer, although without any fine tuning.

3.2 Hidden Layers

Embedding layer is followed by several Bi-LSTM
layers, when sentence embeddings were not used.
We have experimented with up to two stacked lay-
ers. In case of sentence embedding models, we
have experimented with several architectures with
varying number of layers, however in the end we
have settled on simple feed-forward network with
one hidden layer, which uses parametric rectified
linear unit.

We experimented with a different size of each
layer and also a different number of stacked layers.

While using 1024 units in each of hidden layers
was the best option, we also tested a much bigger
model with sentence embeddings containing more
units within each layer and also more stacked lay-
ers.

3.3 Activation

We experimented with several different activation
functions, but their impact was either insignifi-
cant or obvious. Hence, all our results use the
same configuration as far as activation functions
are concerned.

In LSTM cells, we use typical activation func-
tions – hard sigmoid and hyperbolic tangent. In
case of models that utilize sentence embeddings,
we use parametric rectified linear activation, al-
though its contribution is uncertain.

2https://tfhub.dev/google/elmo/2
3https://tfhub.dev/google/universal-sentence-encoder/2
4https://tfhub.dev/google/universal-sentence-encoder-

large/3

219

Original @USERNAME i'm [#TRIGGERWORD#] that he wasn't alone 💕 since its his first solo..

Processed i am #TRIGGERWORD# that he was not alone 💜 since its his first solo

Original @USERNAME This picture says it all. Thank you again for being so kind & sweet. He's
SO [#TRIGGERWORD#] that you liked his gift 🐟 💞 🌳 http://url.removed

Processed This picture says it all Thank you again for being so kind sweet He is SO
#TRIGGERWORD# that you liked his gift :animal: 💜 :plant:

Figure 4: Examples of preprocessed sentences

Since we use categorical crossentropy as our
loss function, choice of softmax activation func-
tion for the last layer is natural.

3.4 Regularization

In training stage, we discovered a problem with
over-fitting on training dataset and some regular-
ization was needed. We experimented with differ-
ent types of regularization like dropout, Gaussian
noise and also applying L1 and L2 norm to differ-
ent types of regularization, such as: bias, kernel,
recurrent or activation. We found out that using
combined L1 and L2 regularization often causes
learning to stop. Although we fine-tuned L1 and
L2 weight parameters, it failed to achieve better
results than a model without this kind of regular-
ization.

Unsurprisingly, we have utilized early stopping
technique to halt training when validation accu-
racy has not improved at least by 0.001% two
times in a row. Although we experimented with
different configurations, such as monitoring vali-
dation loss and tweaking patience, we did not ob-
serve any improvement and in most cases we even
observed detrimental effect.

While L1 and L2 regularization had no posi-
tive effect on accuracy of our model, application
of dropout and Gaussian noise significantly im-
proved accuracy of tested models. We experi-
mented with different setups and the most accu-
rate combination was with the use of dropout with
rate of 0.3 after each layer or replacing dropout
after embedding layer with dropout with rate 0.2
and Gaussian noise on the embeddings with stan-
dard deviation 0.2. That being said, we have found
out that applying these regularizations on sentence
embeddings proved to be more challenging and

the same settings often were too much for the neu-
ral network to handle.

4 Evaluation

In this section, we briefly summarize evaluation
metrics for this task and also basic information
about used dataset and embeddings. Later, we de-
scribe different setups of our model.

For evaluation, standard measures like preci-
sion, recall and f-score were used. Then micro and
macro measures were computed. As final official
result, macro F1 was taken.

4.1 Dataset
The dataset for emotion recognition shared task
consists of tweets where emotion word was re-
moved. The dataset contains six different cate-
gories: anger, disgust, fear, joy, sadness, and sur-
prise. The train dataset contains approximately
150 thousands of tweets and test contains more
than 30 thousands of tweets. Detailed information
can be found in the main paper of the shared task
(Klinger et al., 2018).

4.2 Results
Our experiments show that the effect of LSTM
size is apparent up to 1024 units. After that, it
has negligible or even detrimental effect. Sim-
ilarly, our experiments with two-layer Bi-LSTM
achieved worse or same results as single-layer
only. Our results are shown in Table 1. Setup for
Glove and also ELMo was set as follows5:

• batch size: 64

• gaussian noise after embedding layer: 0.2
5default attributes from keras were used if not specified

otherwise

220

• dropout after embedding layer: 0.2

• dropout after recurrent layer: 0.3

• loss function: categorical cross entropy

• optimizer: adam

• early stopping value: 0.01

• early stop patience: 1

• embeddings dimension: 200

The same setup, except for regularization, was
used also for sentence embedding approach. Reg-
ularization did not seem to improve generalization
and results, hence we did not include it in our
model. It is highly probable that regularization
was not needed, because, as we reported earlier,
sentence embedding methods are applied in such
way that they cannot be fine-tuned.

Model P R F1
GloVe

Bi-LSTM-256 0.6 0.598 0.599
Bi-LSTM-2x256 0.601 0.599 0.6
Bi-LSTM-1024 0.657 0.655 0.655
Bi-LSTM-2x1024 0.643 0.64 0.638

ELMo
Bi-LSTM-1024 0.665 0.666 0.665
Bi-LSTM-2048 0.661 0.661 0.661
Bi-LSTM-2x1024 0.666 0.665 0.664

Sentence embeddings
InferSent 0.564 0.536 0.537
USE-small 0.504 0.501 0.5
USE-large 0.544 0.544 0.542

Table 1: Comparison between different models.

Various variants of GloVe, even those trained
on Twitter data, did not show much variance. On
the other hand, ELMo embeddings did slightly im-
prove our results as was expected.

There are several possible reasons why sentence
embedding methods failed. First, the provided
dataset is actually quite substantial and does not
need such methods. Secondly, these methods can-
not work well on Twitter data. Finally, the way
we have included both InferSent and USE into our
models does not enable fine tuning. Of course we
cannot rule out a bug in our code as well.

Preprocessing had far greater impact on results
than fine tuning our model. Details shown in Table

2 clearly demonstrate that text cleaning with emoji
processing can improve classification of emotion.
In the setup Text cleaning, only word-level and
character-level cleaning were used. In the Emoji
processing setup, we used previous features along
with emoji processing and in Hashtag processing
we used only text cleaning with hashtag process-
ing. Finally, in the last setup, all previous setups
were combined.

Setup P R F1
No preprocessing 0.630 0.626 0.626
Text cleaning 0.645 0.639 0.641
Emoji processing 0.657 0.655 0.655
Hashtags processing 0.648 0.647 0.647
Combined 0.657 0.655 0.655

Table 2: Comparison of different preprocessing se-
tups.

To see how our best model performed on differ-
ent classes, we can take a look at Table 3. It is ap-
parent that we have achieved best results on ’joy’
class and worst results on ’anger’ class. Precision
metric of class ’surprise’ is particularly notewor-
thy, due to it being considerably lower than other
classes. This suggests that our model often classi-
fied other labels as ’surprise’ class.

Confusion matrix, shown in Table 4, depicts ac-
curacy of our official results (columns represent
predicted classes while rows represent true labels).
Quite surprisingly, false positives are more or less
balanced across all categories. Nevertheless, we
can see that our model rarely misclassified ’joy’
as ’disgust’, ’fear’, and vice versa. We can glean
more findings from this confusion matrix, but they
may be just a noise.

5 Conclusion

In this paper, we discussed different neural models
for emotion recognition based on word and sen-
tence embeddings followed by stacked Bi-LSTM
layers and dense layers, respectively. We also dis-
cussed need of preprocessing that can significantly
improve accuracy.

We observed that false negative and also false
positive examples were equally distributed be-
tween classes. We tried also set sample weights
for classes with the best and worst F1, but no com-
bination brought any overall improvement.

In our preprocessing, we also removed all num-
bers as they do not contain any sentiment. After

221

Label TP FP FN P R F
anger 2717 1713 2077 0.613 0.567 0.589
disgust 3013 1368 1781 0.688 0.628 0.657
sad 2793 1722 1546 0.619 0.644 0.631
joy 3893 1193 1353 0.765 0.742 0.754
surprise 3124 2297 1668 0.576 0.652 0.612
fear 3345 1578 1446 0.679 0.698 0.689
MicAvg 18885 9871 9871 0.657 0.657 0.657
MacAvg 0.657 0.655 0.655

Table 3: Official results over classes.

Class anger disgust fear joy sadness surprise
anger 2717 345 437 310 397 588
disgust 352 3013 196 146 457 630
fear 314 169 3345 223 275 465
joy 303 119 266 3893 337 328
sadness 388 364 234 274 2793 286
surprise 356 371 445 240 256 3124

Table 4: Confusion matrix of official results.

this preprocessing some of the sentences can be
recognized as the same. An interesting point of re-
search can be deduplication of these examples and
examination of overall impact of these duplicated
examples.

We made our code publicly available at
GitHub6.

Acknowledgments

This work was partially supported by the Slovak
Research and Development Agency under the con-
tract No. APVV-17-0267 - Automated Recogni-
tion of Antisocial Behaviour in Online Commu-
nities, the Scientific Grant Agency of the Slo-
vak Republic, grant No. VG 1/0667/18 and VG
1/0646/15 and the Cultural and Educational Grant
Agency of the Slovak Republic, grant No. KEGA
028STU-4/2017

References

Sven Buechel and Udo Hahn. 2017. Emobank: Study-
ing the impact of annotation perspective and repre-
sentation format on dimensional emotion analysis.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 578–
585. Association for Computational Linguistics.

6https://github.com/SamuelPecar/nl-fiit-wassa-emotion

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Maximilian Köper, Evgeny Kim, and Roman Klinger.
2017. IMS at EmoInt-2017: Emotion intensity pre-
diction with affective norms, automatically extended
resources and deep learning. In Proceedings of
the 8th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
Copenhagen, Denmark. Workshop at Conference on
Empirical Methods in Natural Language Processing,
Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-

222

ity. In Advances in neural information processing
systems, pages 3111–3119.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, pages 34–49. Association for Com-
putational Linguistics.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Samuel Pecar. 2018. Towards opinion summarization
of customer reviews. In Proceedings of ACL 2018,
Student Research Workshop, pages 1–8. Association
for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

223

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 224–230
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

UWB at IEST 2018: Emotion Prediction in Tweets with Bidirectional
Long Short-Term Memory Neural Network

Pavel Přibáň1,2and Jiřı́ Martı́nek1,2

1NTIS – New Technologies for the Information Society,
Faculty of Applied Sciences, University of West Bohemia, Czech Republic

2Department of Computer Science and Engineering,
Faculty of Applied Sciences, University of West Bohemia, Czech Republic

{pribanp,jimar}@kiv.zcu.cz
http://nlp.kiv.zcu.cz

Abstract

This paper describes our system created for the
WASSA 2018 Implicit Emotion Shared Task.
The goal of this task is to predict the emo-
tion of a given tweet, from which a certain
emotion word is removed. The removed word
can be sad, happy, disgusted, angry, afraid
or a synonym of one of them. Our proposed
system is based on deep-learning methods. We
use Bidirectional Long Short-Term Memory
(BiLSTM) with word embeddings as an input.
Pre-trained DeepMoji model and pre-trained
emoji2vec emoji embeddings are also used as
additional inputs. Our System achieves 0.657
macro F1 score and our rank is 13th out of 30.

1 Introduction

Emotions, especially on the social media and so-
cial networks, as an immediate response to a spe-
cific object or a situation, are a significant part
of the communication between people. Even for
a human, it is sometimes challenging to describe
or recognize an emotion without imminent contact
with a subject (e.g. idioms or sarcasm). One of
the most important ways to express an emotion in
a text is an emoji. Emojis are small ideograms de-
picting objects, people and scenes (Barbieri et al.,
2018). Emojis try to capture a facial expression of
a subject, which is determining for emotion detec-
tion.

This paper describes our system created for
the WASSA 2018 Implicit Emotion Shared Task
(Klinger et al., 2018). The goal of this task is to
predict the emotion of a given tweet, from which
a certain emotion word is removed, for example:

It is [#TARGETWORD#] when you feel
like you are invisible to others.

The removed word can be sad, happy, dis-
gusted, surprised, angry, afraid or a synonym of

one of them. The possible emotions are Sad-
ness, Joy, Disgust, Surprise, Anger, and Fear. The
[#TARGETWORD#] token in the example indi-
cates a position of the removed word in the given
tweet.

1.1 Related Work
As we mentioned before emojis are an important
part of expressing emotions. Barbieri et al. (2017)
investigated the relationship between words and
emojis. They also proposed an approach to predict
the most probable emoji that is associated with
a tweet. The mentioned approach uses a Bidirec-
tional Long Short–Term Memory networks (BiL-
STM) (Graves and Schmidhuber, 2005).

Pre-trained word embeddings (word represen-
tations) such as (Mikolov et al., 2013; Pennington
et al., 2014) are currently standard part in most of
the state-of-the-art solutions for key NLP tasks.

Tang et al. (2014) propose a method that can
learn sentiment–specific word embeddings, which
are able to improve performance by combining
with other existing feature sets.

There are also some previously submitted sys-
tems in similar SemEval shared tasks using deep
learning models. Cliche (2017) uses a CNN
and LSTM for Sentiment Analysis SemEval–2017
task 4 (Rosenthal et al., 2017). Another approach
with a deep LSTM with Attention mechanism is
used by Baziotis et al. (2017) for the same task.
Most of the best performing submitted systems
(Baziotis et al., 2018; Gee and Wang, 2018; Park
et al., 2018) in SemEval-2018 Task 1: Affect in
Tweets (Mohammad et al., 2018) also use deep
learning models with LSTM or BiLSTM neural
networks.

2 Overview

Our approach is based on the artificial neural net-
work that combines word embeddings and emoji–

224

https://doi.org/10.18653/v1/P17

based features as input. We use Weka machine
learning workbench (Hall et al., 2009) for prepro-
cessing. Our submitted model combines BiLSTM
layer for word embeddings input and dense lay-
ers for the other inputs (emoji2vec (Eisner et al.,
2016) and DeepMoji (Felbo et al., 2017) features,
see 2.2) connected to one dense layer, see the Fig-
ure 2 with a model architecture. Outputs of these
three layers are concatenated and then a dropout
(Srivastava et al., 2014) technique is applied. After
the concatenating a next dense layer is employed.
An output from the previous dense layer is then
passed to a fully-connected softmax layer. An out-
put of the softmax layer is a probability distribu-
tion over all six possible classes.

We trained several modified versions of our sub-
mitted model and we evaluated these models on
the development data. The model with the highest
macro F1 score on the development data was then
trained again on the training data extended by the
development data. This model was used for test
data predictions. All models were implemented by
using Keras (Chollet et al., 2015) with TensorFlow
backend (Abadi et al., 2015).

2.1 Tweets Preprocessing
Tweets often contain slang expressions, mis-
spelled words, emoticons or abbreviations and it
is needed to make some preprocessing steps before
training and making predictions. We use a similar
approach to Přibáň et al. (2018).

At first, we remove the [#TARGETWORD#] to-
ken, that represents a position of the removed word
with a certain emotion and every tweet is tok-
enized using TweetNLP twokenizer (Gimpel et al.,
2011). Then the following steps are applied on to-
kens:

1. Tokens are converted to lowercase

2. Tokens containing sequences of letters occur-
ring more than two times in a row are re-
placed with two occurrences of them (e.g.
huuuungry is reduced to huungry, looooove
to loove)

3. From hashtags (tokens starting with #) the
character is removed.

4. Common sequences of words and emojis are
separated by space (e.g. token ”nice:D:D” is
split into three tokens ”nice”, ”:D” and ”:D”)

5. Characters & - in tokens are replaced with
space

Weka machine learning workbench is used to per-
form the mentioned steps. After tokenization and
mentioned preprocessing the tweet is padded to 50
tokens. Tweets longer than 50 words are short-
ened, while to the shorter tweets padding tokens
are added.

2.2 Features

We use three types of input features – word em-
beddings, emoji embeddings and an emotional
representation of a sentence. Word embeddings
are representations of words usually expressed
as pre-trained dense real vectors (Mikolov et al.,
2013; Pennington et al., 2014) with a fixed dimen-
sion size. We use pre-trained Ultradense Word
Embeddings (Rothe et al., 2016) that were trained
on Twitter domain corpus. The number of dimen-
sions for this embedding is 400.

Pre-trained emoji2vec (Eisner et al., 2016)
emoji embeddings (300-dimensional) are used as
another input to our model. We average vectors
for each emoji in a tweet and the resulting aver-
aged vector is used as an input. The mentioned
emoji2vec embeddings contain vectors for all Uni-
code emojis which were learned from their de-
scription in the Unicode emoji standard1, see the
(Eisner et al., 2016) for details. Emoji2vec embed-
dings can be used only for some tweets because
not every tweet contains some emojis, but we sup-
pose that using emoji2vec will lead to an overall
performance improvement.

We also use DeepMoji (Felbo et al., 2017) as an
emotional sentence representation. The Deep-
Moji model is able to predict emoji that is included
with a given sentence and thus the model has also
an understanding of the emotional content of that
sentence. The model was trained on a dataset of
1.2 billion tweets. As an input for our model, we
use the 2304-dimensional vector from the atten-
tion layer in the pre-trained DeepMoji model.

2.3 Recurrent Neural Network

The Recurrent Neural Network (RNN) extends the
classic (feed–forward) neural network. An RNN
is intended for sequential data. The actual hidden
state ht of the RNN depends on the previous hid-
den state ht−1 (see Figure 1). An RNN takes the
input sequence x1, x2 . . . xT and for each element,
at the time step t computes new hidden state ht

1http://www.unicode.org/emoji/charts/
emoji-list.html

225

from the input xt and from the previous hidden
state ht−1. The new hidden state ht is computed
by hidden layer functionH.

ht = H(xt, ht−1) (1)

In the simplest case, the hidden layer function
H is defined as:

ht = σ (Wxhxt +Whhht−1 + bh) (2)

where the W terms correspond to weight matri-
ces (e.g. Wxh is the input-hidden weight matrix)
and bh term is hidden bias vector. The concrete
implementation of the H function depends on the
type of the used RNN unit (Graves et al., 2013),
for example Long Short-Term Memory (LSTM)
unit (Hochreiter and Schmidhuber, 1997) or Gated
Recurrent Unit (GRU) (Cho et al., 2014).

In our case, the input xt denotes the word em-
bedding vector for each word in the tweet and T is
a length of the tweet. Every tweet is also padded
to the length T . As mentioned, the new hidden
state ht depends on the previous hidden state and
hence the word order is also taken into account in
the RNN.

2.4 Long Short-Term Memory

The Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997) allows learning (remember)
long-term dependencies from the input sequence.
The LSTM unit consists of cell state (cell activa-
tion vector) input, forget and output gates. These
gates control how the cell state is updated. The H
function of the LSTM unit is defined as:

it = σ (Wxixt +Whiht−1 + bi) (3)

ft = σ (Wxfxt +Whfht−1 + bf) (4)

ot = σ (Wxoxt +Whoht−1 + bo) (5)

ct = ft ∗ ct−1 + it ∗ tanh (Wxcxt +Whcht−1 + bc) (6)

ht = ot ∗ tanh (ct) (7)

where the W terms correspond to weight ma-
trices and b terms are bias vectors, i, f , o are
the input, forget and output gates, c denotes cell
state (activation vector), σ is sigmoid function
and ∗ character means element-wise multiplica-
tion.

It is a common practice to use Bidirectional
LSTM (BiLSTM) (Graves and Schmidhuber,
2005). The BiLSTM consists of two LSTMs, one
LSTM process the input sequence from the first

A

xt

 = A

x1

A A A

x2 x3

ht

xt

ht h1 h2 h3

Figure 1: Basic RNN architecture2

element x1 to xT and produces output vector
−→
ht .

The second LSTM process the input sequence in
reverse order e.g. from the last element xT to x1
and produces output vector

←−
ht . Both output vec-

tors have dimension D. The final output vector ht
from BiLSTM with dimension 2D is then created
by concatenating two vectors

−→
ht and

←−
ht .

Dropout (Srivastava et al., 2014) is a technique
for improving neural networks by reducing over-
fitting. The dropout technique randomly drops
out units (hidden and visible) during training and
thus prevents co-adaption of neurons from training
data.

3 Model Description

The proposed model has three inputs. Figure
2 shows the model architecture. The first in-
put (word embeddings) represents tweet as a se-
quence of t = 50 tokens. We use the Ultradense
Word Embeddings (Rothe et al., 2016) to obtain
a vector of dimension d = 400 for each token
from the tweet. The whole tweet is then repre-
sented as a matrix M ∈ Rt×d. The vectors are ob-
tained only for 50,000 most frequent words in the
training dataset. If the tweet word is not present
in a vocabulary of 50,000 most frequent words,
the randomly initialized vector of the same dimen-
sion is used. The word embeddings input is fol-
lowed by a BiLSTM layer with 1200 units, respec-
tively every single LSTM has 600 units. We also
use a dropout to recurrent connections in BiLSTM
layer.

The emoji embeddings input is based on
emoji2vec (Eisner et al., 2016). For each emoji
in the tweet, a 300-dimensional vector is produced
by the pre-trained model. All emoji vectors for
the tweet are then averaged to a single vector.
If the tweet does not contain any emoji a zero
vector is used. The resulting averaged emoji em-
beddings vector E ∈ R300 is used as an input to
a dense layer with 300 units.

2Image is based on: http://colah.github.io/
posts/2015-08-Understanding-LSTMs/

226

Our last input uses a pre-trained DeepMoji
(Felbo et al., 2017) model for an emotional sen-
tence representation. The DeepMoji model gen-
erates for each tweet vector D ∈ R2304 which rep-
resents the emotional content of the tweet. The
emotional sentence representation input is fol-
lowed by a dense layer with 2304 units.

All three output vectors of the BiLSTM and
two dense layers are concatenated into one vec-
tor C ∈ R3804 that is passed to a next dense layer
with 400 units. We also use a dropout after the
concatenating. An output of the last dense layer
is passed to a final fully-connected softmax layer.
An output of the softmax layer is a probability dis-
tribution over all six possible classes. The class
with the highest probability is predicted as a final
output of our model.

3.1 Model Training & Hyper-Parameters

We trained our model using mini-batches of size
1024 for 5 epochs and we used the Adam (Kingma
and Ba, 2014) optimizer with learning rate 0.001
the other parameters of the Adam optimizer follow
those provided in the cited paper. As an activation
function in the BiLSTM and in the dense layers,
we used a Rectified Linear Unit (ReLu). Dropout
of 0.2 is used for the recurrent connections in BiL-
STM layer and in all dense layers.

We trained the model on the provided training
dataset and we evaluated the trained model on the
development dataset. We experimented with dif-
ferent settings of the hyper-parameters (learning
rate, mini-batch size etc.) but the mentioned set-
tings showed to be the best one on the develop-
ment data. These hyper-parameters settings were
also used for final submission.

4 Experiments & Results

All presented experiments were evaluated on the
provided development and test datasets. Table 1
shows the results for the different model settings.

We performed ablation study to see which fea-
tures are the most beneficial (see Table 2). Num-
bers represent the performance change when the
given feature is removed 3.

We also modified our model and we experi-
mented with an attention mechanism (Rocktäschel
et al., 2015; Raffel and Ellis, 2015). The atten-

3The lowest number denotes the most beneficial feature

Macro F1

Model Settings dev data test data
Ultradense + DeepMoji + emoji2vec† 0.657 0.657
Ultradense + DeepMoji 0.661 0.660
Ultradense + emoji2vec 0.653 0.658
Ultradense 0.648 0.650
DeepMoji + emoji2vec 0.556 0.547
DeepMoji 0.560 0.552
emoji2vec 0.151 0.154
Ultradense + DeepMoji + emoji2vec∗ 0.661 0.656
Ultradense + DeepMoji∗ 0.654 0.653
∗Model with added attention mechanism to BiLSTM layer
†Model used for the final submission

Table 1: Results for individual model settings

tion mechanism was added to our BiLSTM layer4

(see Table 1 with results obtained by the modified
model).

Our results for the WASSA 2018 Implicit Emo-
tion Shared Task are shown in Table 3 along with
some other teams. Table 4 contains the confu-
sion matrix obtained from the submitted predic-
tions and Table 5 contains Recall, Precision an F1

measures that are computed from the confusion
matrix.

Feature dev data test data
Ultradense + DeepMoji + emoji2vec∗ 0.657 0.657
Ultradense -0.101 -0.110
DeepMoji -0.004 -0.001
emoji2vec 0.004 -0.003
∗Values used to calculate ablation results

Table 2: Feature ablation study

Team Macro F1 Rank
Amobee 0.714 1
IIIDYT 0.710 2
NTUA-SLP 0.703 3
hgsgnlp 0.658 12
UWB 0.657 13
NL-FIIT 0.655 14
BASELINE 0.599 20

Table 3: WASSA 2018 Implicit Emotion Shared Task
official results

4.1 Discussion

Thanks to the ablation study (see Table 2) and re-
sults from Table 1 we can observe that the Ultra-
dense Word Embeddings are the most important
features for our model. The DeepMoji and the

4We experimented with an attention mechanism after the
submission deadline and therefore the modified model cannot
be used to make predictions for the final submission

227

Mom

Word
Embeddings BiLSTM

50 x 400

�

�

emoji2vec

1 x 2304

DeepMoji
Dense Layer

DeepMoji Vector

Tweet

Tweet

Tweet
emojis

Concatenated
Vector

emoji2vec
Dense Layer

n x 300

#super

so
is

[#TRIGGERWORD]

�

�

Mom

�

is

�

#super

1 x 300

1 x 1200
Dense Layer

Averaged Vector

1 x 300

1 x 400

Class
Probabilities

1 x 2304

[#TRIGGERWORD]

so

Softmax

1 x 3804

...

LSTM LSTM

...

LSTM

LSTM

LSTM

LSTM

Figure 2: System architecture

Predicted Labels
A D F J Sa Su

G
ol

d
L

ab
el

s A 3011 250 441 326 431 335
D 484 2807 274 204 596 429
F 461 119 3484 243 210 274
J 336 76 319 4021 304 190

Sa 439 206 266 345 2939 145
Su 530 331 569 315 345 2702

Table 4: Confusion Matrix on the test dataset (A, D, F,
J, Sa, and Su are abbreviations for anger, disgust, fear,
joy, sadness, and surprise respectively)

emoji2vec features also increase the performance
of our model for the test dataset, but the contri-
bution is insignificant and it is not so important
as the word embeddings. So our assumption, that
the emoji2vec feature will lead to a more signifi-
cant overall performance improvement for the test
dataset, is not correct. It would be more benefi-
cial to use a simpler model without an emoji2vec
feature.

The modified models with the attention mecha-
nism did not improve the performance. The possi-
ble explanation is that it is caused by the missing
emotion word in the classified tweet. The missing
word carries probably the most information about
the emotion. If the word was present in the clas-
sified tweet the attention mechanism would pay
most attention to the missing word and thus the
attention mechanism would improve the perfor-

Emotion Recall Precision F1 score
Anger 0.628 0.572 0.599
Disgust 0.586 0.741 0.654
Fear 0.727 0.651 0.687
Joy 0.766 0.737 0.752
Sadness 0.677 0.609 0.641
Surprise 0.564 0.663 0.609

Table 5: Recall, Precision and F1 score for each emo-
tion of the test dataset

mance of our model.

Our model performs best for the joy and fear
emotions (see Table 5). On the other hand, we
obtained worst results for the anger emotion. Our
model produces the most false positive predictions
for the anger emotion (tweet is classified as anger
but the true emotion is different). From the con-
fusion matrix (Table 4), we can see that for our
model it is difficult to distinguish especially be-
tween disgust and sadness, disgust and anger, fear
and anger, surprise and anger, and between sur-
prise and fear.

Table 1 shows that there are no important dif-
ferences between the development dataset and test
dataset results. So our decision to select the sec-
ond best model (evaluated on the development
dataset) for the final submission based on the re-
sults for the development dataset was suitable.

228

5 Conclusion

In this paper we described our UWB deep-learning
system created for the WASSA 2018 Implicit
Emotion Shared Task. Our system uses Bidirec-
tional Long Short-Term Memory (BiLSTM) with
word embeddings as an input. Pre-trained Deep-
Moji model and pre-trained emoji2vec emoji em-
beddings are also used as additional inputs. The
proposed system performs best for the joy emo-
tion. Our System achieves 0.657 macro F1 score
and our rank is 13th out of 30.

We performed ablation study and showed that
the most beneficial features are word embed-
dings. The emotional sentence representation
(DeepMoji feature) and the averaged emoji vec-
tors (emoji2vec feature) did not much improve the
performance of our model.

In the future work, we would like to try an-
other approach employing a twitter specific lan-
guage model to predict probabilities for each emo-
tion class for the missing target emotion word in
the provided data. These probabilities could be
used as input features to our model.

Acknowledgments

This work was partly supported from ERDF
”Research and Development of Intelligent
Components of Advanced Technologies for
the Pilsen Metropolitan Area (InteCom)” (no.:
CZ.02.1.01/0.0/0.0/17 048/0007267) and by
Grant No. SGS-2016-018 Data and Software
Engineerig for Advanced Applications.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? arXiv
preprint arXiv:1702.07285.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. Semeval 2018 task 2:
Multilingual emoji prediction. In Proceedings
of The 12th International Workshop on Semantic
Evaluation, pages 24–33.

Christos Baziotis, Athanasiou Nikolaos, Alexan-
dra Chronopoulou, Athanasia Kolovou, Geor-
gios Paraskevopoulos, Nikolaos Ellinas, Shrikanth
Narayanan, and Alexandros Potamianos. 2018.
Ntua-slp at semeval-2018 task 1: Predicting affec-
tive content in tweets with deep attentive rnns and
transfer learning. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
245–255. Association for Computational Linguis-
tics.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

François Chollet et al. 2015. Keras. https://
keras.io.

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task
4: Twitter sentiment analysis with cnns and lstms.
arXiv preprint arXiv:1704.06125.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Grace Gee and Eugene Wang. 2018. psyml at semeval-
2018 task 1: Transfer learning for sentiment and
emotion analysis. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
369–376. Association for Computational Linguis-
tics.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for twitter: Annotation, features, and experiments.
In Proceedings of the 49th Annual Meeting of the

229

Association for Computational Linguistics: Human
Language Technologies: Short Papers - Volume 2,
HLT ’11, pages 42–47, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on, pages 6645–6649. IEEE.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5-6):602–610.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The WEKA data mining software: An up-
date. SIGKDD Explorations, 11(1):10–18.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Ji Ho Park, Peng Xu, and Pascale Fung. 2018.
Plusemo2vec at semeval-2018 task 1: Exploiting
emotion knowledge from emoji and #hashtags. In
Proceedings of The 12th International Workshop on
Semantic Evaluation, pages 264–272. Association
for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Pavel Přibáň, Tomáš Hercig, and Ladislav Lenc. 2018.
Uwb at semeval-2018 task 1: Emotion intensity de-
tection in tweets. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages

133–140. Association for Computational Linguis-
tics.

Colin Raffel and Daniel PW Ellis. 2015. Feed-
forward networks with attention can solve some
long-term memory problems. arXiv preprint
arXiv:1512.08756.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv preprint arXiv:1509.06664.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 task 4: Sentiment analysis in Twitter.
In Proceedings of the 11th International Workshop
on Semantic Evaluation, SemEval ’17, Vancouver,
Canada. Association for Computational Linguistics.

Sascha Rothe, Sebastian Ebert, and Hinrich Schütze.
2016. Ultradense word embeddings by orthogonal
transformation. arXiv preprint arXiv:1602.07572.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1555–
1565.

230

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 231–234
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

USI-IR at IEST 2018: Sequence Modeling and Pseudo-Relevance
Feedback for Implicit Emotion Detection

Esteban A. Rı́ssola, Anastasia Giachanou and Fabio Crestani
Faculty of Informatics

Università della Svizzera italiana (USI)
{esteban.andres.rissola, anastasia.giachanou, fabio.crestani}@usi.ch

Abstract
This paper describes the participation of
USI-IR in WASSA 2018 Implicit Emotion
Shared Task. We propose a relevance feed-
back approach employing a sequential model
(biLSTM) and word embeddings derived from
a large collection of tweets. To this end, we
assume that the top-k predictions produce at
a first classification step are correct (based on
the model accuracy) and use them as new ex-
amples to re-train the network.

1 Introduction

Recent years have seen the rapid growth of social
media platforms (e.g., Facebook, Twitter, several
blogs) that has changed the way that people com-
municate. Many people express their opinion and
emotions on blogs, forums or microblogs. Detect-
ing the emotions that are expressed in social me-
dia is a very important problem for a wide variety
of applications. For example, enterprises can de-
tect complains of customers about their products
or services and act promptly.

Emotion detection aims at identifying various
emotions from text. According to (Plutchik, 1980)
there are eight basic emotions: anger, joy, sadness,
fear, trust, surprise, disgust and anticipation. Con-
sidering the abundance of opinions and emotions
expressed in microblogs, emotion and sentiment
analysis in Twitter has attracted the interest of
the research community (Giachanou and Crestani,
2016). In particular, Implicit Emotion Shared Task
(IEST) is a shared task by WASSA 2018 that fo-
cuses on emotion analysis. In this task, partici-
pants are asked to develop tools that can predict
the emotions in tweets from which a certain emo-
tion word is removed. This is a very challenging
problem since the emotion analysis needs to be
done without access to an explicit mention of an
emotion word and consequently taking advantage
of context that surrounds the target word.

In this paper, we describe our submitted sys-
tem to the IEST: WASSA-2018 Implicit Emotion
Shared Task. Our system is based on a bidirec-
tional Long Short-Term Memory (biLSTM) net-
work on top of word embeddings which is later
inserted in a pseudo-relevance feedback schema.
Our results show that even though the model still
need more refinement it offers interesting capabil-
ities to address the task at hand.

2 Dataset

To train our model, we employ the dataset pro-
vided within the shared task. It is worth mention-
ing that no other external datasets are used during
the training and development phases. There are
roughly 153K tweets in the training set, 10K in
the development set and 28K in the test set. Each
data instance includes the tweet and the emotion
class of the word which has been extracted from
the text. The test set’s golden labels were provided
only after the evaluation period. The complete de-
scription of the dataset can be found in (Klinger
et al., 2018)

3 Proposed Approach

In recent years, Recurrent Neural Networks
(RNN) have risen in popularity among different
NLP tasks (Mikolov et al., 2010; Graves et al.,
2013; Filippova et al., 2015). This success can
be attributed to their inherent ability to capture
temporal information and learn features directly
from the data. In other words, the time based se-
quentially connected structure of these networks
is intuitive to use for sequential inputs, such as
sentences or words. For this reason, we decide
to model the tweets employing bidirectional Long
Short-Term Memory (biLSTM) networks (Graves
and Schmidhuber, 2005), which are an alterna-
tive RNN architecture that incorporates additional

231

https://doi.org/10.18653/v1/P17

structures, called gates, to better control the infor-
mation across sequential inputs and deal with is-
sues that may arise during training, like the van-
ishing gradient problem. Moreover, each training
sequence is presented forwards and backwards and
the output combined at each timestep allowing to
improve the overall performance of the network.

In the context of Information Retrieval (IR), rel-
evance feedback refers to a technique designed to
refine a query, either automatically or through user
interaction. The goal of this process is to con-
struct a query that is a better representation of the
information need, and therefore to retrieve better
documents (Manning et al., 2008). In particular,
pseudo-relevance feedback automates the manual
part of relevance feedback as the system simply
assumes that the initial top-ranked documents are
relevant and uses them to produce a new result set.
In order to increase the accuracy of the biLSTM
network we develop a pseudo-relevance feedback
schema where we assume that the top-k predic-
tions produce at a first classification step are cor-
rect (based on the model accuracy) and use them
as new examples to re-train the network.

4 Experimental Setup

Preprocessing and tokenization are crucial steps
of the pipeline involved in the development of a
model: the output produced has an immediate ef-
fect in the features learned by the model. This
task could turn to be particularly challenging in
Twitter since the vocabulary results quite unstable
over time and the way that users expressed does
not follow traditional patterns. In order to prepro-
cess and tokenize the collection of tweets we em-
ploy a python library1 developed for that purpose
which applies different regular expressions to ex-
tract particular units, such as hashtags, and sepa-
rates them from the rest of the tokens. We only
conserve words, hashtags, mentions, emojis and
smileys. The remaining tokens outside these cate-
gories are discarded given that their inclusion did
not prove to be useful for the task. Some exam-
ples of such tokens are URLs (they were originally
replaced with http://url.removed), num-
bers and the unit [NEWLINE]. Furthermore, we
remove the hash symbols from the hashtags and
split the words when possible using the Viterbi al-
gorithm. The prior probabilities are obtained from
word statistics from Google Ngram corpus. In par-

1See: https://github.com/s/preprocessor

ticular, we observed a positive impact on the train-
ing accuracy of the network. One possible reason
could be that the terms contained in the hashtags
were probably present in the word embeddings but
not as a singular unit (e.g., #classyCouple). All
the tokens are transformed to lowercase and words
which were completely in capitals, emulating a
yell in the social media language, were doubled.
It is important to remark that stopwords are not re-
moved.

The model is comprised of an embedding layer,
a biLSTM layer and a softmax layer. It receives
as input a tokenized twitter message treated as a
sequence of words. Since the length of different
tweets can vary, we set the length of each message
to 99 (the maximum message length across train-
ing and development data according to the opera-
tions performed in the preprocessing step). Tweets
that are shorter than this length are zero-padded.
It should be noted that the network will ignore
everything that goes beyond the last word in the
text, i.e., the padding. The weights of the embed-
ding layer are initialized using word2vec (Mikolov
et al., 2013) embeddings trained on 400 million
tweets (Godin et al., 2015) from the ACL W-NUT
share task (Baldwin et al., 2015). We also tried to
use the 300-dimensional pre-trained vector trained
on Google News dataset2 combined with emo-
jis pre-trained embeddings (Eisner et al., 2016).
However, the performance was slightly worse and
for that reason we decided not to employ them.
Words out of the embeddings are conserved, al-
beit their weights are randomly initialize and learn
from scratch. A single biLSTM layer with a hid-
den layer size of 128 neurons follows in the ar-
chitecture and feeds a softmax layer in order to
obtain the final prediction. The network param-
eters are learned by minimizing Cross-Entropy
and by backpropagating the error through layers
over 5 epochs, with a batch size of 128, using
RMSprop optimization algorithm. Moreover, a
dropout rate (Srivastava et al., 2014) of 0.5 is used
to address overfitting issues. The aforementioned
model was implemented in Python using Tensor-
flow library (Abadi et al., 2015).

Lastly, as introduced in Section 3, we propose
a pseudo-relevance feedback scheme as follows:
(a) A first instance of the network is trained us-
ing the training and development sets; (b) Sub-

2See: https://code.google.com/archive/p/
word2vec/

232

Emotion I you shehe adverb posemo insight cause focuspresent focusfuture swear
Anger 7.43 2.21 2.24 8.53 2.65 1.9 3.55 14.78 1.08 0.85

Disgust 6.63 2.33 1.58 8.98 2.7 2.54 2.8 15.15 0.73 1.08
Fear 9.36 2.64 1.82 7.1 2.69 2.03 2.68 15.95 2.95 0.49
Joy 9.11 3.4 1.69 9.54 4.58 1.78 2.94 15.59 1.43 0.47

Sadness 7.35 2.56 1.38 8.85 3.35 2.18 2.95 16.37 1.49 0.54
Surprise 7.13 1.95 1.96 8.56 3.1 2.09 2.94 13.18 0.89 0.58

Table 1: LIWC selected categories for the six emotions. The values represent percentages over total words.

sequently, the k percentage of the tweets with
the highest class probability is extracted with the
corresponding labels to create a new set exam-
ples; (c) Finally, the training and development sets
along with the new examples are used to re-train
the model from scratch and obtain the final pre-
dictions. It should be noted that the same hyper-
parameters are employed at both training and re-
training steps.

5 Results and Discussion

Overall, we observe that the effectiveness obtained
on the test set by the proposed approach is not
as satisfactory as expected (see Table 2). As can
be noticed the performance diminishes as the rele-
vance set used to re-trained the network increases
in size. One of the reason could be that even
though the majority of the new examples are accu-
rately classified the remaining ones correspond to
misclassification errors. Consequently, this might
introduce certain noise and affect the performance
of the model. One possible way to overcome this
issue could be to define a threshold and select the
cases whose class probability exceeds this limit,
instead of just taking the k percentage with the
highest chance of being correctly classified. An-
other reason, could reside in the fact that differ-
ent training parameters, like the number of epochs,
should be again optimized given that the size and
content of the new training data has changed.

In addition to the previously mentioned pseudo-
relevance feedback schema, we also explore the
use of the information provided by a tool known as
Linguistic Inquiry and Word Count (LIWC) (Pen-
nebaker et al.). This software is equipped with a
series of dictionaries which allows to obtain dif-
ferent psychometric properties that may arise from
language use. More specifically, it was developed
by psychologists with focus on studying the var-
ious emotional, cognitive, and structural compo-
nents present in individuals’ verbal and written

speech samples. Interesting findings arose after
analyzing the training set with this tool. In par-
ticular, the selected categories showed noticeable
differences between the tweets expressing differ-
ent emotions (See Table 1). For instance, the
use of the word I in the tweets expressing fear,
which could correlate with the fact that individ-
uals tend to refer more to themselves when they
expressed the perceived danger, threat or even con-
cerns, or the high use of she/he pronouns and cau-
sation words (because, hence, thus) when convey-
ing anger. We attempted to incorporate this in-
formation to our model by repeating the words
in the tweets that were included in a set of se-
lected dictionaries for each emotion. It is clear
that the chosen dictionaries should not overlap so
as to emphasize the differences among the emo-
tions. Nonetheless, only in the training (and de-
velopment) set the labels are known in advance,
and consequently only these instances can be ex-
panded in this way. The results obtained by fol-
lowing with this approach were not promising and
for that reason, we decided to expand the tweets
using the dictionaries disregarding of the emotion.
Given that the improvement was almost marginal
we decided not to include the results in the paper.

k% %Correct MacAvg
10 63.72 0.60
20 64.08 0.59
30 64.22 0.58
40 64.35 0.57
50 64.13 0.58

Table 2: Pseudo-relevance feedback schema results on
the test set

6 Conclusions

In this work, we introduced a relevance feedback
schema employing a sequential model (biLSTM)
in order to predict the class of a certain emotion

233

that has been removed from a tweet. Despite the
fact that the performance did not improve as ex-
pected, we consider that the method still needs
further improvement. For instance, by employ-
ing a probability threshold to create a more accu-
rate expansion set. Furthermore, we would like to
continue exploring different ways to incorporate
LIWC’s output to the network. Promising features
can be extracted from the presented analysis which
might allow to emphasize the differences between
the emotions conveyed in the tweets.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

Timothy Baldwin, Marie Catherine de Marneffe,
Bo Han, Young-Bum Kim, Alan Ritter, and Wei Xu.
2015. Shared tasks of the 2015 workshop on noisy
user-generated text: Twitter lexical normalization
and named entity recognition. ACL Association for
Computational Linguistics.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bosnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. In Proceedings of The Fourth
International Workshop on Natural Language Pro-
cessing for Social Media, pages 48–54. Association
for Computational Linguistics.

Katja Filippova, Enrique Alfonseca, Carlos A. Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
360–368. Association for Computational Linguis-
tics.

Anastasia Giachanou and Fabio Crestani. 2016. Like it
or not: A survey of twitter sentiment analysis meth-
ods. ACM Computing Surveys, 49(2):28.

Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Multimedia
lab @ acl w-nut ner sharedtask: named entity recog-
nition for twitter microposts using distributed word

representations. In ACL 2015 Workshop on Noisy
User-generated Text, Proceedings. Association for
Computational Linguistics.

A. Graves, N. Jaitly, and A. r. Mohamed. 2013. Hybrid
speech recognition with deep bidirectional lstm. In
2013 IEEE Workshop on Automatic Speech Recog-
nition and Understanding.

A. Graves and J. Schmidhuber. 2005. Framewise
phoneme classification with bidirectional lstm net-
works. In Proceedings. 2005 IEEE International
Joint Conference on Neural Networks, 2005., vol-
ume 4, pages 2047–2052 vol. 4.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press, New York,
NY, USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In ICLR Worshop, Scotts-
dale, AZ, USA.

Tomas Mikolov, Martin Karafit, Luks Burget, Jan Cer-
nock, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In INTER-
SPEECH, pages 1045–1048. ISCA.

James W. Pennebaker, Cindy K. Chung, Molly Ireland,
Amy Gonzales, and Roger J. Booth. The devel-
opment and psychometric properties of liwc2015.
Technical report, The University of Texas at Austin.

Robert Plutchik. 1980. Emotion: Theory, research,
and experience: Vol. 1. theories of emotion. In
R. Plutchik and H. Kellerman, editors, Approaches
to Emotion, pages 3–33. Academic press.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

234

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 235–242
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

EmotiKLUE at IEST 2018: Topic-Informed Classification
of Implicit Emotions

Thomas Proisl, Philipp Heinrich, Besim Kabashi, Stefan Evert
Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Korpus- und Computerlinguistik
Bismarckstr. 6, 91054 Erlangen, Germany

{thomas.proisl,philipp.heinrich,besim.kabashi,stefan.evert}@fau.de

Abstract

EmotiKLUE is a submission to the Implicit
Emotion Shared Task. It is a deep learning
system that combines independent represen-
tations of the left and right contexts of the
emotion word with the topic distribution of
an LDA topic model. EmotiKLUE achieves
a macro average F1 score of 67.13%, signifi-
cantly outperforming the baseline produced by
a simple ML classifier. Further enhancements
after the evaluation period lead to an improved
F1 score of 68.10%.

1 Introduction

The aim of the Implicit Emotion Shared Task
(IEST; Klinger et al., 2018) is to infer emotion
from the context of emotion words. The work-
ing definition of emotion for the shared task im-
plies that emotion is triggered by the interpretation
of a stimulus event (Scherer, 2005, 697), i. e. the
cause of the emotion. Consequently, the data for
the shared task have been compiled with the aim
of including a description of the cause of the emo-
tion. This has been accomplished by using distant
supervision: The organizers collected tweets that
contain exactly one of 21 emotion words belong-
ing to six emotions (anger, fear, disgust, joy, sad-
ness, surprise), where the emotion word has to be
followed by that, because or when as likely indi-
cators for a description of the cause of the emo-
tion. The corpus collected this way comprises
more than 190.000 tweets and is split into three
data sets: 80% training, 5% trial and 15% test.
The emotion words in the tweets are masked and
participants of the shared task have to predict the
emotion of the masked emotion word from its con-
text.

EmotiKLUE, our submission to the shared task,
is a deep learning system that learns independent
representations of the left and right contexts of

the emotion word, similar to Saeidi et al. (2016),
who use n-gram representations for both the right
and the left context around triggerwords in aspect-
based opinion mining. Our intuition is that the
distribution of the emotions is dependent on the
topics of the tweets, therefore we train a Twitter-
specific LDA topic model and explore different
ways of combining the topic distributions with the
left and right contexts in order to predict the emo-
tions. EmotiKLUE is available on GitHub.1

2 Related Work

Emotion detection has been an important topic
in natural language processing, particularly in the
subfield of opinion mining, for several years. The
shallowest approaches deal with sentiment polar-
ity detection, either classifying utterances into cat-
egories ranging from negative via neutral to posi-
tive, or regressing towards a score typically rang-
ing from −1 to 1 (see, for example, Proisl et al.,
2013; Evert et al., 2014). Further tasks involve the
automatic computation of stances (in favor of vs.
against) towards pre-specified topics (Mohammad
et al., 2017). Predicting more sophisticated cate-
gories of emotion than in the task at hand has been
a more recent phenomenon. Generally, the ap-
proaches can be classified into two groups, namely
rule-based approaches on the one hand and the
far more common machine learning approaches on
the other.

We give a short list of related work here, for a
more comprehensive listing see the task descrip-
tion (Klinger et al., 2018). A survey of emo-
tion detection from text and speech is given by
Sailunaz et al. (2018). For a linguistic analy-
sis of implicit emotions see Lee (2015). An ap-
proach to implicit emotion detection based on tex-
tual inference is presented by Ren et al. (2017).

1https://github.com/tsproisl/EmotiKLUE

235

https://doi.org/10.18653/v1/P17

As an example for rule-based emotion detection
we mention Udochukwu and He (2015), who use
a pipeline approach based on the OCC-Model
(Ortony et al., 1988), without emotion-bearing
words.

More recent work deals with ML and deep
learning approaches. Rout et al. (2018) use both
unsupervised and supervised approaches with dif-
ferent machine learning algorithms such as multi-
nomial naive bayes, maximum entropy, and sup-
port vector machines on unigram feature matrices
and report F1-scores of above 99% when disam-
biguating tweets according to seven emotion cate-
gories. However, since their text data are selected
via a keyword-filter containing exactly the words
representing the emotion which in turn can be used
as features by the machine learner at hand, their
high accuracy values are unsurprising.

Other tasks, such as detecting the emotion stim-
ulus in emotion-bearing sentences are more chal-
lenging; Ghazi et al. (2015) e. g. use a condi-
tional random fields classifier and report F1-scores
of up to 60% for finding the stimulus in their self-
constructed data set. Finally, Firdaus et al. (2018)
use different latent features such as emotion and
sentiment as input to predict user behaviour (e. g.
the act of retweeting).

3 System Description

3.1 Data Preprocessing and Additional Data

The data sets released by the organizers of the
shared task contain the full text of the tweets, with
the emotion word, usernames and URLs being
substituted by placeholders. We tokenize the text
with the web and social media tokenizer SoMaJo2

(Proisl and Uhrig, 2016) and convert it to lower-
case.

In addition to the official data sets, we use two
resources: ENCOW143 (Schäfer and Bildhauer,
2012; Schäfer, 2015) and an in-house collection
of 114 million deduplicated English tweets (see
Schäfer et al. (2017) for the deduplication algo-
rithm), collected between February 2017 and June
2018.4 We tokenize the tweets with SoMaJo (but
not ENCOW14, which is already tokenized), mask

2https://github.com/tsproisl/SoMaJo
3http://corporafromtheweb.org/encow14
4The overlap of the released data sets with our in-house

collection of tweets is negligible. Our collection contains less
than 0.6% of the tweets from the released data sets: 775 from
the training set (0.51%), 49 from the trial set (0.51%) and 163
from the test set (0.57%).

usernames and URLs and convert the text to low-
ercase.

3.2 Representations derived through
unsupervised methods

We use our in-house collection of tweets to create
Twitter-specific word embeddings and topic mod-
els.

Using the Gensim5 (Řehůřek and Sojka, 2010)
implementation of word2vec (Mikolov et al.,
2013a,b), we create four sets of embeddings for all
words with a minimum frequency of 5: 100- and
300-dimensional vectors using the skip-gram ap-
proach and 100- and 300-dimensional vectors us-
ing the CBOW approach.

Our intuition is that the distribution of the emo-
tion words depends on the topics of the tweets. To
capture these topics, we use Gensim and create
an LDA topic model (Blei et al., 2003) with 100
topics based on the most recent 10 million tweets
in our collection (ignoring words that only occur
once).

3.3 Additional Data for Pretraining
We compile an additional data set from EN-
COW14 and our collection of tweets that we use
to pretrain our model. To this end, we select
tweets and ENCOW14 sentences with a maximum
length of 110 words that contain a single emotion
word from the following set of emotion words:
afraid, angry, disgusted, disgusting, happy, sad,
surprised, surprising. This list of emotion words
was determined by a cursory glance at the offi-
cial training data and happens to be a subset of
the 21 emotion words used by the task organizers
(which were only revealed after the evaluation pe-
riod). Note that we do not restrict the contexts in
which the emotion words occur, i. e. the emotion
words do not have to be followed by that, because
or when. After balancing the data, we have ap-
proximately 159.000 items per class.

3.4 Network Architecture
We experiment with three variants of a neural
network architecture implemented using Keras6

(Chollet et al., 2015) and visualized in Figure 1.

The word-level representations for the left and
right contexts of the emotion word that are re-
turned by the embedding layers are fed into

5https://radimrehurek.com/gensim
6https://keras.io

236

Left context

Embedding

output_dim: 100/300
trainable: False

LSTM
units: 100

dropout: 0.2

Right context

Embedding

output_dim: 100/300
trainable: False

LSTM
units: 100

dropout: 0.2

Concatenate

Dense
units: 100

activation: tanh

Dropout

rate: 0.2

LDA

Concatenate

Dense
units: 100

activation: tanh

Dropout

rate: 0.2

Dense
units: 100

activation: softmax

Dense
units: 100

activation: tanh

Multiply

Dense
units: 6

activation: softmax

Figure 1: Architecture of the three model variants

two unidirectional LSTM layers (Hochreiter and
Schmidhuber, 1997; Gers et al., 2000): A left-to-
right layer for the left context from the beginning
of the tweet to the masked emotion word, and a
right-to-left layer for the right context from the
end of the tweet to the masked emotion word. The
hidden states of the two LSTM layers are concate-
nated. Now, we explore three variants of incorpo-
rating the 100-dimensional LDA topic distribution
into the model:

1. We do not use LDA topics. The output of the
LSTMs is fed to a dense layer, followed by
a dropout layer and finally a softmax output
layer.

2. We use LDA topics as features alongside the
LSTM output. The LDA topic distribution
and the output of the LSTMs are concate-
nated. The result is fed to a dense layer, fol-
lowed by a dropout layer and finally a soft-
max output layer.

3. We use LDA topics as filter. The output of
the LSTMs is fed to a dense layer to reduce
dimensionality. The LDA topic distribution
is fed to a softmax layer. The output of the
two layers is combined using element-wise
multiplication. The result is fed to the final
softmax output layer.

model trial test

train-skip100-nolda 64.06 65.14
train-skip100-ldafeat 64.46 65.10
train-skip100-ldafilt 64.56 65.03
train-skip300-nolda 65.93 66.33
train-skip300-ldafeat 66.05 66.35
train-skip300-ldafilt 65.18 65.79
add-skip100-nolda 52.01 52.12
add-skip100-ldafeat 52.49 52.84
add-skip100-ldafilt 51.29 51.88
add-skip300-nolda 55.28 55.49
add-skip300-ldafeat 55.22 55.11
add-skip300-ldafilt 52.76 52.68
add+train-skip100-nolda 65.19 66.55
add+train-skip100-ldafeat 65.71 66.02
add+train-skip100-ldafilt 65.67 65.94
add+train-skip300-nolda 67.05 67.50
add+train-skip300-ldafeat 67.17 67.08
add+train-skip300-ldafilt 66.43 67.00

add+train+trial-skip300-ldafeat (subm.) 67.13

Table 1: Results for models using skip-gram-based em-
beddings (macro F1)

We train each model for a maximum of 20
epochs with a batch size of 160, using the Adam
optimizer (Kingma and Ba, 2014) to minimize cat-
egorical crossentropy. If the validation loss (deter-
mined on the trial data) fails to improve for two
consecutive epochs, training stops early.

4 Results and Error Analysis

4.1 Experiments

We have three different network architectures that
differ in the way they use LDA topic distributions.
We have four sets of embeddings that differ in size
and training objective. And we have three options
for the training data (only the official training data,
only our additional data, or training on the latter
and retraining on the former). In order to quantify
the impact of the individual choices, we train and
evaluate all 36 possible models. Results for mod-
els using skip-gram-based embeddings are shown
in Table 1 and results for models using CBOW-
based embeddings in Table 2. The evaluation met-
ric used is the macro average of the F1 scores of
the six classes.

The exact numbers listed in Tables 1 and 2
should not be taken too seriously as they are sub-
ject to some small amout of random variation due

237

model trial test

train-cbow100-nolda 63.75 64.07
train-cbow100-ldafeat 62.81 63.20
train-cbow100-ldafilt 63.39 63.24
train-cbow300-nolda 64.09 63.91
train-cbow300-ldafeat 64.00 63.94
train-cbow300-ldafilt 63.61 63.49
add-cbow100-nolda 49.64 50.14
add-cbow100-ldafeat 48.16 48.55
add-cbow100-ldafilt 48.69 48.81
add-cbow300-nolda 51.26 50.70
add-cbow300-ldafeat 51.25 51.48
add-cbow300-ldafilt 49.31 49.01
add+train-cbow100-nolda 63.10 64.03
add+train-cbow100-ldafeat 64.46 64.08
add+train-cbow100-ldafilt 63.42 63.60
add+train-cbow300-nolda 64.34 64.74
add+train-cbow300-ldafeat 64.26 64.66
add+train-cbow300-ldafilt 63.83 63.64

Table 2: Results for models using CBOW-based word
embeddings (macro F1)

to differences in the initialization of the weights
and the shuffling of the training data.7 However,
since all the individual options have been used at
least nine times, we can still make some fairly re-
liable claims about their usefulness.

The most obvious observation is that the offi-
cial training data lead to much better results than
our additional data (+12.97 on average). This is
probably due to two reasons: We only use a subset
of the emotion words that have been used in the
official data sets and, more importantly, we use all
instances of the emotion words and not only those
that are followed by something that is likely to be
a description of the cause of the emotion. How-
ever, first training the model on the additional data
and then retraining it on the official training data
is benefitial (+1.96).

We can also see that word embeddings based
on the skip-gram approach consistently outper-
form those based on the CBOW approach (+2.55).
300-dimensional embeddings are notably better
than 100-dimensional embeddings (+1.19), an ef-
fect that is more pronounced for the skip-gram-
based embeddings (+1.57) than for the CBOW-
based ones (+0.80).

7The 95%-confidence interval for the performance of the
add+train-skip300-ldafeat model on the test data is 67.12±
0.34, for example (estimated from 20 instances of the model).

The LDA topic distributions only have a posi-
tive effect when used as additional features along-
side the LSTM output – and even then the effect
is small and only positive for models using skip-
gram-based embeddings (+0.08) and negative for
models using CBOW-based embeddings (−0.24).
Using the LDA topic distribution as a filter usually
has a negative effect (−0.76).

Consequently, for our submission to the shared
task, we chose the second network architecture
(LDA topic distribution as feature), used 300-
dimensional skip-gram embeddings and trained
the model first on our additional data and retrained
it on the official training and trial data. That model
achieved a macro average F1 score of 67.13 on the
test data and took the tenth place in the shared task.
For comparison, Klinger et al. (2018) report that
human performance on this task is approximately
45%, the MaxEnt uni- and bigram classifier used
as a baseline system achieved 59.88% and the best
submission (Rozental et al., 2018) 71.45%.

4.2 Error Analysis
We present detailed error analyses in Table 3 in
form of an extensive confusion matrix including
label confusion per triggerword in the test data.
We downloaded all available tweets used in the
shared task via the Twitter API8 to gain access
to the actual triggerwords. For reasons of inter-
pretability we report absolute marginal frequen-
cies and relative frequencies of predicted label per
real label and triggerword.9 This corresponds to
recall (true-positive-rate) for those cases where the
prediction equals the true label and false-negative-
rate (FNR) per class for all other cases.

Recall is rather similar across labels: The high-
est rate can be achieved for joy (78%), the lowest
is achieved for sad (59%). High FNRs have to
be reported for confusing anger, disgust, and fear
with surprise (11% and 10%), as well as sad with
anger and disgust (each 11%).

Looking at the recall values per triggerword, ex-
planations for the macro-values are not far to seek:

1. Performance is generally higher for those
triggerwords that have been manually se-

8https://developer.twitter.com/en/docs/
tweets/post-and-engage/api-reference/
get-statuses-lookup

9The difference in absolute numbers between label-based
confusions and triggerword-based confusions are due to the
fact that not all tweets can be retrieved from the API – once
a tweet is e. g. deleted by a user, it is no longer accessible for
others either.

238

anger disgust fear joy sad surprise total

anger 0.61 0.09 0.08 0.06 0.06 0.11 4794
angry 0.62 0.07 0.08 0.07 0.06 0.09 2893

furious 0.57 0.11 0.06 0.04 0.05 0.18 1292

disgust 0.08 0.67 0.04 0.03 0.07 0.11 4794
disgusted 0.14 0.53 0.06 0.05 0.03 0.19 2065

disgusting 0.03 0.79 0.01 0.01 0.10 0.05 2398

fear 0.08 0.04 0.69 0.05 0.04 0.10 4791
afraid 0.05 0.02 0.76 0.04 0.03 0.08 1693
fearful 0.10 0.03 0.69 0.05 0.03 0.10 315

frightened 0.11 0.11 0.49 0.05 0.04 0.20 324
scared 0.10 0.05 0.62 0.06 0.05 0.12 1648

joy 0.06 0.02 0.04 0.78 0.04 0.06 5246
cheerful 0.09 0.05 0.05 0.64 0.07 0.09 56

happy 0.06 0.02 0.04 0.79 0.04 0.06 4215
joyful 0.05 0.04 0.08 0.61 0.09 0.12 97

sad 0.11 0.11 0.06 0.07 0.59 0.06 4340
depressed 0.21 0.08 0.09 0.10 0.46 0.06 642

sad 0.09 0.12 0.05 0.06 0.62 0.06 2751
sorrowful 0.00 0.12 0.00 0.50 0.25 0.12 8

surprise 0.08 0.09 0.07 0.05 0.03 0.68 4792
astonished 0.08 0.13 0.07 0.04 0.01 0.66 350
astounded 0.07 0.17 0.09 0.03 0.01 0.63 263

shocked 0.12 0.06 0.08 0.06 0.03 0.65 1021
startled 0.10 0.06 0.22 0.04 0.01 0.57 228
stunned 0.12 0.10 0.08 0.07 0.01 0.62 500

surprised 0.07 0.05 0.06 0.06 0.01 0.74 1223
surprising 0.02 0.11 0.01 0.01 0.12 0.74 805

total 4841 4801 4633 5305 3732 5445 28757

Table 3: Confusion Matrix for the six predicted emotion categories (columns) for each real emotion and each
triggerword (rows) in the test data

lected by us for producing additional training
data (see Section 3.3): angry (62%) shows
higher recall than furious (57%), afraid
(76%) and happy (79%) perform best in the
fear and joy categories, respectively, and sur-
prised and surprising (each 74%) are the best
predictors for surprise.

2. Rare triggerwords generally lead to worse re-
sults. The most obvious example is sorrow-
ful, which we only observed 28 times in the
training data (8 times in the test data) and
which yields 25% recall for predicting cate-
gory sad, confusing it in half of the cases with
joy. Additionally, cheerful and joyful (361
and 536 observations in the training data, re-

spectively) perform lower than happy (22348
observations) – although admittedly happy
had already been pre-selected for additional
training as mentioned above.

3. Many confusions can also be explained from
a psycho-linguistic point of view when look-
ing at the actual corpus. Instances involving
the triggerword disgusted e. g. are frequently
categorized as anger by our system. Corpus
evidence shows that these words are hard to
disambiguate:

• Hindu women should be [#TRIGGER-
WORD#] when Law Panel says Father-
In-Law should pay alimony, what next

239

model trial test

add2-skip300-ldafeat 56.66 56.98
add2+train-skip300-ldafeat 67.34 67.47
300-train-skip300-ldafeat 66.14 66.68
300-add-skip300-ldafeat 57.10 57.29
300-add+train-skip300-ldafeat 67.89 68.06
300-add2-skip300-ldafeat 58.35 58.49
300-add2+train-skip300-ldafeat 67.98 68.10

Table 4: Results for the post-analysis experiments
(macro F1)

women are property of Father-In-Law?
• I wake up [#TRIGGERWORD#] be-

cause I know you doin me wrong but u
dont think its nothing wrong with being
in a verbal relationship with another gal

It is hard to see how one could reliably pre-
dict the “real” emotion (disgust) in the above
examples, since anger – as predicted by our
system – seems to be an equally sensible
guess. Similar instances can be found for
other confusions, most notably when pre-
dicting anger in case of the triggerword de-
pressed.

4.3 Post-analysis experiments

The analysis in the previous section has shown that
our system performs better on the more frequent
words that we used for compiling our additional
data than on the less frequent words. Therefore,
we recompile our additional data as described in
Section 3.3 but for all of the 21 emotion words
that occur in the official data. After balancing the
data, this results in approximately 163.000 items
per class.

We take the model versions from Section 4.1
that are the basis for our submission and replace
the additional data with the updated version. The
new models (prefixed with “add2” in Table 4) im-
prove on the old ones both when using only the
additional data (+1.66) and when retraining on the
official training data (+0.28).

It is also worth pointing out that so far we have
not fine-tuned the hyperparameters of our model.
As a first step in that direction, we try to use more
units in the hidden layers and increase the size
of all hidden layers to 300 units (models prefixed
with “300-add” in Table 4). This boosts the per-
formance both when using only the additional data

(+2.03) and when retraining on the official training
data (+0.85).

Combining the recompiled additional data and
the larger hidden layers yields further improve-
ments (models prefixed with “300-add2” in Ta-
ble 4). The retrained model is approximately 1
point better than our submission and would have
taken the eighth place in the shared task.

A further error analysis shows that the addi-
tional training data indeed yield the desired effect:
Recall for category angry improves from 61% to
66%, largely due to better recall in the case of
the triggerword furious (rising from 57% to 65%).
Further improvements can be found in almost all
categories, namely for fear (69% to 72%, espe-
cially frightened: 49% to 53%), joy (78% to 79%,
with recall for joyful rising from 61% to 65% and
for cheerful from 64% to 70%), and sad (59% to
62%, triggerword depressed up two points from
46% to 48%). However, the additional training
data had an adverse effect on category surprise;
here recall falls from 68% to 65%, with almost
all triggerwords dropping a couple of points, the
worst being surprised, falling from 74% to 69%.

Finally, we want to take a closer look at the
contribution of the LDA topic distribution. To
this end, we have trained 20 instances of the 300-
add2+train-skip300-ldafeat and 300-add2+train-
skip300-nolda models and have calculated the
means and 95%-confidence intervals. As it turns
out, both model variants perform identically on
the trial data. On the test data, there are some
minor differences but the performance means lie
within one standard deviation of each other. This
means that our choice of concatenating the LDA
topic distribution of the tweet to the LSTM does
not have a statistically significant result..

5 Conclusion

We presented EmotiKLUE, a topic-informed
deep learning system for detecting implicit emo-
tion. Our experiments showed that for this
task skip-gram-based word embeddings outper-
form CBOW-based embeddings. Additional data,
that – on their own – yield rather poor results, im-
prove the performance when used for pretraining
the model. LDA topic models, that we initially be-
lieved to have a small positive effect, turned out to
not contribute significantly.

The error analysis shows that the objective as set
in the shared task at hand is rather difficult: With

240

many instances of tweets showing prima facie am-
biguous emotions, it is unsurprising that even per-
fectly trained classifiers will not be able to achieve
100% accuracy when using the textual data alone.

Future work could nonetheless involve more ex-
perimentation with the hyperparameters of the net-
work, e. g. number, size and activation of the hid-
den layers, choice of regularization strategy and
optimizer, etc.

The software is available on GitHub.10

References
David M. Blei, Andrew Y. Ng, and Michael I. Jordan.

2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

François Chollet et al. 2015. Keras. https://keras.
io.

Stefan Evert, Thomas Proisl, Paul Greiner, and Besim
Kabashi. 2014. SentiKLUE: Updating a polarity
classifier in 48 hours. In Proceedings of the 8th In-
ternational Workshop on Semantic Evaluation (Se-
mEval 2014), pages 551–555, Dublin. Association
for Computational Linguistics.

Syeda Nadia Firdaus, Chen Ding, and Alireza
Sadeghian. 2018. Topic specific emotion detection
for retweet prediction. International Journal of Ma-
chine Learning and Cybernetics, pages 197–203.

Felix A. Gers, Jürgen Schmidhuber, and Fred A.
Cummins. 2000. Learning to forget: Contin-
ual prediction with LSTM. Neural Computation,
12(10):2451–2471.

Diman Ghazi, Diana Inkpen, and Stan Szpakowicz.
2015. Detecting emotion stimuli in emotion-bearing
sentences. In Computational Linguistics and Intel-
ligent Text Processing. CICLing 2015, pages 152–
165.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. IEST: WASSA-
2018 Implicit Emotions Shared Task. In Proceed-
ings of the 9th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, Brussels. ACL.

Sophia Yat Mei Lee. 2015. A linguistic analysis of im-
plicit emotions. In Chinese Lexical Semantics - 16th
Workshop, CLSW 2015, Beijing, China, May 9-11,
2015, Revised Selected Papers, pages 185–194.

10https://github.com/tsproisl/EmotiKLUE

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States., pages 3111–
3119.

Saif M. Mohammad, Parinaz Sobhani, and Svetlana
Kiritchenko. 2017. Stance and sentiment in tweets.
Special Section of the ACM Transactions on Inter-
net Technology on Argumentation in Social Media,
17(3).

A. Ortony, G. Clore, and A. Collins. 1988. Cognitive
Structure of Emotions. Cambridge University Press.

Thomas Proisl, Paul Greiner, Stefan Evert, and Besim
Kabashi. 2013. KLUE: Simple and robust meth-
ods for polarity classification. In Proceedings of the
7th International Workshop on Semantic Evaluation
(SemEval 2013), pages 395–401, Atlanta, GA. As-
sociation for Computational Linguistics.

Thomas Proisl and Peter Uhrig. 2016. SoMaJo: State-
of-the-art tokenization for German web and social
media texts. In Proceedings of the 10th Web as Cor-
pus Workshop (WAC-X) and the EmpiriST Shared
Task, pages 57–62, Berlin. ACL.

Han Ren, Yafeng Ren, Xia Li, Wenhe Feng, and Maofu
Liu. 2017. Natural logic inference for emotion de-
tection. In Proceedings of CCL 2017 and NLP-
NABD 2017, pages 424–436.

Jitendra Kumar Rout, Kim-Kwang Raymond Choo,
Amiya Kumar Dash, Sambit Bakshi, Sanjay Ku-
mar Jena, and Karen L. Williams. 2018. A model
for sentiment and emotion analysis of unstructured
social media text. Electronic Commerce Research,
18(1):181–199.

Alon Rozental, Daniel Fleischer, and Zohar Kelrich.
2018. Amobee at IEST 2018: Transfer learning
from language models. In Proceedings of the 9th
Workshop on Computational Approaches to Subjec-
tivity, Sentiment and Social Media Analysis, Brus-
sels. ACL.

Marzieh Saeidi, Guillaume Bouchard, Maria Liakata,
and Sebastian Riedel. 2016. Sentihood: Targeted
aspect based sentiment analysis dataset for urban
neighbourhoods. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 1546–1556,
Osaka, Japan. The COLING 2016 Organizing Com-
mittee.

241

Kashfia Sailunaz, Manmeet Dhaliwal, Jon Rokne, and
Reda Alhajj. 2018. Emotion detection from text and
speech: a survey. Social Network Analysis and Min-
ing, 8(1):28:1–28:26.

Klaus R. Scherer. 2005. What are emotions? And how
can they be measured? Social Science Information,
44(4):695–729.

Fabian Schäfer, Stefan Evert, and Philipp Heinrich.
2017. Japan’s 2014 General Election: Political Bots,
Right-Wing Internet Activism and PM Abe Shinzō’s
Hidden Nationalist Agenda. Big Data, 5(4):294–
309.

Roland Schäfer. 2015. Processing and querying large
web corpora with the COW14 architecture. In
Proceedings of Challenges in the Management of
Large Corpora 3 (CMLC-3), pages 28–34, Lan-
caster. UCREL, IDS.

Roland Schäfer and Felix Bildhauer. 2012. Building
large corpora from the web using a new efficient tool
chain. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC 2012), pages 486–493, Istanbul. ELRA.

Orizu Udochukwu and Yulan He. 2015. A rule-based
approach to implicit emotion detection in text. In
Proceedings of NLDB 2015, pages 197–203.

Radim Řehůřek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In Pro-
ceedings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks, pages 46–50, Valletta.
ELRA.

242

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 243–247
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

BrainT at IEST 2018: Fine-tuning Multiclass Perceptron For Implicit
Emotion Classification

Vachagan Gratian
Universität Stuttgart

vgratian@utopianlab.am

Marina Haid
Universität Stuttgart

haidmarina@gmail.com

Abstract
We present BrainT, a multi-class, averaged
perceptron tested on implicit emotion predic-
tion of tweets. We show that the dataset is
linearly separable and explore ways in fine-
tuning the baseline classifier. Our results indi-
cate that the bag-of-words features benefit the
model moderately and prediction can be im-
proved with bigrams, trigrams, skip-one- tetra-
grams and POS-tags. Furthermore, we find
preprocessing of the n-grams, including stem-
ming, lowercasing, stopword filtering, emoji
and emoticon conversion generally not useful.
The model is trained on an annotated corpus
of 153,383 tweets and predictions on the test
data were submitted to the WASSA-2018 Im-
plicit Emotion Shared Task. BrainT1 attained
a Macro F-score of 0.63.

1 Introduction

Our task is to predict emotions of tweets in a
dataset where words explicitly mentioning the
emotion are masked (Figure 1 and 2). Follow-
ing the definition of Ekman (1992), there are six
”basic” emotions, these tweets have the labels joy,
fear, surprise, disgust, anger or sadness. As the
model has no access to the explicit emotion word,
it has to detect it from its implicit context, i.e. the
situational or causal description of the event. This
aspect of the task makes it comparable to centre
word prediction from context words.

Twitter language distinguishes itself by a het-
erogeneous variety of internet vernaculars, abun-
dance of abbreviations, emojis, hashtags and de-
viation from conventional spelling, grammar, syn-
tax and lexicon. This makes recognition of emo-
tions intricate even for human readers as evident
from the noticeably low inter-annotator agree-
ment reported by Balabantaray et al. (2012) or the

1Source code is publicly available at:
https://github.com/ims-teamlab2018/
Braint

Figure 1: Example of a tweet expressing joy.

Figure 2: The tweet in the dataset: the gold label (left)
and the tweet text (right) where the emotion word is
masked.

”testing” of the IEST dataset on English native-
speakers which resulted in an F-score of 0.45
(Klinger et al., 2018).

2 Related Work

Previous research on sentiment analysis and emo-
tion analysis of Twitter data often disagrees on
the benefits or disadvantages of the various ap-
proaches, algorithms and feature models.

In Psomakelis et al. (2014) linear and multi-
layer classifiers are evaluated on sentiment anal-
ysis of tweets and is found that learning-based
approaches outperform lexicon-based approaches
explaining this chiefly by the lack of contex-
tual information that lexical entries (such as
polarity scores) express in the unigram model.
Kouloumpis et al. (2011) found a mixed feature
set of unigrams and n-grams beneficial for sen-
timent analysis, but found that adding POS-tags
to the feature set drops the model’s performance
and questioned its usefulness specifically on Twit-
ter data. Aston et al. (2014) observe that the
voted perceptron performs quite well using only
character n-grams and propose a feature-reduction
method that dramatically decreases runtime with-

243

https://doi.org/10.18653/v1/P17

out compromising performance. Conversely, Bal-
abantaray et al. (2012) evaluate a ”greedy” fea-
ture model, including n-grams, POS-tags, bigram
POS-tags, dependency tags, affection labels etc.
Interestingly, the authors of this paper add a sev-
enth class, no emotion to the six basic emotion
classes and find that the multi-class SVM attains
a high accuracy score with a panoramic feature
model.

3 Methods

3.1 Multi-class Perceptron
We design our model following the ”one-against-
all” approach described in Allwein et al. (2001) by
reducing the multi-class prediction task into k =
6 binary classification problems. We add weight
vectors for each emotion class (wjoy, wfear, ...).
Prediction is made by assigning each tweet vector
xi the label that gets the highest confidence:

ŷ = argmax wy · x

y ∈ {sad, joy, disgust, fear, surprise, anger}
For each incorrect prediction, the model is updated
by adding the tweet vector xi to the true label’s
weights yi and subtracting it from all the other
weights:

if ŷ 6= yi :

wy ← wy + xi

wŷ ← wŷ − xi

After our first experiments we upgraded our
model to the averaged perceptron as defined in
Collins (2002) and as discussed in Kazama and
Torisawa (2007). Doing so, we set the final
weights to be the average of all updated weights
during training. Additionally, we randomize the
order of tweets before each training epoch to re-
duce overfitting.

3.2 Features
Our feature set consists of unigrams, bigrams, tri-
grams and what we call skip-one-tetragrams. We
use a combination of n-grams as our feature set
and optionally add POS-tags.

The unigrams are modified depending on the se-
lected preprocessing mode. This can be either re-
ductive (surface word is reduced to its stem or low-
ercased, stop words and punctuation are removed,
emojis and emoticons are replaced by labels, num-
bers are replaced by 〈NUM〉 tag) or additive in

which case stems, labels and tags are added to
the feature set alongside the surface form. Bi-
grams and trigrams are added to the feature set as
they are. Tetragrams are duplicated and respec-
tively the second and the third tokens2 are replaced
with 〈SKIP 〉. We expect that this will gener-
alize phrases that only differ in one token. E.g.,
”he loves red apples” with skip-one is ”he loves
〈SKIP 〉 apples” and will match with ”he loves
green apples” in another tweet.

We calculate the feature values using one of the
following measures: binary (0 or 1), count, fre-
quency or tf-idf.

4 Experiments

4.1 Dataset

The dataset we use is provided by the WASSA
2018 Implicit Emotion Shared Task3. It is a corpus
of 153,383 tweets annotated with distant supervi-
sion where each tweet originally contained one of
the six emotion words (joy, fear, surprise, disgust,
anger, sadness) or their synonyms. These words
are masked in the dataset, as are usernames and
URLs. The dataset is described in detail in Klinger
et al. (2018). We use a test set consisting of 28,757
tweets, provided by the IEST as well.

4.2 Preprocessing

We tokenize and normalize tweets using methods
that allow for the orthographic anomalies of tweets
(e.g., missing space between words and punctu-
ation marks; use of punctuation marks as emoti-
cons). Tokens are labelled by their type (word,
punctuation, numerical, emoji, emoticon, hash-
tag or URL). Depending on our choice between
the reductive or additive modes, word tokens are
replaced or complemented with stems, all other
types by a label or tag. For example, the emoji
and the emoticon :)))) both are replaced or com-
plemented by laughing4. Numbers like e.g. 1948
are replaced or complemented by 〈NUM〉.

We also add counts of word classes in the tweet
using the NLTK5 part-of-speech tagger. Option-

2Doing the same with the first and last tokens would re-
duce it to a trigram.

3Available at:
http://implicitemotions.wassa2018.com/
data/

4We created our own libraries for common emojis and
emoticons. For not common emojis we used the Python li-
brary emoji.

5https://www.nltk.org/

244

Feature vectors Conv Macro F
Binary 0.8 0.382
Count 0.78 0.412
Freq 0.57 0.436
TF-IDF 0.79 0.401

Table 1: Results of testing the baseline with unigrams.
T = 150.

ally stopwords and punctuation marks can be re-
moved and tokens can be lowercased.

These preprocessing options are only applied to
unigrams, since they would otherwise disturb the
word order in n-grams.

4.3 Experimental Setup

We evaluate our model on the test data described
in section 4.1. We consider Macro F-score as the
evaluation metric and calculate Precision and Re-
call scores for each emotion class. We run our
experiments with learning rates ranging from 0.1
to 0.5, but choose for 0.3 in later experiments as
the model seems to converge slightly better in this
case. For the initial model we set the number
of epochs T = 150, but with averaging of the
weights, T = 50 seems reasonable as the learning
curve plateaus already after 30-35 epochs. During
each epoch we calculate the accuracy of the pre-
dictions on the train data (we refer to this measure
as Convergence or Conv).

Additionally, after each epoch the model is eval-
uated on the test data whereby the weights are not
adjusted so the test data remains unseen. With
these two measures we can track how the model
adapts to the train data in comparison to its perfor-
mance on the test data.

4.4 Results

We conduct four groups of experiments in increas-
ing complexity of the feature set.

Group 1. First, we test the ”vanilla” percep-
tron with unigrams and with minimal preprocess-
ing (only tokenization). We try all four vector
value calculations, but since frequency attains the
highest score, we choose only that one for the next
experiments. Results of this group of experiments
are shown in table 1.

Group 2. We then update our model to the av-
eraged perceptron and shuffle tweets before each
epoch. This raises the F-score from 0.44 to 0.52.
Subsequently we evaluate the model with more ad-
vanced preprocessing options. Both reductive and
additive modes are considered. Results of Group 2

reductive options Conv Macro F
none 0.47 0.519
replace emoji/emoticon with label 0.47 0.516
replace number with tag 0.47 0.519
remove stopwords 0.50 0.481
remove punctuation 0.48 0.511
lowercase 0.46 0.511
replace word with stem 0.49 0.529
all of the above 0.52 0.468

Table 2: Results of reductive preprocessing options us-
ing unigram frequencies. T = 50.

additive options Conv Macro F
add emoji/emoticon label 0.50 0.545
add number tag 0.50 0.545
add covercased token 0.50 0.546
add stem 0.49 0.536
add stem + emoji/emoticon label 0.49 0.537
add stem + emoji/emoticon label 0.50 0.546
+ number tag
all of the above 0.49 0.537

Table 3: Results of additive preprocessing options us-
ing unigram frequencies. T = 50.

experiments are included in Tables 2 and 3. Since
the impact of these options is either negative or
positive but negligible, we choose for no unigram
preprocessing options in the next experiments.

Group 3. In Group 3 of the experiments we
incrementally add bigrams, trigrams, skip-one-
tetragrams and POS-tags to the feature set (Table
5 and Figure 3).

Group 4. Finally, we repeat the experiments of
Group 3 non-incrementally. Table 5 shows the re-
sults.

4.5 Discussion

We observe a strong improvement of the averaged
perceptron with shuffling over the baseline per-
ceptron. Predictions get better as more n-grams
are added to the feature set, which is self-evident
as they capture more contextual information. The
learning curve converges on the training data af-
ter trigrams are added, which indicates that the
dataset is linearly separable.

As it was found by Saif et al. (2014), we

Feature vectors Conv Macro F
Unigram 0.50 0.546
Bigram 0.88 0.607
Trigram 0.99 0.616
Skip-one-Tetragram 1.00 0.625
POS-tags 0.99 0.632

Table 4: Results of third group of experiments: Feature
sets are added incrementally. T = 50.

245

Figure 3: Macro F-scores obtained on different feature
sets. Feature sets are added incrementally (i.e. the fea-
ture type on the right contains all on its left).

Feature vectors Conv Macro F
Unigram 0.50 0.546
Bigram 0.90 0.585
Trigram 0.99 0.571
Skip-one-Tetragram 1.00 0.559
POS-tags 0.99 0.301

Table 5: Group 4 experiments: feature set includes only
one n-gram or the POS-tags. T = 50.

confirm that classic stopword filtering decreases
performance and observe that similarly low-
ercasing, punctuation removal, stemming and
emoji/emoticon conversion have a negative or neu-
tral impact.

5 Future Work

The model and approaches described in this pa-
per can be improved in two directions: enhanc-
ing the feature set and addressing the limitations
of the multi-class perceptron. In the ”one-against-
all” model the output of each classifier is treated
as a confidence measure, for a more precise pre-
diction this score can be calibrated into probabil-
ity. As demonstrated in Figure 4, models trained
on different feature sets show different strengths
and weaknesses in their predictions. This dispari-
ties can be exploited by adding ”redundant” clas-
sifiers for the same emotion class and train them
differently. A final prediction can be made based
on a simple majority vote or a distance measure
between the individual predictions. As described
in Garcia Cifuentes (2009), this can improve the
models performance. In this scenario, the prepro-
cessing options described in 4.2 could also prove
to be helpful.

We would also like to try other multi-class re-
duction approaches on the same implicit emo-

Figure 4: Confusion matrix of two models trained on
Unigram and skip-one-Tetragram features.

tion prediction task, such as ”all-pairs” or ”error-
correcting code”, both known to perform bet-
ter than the ”one-against-all” approach (Allwein
et al., 2001).

6 Conclusion

In this paper we evaluate a multiclass aver-
aged perceptron on implicit emotion detection in
tweets. We discuss how different preprocessing
options and feature sets affect its performance. In
particular, we demonstrate that the bag-of-words
model enhanced with bigrams, trigrams, skip-one-
tetragrams and POS-tags shows strong improve-
ments over the initial baseline. Conversely, stop-
word filtering, lowercasing, stemming, emoji and
emoticon conversion, proved not to be helpful in
our experimental settings.

246

References
Erin L Allwein, Robert E Schapire, and Yoram Singer.

2001. Reducing multiclass to binary: a unifying ap-
proach for margin classifiers. The Journal of Ma-
chine Learning Research, 1:113–141.

Nathan Aston, Jacob Liddle, and Wei Hu. 2014. Twit-
ter sentiment in data streams with perceptron. Jour-
nal of Computer and Communications, 2(03):11.

Rakesh C Balabantaray, Mudasir Mohammad, and
Nibha Sharma. 2012. Multi-class twitter emotion
classification: A new approach. International Jour-
nal of Applied Information Systems, 4(1):48–53.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of the ACL-02 conference on Empirical methods in
natural language processing-Volume 10, pages 1–8.
Association for Computational Linguistics.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4):169–200.

Cristina Garcia Cifuentes. 2009. Multi-class classifica-
tion with machine learning and fusion.

Junichi Kazama and Kentaro Torisawa. 2007. A new
perceptron algorithm for sequence labeling with
non-local features. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL).

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Efthymios Kouloumpis, Theresa Wilson, and Jo-
hanna D Moore. 2011. Twitter sentiment analysis:
The good the bad and the omg! Icwsm, 11(538-
541):164.

Evangelos Psomakelis, Konstantinos Tserpes, Dimos-
thenis Anagnostopoulos, and Theodora Varvarigou.
2014. Comparing methods for twitter sentiment
analysis. In Proceedings of the International Joint
Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management-Volume
1, pages 225–232. SCITEPRESS-Science and Tech-
nology Publications, Lda.

Hassan Saif, Miriam Fernández, Yulan He, and Harith
Alani. 2014. On stopwords, filtering and data spar-
sity for sentiment analysis of twitter.

247

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 248–253
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Disney at IEST 2018: Predicting Emotions using an Ensemble

Wojciech Witon1∗ Pierre Colombo1∗ Ashutosh Modi1 Mubbasir Kapadia1,2

1Disney Research Los Angeles, 2Rutgers University
{wojtek.witon, pierre.colombo}@disneyresearch.com
{ashutosh.modi, mubbasir.kapadia}@disneyresearch.com

Abstract

This paper describes our participating system
in the WASSA 2018 shared task on emotion
prediction. The task focuses on implicit emo-
tion prediction in a tweet. In this task, key-
words corresponding to the six emotion la-
bels used (anger, fear, disgust, joy, sad, and
surprise) have been removed from the tweet
text, making emotion prediction implicit and
the task challenging. We propose a model
based on an ensemble of classifiers for pre-
diction. Each classifier uses a sequence of
Convolutional Neural Network (CNN) archi-
tecture blocks and uses ELMo (Embeddings
from Language Model) as an input. Our sys-
tem achieves a 66.2% F1 score on the test set.
The best performing system in the shared task
has reported a 71.4% F1 score.

1 Introduction

Besides understanding the language humans com-
municate in, AI systems that naturally interact with
humans should also understand implicit emotions
in language. To be consistent and meaningful, an
AI system conversing with humans should reply
while taking into account the emotion of the utter-
ance spoken by the human. If the user appears to
be unhappy, a subsequent joyful response from the
system would likely detract from the engagement
of the user in the conversation. In recent years,
several researchers have attempted to address this
problem by developing automated emotion predic-
tion for text (Medhat et al., 2014).

Predicting emotions implicit in natural language
is not trivial. A naı̈ve attempt to classify text based
on emotion keywords may not always work due
to the presence of various linguistic phenomena
(e.g., negation, ambiguities, etc.) in the text. More-
over, emotion may be triggered by a sequence of
words and not just a single keyword, requiring an

∗ indicates equal contribution.

automated system to understand the underlying se-
mantics of the text. In the WASSA shared task,
keywords describing the emotion label have been
removed, making the emotion implicit in the text.
This makes the task more challenging.

Typically, a system developed for implicit emo-
tion prediction must understand the meaning of the
entire text and not just predict using a few key-
words. We propose a model which uses a CNN
based architecture (Gehring et al., 2017) for emo-
tion prediction. The model stacks CNN blocks
on ELMo (Embeddings from Language Model),
as introduced by Peters et al. (2018). Addition-
ally, we include word level Valence, Arousal, and
Dominance (VAD) features for guiding our model
towards prediction. We describe our model in detail
in Section 4. As described in Section 6, our model
achieves 66% accuracy on the WASSA task. We
further investigate the generalizability of our model
by experimenting on the Cornell movie dataset as
shown in Section 7.

2 Related Work

Emotion prediction is related to the task of sen-
timent analysis. The best performance in senti-
ment analysis has been attained using supervised
techniques as outlined in a survey by Medhat
et al. (2014). Recent breakthroughs in deep learn-
ing have shown strong results in sentence clas-
sification (Joulin et al., 2016), language model-
ing (Dauphin et al., 2016) and sentence embed-
ding (Peters et al., 2018). Our emotion prediction
model is also based on deep learning techniques.
Recently, fastText (Joulin et al., 2016) has been pro-
posed for generating word representations which
have shown state-of-the-art performance on a num-
ber of text related tasks. Our model makes use of a
fastText model for emotion classification.

248

https://doi.org/10.18653/v1/P17

Chen et al. (2018) introduce an emotion cor-
pus based on conversations taken from Friends TV
scripts and propose a similar emotion classification
model using a CNN-BiLSTM. Our model is similar
to the model proposed by (Chen et al., 2018), but
we use a pre-trained ELMo instead of a BiLSTM.

Mohammad (2018) have proposed a VAD lexi-
con for emotion detection systems. We use VAD
features together with ELMo (Peters et al., 2018).
Recently, the ELMo model has been shown to boost
performance on a number of Natural Language Pro-
cessing (NLP) tasks. To the best of our knowledge,
we are the first to make use of VAD features in a
deep learning setting for emotion prediction.

3 Task Description

The WASSA 2018 shared task∗ (Klinger et al.,
2018) is about predicting implicit emotion in a
given tweet. The task is challenging because the
keyword indicative of the emotion has been re-
moved from the tweet. The participating system is
required to predict the implicit emotion based on
the remaining context using world knowledge or
statistical techniques.

3.1 Emotion Corpus

The corpus provided for the competition has around
188,000 tweets (∼150,000 for training, ∼9,000
for validation, ∼28,000 for testing) annotated with
6 emotion labels (anger, surprise, joy, sad, fear,
disgust). The dataset has a balanced distribution of
examples for the six label classes (see Table 1).

Emotion Train Val Test
Joy 27762 1719 5246

Disgust 25541 1595 4794
Surprise 25449 1595 4794
Anger 25439 1592 4792
Fear 24435 1520 4791
Sad 22836 1443 4340

Total 151462 9464 28757

Table 1: Label distribution of the provided corpus.

4 Emotion Prediction Model

Our model has two sets of classifiers at its disposal:
an ensemble of CNN-based classifiers and a fast-
Text classifier (Joulin et al., 2016). A CNN-based

∗http://implicitemotions.wassa2018.
com

classifier requires a fixed length input. Since tweets
have a variable number of words, padding is typi-
cally added to the shorter word sequences in order
to have equal lengths across the mini-batch. In
practice, having long sequences may not work well
due to noise introduced by padding. Based on tweet
length distribution (see Figure 1) and our experi-
ments, we set the maximum length of a tweet to
40 words. These tweets were classified using CNN
based models. For longer tweets (> 40), we used
a fastText classifier. FastText works by averaging
word representations into a text representation us-
ing bag of words (BoW) and bag of n-grams. The
text representation is then fed into a linear classifier
with a hierarchical softmax on top. FastText was
chosen based on its simplicity and efficiency.

Figure 1: Raw tweet length distribution used for setting
a maximum length of input sequence for the classifier.

4.1 Deep CNN Classifier
We use an ensemble of CNN-based classifiers for
shorter (< 41 words) tweets. Each of the CNN-
based classifiers in the ensemble has a network
architecture as shown in Figure 2. The CNN classi-
fier has two sub-modules:

• Text sub-module: At the lowest level, this
module captures the dependencies between
the words of the tweet using a Bi-Directional
LSTM model with sub-word information (ex-
tracted via character-level CNN) as introduced
in ELMo by Peters et al. (2018). The weights
of this recurrent network were initialized with
values provided by the authors (pre-trained on
a 1 billion word benchmark), and updated dur-
ing training. The next layers of the classifier
are CNN blocks (see §4.2).

249

V2 V3 V4 V5 Vpad V1Vpad

Anger Surprise Joy Sad Fear Disgust

E E E E E

</s><s> I am happy

E

<p>

E

<p>

CNN Block 1

CNN Block N

WCNN

VAD VAD VAD VAD VAD

</s><s> I am happy

VAD

<p>

VAD

<p>

ELMo

CNNVAD Block

Wout

Wd Wd Wd Wd Wd Wd Wd

Figure 2: Left: the proposed emotion classifier architecture. Right: CNN block structure.

• Emotion sub-module: In this sub-module,
the model uses VAD emotion values (see
§4.3), this is followed by a CNN block layer.

Outputs from both networks are mapped to con-
stant size layers, concatenated, mapped to the out-
put (classification) layer of size 6 and normalized
using a softmax function. An overview of the sys-
tem is presented in Figure 2.

4.2 Convolutional Block Structure

We base our network on Convolutional Blocks in-
troduced by Gehring et al. (2017). We make use of
a CNN encoder, which consists of several convo-
lutional layers (blocks), followed by Gated Linear
Units (GLU) layers introduced by Dauphin et al.
(2016), and residual connections. The architecture
of the CNN block is presented in Figure 2 (right).

Inputs to the first convolutional block are ELMo
representations w = (w1, ..., wm), mapped to
size d, for a given input sequence of length m.
Each convolution kernel takes as input X ∈ Rm×d

and outputs a single element Y ∈ R2d. This output
is then mapped to Y ′ ∈ Rd using GLU. We use m
different kernels, which are concatenated to form a
final output matrix Z ∈ Rm×d that serves later as
an input to the next block. The output of the last
block is mapped to a one dimensional vector using
a linear layer.

4.3 VAD Lexicon

To model the emotions carried by each tweet at a
word level we use VAD features extracted from an

external lexicon introduced by Mohammad (2018).
Each of the 14,000 words in the lexicon is repre-
sented by a vector in the VAD space (v ∈ [0, 1]3)
and each sentence is associated with a matrix result-
ing from concatenation of VAD vectors for words
in the sentence (V ∈ Rm×3). To label out-of-
vocabulary (OOV) words, the closest word in the
dictionary is found using a difflib library† in python
(algorithm based on the Levenshtein distance). If
no word with more than 90% of similarity is found,
a default VAD value (v = [0.5, 0.5, 0.5]) is as-
signed. At the end of the process, around 50%
of words of the training set are labeled with VAD
values.

4.4 Classifier Ensemble

The model ensemble consists of a 6-emotion (gen-
eral) CNN classifier and six binary CNN classifiers
(e.g., “happy” vs all other emotions). The final
prediction is made by looking for an agreement
between binary classifiers – 5 classifiers predict
the “negative” class and the other one predicts the
“positive” class with a confidence score for the “pos-
itive” class that is over a certain threshold T . If the
conditions are not met, the tweet is classified using
the 6-emotion classifier. The threshold T is tuned
based on validation accuracy.

†https://docs.python.org/3/library/
difflib.html

250

5 Experiments

In this section, we describe the procedure for train-
ing classifiers as part of the Ensemble Classifier.
The parameters were tuned based on both valida-
tion loss and accuracy.

5.1 Preprocessing

Each tweet in the dataset is first tokenized using
the Spacy tokenizer‡. Then, each of the 6 most
common emojis is mapped into a sequence of
ASCII characters (e.g., is mapped to “:d”). As
the last step, the start and end of sentence tokens
(<SOS>, <EOS>) are added, together with pad to-
kens (<PAD>) to match the maximum sequence
length.

5.2 Training Procedure

Our Deep emotion classifier is composed of 2 CNN
blocks (N = 2) stacked on top of ELMo and 1
CNN block stacked on top of VAD features. We set
the window size of the Convolutional Block to 5,
ELMo size to 1024 (mapped to d = 256), initial
learning rate for ADAM optimizer (Kingma and
Ba, 2014) to 0.001, dropout rate to 0.5, batch size
to 128, and the threshold T to 0.86.

Each batch of samples used for training the bi-
nary classifiers is balanced by randomly sampling
half of the batch from positive labels and half of the
batch from negative labels (the number of negative
labels is 5 times larger). Sampling using this pro-
cess makes the training more robust to overfitting.
Additionally, noise is added to the training sam-
ples; a small amount of negative labels are sampled
and presented as positive labels to the classifier
(Section 6.1).

6 Implicit Emotion Prediction Results

In this section we present the results on the Implicit
Emotion Prediction task. The six binary classifiers
and the 6-emotion classifier used in the Ensemble
Classifier were chosen based on validation accuracy
presented in Table 2. Our system achieved a macro
F1 Score of 66.2%, whereas the top 3 participating
systems have reported a score of 71.4%, 71% and
70.3%, respectively.

6.1 Analysis

Table 2 shows that some emotions (e.g., joy, fear)
are easier to predict. In some cases we see improve-

‡https://spacy.io

Emotion No noise Noise 5% Noise 10%
Joy 91.4% 91.0% 92.2%

Disgust 89.4% 89.7% 89.6%
Surprise 87.7% 87.1% 87.9%
Anger 86.9% 86.4% 86.5%
Fear 90.9% 90.9% 90.8%
Sad 89.0% 89.6% 87.7%

6 emotions 64.8% 65.5% 64.5%

Table 2: Validation accuracy for each classifier (note:
high accuracy scores for binary classifiers come from
unbalanced classes).

Figure 3: ROC curve for predicting surprise emotion
on the test set (predictions are made on a balanced
dataset).

ment in validation accuracy after adding noise. Sur-
prisingly, this does not lead to statistically signifi-
cant improvement (Figure 3).

Results for the 6-emotion classifier and the En-
semble Classifier are presented in Table 3. Some
emotions are easier to predict than others, this is
corroborated by the confusion matrix in Figure 4.
Joy is easier to predict, whereas predicting anger
remains a difficult task (also shown in Table 2).
Some emotions are harder to distinguish (surprise
with fear and disgust), whereas some emotions are
very unlikely to be confused with each other (e.g.,
joy with disgust). Our model probably commits
errors because firstly, emotions are not disjoint –
a sentence can express more than one emotion at
the same time (i.e., a sentence can be classified
as either “disgust” or “fear”), and secondly, sev-
eral emotion labels could be assigned to the same
sentence by changing only the trigger words (e.g.,
the sentence “I am #TRIGGERWORD to see you
here.” can be classified both by anger and surprise,

251

Classifier F1 Score
fastText 50.0%

6-emotion classifier 65.2%
Ensemble classifier 66.2%

Table 3: F1 Score on test set.

Figure 4: Confusion Matrix for the Ensemble Classi-
fier.

depending on whether the trigger word was “happy”
or “surprised”).

7 Model Generalization

In order to have a better understanding of the per-
formance of our system for real world applications,
we tested our system on an explicit emotion predic-
tion task.

7.1 Dataset and Task

For our experiments, we used the Cornell Movie
Corpus built by Danescu-Niculescu-Mizil and Lee
(2011), which is composed of around 300,000 ut-
terances extracted from 600 movies. A group of
internal annotators manually annotated a subset of
58,000 lines, with at most 2 of 7 emotion labels
(fear, surprise, anger, disgust, joy, sad, neutral).
We use this data for two experiments. In the first
experiment, we measure how well the classifier pre-
dictions correlate with human annotation for the 6
emotions. For this experiment we create the dataset
D1 by randomly sampling 4800 lines consisting of
800 samples for each emotion class (except for
the neutral class). In the second experiment, we
measure how well the classifier is able to predict
a neutral emotion. We create the dataset D2 by
extracting a subset of 45,000 neutral lines.

Emotion F1 Score
Joy 52.1%

Disgust 48.2%
Surprise 52.0%
Anger 50.0%
Fear 50.1%
Sad 44.2%

Total 49.4%

Table 4: F1 Score on Cornell dataset.

7.2 Prediction on 6 emotions

In the first experiment, we take the top 2 emotions
predicted by the final system on D1 and check if at
least one of the predicted labels matches one of the
golden labels. F1 Scores are presented in Table 4.

7.3 Prediction on neutral emotion

In the second experiment, we determine that the
classifier predicts a neutral emotion if each emotion
is predicted with low confidence (confidence lower
than 0.5). We evaluate our system on D2. The
final system predicts a neutral emotion for 85% of
sentences, whereas fastText only reaches 4% of
accuracy. FastText misclassifies those neutral lines
as joy with high confidence (> 80%).

In conclusion, the results show that our model
generalizes well on the Cornell Movie corpus when
compared to a fastText classifier, pre-trained simi-
larly on the task dataset. While we do not expect
to reproduce precisely the same performance on
the Cornell Movie Corpus, since the word distribu-
tion and writing style are very different, the system
generalizes reasonably well.

8 Conclusion

In this paper, we presented a system making use
of state-of-the-art techniques for Natural Language
Processing, such as ELMo and a CNN encoder
for emotion classification. We have designed a
robust classifier for sentences without any assump-
tions about the intrinsic properties of the task which
make it generalizable to other tasks (e.g., explicit
emotion prediction) on other datasets.

References
Sheng-Yeh Chen, Chao-Chun Hsu, Chuan-Chun Kuo,

Ting-Hao Huang, and Lun-Wei Ku. 2018. Emotion-
lines: An emotion corpus of multi-party conversa-
tions. CoRR, abs/1802.08379.

252

Cristian Danescu-Niculescu-Mizil and Lillian Lee.
2011. Chameleons in imagined conversations: A
new approach to understanding coordination of lin-
guistic style in dialogs. In Proceedings of the Work-
shop on Cognitive Modeling and Computational Lin-
guistics, ACL 2011.

Yann N. Dauphin, Angela Fan, Michael Auli,
and David Grangier. 2016. Language model-
ing with gated convolutional networks. CoRR,
abs/1612.08083.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Con-
volutional sequence to sequence learning. CoRR,
abs/1705.03122.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. CoRR, abs/1607.01759.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Analysis,
Brussels, Belgium. Association for Computational
Linguistics.

Walaa Medhat, Ahmed Hassan, and Hoda Korashy.
2014. Sentiment analysis algorithms and applica-
tions: A survey. Ain Shams Engineering Journal,
5(4):1093–1113.

Saif M. Mohammad. 2018. Obtaining reliable hu-
man ratings of valence, arousal, and dominance for
20,000 english words. In Proceedings of The An-
nual Conference of the Association for Computa-
tional Linguistics (ACL), Melbourne, Australia.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proc. of NAACL.

253

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 254–259
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Sentylic at IEST 2018: Gated Recurrent Neural Network and Capsule
Network Based Approach for Implicit Emotion Detection

Prabod Rathnayaka, Supun Abeysinghe, Chamod Samarajeewa
Isura Manchanayake, Malaka Walpola

Department of Computer Science and Engineering
University of Moratuwa, Sri Lanka

{prabod.14,supun.14,chamod.14,isura.14,malaka}@cse.mrt.ac.lk

Abstract

In this paper, we present the system we have
used for the Implicit WASSA 2018 Implicit
Emotion Shared Task. The task is to pre-
dict the emotion of a tweet of which the ex-
plicit mentions of emotion terms have been re-
moved. The idea is to come up with a model
which has the ability to implicitly identify the
emotion expressed given the context words.
We have used a Gated Recurrent Neural Net-
work (GRU) and a Capsule Network based
model for the task. Pre-trained word embed-
dings have been utilized to incorporate con-
textual knowledge about words into the model.
GRU layer learns latent representations using
the input word embeddings. Subsequent Cap-
sule Network layer learns high-level features
from that hidden representation. The proposed
model managed to achieve a macro-F1 score
of 0.692.

1 Introduction

Emotion is a complex aspect of the human be-
havior which makes the humanity distinguish-
able from other biological behaviors of creatures.
Emotions are typically originated as a response to
a situation. Since the emergence of social media,
people often express opinions as responses to daily
encounters by posting on these platforms. These
microblogs contain emotions related to the topics
the author have discussed. Thus emotion detection
is useful to understand more specific sentiments
held by the author towards the discussed topics.
Hence this is a challenge with a significant busi-
ness value.

Emotion analysis can be considered as an ex-
tension of sentiment analysis. Even though there
has been a notable amount of research in senti-
ment analysis in the literature, research on emo-
tion analysis has not gained much attention. The
related work suggests this task can be handled us-

ing emojis or hashtags present in the text i.e. dis-
tance supervision techniques (Felbo et al., 2017).
However, these features can be unreliable due to
noise, thus affect the accuracy of the results.

Although explicit words related to emotions
(happy, sad, etc.) in a document directly affect the
emotion detection task, other linguistic features
play a major role as well. Implicit Emotion Recog-
nition Shared Task introduced in Klinger et al.
(2018) aims at developing models which can clas-
sify a text into one of the emotions; Anger, Fear,
Sadness, Joy, Surprise, Disgust without having ac-
cess to an explicit mention of an emotion word.
Participants were given a tweet from which any of
the above emotion terms or one of their synonyms
is removed. The task is to predict the emotion that
the excluded word expresses.

E.g.:
It’s [#TARGETWORD#] when you feel like you

are invisible to others.
The [#TARGETWORD#] in the given example

corresponds to sadness (”sad”).
In this paper, we propose an approach based on

Gated Recurrent Units (GRU) (Cho et al., 2014)
followed by Capsule Networks (Sabour et al.,
2017) to tackle the challenge. This model man-
aged to achieve a macro-F1 score of 0.692 and
ranked 5th in WASSA 2018 implicit emotion de-
tection task.

2 Methodology

We have used a sentence classification model
which is based on bidirectional GRUs and Capsule
networks. First, the raw tweets are preprocessed,
then mapped into a continuous vector space using
an embedding layer. Afterward, we used a Bidi-
rectional Gated Recurrent Unit (Bi-GRU) (Cho
et al., 2014) layer to encode sentences into a fixed
length representation. The fixed length represen-

254

https://doi.org/10.18653/v1/P17

tation is then fed into a Capsule Network (Sabour
et al., 2017) where it will learn the features and
emotional context of the sentences. Finally, the
Capsule network is followed by a fully connected
dense layer with softmax activation for the classi-
fication.

2.1 Preprocessing

Microblogs typically contain informal language
usages such as short terms, emojis, misspellings,
and hashtags. Hence, preprocessing steps should
be employed in order to clean these informal and
noisy text data. Moreover, efficient preprocessing
plays a vital role in achieving a good performance.
Ekphrasis tool (Baziotis et al., 2017) is used for
initial preprocessing of the tweets. Tweet tokeniz-
ing, word normalization, spell correcting and word
segmentation for hashtags are done as preprocess-
ing steps.

2.1.1 Tweet Tokenizing

Tokenizing is the first and the most important step
of preprocessing. Ability to correctly tokenize
a tweet directly impacts the quality of a system.
Since there is a large variety of vocabulary and ex-
pressions present in short texts such as Twitter, it
is a challenging task to correctly tokenize a given
tweet. Twitter markup, emoticons, emojis, dates,
times, currencies, acronyms, censored words (e.g.
s**t), words with emphasis (e.g. *very*) are rec-
ognized during tokenizing and treated as a sepa-
rate token.

2.1.2 Word Normalization

Upon tokenizing, set of transformations including
converting to lowercase and transforming URLs,
usernames, emails, phone numbers, dates, times,
hashtags to a predefined set of tags (e.g @user1→
<user>) are applied. This method helps to reduce
the vocabulary size and generalize the tweet.

2.1.3 Spell Correcting and Word
Segmentation

As the last step in preprocessing, we apply spell
correcting and word segmentation to hashtags.
(e.g. #makeitrain→ make it rain)

2.2 Model

An overview of the model is shown in figure 1 and
each segment of the model is described in the fol-
lowing sub sections.

Figure 1: Overall model architecture

2.2.1 Word Embedding Layer
Word embedding layer is the first layer of the
model. Each token will be mapped into a con-
tinuous vector space using a set of pretrained
word embeddings. We used 300 dimensional,
pretrained, Word2Vec embeddings introduced in
Mikolov et al. (2013). Given an input tweet, S =
[s1, s2, ., si, .., sn] where si is the token at position
i, the embedding matrix We, the output of the em-
bedding layer X is,

X = SWe (1)

2.3 Bidirectional GRU Layer
The word embedding layer is followed by a bidi-
rectional GRU (Cho et al., 2014) layer. There
is a forward GRU (

−→
ht) and a backward GRU

((
←−
ht)) and the latent representation output by the

two GRUs is concatenated to get the final output
(
−→
ht ,
←−
ht) of the layer. Following set of equations

follows the standard notation used in Cho et al.
(2014).

rt = σ(Wirxt + bir +Whrh(t−1) + bhr) (2)

zt = σ(Wizxt + biz +Whzh(t−1) + bhz) (3)

nt = tanh(Winxt + bin + rt(Whnh(t−1) + bhn))

(4)

ht = (1− zt)nt + zth(t−1) (5)

2.4 Capsule Layer
Features encoded by the bidirectional GRU layer
is then passed to a Capsule Network (Sabour et al.,

255

2017). Capsule Network consists of a set of cap-
sules where each capsule corresponds to a high
level feature. Each capsule outputs a vector, of
which the magnitude represents the probability of
the corresponding feature existence. Following set
of equations follows the standard notation used in
Sabour et al. (2017).

Prediction vector ûj|i is calculated by multi-
plying the output hi from the GRU layer with a
weight matrix.

ûj|i =Wijhi (6)

Total input to a capsule sj is a weighted sum over
all the prediction vectors ûj|i.

sj =
∑

i

cij ûj|i (7)

cij represents the coupling coefficients found
through the iterative dynamic routing.

A non-linear ”Squash” function is used to scale
the vectors such that the magnitude is mapped to a
value between 0 and 1.

vj =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

(8)

Dynamic Routing process introduced by Sabour
et al. (2017) is used as the routing mechanism be-
tween capsules.

2.5 Classification Layer
The flattened output from the capsule layer (Say
C) is fed to a dense layer which has a softmax
activation. It outputs a vector of size 6 (number
of classes). The values in the vector components
are probabilities for the presence of each of the six
emotions. The emotion with the highest probabil-
ity is selected as the output.

Y =WdenseC (9)

For all yi ∈ Y , fi is calculated as follows.

fi =
e−yi∑

yj∈Y e
−yj (10)

Then the class with highest fi is taken as the
output.

output = argmax
i

fi (11)

2.6 Regularization

Gaussian noise is added to both the embedding
layer and the softmax classification layer for the
purpose of making the model more robust to over-
fitting. Further, dropout is applied to the Capsule
network output and a spatial dropout is applied to
the embedding Layer to reduce overfitting.

3 Experiments and Results

3.1 Experimental setup

3.1.1 Training
We used Adam optimizer (Kingma and Ba, 2014)
for optimizing our network with a batch size of
512. Gradient Clipping (Pascanu et al., 2013)
was employed to address the exploding gradi-
ent problem where all the gradients were clipped
at 1. Keras (Chollet et al., 2015) was used to
develop the model and experiments were done
using both Tensorflow (Abadi et al., 2015) and
Theano (Theano Development Team, 2016) back-
ends. Google Colaboratory1 was used as the run-
time environment for training the model.

3.1.2 Hyper-Parameters
We have employed Word2Vec (Mikolov et al.,
2013) embeddings of 300 dimensions for the em-
bedding layer. The GRU layer consists of 128 cells
for both directions. We have used 16 capsules each
with an output size of 32 and 5 routing iterations.
Spatial dropout of 0.3 is applied to the embeddings
and dropout of 0.25 is applied to the Capsule net-
work. Gaussian noise of 0.1 is added to both the
embedding layer and the Capsule network.

3.2 Results

We ranked 5th among 30 contestants in the com-
petition. We achieved a macro-F1 score of 0.692
which is 0.155 improvement compared to the
baseline model (Maximum Entropy Model using
bag of words (BoW) and bigrams). The top-
ranked model has a 0.031 improvement compared
to our model. Table 1 shows the macro-F1 scores
of the top 10 competitors and the baseline model.

4 Analysis

4.1 Investigated Approaches

Recurrent Neural Networks (RNN) (Socher et al.,
2013) based model achieves state-of-the-art in

1https://colab.research.google.com/

256

Team Macro-F1
Amobee 0.714
IIIDYT 0.710
NTUA-SLP 0.703
UBC-NLP 0.693
Sentylic 0.692
HUMIR 0.686
nlp 0.685
DataSEARCH 0.680
YNU1510 0.676
EmotiKLUE 0.671
Baseline 0.599

Table 1: Competition results of top 10 competitors and
the maximum entropy baseline classifier.

sentence classification tasks. RNNs have the ca-
pability to capture sequential features present in
sentences. Further, when they are incorporated
with attention mechanisms the accuracy of the
models increases notably (Yang et al., 2016; Tang
et al., 2015). Hence, we have first implemented
a model which uses a bidirectional GRU (Cho
et al., 2014) layer to learn latent representations
followed by a hierarchical attention mechanism.
Attention mechanisms have the ability to capture
important keywords in sentences and give a higher
weight to those words. This is one of the promi-
nent approaches that typically results in a good
performance in regular text classification tasks.
Table 2 shows that this approach yielded a reason-
able accuracy, yet it was not the best performing
approach.

Another approach is to use a Convolution Neu-
ral Network (CNN) (Kim, 2014) layer on top of
RNNs instead of attention mechanisms. Intuition
is that the CNN layers will act as a different at-
tention mechanism and captures high-level fea-
tures from the features learned by the below lay-
ers. Hence, the second approach we investigated
was using CNNs instead of the attention mecha-
nism. As the table 2 shows, this approach resulted
in a slight drop in performance compared to the
previous approach.

Our next approach was to use Capsule net-
works (Sabour et al., 2017) instead of Convolution
Neural Networks (CNN). Capsule networks have
shown promising results in the field of computer
vision. Sabour et al. (2017) argues that it is essen-
tial to preserve the hierarchical translational and
rotational features of the identified high-level fea-

Model Macro-F1
GRU + Hierarchical Attention 0.671
GRU + CNN 0.657
GRU + Capsnet 0.692

Table 2: Performance analysis of the best models in
each investigated approaches.

Model Macro-F1
GRU (1 layer) + Capsnet 0.692
LSTM (1 layer) + Capsnet 0.687
GRU (2 layers) + Capsnet 0.678

Table 3: Performance analysis of different variants of
the proposed system

tures in order to perform image classification and
object detection in the field of computer vision.
However, traditional CNNs with max-pooling lay-
ers tend to lose this spatial information related to
identified features. Sabour et al. (2017) introduces
capsule networks to tackle these issues identified
in traditional CNNs. Nonetheless, the usability of
Capsule networks has not researched much in the
Natural Language Processing (NLP) community.
Along the same lines, we can intuitively argue that
CNN based models with pooling layers will cause
loss of information in text related classification
tasks as well. Hence, we have investigated the us-
ability of capsule networks for improving the per-
formance of text classification models. The use of
Capsule networks instead of CNNs has improved
the performance of the model slightly and assisted
in gaining the best performing model.

4.2 Model Architecture Variants

We have tried several variants of the proposed
model. Table 3 shows the performance of each
of those variants. We have tried approaches us-
ing Long Short Term Memory networks (LSTM)
(Hochreiter and Schmidhuber, 1997) which is one
of the other prominent types of RNNs. However,
the results showed a minor drop. Another vari-
ant is to use two layers of GRUs instead of using
a single layer. Even this approach made the per-
formance of the model slightly lesser. A potential
reason for this could be model over-fitting. Using
a single GRU layer followed by the Capsnet gave
the best performance.

257

Emotion Precision Recall F1-Score
Anger 0.631 0.614 0.622
Disgust 0.689 0.687 0.688
Fear 0.728 0.731 0.730
Joy 0.803 0.774 0.788
Sad 0.682 0.655 0.668
Surprise 0.625 0.689 0.656
Micro Avg. 0.694 0.694 0.694
Macro Avg. 0.693 0.692 0.692

Table 4: Precision, recall and F1-score of each class in
test set using our proposed model.

4.3 Analysis on Predictions
Table 4 shows the performance of the proposed
model for each class. As evident from the results,
anger shows a significantly lower F1-score. Other
emotions show similar results whereas joy stands
out with a notably higher F1-score. Anger has
been misclassified as sad in several examples.

e.g.- Girls will get [#TARGETWORD#] that her
man cheated with an ugly girl more than the fact
he actually cheated.

In the above example, it is unclear whether the
emotion is anger or sadness. Such ambiguity of
anger has affected the reduction of F1-score val-
ues. There were few other similar cases where it
is challenging even for humans to clearly discrim-
inate emotions due to nuance nature of emotions
expressed.

5 Conclusion

WASSA 2018 Implicit Emotion Shared Task
(Klinger et al., 2018) introduces a task to pre-
dict the emotion of a tweet of which the explicit
mentions of emotion terms have been removed.
We have experimented with several deep learn-
ing based approaches to tackle this task. We have
used pre-trained Word2Vec embeddings. All the
approaches we tried utilize an initial GRU layer
which learns latent representations from the input
word embeddings. Different alternative methods
have been investigated for the subsequent layer.
These methods include attention layer, CNN layer,
and Capsnet layer. Model with the Capsnet layer
achieved the best results among the experimented
alternatives. Potential future work includes in-
vestigating the possibility of using Capsule net-
works for other tasks in Natural Language Pro-
cessing, especially where CNNs are involved. An-
other line of future work could be to follow the ap-

proach mentioned in Felbo et al. (2017) and apply
transfer learning on the model trained using this
semi-automatically annotated dataset to test on hu-
man annotated datasets such as Mohammad et al.
(2018).

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

François Chollet et al. 2015. Keras. https://
keras.io.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. arXiv preprint arXiv:1708.00524.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings

258

of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Saif M Mohammad, Felipe Bravo-Marquez, Moham-
mad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In International Conference on Machine
Learning, pages 1310–1318.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.
2017. Dynamic routing between capsules. In Ad-
vances in Neural Information Processing Systems,
pages 3856–3866.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the
2015 conference on empirical methods in natural
language processing, pages 1422–1432.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

259

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 260–265
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Fast Approach to Build an Automatic Sentiment Annotator for Legal
Domain using Transfer Learning

Viraj Salaka Gamage, Menuka Warushavithana, Nisansa de Silva,
Amal Shehan Perera, Gathika Ratnayaka and Thejan Rupasinghe

Department of Computer Science & Engineering
University of Moratuwa

viraj.14@cse.mrt.ac.lk

Abstract

This study proposes a novel way of identify-
ing the sentiment of the phrases used in the
legal domain. The added complexity of the
language used in law, and the inability of the
existing systems to accurately predict the sen-
timents of words in law are the main motiva-
tions behind this study. This is a transfer learn-
ing approach which can be used for other do-
main adaptation tasks as well. The proposed
methodology achieves an improvement of over
6% compared to the source model’s accuracy
in the legal domain.

1 Introduction

As described by Esuli and Sebastiani (2007), sen-
timent analysis or sentiment classification is a re-
cent methodology that aligns with information re-
trieval and computational linguistics which is fo-
cused on the opinion towards something which is
represented by a certain text.

In many recent studies involving NLP in var-
ious domains, it is common to reuse the sem-
inal RNTN (Recursive Neural Tensor Network)
model (Socher et al., 2013b) trained on movie re-
views for sentiment analysis. However, the trained
model has bias towards the movie review domain.

We propose a novel methodology to perform
transfer learning on the RNTN model mentioned
in Socher et al. (2013b) and build a target model.
Given that this is a transfer learning approach, the
manually annotated data on movie reviews is used
as the initial source model, rather than creating
a new comparable manually annotated dataset for
the legal domain.

In the proposed approach, the sentiment of a
given phrase is classified into one of the two
classes; negative and non-negative. This classi-
fication criterion is selected following the fact that
the major use case aligns with classifying terms

and entities supporting/referring to either plaintiff
or defendant. Therefore, the proposed methodol-
ogy is focused on identifying the statements with
negative sentiment as much as possible. This kind
of sentiment classification is vital to identify the
stakeholder-bias in legal case statements. Simi-
larly, sentiment analysis in legal text can become
useful in automating the identification of argu-
ments, the supporting/opposing party for a given
argument and counter arguments.

For the testing purposes, we created a manually
annotated target domain test dataset such that the
phrases belong to one of the two classes: nega-
tive or non-negative. The target system shows a
recall of 0.7014 for identifying phrases with neg-
ative sentiment in the legal domain. Furthermore,
the overall accuracy of the system is above 76% in
classifying sentiments for a given phrase correctly.
If this result is compared with the results of source
RNTN model (Socher et al., 2013b), it is a 6% im-
provement in accuracy. The approach proposed in
this study can be tried on other domain adaptation
tasks related to sentiment classification as well.

2 Background

The legal vocabulary have words of mixed ori-
gin such as English and Latin has been raised
as a reason for the difficulty of creating com-
puting applications for the legal domain (Sugath-
adasa et al., 2018). However, recently, there have
been attempts to involve and build legal ontolo-
gies (Jayawardana et al., 2017a,b,c). Given the
popularity of knowledge embedding, a number of
studies have also attempted to embed legal jargon
in vector spaces (Sugathadasa et al., 2017; Nay,
2016). If we consider the research on sentiment
analysis in legal domain, the study on Opinion
Mining in legal blogs (Conrad and Schilder, 2007)
is closest implementation for this study that we

260

https://doi.org/10.18653/v1/P17

have found. But, the data set used for evaluation
is based on movie reviews, customer reviews, and
MPQA corpus (Wiebe et al., 2005).

There have been numerous studies that were
built upon SentiWordNet (Esuli and Sebastiani,
2007; Baccianella et al., 2010) which attempts
to classify sentiments of phrases and sentences.
One such study by Ohana and Tierney (2009) pro-
poses a methodology to perform opinion mining
on movie reviews using support vector machine
where some of the features were calculated using
WordNet. This achieves an accuracy of 69.35%
and claims that the inaccuracies in SentiWord-
Net feature calculations are caused by the Senti-
WordNet’s reliance on glosses. Lu et al. (2012)
evaluates the SentiWordNet for identifying oppos-
ing opinion networks in forum discussion. The
average SentiWordNet opinion score of words is
considered to identify whether a user’s expressed
comment for a given post has either for or against
relationship. The achieved accuracy using the
SentiWordNet opinion score of words is 0.56.

The method proposed by Socher et al. (2013b)
provides an algorithm to identify the sentiment of
a phrase or a sentence in a supervised manner us-
ing a deep learning model of the type Recursive
Neural Tensor Network (RNN). It is claimed that
this learning model has the capability to identify
the sentiment considering the context of that word.
A dataset which consists of movie reviews where
each sentence in the data set was broken into
phrases and each phrase is annotated by human
judges were created for this study. The authors
claim a testing accuracy of 80.7% in phrase level
for a test set drawn from the same dataset. Further,
the authors claim that the proposed model can be
trained over any domain by following the provided
methodology. While, theoretically, it is possible,
following this for legal domain in a practical im-
plementation which covers a corpus which is both
significant and sufficient is difficult. This claim is
substantiated by referring the dataset of the origi-
nal research (Socher et al., 2013b) which utilized
215,154 manually annotated phrases (from 11,855
sentences) with over 5355 unique words. In com-
parison to this, the legal corpus used in our study
has a vocabulary exceeding 17000 words. The
difficulties are not mealy of scale given that the
linguistic complexity of legal jargon exceeds that
of the average text corpus (Jayawardana et al.,
2017b,c; Sugathadasa et al., 2017, 2018).

Domain adaptation is a sub-category of Trans-
fer Learning (Raina et al., 2007). There are several
studies (Raina et al., 2007; Socher et al., 2013a)
that claim the process of domain adaptation to
be a suitable solution to perform transfer learn-
ing. While the generic process of transfer learn-
ing is defined as the process of “learning model
is trained using data from a certain domain and
tested with respect to a different domain” (Raina
et al., 2007), the specific case of domain adapta-
tion occurs when the task is similar in both source
and target models. Quattoni et al. (2008) is a study
based on domain adaptation in Image Classifica-
tion.

3 Methodology

Given that the transfer learning process described
in this study uses the Recursive Neural Tensor
Network (RNTN) model proposed by Socher et al.
(2013b) as the source model, we make numerous
references to the aforementioned model through-
out the paper. Therefore, to avoid clutter, from
this point onward the model proposed by Socher
et al. (2013b) is referred as Socher Model in the
remainder of this paper.

3.1 Selecting the Vocabulary

Depending on the size of the corpus (phrases ex-
tracted from legal text), availability of human an-
notators and the time, it is not feasible to analyze
and modify the sentiment of every word in a cor-
pus. Therefore, it is required to select the vocab-
ulary (unique words in the corpus) such that the
end-model can correctly classify the sentiment of
most of the phrases from the legal domain while
not squandering human annotator time on words
that occur rarely. To this end, first, the stop-
words (Lo et al., 2005) are removed from the text
by utilizing the classical stop-word list known as
the Van stop-list (Van Rijsbergen, 1979). Next,
the term frequencies for each word in the corpus
is calculated and only the top 95% words of it are
added to the vocabulary.

3.2 Assigning Sentiments for the Selected
Vocabulary

The selected vocabulary (set of individual words)
is given to the sentiment annotator Socher Model
as input. From the model, sentiment is classi-
fied into one of the five classes as in table 3.2.
This class scheme made sense for the movie re-

261

views for which the Socher Model is trained and
used for. However, in the application of this study,
the basic requirement of finding sentiment in court
cases in the legal domain is to identify whether a
given statement is against the plaintiff’s claim or
not. Therefore, we define two classes for senti-
ment: negative and non-negative.

Three human judges analyze the selected vo-
cabulary and classify each unique word into the
two classes depending on its sentiment separately
and independently. If at least two judges agree,
the given word’s sentiment is assigned as the class
those two judges agreed. For the same word, the
output from the sentiment annotator Socher Model
belongs to one of the five classes mentioned in the
preceding subsection. In this approach, we map
the output from Socher Model to the two classes
we define in Table 3.2.

Human annotation Socher Model output

Class 1 Negative Very negative, negative

Class 2 Non-negative
Neutral, Positive,

very positive

Table 1: Sentiment Mapping

For a given word, if the two sentiment values
assigned by the Socher Model and human judges
do not agree with the above mapping, we define
that the Socher Model’s output has deviated from
its actual sentiment. For example:

Sentence: Sam is charged with a crime.
Socher Model’s output: positive
Human judges’ annotation: negative

The word charged has several meanings de-
pending on the context. As the Socher Model
was trained using movie reviews, the sentiment
of the word charged is identified as positive. Al-
though the sentiment of the term crime is recog-
nized as negative, the sentiment of the whole sen-
tence is output as positive. But in the legal domain,
charged refers to a formal accusation. Therefore,
the sentiment for the above sentence should have
been negative. From the selected vocabulary, all
the words with deviated sentiments are identified
and listed separately for the further processing.

3.3 Brief description on the RNTN Model

In the preceding subsection, we came across a sit-
uation where the sentiment values from the Socher
Model do not match the actual sentiment value
because of the difference in domains. And there

are words like insufficient, which were not recog-
nized by the model because those terms were not
included in the training data-set. One approach
to solve this is to annotate the phrases extracted
from legal case transcripts manually as the Socher
Model suggests, which will require a considerable
amount of human effort and time. Instead of that,
we can change the model such that the desired out-
put can be obtained using the same trained Socher
Model without explicitly training using phrases in
the legal domain. Hence, this method is called a
transfer learning method.

In order to change the model, first, it is re-
quired to understand the internals of the Socher
Model model. When a phrase is provided as in-
put, first it generates a binary tree corresponding
to the input in which each leaf node represents a
single word. Each leaf node is represented as a
vector with d-dimensions. The parent nodes are
also d-dimensional vectors which are computed in
the bottom-up fashion according to some function
g. The function g is composed of a neural ten-
sor layer. Through the training process, the neural
tensor layer and the word vectors are adjusted to
support the relevant sentiment value. The neural
tensor layer corresponds to identify the sentiment
according to the structure of words representing
the phrase. If we consider a phrase like not guilty
,both individual word elements have negative sen-
timents. But the composition of those words has
the structure of negating a negative sentiment term
or phrase. Hence the phrase has a non-negative
sentiment. If the input was a phrase like very bad,
the neural tensor layer has the ability to identify
that the term very increases the negativity in the
sentiment.

3.4 Adjusting Word Vector Values in RNTN
Model

The requirement of the system is to identify the
sentiment of a given phrase. The proposed ap-
proach is not to modify the neural tensor layer
completely. We simply substitute the word vec-
tor values of individual words which are having
deviated sentiments between Socher Model and
human annotation (See sections 3.2). The vec-
tors for the words which were not in the vocabu-
lary of the training set which was used to train the
RNTN model should be instantiated. The vectors
of the words which are not deviated (according to
the definition provided in the preceding subsection

262

3.3) will remain the same.
As the words with deviated sentiments (pro-

vided by the Socher Model) in the vocabulary
are already known, we initialize the vectors cor-
responding to the sentiment annotation for those
words. Since the model is not trained explicitly,
the vector initialization is done by substituting the
vectors of words in which sentiment is not devi-
ated comparing the Socher Model output and its
actual sentiment. After the substitution is com-
pleted, we consider the part-of-speech tag. For
that purpose, the part-of-speech tagger mentioned
in Toutanova et al. (2003) is used. The substitution
of vectors is carried out as shown in Table 2.

POS Tag
Substituted word vector sentiment

non-negative negative

NN failure thing

RB insufficiently naturally

VB hate do

VBZ ignoring doing

Table 2: Substituted Word Vectors for words which
should be deviated

The number of words which have deviated sen-
timents is a considerably lower amount compared
to the selected vocabulary. The rest of the words’
vectors representing sentiments are not changed in
the modification process. The neural tensor layer
also remains unchanged from the trained Socher
Model using movie reviews (Socher et al., 2013b).
When the vectors for words with deviated sen-
timents are initialized according to the part-of-
speech tag as shown in Table 2, it is possible to
make a fair assumption that when deciding the
sentiment with the proposed implementation, it
does not harm the structure corresponding to the
linguistic features of English. Consider the sen-
tence “evidence is insufficient.” as an example.

The term “insufficient” is not in the vocabulary
of the Socher Model due to the limited vocabu-
lary in training data set. Therefore, the Socher
Model provides the sentiment of that word as neu-
tral which indicates as a word with a deviated sen-
timent. Following the Table 2, the sentiment re-
lated vector is instantiated by substituting the vec-
tor of wrong as the part-of-speech tag of insuffi-
cient is JJ (Santorini, 1990). Therefore the mod-
ified version of the RNTN model has the capabil-
ity of identifying the sentiment of the above sen-
tence as negative. The figure 1 shows how the sen-
timent is induced through the newly instantiated

word vector.

Figure 1: Sentiment Prediction for a phrase with words
not in source’s vocabulary but in target’s vocabulary

And there are scenarios where the term is in the
vocabulary of the Socher Model but has a different
sentiment compared to the legal domain. Consider
the sentence “Sam is charged with a crime” which
was mentioned in section 3.2,

In section 3.2, we have identified that the term
charged denotes a different sentiment in legal do-
main compared to movie reviews. The source
RNTN model outputs a positive sentiment for that
given sentence as the term charged is identified as
having a positive sentiment according to movie re-
views domain. And that term is the cause for hav-
ing such an output from the source model. The
figure 2 indicates how the change we introduced in
the target model (in section 3.2) induce the correct
sentiment up to the root level of the phrase. There-
fore, the target model identifies the sentiment cor-
rectly for the given phrase.

Figure 2: Sentiment Prediction for a phrase with words
having deviated sentiment in two domains - target
model

To improve the recall in identifying phrases
with negative sentiment, we have added another
rule to the classification criteria. The source
RNTN model (Socher Model) provides the score
for each of the five classes such that all those five
scores sum up to 1. If the negative sentiment class
has the highest score, the sentiment label of the

263

phrase will be negative. Otherwise, the phrase
again can be classified as having a negative sen-
timent if the score for negative sentiment class is
above 0.4. If those two conditions are not met, the
phrase will be classified as having a non-negative
sentiment. Section 4 provides observations and re-
sults regarding the improved criteria.

4 Experiments and Results

The proposed approach in this paper is based on
transfer learning. Therefore, we needed to cre-
ate a golden standard for identifying sentiments of
phrases and sentences in the legal domain in or-
der to evaluate the model. The phrases and sen-
tences for the test data set are randomly picked
from legal case transcripts based on the United
States Supreme Court. During the selection pro-
cess, we have selected an equal amount of phrases
for both classes according to the Socher Model.
Each of these phrases and sentences is annotated
by three human annotators. Since the classifica-
tion process is binary, we pick the sentiment class
for each test subject based on the maximum num-
ber of votes. In the end, we prepare the test data
set containing nearly 1500 annotations to use in
the evaluation process.

In the experiment, we compare the sentiment
class picked by human judges and the modified
RNTN model. As the baseline model, we use the
source RNTN model (Socher Model) to check the
impact caused by the proposed transfer learning
approach. The acquired results from the baseline
model is shown in Table 3 and results from the tar-
get model is shown in Table 4.

According to Table 3 and Table 4, there is a
10% improvement in identifying phrases with neg-
ative sentiment. The reason is that there are a lot
of unknown words which are in the legal domain
but not in movie reviews corpus. In addition, we
have introduced new criteria based on a threshold
for the score of negative class to improve the re-
call. Due to that reason, the precision in identi-
fying phrases with a negative sentiment is 0.8441.
But if we compare with the precision of the base-
line model (Socher Model) for negative sentiment
class is 0.7962 which is a lower value. Since the
test dataset is not skewed a lot towards one class,
it is fair to consider the accuracy of the system
in predicting the sentiment for any given phrase.
The baseline model shows the accuracy of 70.17%
while the target model shows 76.80%. The im-

provement in accuracy is above 6%.

Actual

Predicted
Negative Non-negative Total

Negative 60.43% 39.57% 278

Non-negative 18.29% 81.71% 235

Total 211 301 513

Table 3: Confusion Matrix for Results from the Base-
line Model

Actual

Predicted
Negative Non-negative Total

Negative 70.14% 29.86% 278

Non-negative 15.32% 84.68% 235

Total 231 282 513

Table 4: Confusion Matrix for Results from the Im-
proved Model

The observed results in Table 3 and Table 4
show that there is a 6% improvement of the sen-
timent with respect to the baseline model. There
are a few reasons behind the results. As we ran-
domly selected phrases from the legal case tran-
scripts corpus, only 45% of the phrases actually
contained the words where we had substituted the
vector regarding sentiment. Therefore, the output
for 55% of the phrases from the baseline model
and the target model was the same. If we compare
the output provided by the baseline model and the
target model, output of 9.5% of the total phrases
are different to each other. Therefore the differ-
ence between the two models is based on that 9.5%
of the total phrases.

5 Conclusion

This study is focused on building an automatic
sentiment annotator for legal texts based on the
Recursive Neural Tensor Network (RNTN) model
mentioned in Socher et al. (2013b). Furthermore,
this study can be identified as a transfer learning
approach as it is not required to prepare a training
data set for the legal domain specifically. Instead,
this approach uses the same training data set stated
in Socher et al. (2013b). This task can be recog-
nized as a domain adaptation task. The proposed
approach could achieve a 70.14% recall in identi-
fying phrases with negative sentiments (improve-
ment is 10% compared to the source model). The
accuracy of the target model is above 76% which
is a 6% improvement over the source model.

264

References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2010. Sentiwordnet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining.
In Lrec, volume 10, pages 2200–2204.

Jack G Conrad and Frank Schilder. 2007. Opinion min-
ing in legal blogs. In Proceedings of the 11th in-
ternational conference on Artificial intelligence and
law, pages 231–236. ACM.

Andrea Esuli and Fabrizio Sebastiani. 2007. Senti-
wordnet: a high-coverage lexical resource for opin-
ion mining. Evaluation, 17:1–26.

Vindula Jayawardana, Dimuthu Lakmal, Nisansa
de Silva, Amal Shehan Perera, Keet Sugathadasa,
and Buddhi Ayesha. 2017a. Deriving a representa-
tive vector for ontology classes with instance word
vector embeddings. In Innovative Computing Tech-
nology (INTECH), 2017 Seventh International Con-
ference on, pages 79–84. IEEE.

Vindula Jayawardana, Dimuthu Lakmal, Nisansa
de Silva, Amal Shehan Perera, Keet Sugathadasa,
Buddhi Ayesha, and Madhavi Perera. 2017b. Semi-
supervised instance population of an ontology using
word vector embedding. In Advances in ICT for
Emerging Regions (ICTer), 2017 Seventeenth Inter-
national Conference on, pages 1–7. IEEE.

Vindula Jayawardana, Dimuthu Lakmal, Nisansa
de Silva, Amal Shehan Perera, Keet Sugathadasa,
Buddhi Ayesha, and Madhavi Perera. 2017c. Word
vector embeddings and domain specific semantic
based semi-supervised ontology instance popula-
tion. International Journal on Advances in ICT for
Emerging Regions, 10(1):1.

Rachel Tsz-Wai Lo, Ben He, and Iadh Ounis. 2005.
Automatically building a stopword list for an in-
formation retrieval system. In Journal on Digi-
tal Information Management: Special Issue on the
5th Dutch-Belgian Information Retrieval Workshop
(DIR), volume 5, pages 17–24.

Yue Lu, Hongning Wang, ChengXiang Zhai, and Dan
Roth. 2012. Unsupervised discovery of opposing
opinion networks from forum discussions. In Pro-
ceedings of the 21st ACM international conference
on Information and knowledge management, pages
1642–1646. ACM.

John J Nay. 2016. Gov2vec: Learning distributed rep-
resentations of institutions and their legal text. arXiv
preprint arXiv:1609.06616.

Bruno Ohana and Brendan Tierney. 2009. Sentiment
classification of reviews using sentiwordnet. In 9th.
IT & T Conference, page 13.

Ariadna Quattoni, Michael Collins, and Trevor Dar-
rell. 2008. Transfer learning for image classification
with sparse prototype representations. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1–8. IEEE.

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin
Packer, and Andrew Y Ng. 2007. Self-taught learn-
ing: transfer learning from unlabeled data. In Pro-
ceedings of the 24th international conference on
Machine learning, pages 759–766. ACM.

Beatrice Santorini. 1990. Part-of-speech tagging
guidelines for the penn treebank project (3rd revi-
sion). Technical Reports (CIS), page 570.

Richard Socher, Milind Ganjoo, Christopher D Man-
ning, and Andrew Ng. 2013a. Zero-shot learning
through cross-modal transfer. In Advances in neural
information processing systems, pages 935–943.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013b. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Keet Sugathadasa, Buddhi Ayesha, Nisansa de Silva,
Amal Shehan Perera, Vindula Jayawardana,
Dimuthu Lakmal, and Madhavi Perera. 2017. Syn-
ergistic union of word2vec and lexicon for domain
specific semantic similarity. In Industrial and Infor-
mation Systems (ICIIS), 2017 IEEE International
Conference on, pages 1–6. IEEE.

Keet Sugathadasa, Buddhi Ayesha, Nisansa de Silva,
Amal Shehan Perera, Vindula Jayawardana,
Dimuthu Lakmal, and Madhavi Perera. 2018.
Legal document retrieval using document vector
embeddings and deep learning. arXiv preprint
arXiv:1805.10685.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 173–180. Association for Compu-
tational Linguistics.

CJ Van Rijsbergen. 1979. Information retrieval. dept.
of computer science, university of glasgow. URL:
citeseer. ist. psu. edu/vanrijsbergen79information.
html, 14.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language resources and evalua-
tion, 39(2-3):165–210.

265

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 266–272
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

Abstract

Detecting stress from social media gives a

non-intrusive and inexpensive alternative

to traditional tools such as questionnaires

or physiological sensors for monitoring

mental state of individuals. This paper

introduces a novel framework for finding

reasons for stress from tweets, analyzing

multiple categories for the first time. Three

word-vector based methods are evaluated

on collections of tweets about politics or

airlines and are found to be more accurate

than standard machine learning algorithms.

1 Introduction

Stress is the manifestation of physical or emotional

pressure, often as a bodily response to a real or

perceived challenge. Selye (1936) defines it as

non-specific response of the body to any demand

for change. It is an important aspect of the mental

state of people including business customers,

citizens involved in political debates, and

commuters. If detected automatically, it can be

used to predict problems such as customer churn,

threatening political events or transportation

deadlocks in these contexts. In socio-political

domains, such as politics, sports, and news, stress

detection can help in understanding the stress

trends to get a collective mental state of the target

population. For example, increases in apparent

stress, topics generating stress, or geographical

stress hotspots might all have important

consequences. Also, for service-centric businesses,

including hotels, airports and airlines, in which the

owner’s goal is to provide a stress-free stay, travel

or transit, it is valuable to know the causes of stress

for customers, which might point to issues

requiring immediate attention.

 Social media can be harnessed to discover trends

in group or individual emotions and moods.

Although previous studies (reviewed below) have

developed methods to detect stress in social media,

the causes of stress also need to be known so that

remedial actions can be targeted more effectively.

In response, this research implements a novel

framework for finding the causes of stress

expressed in tweets. This study introduces a

method to classify stress causes from tweets

belonging to two domains, one each from socio-

political (Politics) and service-centric (Airlines)

domains, to demonstrate the viability of the

methods.

The contributions of this work are as follows:

1. This is the first multiple category study

detecting reasons for stress expressed in

tweets.

2. A dataset of tweets annotated with reasons

for stress.

2 Related Work

2.1 Stress Detection from Social Media

In recent years, social media content analysis has

emerged as a useful tool to evaluate the mental

health of users. Internet usage patterns

(Kotikalapudi et al, 2012) and status messages on

Facebook (Moreno et al, 2011) have been

demonstrated to be viable tools for evaluating

What Makes You Stressed? Finding Reasons From Tweets
Reshmi Gopalakrishna Pillai, Mike Thelwall and Constantin Orasan

Research Institute in Information and Language Processing

University of Wolverhampton, UK

reshmi.g85@gmail.com, {m.thelwall,c.orasan}@wlv.ac.uk

266

https://doi.org/10.18653/v1/P17

2

depressive tendencies. Similarly, message content

and interaction patterns on Twitter can also be

harnessed to help identify depression (De

Choudhury et al, 2013), Post Traumatic Stress

Disorder (PTSD) (Coppersmith et al, 2014), and

postpartum emotional and behavioral changes (De

Choudhury et al., 2013).

TensiStrength (Thelwall et al, 2017) is the first

lexical based program to detect the strength of

stress and relaxation in tweets. Its lexicon is

derived from LIWC (Tausczik and Pennebaker,

2010), General Inquirer (Stone et al, 1986) and

emotion terms from the sentiment analysis

software SentiStrength (Thelwall et al, 2010;

Thelwall et al, 2012). TensiStrength estimates

stress (on a scale of -1 to -5) and relaxation (on a

scale of +1 to +5) with accuracy comparable to

several general machine learning algorithms. The

performance of this system was improved by

adding word sense disambiguation as a

preprocessing step for tweets (Gopalakrishna Pillai

et al., 2018).

Though there is a growing interest in finding

expressions of stress from social media content, as

discussed above, the existing research does not, for

the most part, discuss the reasons for stress. Our

model, on the other hand, studies the reasons for

stress in multiple categories.

2.2 Topic Modelling in Tweets

 Topic modelling is the extraction of latent topics

in documents, which may be helpful to find stress

reasons from a collection of texts. Two common

topic modelling methods for documents are Latent

Dirichlet Allocation (LDA) (Blei et al, 2003) and

Author Topic Models (ATM) (Rozen-Zvi et al.,

2005).

The applicability of these methods to tweets is

hindered by informal language, grammatical

errors, slang and emoticons. To overcome these

issues, aggregation of related tweets into

individual documents has been proposed as a

potential solution, called pooling.

Mehrotra et al (2013) proposed one of the most

widely accepted pooling methods to overcome the

limited coherence of LDA on Twitter data. It found

that pooling tweets by hashtags performs better

than other pooling schemes (author-wise, hourly,

and burst-wise) based on Point-wise Mutual

Information (PMI), NMI scores and purity scores.

Alvares-Melis and Saveski (2016) present a

scheme for tweet pooling in which tweets and their

replies are aggregated into a single document. The

users who participate in the conversation are

considered to be co-authors of this pooled

document. We used an LDA-based topic modelling

with hashtag pooling in our present study. Though

conversation pooling was found to give better

performance compared to hashtag pooling, it was

not suitable for our datasets, which consisted of

tweets having the relevant hashtags and could not

be grouped into ‘conversations’.

2.3 Word Vectors and its Application in

Sentiment Analysis

Liu (2012) defines sentiment Analysis is as the

field of study that analyses opinions or sentiments

of people towards entities such as products,

services, individuals and their attributes.

Sentiments in text are most often expressed by

opinion words which has positive (good,

wonderful, fantastic) or negative (bad, poor,

horrible) polarity. However, finding the inherent

sentiment of a text from content words is not a

straightforward problem, due to ambiguity of word

meanings and complex sentiments such as

sarcasm. Hence, efficient and accurate word

representations which considers the context

information also, become necessary.

Representation of words as real-valued vectors

has been employed in sentiment analysis, as in

other NLP problems. There are two common

architectures for word vector representations:

Word2Vec (Mikolov et al, 2013) and GloVe

(Pennington et al, 2014). Word2Vec has two

models: Skipgram where the objective is to predict

a word’s context given the word itself and Bag of

Words (BoW) where the objective is to predict a

word given its context. GloVe (Global Vectors)

was proposed as an alternative model, in which the

global corpus statistics are captured directly. Over

the years, there have been attempts to incorporate

the sentiment information of the words into these

vectors, to make them more suitable for analysis of

sentiment in documents and short texts such as

tweets (Maas et al,2011, Tang et al., 2014). Our

methods to find stress reasons from tweets also use

word vector representations as illustrated in the

next section.

267

3

3 Methods

3.1 Overview

The proposed method selects reasons for stress

expressed in tweets from a pre-defined list of

potential stressors for tweets belonging to two

categories, politics and airlines, collected by the

Tweepy API. Tweets with high stress scores, as

judged by TensiStrength, were considered for

creating this list of potential stressors. These high-

stress tweets were subjected to topic modelling and

k-means clustering to find the clusters of

frequently occurring topics. Topic modelling

provides a soft clustering of the topics, however we

followed it with k-means clustering to obtain

coherent collections of topics. These topic clusters

were manually refined to generate title words that

most aptly encompass each cluster. The title words

constituted a list of potential stressors for the

tweets of that category.

To automatically detect stress reasons, the tweets

were processed by three new word-vector based

methods to find a reason for the stress expressed

within them. These were compared with reasons

found by human coders to evaluate the accuracy.

3.2 Method details

Finding Potential Stressors: The first step is to

form a list of potential reasons for stress in a given

category/domain.

Figure 1: Finding potential stressors for a

category/domain.

Word Vector Processing: The tweets were

preprocessed to eliminate URLs, prepositions,

interjections and conjunctions. Constituent words

in hashtags were separated. The remaining words

constitute the content words set. Three different

word-vector based methods were used to find

causes of stress from the list of potential stressors.

Figure 2: Finding reasons for stress in tweets.

Method 1 (maximum word similarity): The

cosine similarity of each word in the content words

set was calculated with each potential stressor. The

stressor with highest similarity with any of the

content words in the tweet was chosen as the stress

cause.

Method 2 (context vector similarity): A context

vector was found for each tweet by calculating the

average of the word vectors of all words in the

content words set. The stressor with highest cosine

similarity with this context vector was chosen as

the stress cause.

Method 3 (cluster vector similarity): Each

stressor was represented by a cluster vector which

is the average of vectors of all words in its topic

cluster. The cosine similarity of each of these

cluster vectors was calculated with the context

vector and the cluster with maximum similarity

was chosen as the stress cause.

3.3 Dataset and Annotation

Two different datasets of public Twitter posts were

collected with the Tweepy API.

Politics: For political tweets, the search

parameter was the hashtag “#politics AND #us”

and #uspolitics from 14.04.2018 to 14.05.2018.

This retrieved 22293 tweets, which were processed

to remove duplicates, retweets and tweets with

only URLs. The resulting dataset had 8163 tweets.

The first task was to make a list of potential

stressors for tweets which could be used for the

further stressor identification tasks. The underlying

assumption was that frequently discussed topics in

tweets with very high stress scores were potential

stressors.

Stress scores were assigned on a scale of -1 (no

stress) to -5 (high stress) to each tweet in the

dataset, using TensiStrength. The 2205 tweets

having a stress score of -5 or -4 were filtered to

form the corpus for further processing. They were

then preprocessed by removing all URLs,

268

4

@usernames and stop words and divided into

groups of 200 tweets each (11 groups, the last one

having 205 tweets). The dominant topics in each

group were found by an LDA-based topic

modelling with hashtag pooling implementation in

Python. These topics were aggregated and the k-

means clustering algorithm used to separate them

into 7 clusters. This number of clusters produced

the most coherent and intuitive clusters for this

collection.

The seven clusters were manually checked to find

the most apt descriptive word for each one, after

removing outliers, if any. For example, one cluster

had topic modelling key terms: rape, crime, rage,

murder, terrorism, fight, chaos, avalanche,

abuse. We chose to describe this cluster by the

word “violence”. The title words for all 7 clusters

constitute the list of potential stressors. Clusters

and potential stressors emerging from them are

listed in Table 1.

Example topics in

the cluster

Stressor

Vote voter polls

candidate race

Election

Public activity

support boycott

Protest

Rape crime rage

murder terrorism

fight chaos avalanche

abuse

Violence

Democrats

Republican Trump

Person/

Party

Press report news

scandal publicity

editor

Media

Social system

education act

government

Policy

Wages inequality

employed education

college productivity

Economy

Table 1: Clusters and stressors (Politics)

To evaluate the new methods, out of the 8163

tweets obtained after duplicate removal, 4517

tweets with expressions of stress were selected

(TensiStrength scores, -5, -4 or -3). 2000 tweets

were randomly chosen from this collection and

were annotated individually and independently by

three human coders. Their task was to select the

most appropriate stressor from the predefined list

of potential stressors produced by the topic

modeling. Coding guidelines were provided and

inter-coder agreement scores were calculated using

Krippendorff’s α (Krippendorff, 2004) and

Pearson’s correlation. The values, given in Table 2,

were high enough to justify the use of the human

codes.

Agreement

Between

Krippendorff’s

α

A and B 72.54

B and C 75.95

A and B 73.17

Table 2: Inter-coder agreement for stressor annotation

(Politics)

Airlines: A similar process was followed to create

the Airlines dataset. The tweets were obtained by

searching for hashtags belonging to 9 popular

airlines (#gojetairlines, #allnipponairways,

#airnewzealand, #swissair, #turkishairlines,

#airfrance, #unitedairlines, #emirateairlines,

#ryanair), during the same period as the political

tweets. The search returned 31457 tweets and, after

duplicates and retweets removal, 7965 tweets. Out

of this, 3214 tweets were found to have

expressions of high stress, (stress score -5 or -4)

using TensiStrength system. These were analyzed

by topic modelling to find out the list of potential

stressors in the category, as detailed in the previous

section.

The 3214 tweets having stress values of -5 or -4

were divided into groups of 300 (11 groups, the last

group having 214 tweets) and using topic

modelling with hashtag pooling we found out the

topics in each groups; which was aggregated and

further analyzed by k-means clustering to form

five clusters after manual refining to remove the

outliers. Examples of topics in the five detected

clusters and the stressor title word corresponding

to each of them are given in Table 2.

Example topics in

the cluster

Stressor

Cost money ticket

airline expensive

Cost

Delay delayed

hours time today

cancellation

Delay

Service customer

staff food pilot

Service

Strike messed

hijack attack

Violence

Luggage issue carry

missing stolen

Luggage

 Table 3: Clusters and stressors (Airlines)

269

5

Out of the 7965 tweets after duplicate removal,

4367 had stress scores of -3 or above, and we chose

2000 tweets from this randomly, to be annotated

for stress reasons. The inter-coder agreement

between the three coders is given below in Table 4.

Agreement

Between

Krippendorff’s

α

A and B 71.23

B and C 76.19

A and B 78.23

Table 4: Inter-coder agreement for stressor annotation

(Airlines)

High inter-coder agreement values in both

categories denote that the problem definition and

guidelines are well-defined and followed.

3.3 Experimental Setup

For training the word vectors used in the

experiments, a Twitter Word2Vec model trained on

400 million tweets was used, released as part of an

ACL W-NUT tasks (Godin et al, 2015).

We ran three machine learning algorithms as

comparison baselines.

• AdaBoost: An adaptive boosting algorithm

based on a simple classifier.

• Logistic Regression: Simple logistic

regression.

• SVM: Support Vector Machines using

sequential minimal optimization.

The classifiers were implemented using their

default configurations in Weka 3.6. Term

unigrams, bigrams and trigrams and their

frequencies were the features used. Punctuation

was included as a term, with consecutive

punctuation treated as a single term (e.g.,

emoticons, multiple exclamation marks). Cross-

sentence bigrams and trigrams were not allowed.

This feature selection was adapted from a

similar task of finding the stress and relaxation

magnitudes of tweets, in our previous research

work TensiStrength (Thelwall, 2017).

4 Results

4.1 Results Summary

The stress reasons were found using the three

methods discussed in the previous section. Based

on Pearson correlations and exact match

percentages with the human annotated scores, the

cluster vector method best detects stress reasons

(Tables 5, 6).

Method Accuracy

max. word 47.81

context vector 54.63

cluster vector 63.41

SVM 52.48

AdaBoost 50.64

Logistic 49.23

 Table 4: Performance of stress reason detection

methods in Politics tweets

Method Accuracy

max. word 50.13

context vector 59.74

cluster vector 67.29

SVM 58.13

AdaBoost 54.85

Logistic 52.15

 Table 5: Performance of stress reason detection

methods in Airlines tweets

4.2 Distribution of reasons

The percentage of tweets with different reasons of

stress, according to the cluster vector method, are

given in figures 3 and 4.

Figure 3: Stress reasons (%) – Politics.

Figure 4: Stress reasons (%) – Airlines.

3.41

8.29

33.17

26.83

8.29

6.34

11.71

Protest

Election

Violence

Policy

Media

Economy

Party/Person

0 10 20 30 40

7.32

39.02

17.07

5.85

30.73

Cost

Delay

Service

Violence

Luggage

0 10 20 30 40 50

270

6

It is unsurprising that in many (34%) political

tweets, violence is the cause of stress and in 39%

of airline tweets, delay is the reason. This can be

applied in identifying areas of urgent improvement

in customer centric businesses.

4.3 Error analysis

There are some systematic reasons for the methods

failing to find the correct stress reason.

Misleading hashtags or content words: “At least

14 killed in hockey team’s bus crash #news

#CNN” This tweet has hashtags #news #CNN

which makes all word-vector based methods

choose the reason as “media” instead of

“violence”. “Stocks dive amid fears of trade war”

is another example. The human annotated stress

reason is “economy” but, war is a misleading word

which causes method 1 to choose “violence” as

stressor. In methods 2 and 3 where the aggregated

tweet vector instead of vectors of individual words

are considered, the stressor economy is correctly

identified.

Multiple stressors: Tweets in which there are

multiple reasons for stress. E.g.: “Killing

opponents is a ruthless way to win in elections” has

two stressors, “election” and “violence”.

Expanding the methods to accommodate multiple

stressors (by choosing all stressors with cosine

similarity with the tweets/content words in tweets

above a threshold) will improve its performance in

such tweets.

5 Conclusion and Future Work

This paper described three new methods for

finding reasons for stress in Tweets list. Datasets

comprising of 2000 tweets for Politics and Airlines

were manually annotated for stress reasons. The

methods found stress reasons more accurately than

standard machine learning, although it had

problems when multiple causes were expressed in

the same tweet, or when key words in the tweet

were misleading.

This is the first multi-category study on finding

stress reasons in tweets, though limited by the

restriction to two domains (politics and airlines)

and one source (Twitter). Future work needs to

analyze the other domains and also automate the

method to detect the potential stress reasons for

different domains.

References

David Alvarez-Melis and Martin Saveski. 2016. Topic

Modeling in Twitter: Aggregating Tweets by

Conversations. ICWSM.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.

2003. Latent dirichlet allocation. J. Mach. Learn.

Res. 3 (March 2003), 993-1022.

Glen A. Coppersmith, Craig T. Harman, and Mark

Dredze. 2014. Measuring post-traumatic stress

disorder in Twitter. In Proceedings of the

International AAAI Conference on Weblogs and

Social Media (ICWSM).

Munmun De Choudhury, Michael Gamon, Scott

Counts, and Eric Horvitz. 2013. Predicting

depression via social media. In Proceedings of the

International AAAI Conference on Weblogs and

Social Media (ICWSM).

Munmun De Choudhury, Scott Counts, and Eric

Horvitz. 2013. Predicting postpartum changes in

emotion and behavior via social media. In

Proceedings of the ACM Annual Conference on

Human Factors in Computing Systems (CHI),

3267–3276

Sally S. Dickerson and Margaret E. Kemeny. 2004

Acute Stressors and Cortisol Responses: A

Theoretical Integration and Synthesis of Laboratory

Research. Psychological Bulletin, 130, 355-391.

http://dx.doi.org/10.1037/0033-2909.130.3.355

Frederic Godin, Baptist Vandersmissen, Wesley De

Neve and Rik Van de Walle. 2015. Multimedia Lab@

ACL W-NUT NER shared task: Named entity

recognition for Twitter microposts using distributed

word representations. In: Proceedings of ACL-

IJCNLP (p. 146).

Reshmi Gopalakrishna Pillai, Mike Thelwall,

Constantin Orasan. 2018. Detection of Stress and

Relaxation Magnitudes for Tweets. In The 2018 Web

Conference Companion (WWW’18 Companion),

April 23-27, 2018, Lyon, France, ACM, New York,

NY, 8 pages. DOI:

https://doi.org/10.1145/3184558.3191627

Elias Jónsson and Jake Stolee. "An Evaluation of Topic

Modelling Techniques for Twitter."

Raghavendra Kotikalapudi, Sriram Chellappan,

Frances Montgomery. 2012. Associating Internet

usage with depressive behavior among college

students. IEEE Technol SocMag.;31:73–80.

Klaus Krippendorff. 2004. Content analysis: An

introduction to its methodology. Thousand Oaks,

CA: Sage

Bing Liu. 2012. Sentiment Analysis and Opinion s

Mining. Morgan & Claypool Publishers.

271

7

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,

Dan Huang, Andrew Y. Ng, and Christopher Potts.

2011. Learning word vectors for sentiment analysis.

In Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human

Language Technologies - Volume 1 (HLT '11), Vol.

1. Association for Computational Linguistics,

Stroudsburg, PA, USA, 142-150.

Rishabh Mehrotra, Scott Sanner, Wray Buntine, and

Lexing Xie. 2013. Improving LDA topic models for

microblogs via tweet pooling and automatic

labeling. In Proceedings of the 36th international

ACM SIGIR conference on Research and

development in information retrieval (SIGIR '13).

ACM, New York, NY, USA, 889-892.

DOI=http://dx.doi.org/10.1145/2484028.2484166

Tomas Mikolov, Chen Kai, Greg Corrado, and Jeffrey

Dean. 2013 Efficient estimation of word

representations in vector space. arXiv preprint

arXiv:1301.3781

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S.

Corrado, and Jeff Dean. 2013. "Distributed

representations of words and phrases and their

compositionality." In Advances in neural

information processing systems, pp. 3111-3119.

Megan A. Moreno, Lauren A. Jelenchick, Katie G.

Egan, Elizabeth Cox, Henry Young, Kerry E.

Gannon, Tara Becker. 2011. Feeling bad on

Facebook: Depression disclosure by college

students on a social networking site. Depression and

Anxiety, 28(6), 447–455.

Jeffrey Pennington, Richard Socher, and Christopher

Manning. "Glove: Global vectors for word

representation." In Proceedings of the 2014

conference on empirical methods in natural

language processing (EMNLP), pp. 1532-1543.

2014.

Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers,

and Padhraic Smyth. 2004. The author-topic model

for authors and documents. In Proceedings of the

20th conference on Uncertainty in artificial

intelligence (UAI '04). AUAI Press, Arlington,

Virginia, United States, 487-494.

Hans Selye. 1956. The Stress of Life. New York,

McGraw-Hill Book Company, Inc.

Philip J. Stone, Dexter C. Dunphy, Marshall S. Smith

and Daniel M. Ogilvie. 1966. The general inquirer:

A computer approach to content analysis.

Cambridge, MA: The MIT Press.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting

Liu, Bing Qin. (2014). Learning Sentiment-Specific

Word Embedding for Twitter Sentiment

Classification. 52nd Annual Meeting of the

Association for Computational Linguistics, ACL

2014 - Proceedings of the Conference. 1. 1555-

1565. 10.3115/v1/P14-1146.

Yla R. Tausczik and James W. Pennebaker, 2010. The

psychological meaning of words: LIWC and

computerized text analysis methods. Journal of

language and social psychology, 29(1), 24-54.

Mike Thelwall. 2017. TensiStrength: stress and

relaxation magnitude detection for social media

texts. Journal of Information Processing and

Management. 53: 106–121

Mike Thelwall, Kevan Buckley Georgios Paltoglou, D.

Cai and A. Kappas. 2010. Sentiment strength

detection in short informal text. Journal of the

American Society for Information Science and

Technology, 61(12), 2544–2558.

Mike Thelwall, Kevan Buckley, and Georgios

Paltoglou. 2012. Sentiment strength detection for

the social web. J. Am. Soc. Inf. Sci. Technol. 63, 1

(January 2012), 163-173.

DOI=http://dx.doi.org/10.1002/asi.21662

Liang-Chih Yu, Jin Wang, K. Robert Lai, and Xuejie

Zhang. 2018. Refining Word Embeddings Using

Intensity Scores for Sentiment Analysis.

IEEE/ACM Trans. Audio, Speech and Lang. Proc.

26, 3 (March 2018), 671-681. DOI:

https://doi.org/10.1109/TASLP.2017.2788182

272

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 273–279
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

EmojiGAN: learning emojis distributions with a generative model

Bogdan Mazoure∗
Department of Mathematics & Statistics

McGill University

Thang Doan∗

Desautels Faculty of Management
McGill University

Saibal Ray
Desautels Faculty of Management

McGill University

Abstract

Generative models have recently experienced
a surge in popularity due to the development
of more efficient training algorithms and in-
creasing computational power. Models such as
adversarial generative networks (GANs) have
been successfully used in various areas such as
computer vision, medical imaging, style trans-
fer and natural language generation. Adver-
sarial nets were recently shown to yield results
in the image-to-text task, where given a set of
images, one has to provide their corresponding
text description. In this paper, we take a simi-
lar approach and propose a image-to-emoji ar-
chitecture, which is trained on data from so-
cial networks and can be used to score a given
picture using ideograms. We show empirical
results of our algorithm on data obtained from
the most influential Instagram accounts.

1 Introduction

The spike in the amount of user-generated visual
and textual data shared on social platforms such as
Facebook, Twitter, Instagram, Pinterest and many
others luckily coincides with the development
of efficient deep learning algorithms (Perozzi
et al., 2014; Pennacchiotti and Popescu, 2011;
Goyal et al., 2010). As humans, we can not
only share our ideas and thoughts through any
imaginable media, but also use social networks
to analyze and understand complex interpersonal
relations. Researchers have access to a rich set of
metadata (Krizhevsky, 2012; Liu et al., 2015) on
which various computer vision (CV) and natural
language processing (NLP) algorithms can be
trained.
For instance, recent work in the area of image
captioning aims to provide a short description (i.e.
caption) of a much larger document or image (Dai
et al., 2017; You et al., 2016; Pu et al., 2016). Such

∗These authors contributed equally.

methods excel at conveying the dominant idea of
the input. On the other hand, we use ideograms,
also popular under the names of emojis or pic-
tographs as a natural amalgam between annotation
and summarization tasks. Note that, in this work,
we use the terms emoji, ideogram and pictograph
interchangeably to represent the intersection of
these three domains. Ideograms bridge together
the textual and visual spaces by representing
groups of words with a concise illustration. They
can be seen as surrogate functions which convey,
up to a degree of accuracy, reactions of social
media users. Furthermore, because each emoji has
a corresponding text description, there is a direct
mapping from ideograms onto the word space.
In this paper, we model the distribution of emojis
conditioned on an image with a deep generative
model. We use generative adversarial networks
(GANs) (Goodfellow et al., 2014), which are
notoriously known to be harder to train than
other distributional models such as variational
auto-encoders (VAEs) (Kingma and Welling,
2013) but tend to produce sharper results on
computer vision tasks.

2 Related Work and Motivation

Since the release of word2vec by Mikolov and
colleagues in 2013 (Mikolov et al., 2013), vector
representations of language entities have become
more popular than traditional encodings such as
bag-of-words (BOW) or n-grams (NG). Because
word2vec operations preserve the original seman-
tic meaning of words, concepts like word simi-
larity and synonyms are well-defined in the new
space and correspond to closest neighbors of a
point according to some metric.
The aforementionned word representation was fol-
lowed by doc2vec (Le and Mikolov, 2014). Orig-

273

https://doi.org/10.18653/v1/P17

inally, doc2vec was meant to efficiently encode
collections of words as a whole. However, since
empirical results suggest a similar performance for
both algorithms, researchers tend to opt for the
simpler and more interpretable word2vec model.
One of the most recent and the most interest-
ing vector embeddings has been emoji2vec (Eis-
ner et al., 2016). It consists of more than 1,600
symbol-vector pairs, each associating a Unicode
character to a real 300−dimensional vector. The
abundance of pictographs such as emojis on so-
cial communication platforms suggests that word-
only analyses are limited in their scope to cap-
ture the full scale of interactions between individ-
uals. Emojis’ biggest advantage is their univer-
sality: no information is lost due to faulty trans-
lations, mistyped characters or even slang words.
In fact, emojis were designed to be more concise
and expressive than words. They, however, have
been shown to suffer from varying interpretations
which depend of factors such as viewing the pic-
tograph on an iPhone or a Google Pixel (Miller
et al., 2016). This in turn implies that the subject
of conversation highly impacts the choice of me-
dia (text or emoji) picked by the user (Kelly and
Watts, 2015). Reducing a whole media such as
a public post or an advertisement image to a sin-
gle emoji would almost certainly mean loosing the
richness of information, which is why we suggest
to instead model visual media as a conditional dis-
tribution over emojis that users employ to score
the image.
Deep neural models have previously been used to
analyse pictographic data: (Cappallo et al., 2015)
used them to assign the most likely emoji to a pic-
ture, (Felbo et al., 2017) predicted the prevalent
emotion of a sentence and (Zhao and Zeng, 2017)
used recurrent neural networks (RNNs) to predict
the emoji which best describes a given sentence.
We build on top of this work to propose Emoji-
GAN − a model meant to generate realistic emo-
jis based on an image. Since we are interested in
modeling a distribution over image-emoji tuples,
it is reasonable to represent it using generative
adversarial networks. They have been shown to
successfully memorize distributions over both text
and images. For example, a GAN can be coupled
with RNNs in order to generate realistic images
based on an input sentence (Reed et al., 2016).
We train our algorithm on emoji-picture pairs ob-
tained from various advertisement posts on Insta-

gram. A practical application of our method is to
analyze the effects of product advertisement on In-
stagram users. Previous works attempted to pre-
dict the popularity of Instagram posts by using sur-
rogate signals such as number of likes or follow-
ers (Almgren et al., 2016; De et al., 2017). Others
used social media data in order to model the popu-
larity of fashion industry icons (Park et al., 2016).
A thorough inspection of clothing styles around
the world has also been conducted (Matzen et al.,
2017).

3 Proposed Approach

3.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014) have recently gained huge
popularity as a blackbox unsupervised method of
learning some target distribution. Taking roots in
game theory, their training process is framed as a
two player zero-sum game where a generator net-
work G tries to fool a discriminator network D by
producing samples closely mimicking the distribu-
tion of interest. In this work, we use Wasserstein-
GAN (Arjovsky et al., 2017), a variant of the orig-
inal GAN which uses the Wasserstein metric in or-
der to avoid problems such as mode collapse. The
generator and the discriminator are gradually im-
proved through either alternating or simultaneous
gradient descent minimization of the loss function
defined as:

min
G

max
D

E
x∼fX(x)

[D(x)]+ E
x∼G(z)

[−D(x)]+p(λ),

(1)
where p(λ) = λ(||∇x̃D(x̃)|| − 1)2,
x̃ = εx + (1 − ε)G(Z), ε ∼ Uniform(0, 1),
and Z ∼ fZ(z). This gradient penalized loss
(Gulrajani et al., 2017) is now widely used to
enforce the Lipschitz continuity constraint. Note
that setting λ = 0 recovers the original WGAN
objective.

3.2 Choice of embedding

Multiple embeddings have been proposed to en-
code language entities such as words, ideograms,
sentences and even documents. A more recent
successor of word2vec, emoji2vec aims to en-
code groups of words represented by visual sym-
bols (ie ideograms or emojis). This representa-
tion is a fine-tuned version of word2vec which was

274

trained on roughly 1,600 emojis to output a 300-
dimensional real-valued vector. We experimented
with both word2vec and emoji2vec by encoding
each emoji through a sum of the word2vec repre-
sentations of its textual description. We observed
that both word2vec and emoji2vec embeddings
yielded only a mild amount of similarity for most
emojis. Moreover, dealing with groups of words
requires to design a recurrent layer in the architec-
ture, which can be cumbersome and yield subopti-
mal results as opposed to restricting the generator
network to only Unicode characters. Bearing this
in mind, we decided to use the emoji2vec embed-
ding in all of our experiments.

3.3 Learning a skewed distribution

Just like in text analysis, some emojis (mostly
emotions such as love, laughter, sadness) occur
more frequently than domain-specific pictographs
(for example, country flags). The distribution over
emojis is hence highly skewed and multimodal.
Since such imbalance can lead to a considerable
reduction in variance, also known as mode col-
lapse, we propose to re-weight each backward
pass with coefficients obtained through either of
the following schemes:

• term frequency-inverse document frequency
(tf-idf) weights, a classical approach used
in natural language processing (Salton and
Buckley, 1988);

• Exponentially-smoothed raw frequencies:

ws(e) =
exp−k×freq(e)

N∑
i=1

exp−k×freq(ei)
∀e, k ≥ 0 (2)

where k is a smoothing constant and
freq(e) = count(e)

N is the frequency of emoji
e and N is the total number of emojis.

3.3.1 Algorithm

Our method relies on the conditional version of
WGAN-GP which accepts fixed size (64×64×3)
RGB image tensors. Our approach is presented in
Algorithm. 1, shown below:

Algorithm 1 Conditional Wasserstein GAN
Input: Tuple of emojis and images (X,Y), the
gradient penalty coefficient λ, the number of
critic iterations per generator iteration ncritic,
the batch size m, learning rate lr and weight
vector w.
Initialization: initialize generator parameters
θG0 , critic parameters θD0

for epoch = 1, ..., N do
for t = 1, ..., ncritic do
{Updating Discriminator}
for n = 1, ..., ndisc do

Sample {x}mi=1 ∼ X , {y}mi=1 ∼ Y ,
{z}mi=1 ∼ N (0, 1), {ε}mi=1 ∼ U [0, 1]
x̃i ← εxi + (1− εi)G(zi|yi)
L(i) ← D(G(zi|(yi)) − D(xi|yi) +
λ(|∇x̃iD(x̃i|yi)| − 1)2

θD ← Adam(∇θD
∑m

i=1wiL(i), lr)
end for
{Updating Generator}
for n = 1, ..., ngen do

sample a batch of {z(i)}mi=1 ∼ N(0, 1)
θG ← Adam(−∇θG

∑m
i=1wiL(i), lr)

end for
end for

end for

4 Experiments

4.1 Data collection
We used the (soon to be deprecated) Instagram
API to collect posts from top influencers within
the following categories: fashion, fitness, health
and weight loss; we believe that user data across
those domains share similar patterns. Here, in-
fluencers are defined as accounts with the highest
combined count of followers, posts and user re-
actions; 166 influencers were selected from var-
ious ranking lists put together by Forbes and
Iconosquare. The final dataset has 80,000 (image,
pictograph) tuples and covers a total of 753 dis-
tinct symbols.

4.2 Architecture
Inspired from (Reed et al., 2016), we performed
experiments using the following architecture: the
generator has 4 convolutional layers with kernels
of size 4 which output a 4× 4 feature matrix with
a fully connexted layer; the discriminator is iden-
tical to G but outputs a scalar softmax instead of a
300-dimensional vector. The structure of both D
and G is shown in Fig. 1.

275

Figure 1: Illustration of how EmojiGAN learns a dis-
tribution. The generator learns the conditional distribu-
tion of emojis given a set of pictures while the discrim-
inator assigns a score to each generated emoji.

5 Results

A series of experiments were conducted on the
data collected from Instagram. The best architec-
ture was selected through cross-validation and hy-
perparameter grid search and has been previously
discussed. The training process used minibatch al-
ternating gradient descent with the popular Adam
optimizer (Kingma and Ba, 2014) with a learn-
ing rate lr = 0.0001 and β1 = 0.1, β2 = 0.9.
We trained both G and D until convergence af-
ter aproximatively 10 epochs. Empirically, we
saw that exponentially-smoothed raw frequencies
weights (2) performed better than tf-idf weights.

In order to assess how closely the generator net-
work approximates the true data distribution, we
first sampled 750 images and obtained their re-
spective emoji distribution by performing 50 for-
ward passes through G. The mode, that is the
most frequent observation in the sample, of the re-
sulting distribution is considered as the most rep-
resentative pictograph for the given image. We
used t-SNE on the image tensor in order to vi-
sualize both the image and the emoji spaces (see
Fig. 2). The purpose of the performed experiment
was to assert whether two entities close to each
other in the image space will also yield similar
emojis. The top right corner of both clouds ex-

Figure 2: Visualization of t-SNE reduced images and
their corresponding most frequent pictographs (emo-
jis). The most popular emoji for each picture was ob-
tained by sampling 50 observations from the generator
and taking the mode of the sample. Note that even this
technique has a stochastic outcome, meaning that if an
image has a rather flat distribution, its mode will not be
consistent across runs. The described behaviour can be
observed in the upper right area of both space represen-
tations.

poses a shortcoming of the algorithm: if the dis-
tribution is flat (i.e. is multimodal), even large
samples will yield different modes just by chance.
This phenomenon is clearly present throughout the
cloud of pictographs: four identical images yield
three distinct emojis. On the other hand, the two
remaining examples correctly capture the presence
of two people in a single photo (middle section), as
well expression of amazement (bottom section).
The performance of generative models is difficult
to assess numerically, especially when it comes
to emojis. Indeed, the Fréchet Inception Distance
(Heusel et al., 2017) is often used to score gen-
erated images but to the best of our knowledge,
no such measure exists for ideograms. As an al-
ternative way to assess the performance of our
method, we plotted the true and generated distri-
butions over 30 randomly chosen emojis for 1000
random images (see Fig. 3). While our algorithm
relied on raw (i.e. uncleaned and unprocessed)
data, we still observe a reasonable match between
both distributions.

Fig. 4 reports the fitted distribution of the top
10 most frequent observations for three randomly
sampled images. The top image represents a fash-
ion model in an outfit; our model correctly cap-
tures the concepts of woman, love, and overall

276

Figure 3: True and fitted distributions over 30 ran-
domly sampled emojis for 500 randomly sampled im-
ages. Probabilities are normalized by the maximal ele-
ment of the set.

positive emotion in the image. However, Emo-
jiGAN can struggle with filtering out unrealistic
emojis (in this case, pineapple and pig nose) for
images with very few distinct ideograms. The
bottom subfigure outlines another very common
problem seen in GANs: mode collapse. While the
generated emoji fits in the context of the image,
the variance in this case is nearly zero and results
in G learning a Dirac distribution at the most fre-
quent observation.

The middle image also suffers from the above

Figure 4: Emojis sampled for some Instagram posts:
observe the mode collapse in the bottom subfigure as
opposed to more equally spread out distributions.

problems (the sunset pictograph dominates the
distribution). We note how algorithms based on
unfiltered data from social networks are prone to
ethical fallacies, as illustrated in the middle image.
This situation is reminiscent of the infamous Mi-
crosoft chatbot Tay which started to pick up racist
and sexist language after being trained on uncen-
sored tweets and had to be shut down (Neff and
Nagy, 2016). We ourselves experienced a simi-
lar behaviour when assessing the performance of
EmojiGAN. One plausible explanation of this phe-
nomenon would be that while derogatory com-
ments are quite rare, the introduction of exponen-
tial weight or similar scores in the hope of pre-
venting mode collapse to the most popular emoji
has the side effect of overfitting least frequent pic-
tographs.

6 Conclusion and Discussion

In this work, we proposed a new way of model-
ing social media posts through a generative adver-
sarial network over pictographs. EmojiGAN man-
aged to learn the emoji distribution for a set of
given images and generate realistic pictographic
representations from a picture. While the issue of
noisy predictions still remains, our approach can
be used as an alternative to classical image anno-
tation methods. Using a modified attention mech-
anism (Xu et al., 2015) would be a stepping stone
to correctly model the context-dependent connota-
tions (Jibril and Abdullah, 2013) of emojis. How-
ever, the biggest concern is of ethical nature: train-
ing any algorithm on raw data obtained from social
networks without filtering offensive and deroga-
tory ideas is itself a debate (Islam et al., 2016;
Davidson et al., 2017).

Future work on the topic should start with
a thorough analysis of algebraic properties of
emoji2vec similar to (Arora et al., 2016). For ex-
ample, new Unicode formats support emoji com-
position, which is reminiscent of traditional word
embeddings’ behaviour and could be explicitly in-
corporated into a learning algorithm. Finally, the
ethical concerns behind deep learning without lim-
its are not specific to our algorithm but rather a
community-wide discourse. It is thus important to
work together with AI safety research groups in
order to ensure that novel methods developed by
researchers learn our better side.

277

References
Khaled Almgren, Jeongkyu Lee, et al. 2016. Pre-

dicting the future popularity of images on social
networks. In Proceedings of the The 3rd Multi-
disciplinary International Social Networks Confer-
ence on SocialInformatics 2016, Data Science 2016,
page 15. ACM.

Martı́n Arjovsky, Soumith Chintala, and Léon Bottou.
2017. Wasserstein GAN. CoRR, abs/1701.07875.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2016. Linear algebraic struc-
ture of word senses, with applications to polysemy.
arXiv preprint arXiv:1601.03764.

Spencer Cappallo, Thomas Mensink, and Cees G.M.
Snoek. 2015. Image2emoji: Zero-shot emoji pre-
diction for visual media. In Proceedings of the 23rd
ACM International Conference on Multimedia, MM
’15, pages 1311–1314, New York, NY, USA. ACM.

Bo Dai, Dahua Lin, Raquel Urtasun, and Sanja Fi-
dler. 2017. Towards diverse and natural im-
age descriptions via a conditional GAN. CoRR,
abs/1703.06029.

Thomas Davidson, Dana Warmsley, Michael W. Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
CoRR, abs/1703.04009.

Shaunak De, Abhishek Maity, Vritti Goel, Sanjay Shi-
tole, and Avik Bhattacharya. 2017. Predicting the
popularity of instagram posts for a lifestyle maga-
zine using deep learning.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bosnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. CoRR, abs/1609.08359.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. CoRR, abs/1708.00524.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. 2014. Gen-
erative adversarial networks. CoRR, abs/1406.2661.

Amit Goyal, Francesco Bonchi, and Laks VS Laksh-
manan. 2010. Learning influence probabilities in so-
cial networks. In Proceedings of the third ACM in-
ternational conference on Web search and data min-
ing, pages 241–250. ACM.

Ishaan Gulrajani, Faruk Ahmed, Martı́n Arjovsky,
Vincent Dumoulin, and Aaron C. Courville. 2017.
Improved training of wasserstein gans. CoRR,
abs/1704.00028.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, Günter Klambauer, and Sepp
Hochreiter. 2017. Gans trained by a two time-scale
update rule converge to a nash equilibrium. CoRR,
abs/1706.08500.

Aylin Caliskan Islam, Joanna J. Bryson, and Arvind
Narayanan. 2016. Semantics derived automatically
from language corpora necessarily contain human
biases. CoRR, abs/1608.07187.

Tanimu Ahmed Jibril and Mardziah Hayati Abdul-
lah. 2013. Relevance of emoticons in computer-
mediated communication contexts: An overview.
Asian Social Science, 9(4):201.

Ryan Kelly and Leon Watts. 2015. Characterising
the inventive appropriation of emoji as relationally
meaningful in mediated close personal relationships.
Experiences of Technology Appropriation: Unantic-
ipated Users, Usage, Circumstances, and Design.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Alex Krizhevsky. 2012. Learning multiple layers of
features from tiny images.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou
Tang. 2015. Deep learning face attributes in the
wild. In Proceedings of International Conference
on Computer Vision (ICCV).

Kevin Matzen, Kavita Bala, and Noah Snavely. 2017.
Streetstyle: Exploring world-wide clothing styles
from millions of photos. CoRR, abs/1706.01869.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. CoRR, abs/1310.4546.

Hannah Miller, Jacob Thebault-Spieker, Shuo Chang,
Isaac Johnson, Loren Terveen, and Brent Hecht.
2016. Blissfully happy or ready to fight: Varying
interpretations of emoji. Proceedings of ICWSM,
2016.

Gina Neff and Peter Nagy. 2016. Automation, algo-
rithms, and politics— talking to bots: Symbiotic
agency and the case of tay. International Journal
of Communication, 10:17.

278

Jaehyuk Park, Giovanni Luca Ciampaglia, and Emilio
Ferrara. 2016. Style in the age of instagram: Pre-
dicting success within the fashion industry using so-
cial media. In Proceedings of the 19th ACM Confer-
ence on Computer-Supported Cooperative Work &
Social Computing, pages 64–73. ACM.

Marco Pennacchiotti and Ana-Maria Popescu. 2011. A
machine learning approach to twitter user classifica-
tion. Icwsm, 11(1):281–288.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
2014. Deepwalk: Online learning of social rep-
resentations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM.

Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan,
Chunyuan Li, Andrew Stevens, and Lawrence Carin.
2016. Variational autoencoder for deep learning of
images, labels and captions. In Advances in neural
information processing systems, pages 2352–2360.

Scott E. Reed, Zeynep Akata, Xinchen Yan, Lajanu-
gen Logeswaran, Bernt Schiele, and Honglak Lee.
2016. Generative adversarial text to image synthe-
sis. CoRR, abs/1605.05396.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation processing & management, 24(5):513–
523.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual at-
tention. In International Conference on Machine
Learning, pages 2048–2057.

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang,
and Jiebo Luo. 2016. Image captioning with seman-
tic attention. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
4651–4659.

Luda Zhao and Connie Zeng. 2017. Using neural net-
works to predict emoji usage from twitter data.

279

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 280–285
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Identifying Opinion-Topics and Polarity of Parliamentary Debate Motions

Gavin Abercrombie and Riza Batista-Navarro
School of Computer Science

University of Manchester
Kilburn Building, Manchester M13 9PL

gavin.abercrombie@postgrad.manchester.ac.uk
riza.batista@manchester.ac.uk

Abstract

Analysis of the topics mentioned and opinions
expressed in parliamentary debate motions–
or proposals–is difficult for human readers,
but necessary for understanding and automatic
processing of the content of the subsequent
speeches. We present a dataset of debate mo-
tions with pre-existing ‘policy’ labels, and in-
vestigate the utility of these labels for simul-
taneous topic and opinion polarity analysis.
For topic detection, we apply one-versus-the-
rest supervised topic classification, finding that
good performance is achieved in predicting
the policy topics, and that textual features de-
rived from the debate titles associated with the
motions are particularly indicative of motion
topic. We then examine whether the output
could also be used to determine the positions
taken by proposers towards the different poli-
cies by investigating how well humans agree
in interpreting the opinion polarities of the mo-
tions. Finding very high levels of agreement,
we conclude that the policies used can be reli-
able labels for use in these tasks, and that suc-
cessful topic detection can therefore provide
opinion analysis of the motions ‘for free’.

1 Introduction

In the House of Commons of the UK Parlia-
ment, the topics contained in a debate’s motion–
a proposal one Member of Parliament (MP) puts
to the other Members of the House–are the fo-
cus of opinions expressed during all subsequent
speeches. These motions are therefore crucial for
understanding the content of MPs’ speeches and
the opinions they convey.

It is often difficult for people to process debate
motions due to the level of domain-specific knowl-
edge related to the language and workings of Par-
liament they contain. Indeed, these motions are so
hard for ordinary citizens to understand that par-
liamentary monitoring organisations like the Pub-

lic Whip1 and They Work for You2 produce man-
ually written summaries and annotated versions of
them, which are written by crowd-sourced volun-
teers with domain expertise or interest.

Figure 1: Example of a debate motion as presented on
the theyworkforyou.com website. Motions contain in-
formation about the topics of debates, as well as the
proposer’s opinions towards those topics, but can be
difficult for human readers to process.

In conducting sentiment analysis of debate
speeches, it has been observed that, when formu-
lating these motions, the speakers that propose
them themselves express sentiment towards the
topics of the motions, and that these motions can
act as polarity shifters for subsequent speeches in
a debate–that is, depending on the sentiment po-
larity of a motion, the sentiment polarity of lan-
guage used in subsequent speeches may be re-
versed (Abercrombie and Batista-Navarro, 2018).
Identification of both the topics and polarity of
motions is therefore crucial for any further inves-
tigation of debates, and is likely to be a key step
in tasks such as sentiment or stance analysis of de-
bate speeches.
Our contributions We create a dataset of UK par-
liamentary debate motions labelled with both topic

1http://www.publicwhip.org.uk
2https://www.theyworkforyou.com/

280

https://doi.org/10.18653/v1/P17

and opinion polarity. We then investigate the util-
ity of these labels for two tasks:
1) For motion topic detection, we treat the policy
labels as topic classes and assess the performance
of a multilabel classifier in predicting them.
2) We exploit the fact that the policies used as
topic labels inherently incorporate information re-
garding the proposers’ opinions towards those
policies–that is their policy positions: whether
they support or oppose them. We investigate
whether, by correctly identifying a motion’s pol-
icy category, we can also determine its position
towards the policy in question, in effect obtain-
ing opinion analysis of the motions ‘for free’. We
compare the output of this approach to human pro-
duced opinion polarity labels.

2 Background

2.1 Hansard debate transcripts

Debates in the House of Commons are of the fol-
lowing format: An MP proposes a motion, to
which other MPs may respond when invited by the
Speaker (the presiding officer of the chamber), ei-
ther in support of, or opposition to the motion.

A domain with unique characteristics, the
Hansard transcripts lie somewhere between for-
mal written language and transcripts of spoken
dialogue–they are near-verbatim transcriptions of
almost everything that is said in Parliament, al-
though disfluencies are removed and some contex-
tual information (such as the names of the speak-
ers) is added by the parliamentary reporters.

There exist a number of challenges associated
with this domain. Here, analysis is complicated
by the language employed by politicians, who
tend to use: (1) little extreme or overtly polarised
(especially negative) language, and (2) a tactical,
political use of terminology–for example, poli-
cies that may be percieved as negative (such as
cuts to services or tax increases) are generally
not framed using those terms (Abercrombie and
Batista-Navarro, 2018).

Additionally, the format of debates is complex,
with manifold topics discussed by multiple par-
ticipants. Motions may reference various entities,
some of which may be described only within other
debates or documents referred to in the motion (as
in Figure 1).

Finally, the language used is often arcane, with
much procedural terminology. In fact, many mo-
tions consist entirely of such language, giving lit-

tle or no clue as to the topic under discussion (for
further details see Section 3).

However, the existence of motions that have
been manually labelled with ‘policy votes’ indi-
cates that it may be feasible to train machine clas-
sifiers to conduct a form of motion topic detection.
The fact that these labels also encompass policy
positions suggests that they could also be used si-
multaneously for opinion analysis.

2.2 Opinion-topic labelling

Parliamentary monitoring website the Public
Whip maintains a list of debates organised under
‘policies.’3 These are sets ‘of votes that repre-
sent a view on a particular issue’ such as Euro-
pean Union – For and Stop climate change. Under
each of these, members of the public are invited
to submit debates–motions with vote outcomes–
which match these descriptions.

We make use of these categorisations as la-
bels for supervised topic classification. In many
cases, it is not straightforward to determine a mo-
tion’s policy label from the debate title–for exam-
ple, for the policy ‘More Powers for Local Coun-
cils’, debate titles include ‘High Streets’, ‘Hous-
ing’, ‘Fixed Odds Betting Terminals’, ‘Local Bus
Services’. Similarly, the text of a motion alone
does not necessarily reveal its topic, with many
motions consisting purely of procedural language,
such as ‘That the Bill be read a Second time’.
As a result, human readers often require access to
the title, motion, and sometimes other information
found elsewhere in a debate in order to determine
the motion’s polarity.

While the policies represent both a policy topic
and a polarised position towards it, this is a reflec-
tion of the vote outcome of the debate, not nec-
essarily the position expressed in the motion. For
example, if a motion proposed in support of a pol-
icy position is rejected, it will be labelled with a
policy that reflects opposition to that position (see
Figure 2).

In a further layer of complexity, the Pub-
lic Whip also provides motions with a ‘policy
vote’ label–the contributors’ assessment of how
somebody who supports each policy ‘would have
voted’–with the additional tags ‘majority’, ‘minor-
ity’, or ‘abstain’. All in all, this means that each
label has two potential polarity shifters (the vote

3https://www.publicwhip.org.uk/
policies.php

281

Figure 2: Motion from the policy category Asylum Sys-
tem – More strict. The motion, from a debate entitled
‘Humanitarian Crisis in the Mediterranean and Eu-
rope’, opposes the idea of making the asylum system
stricter, but the fact that it was rejected by the House,
explains why it has been given this label.

outcome and the policy vote), which need to be
taken into account if the Public Whip policies are
to be used as labels for opinion polarity analysis.

3 Data

We present a dataset4 of 592 UK parliamentary de-
bate motions proposed in the House of Commons
between 1997 and 2018.5 We match these with the
corresponding policies from the Public Whip for
use as labels for supervised opinion-topic classifi-
cation. We therefore include only those motions,
which have been classified by policy on the Public
Whip website. In order to provide sufficient ex-
amples to train a classifier we use only those de-
bates for which there exist at least 20 examples
per policy label. Because, for example, a debate
may have been categorised with both the specific
policy ‘Higher taxes on alcoholic drinks’, as well
as the more general label ‘Increase VAT’ (Value
Added Tax), motions may have been included in
more than one policy category. The final dataset
includes 13 different policy topic labels, with each
applied to a minimum of 24 and a maximum of
129 motions (µ = 46.6). 14 of the motions have
two labels, while the remaining 578 have just one.

In addition to the Public Whip’s crowdsourced
4Available at https://data.mendeley.com/

datasets/j83yzp7ynz/1
5The transcripts were obtained from https://www.

theyworkforyou.com/pwdata/scrapedxml/
debates/

labels, we provide a second set of manually an-
notated opinion polarity labels. For these, annota-
tion was conducted by the first author of this paper,
who read each example (motion, title, and supple-
mentary information), and applied either positive
or negative labels according to the opinion they
perceived to be expressed towards the policy in
question.

As potential machine classification features, we
include the textual content of the motions as well
as the following metadata information from the
transcripts:

• motion speaker name: Some MPs are more
or less likely to speak on various topics, de-
pending on their interests and position.

• motion party: Party affiliation of speakers is
likely to be an indicator of both interest in
topics and policy positions.

• debate title: Titles are often, but not always,
related to policy vote topics.

• additional information: Information such as
the names of relevant documents or explana-
tions of amendments is often included in the
transcripts, preceding the motion.

Motions in this dataset broadly follow one of
the following three formats:

1. ‘That this House {verb} {argument}; {verb}
{argument}; ... and {verb} {argument}’
–where the motion may contain several
clauses (see examples in Figures 1 and 2).

2. That the {legislation} be now read {a Sec-
ond/the Third} time.
–where {legislation} is a Bill, Paper etc.

3. ...amendment {number}, page {number},
line {number}, leave out ‘{‘phrase’}’ and
insert ‘{phrase}’.

Motions of type 2 and 3 contain very little topic
information, so it may be necessary to make use
of cues in the debate title or additional information
provided in the transcript in order to determine the
topic in such cases.

282

4 Method

Data pre-processing consisted of removal of stop-
words, lowercasing and stemming of textual data,
and binarization of metadata information.

In order to detect the topics of debate motions
we employ a supervised machine classification ap-
proach. For this, we investigate the use of combi-
nations of the following features:
— Textual features: uni-, bi-, and trigrams from
the debate titles, motions and supplementary in-
formation.
— Metadata features: speaker name and party af-
filiation.

As some motions have more than one topic la-
bel, we apply one-vs-the-rest classification on a
randomised 90-10% train-test split of the data. Af-
ter initial experimentation with a range of algo-
rithms, we apply a multilabel implementation of
Support Vector Machine classification.

5 Results

Because we have 13 different classes, and there-
fore highly imbalanced datasets for each round of
one-vs-the-rest classification, we use the F1 score
as a performance metric. Strongest performance
is achieved using n-gram features from both the
debate motions and titles (F1 = 77.0).

0.0 0.2 0.4 0.6 0.8

F1 score

motion
title

motion + title
motion + title + additional

motion + title + premotion + party
motion + title + additional + name

motion + title + additional + party + name
motion + title + name

motion + party
motion + name

motion + party + name
title + party

title + name
title + party + name

Figure 3: F1 score for different combinations of fea-
tures used for topic classification. Highest perfor-
mances (lighter, orange bars) are achieved when textual
features derived from the debate titles are included.

Overall, use of the debate titles, with or without
metadata features, produces the highest F1 scores,
while the addition of other textual features does
not generally lead to improvement, and in some
cases results in losses in performance.

The motions themselves do not appear to pro-
vide particularly useful features for topic detec-

tion. Many consist solely of procedural terms that
give no indication of the topics under discussion–
such as motion types 2 and 3 (described in Section
3). Indeed, only 121 (20.8%) motions are of the
more informative type 1.

Of the metadata features used, speaker name
is more indicative of topic than party affiliation.
This reflects the fact that each party is represented
in most policy categories, but that individual MPs
tend to be strongly associated with just a few, or in
most cases, one single topic related to their partic-
ular role–of 234 MPs in the dataset, 163 (69.7%)
propose motions on only one policy, and only one
is represented in more than four.

Figure 4: F1 scores for classification with different
thresholds (θ) for the minimum number of example
motions. As this threshold is lowered, the number of
topic classes (n) increases and performance decreases.

As the threshold for the minumum number of
examples per policy in the dataset is somewhat ar-
bitary, we also test the system with a range of dif-
ferent thresholds. As the threshold decreases and
the number of different topic classes increases, the
F1 score drops, indicating that it may be challeng-
ing to obtain good results with a larger corpus and
a greater number of topics (Figure 4).

6 Discussion

6.1 Topic detection

Considering the small number of training exam-
ples for each class, reasonable results are obtained
using these labels for topic classification. How-
ever, it should be noted that many of the policy
classes in this dataset feature debates with similar
or even identical titles, in which cases the classifier
is trained and tested on very similar data. While
this is a common scenario in Parliament–the same
pieces of legislation are debated mutiple times and
often revisited year after year–it remains to be seen

283

how well this system would perform on new, com-
pletely unseen examples from future debates.

6.2 Opinion polarity analysis

As Public Whip Policies are created with inbuilt
policy positioning, we examine their use as opin-
ion labels by comparing their polarity with the sec-
ond set of manual annotations. We ignore cases
labelled in the Public Whip with the policy vote
‘abstain’ (as these are assumed not to take a posi-
tion towards the policy in question). We then treat
the ‘majority’ motions as being labelled according
to the vote outcome–those which were ‘approved’
by the vote are positive, while those which were
‘rejected’ are negative–and the ‘minority’ labels
as polarity shifters–that is, the tag ‘minority’ re-
verses the label derived from the outcome, while a
‘majority’ tag preserves it (see Table 1).

Outcome Policy Vote Opinion

Policy
Approved

‘majority’ positive
‘minority’ negative

Rejected
‘majority’ negative
‘minority’ positive

Table 1: Interpretation of Policy labels for opinion
analysis. For each of its policy labels, a motion also
has two tags–outcome and policy vote–that can poten-
tially reverse its opinion polarity.

To examine the utility of the output labels, we
calculate inter-rater agreement between these and
our own annotations, finding Cohen’s kappa (κ)
to be 94.2. This represents ‘near-perfect’ agree-
ment,6 indicating that the Public Whip’s policies
appear to be reliable labels for opinion position
of motions towards the policies in question. Al-
though these results are promising, it should be
noted that the system used to interpret motion
opinion from policies relies on the use of addi-
tional, manually applied policy vote tags. For use
with future, unseen examples that do not have such
tags, it would be necessary to reorganise the way
that the Public Whip’s policies are created, split-
ting those labelled ‘majority’ and ‘minority’ into
different for and against Policy categories.

7 Related work

The legislative debates domain has attracted inter-
est from researchers with a variety of backrounds,
and there is a considerable body of work related

6Interpretation of κ: (Landis and Koch, 1977).

to the analysis of both topics and speaker opinion
contained in parliamentary and congressional de-
bates, although these tasks have been tackled sep-
arately and from differing research perspectives.

For opinion analysis of US congressional de-
bates, the dataset of Thomas et al. (2006) has been
widely used (e.g. Balahur et al., 2009; Burfoot
et al., 2011), and similar experiments have also
been conducted on other legislatures such as the
Dutch parliament (Grijzenhout et al., 2010), and
the UK House of Commons (Salah, 2014).

Others have utilised similar techniques to facil-
itate other tasks. For example, Duthie et al. (2016)
attempt to identify the ‘ethos’ of speakers in the
UK Parliament, while Li et al. (2017) detect polit-
ical ideology in those of the US Congress. Mean-
while, political scientists, such as Proksch and
Slapin (2010) and Lauderdale and Herzog (2016)
have analysed debates to position speakers on a
range of scales related to policy and ideology.

While most work on this domain focuses on
speeches, ignoring the role of motions in shaping
the content of debates, Abercrombie and Batista-
Navarro (2018) include analysis of the sentiment
expressed in debate motions. However, they do
not analyse the topics or identify the targets of sen-
timent in the motions.

Analysis of the topics contained within legisla-
tive debates has primarily focused on topic mod-
elling based on speech content. For example,
van der Zwaan et al. (2016) combine topic and
political position analysis on Dutch parliamentary
speech transcripts, while Zirn (2014) do similar
for the German Bundestag. As far as we are aware,
there exists no previous work on extracting topics
from debate motions.

8 Conclusion

Opinion-topic labels derived from the Public
Whip’s policies can be used to train a classifier to
achieve good performance in classifying the pol-
icy topics of parliamentary debate motions. These
categories, which incorporate inbuilt policy posi-
tion information, also appear to be reliable mark-
ers of opinion polarity, suggesting that we can use
these labels to simultaneously obtain opinion anal-
ysis ‘for free’. However, the ability of this ap-
proach to deal with new examples from future, un-
seen debates is uncertain, and it may be advisable
to explore unsupervised methods of determining
motion opinion-topics.

284

References
Gavin Abercrombie and Riza Batista-Navarro. 2018.

‘Aye’ or ‘no’? Speech-level sentiment analysis of
Hansard UK parliamentary debate transcripts. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Alexandra Balahur, Zornitsa Kozareva, and Andrés
Montoyo. 2009. Determining the polarity and
source of opinions expressed in political debates. In
Computational Linguistics and Intelligent Text Pro-
cessing. CICLing 2009. Lecture Notes in Computer
Science, pages 468–480. Springer.

Clinton Burfoot, Steven Bird, and Timothy Baldwin.
2011. Collective classification of congressional
floor-debate transcripts. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1506–1515. Association for Computational
Linguistics.

Rory Duthie, Katarzyna Budzynska, and Chris Reed.
2016. Mining ethos in political debate. In Compu-
tational Models of Argument: Proceedings from the
Sixth International Conference on Computational
Models of Argument (COMMA), pages 299–310.
IOS Press.

Steven Grijzenhout, Valentin Jijkoun, Maarten Marx,
et al. 2010. Opinion mining in Dutch Hansards. In
Proceedings of the Workshop From Text to Political
Positions, Free University of Amsterdam.

J Richard Landis and Gary G Koch. 1977. The mea-
surement of observer agreement for categorical data.
Biometrics, 4(1):159–174.

Benjamin E Lauderdale and Alexander Herzog.
2016. Measuring political positions from legislative
speech. Political Analysis, 24(3):374–394.

Xilian Li, Wei Chen, Tengjiao Wang, and Weijing
Huang. 2017. Target-specific convolutional bi-
directional lstm neural network for political ideol-
ogy analysis. In Asia-Pacific Web (APWeb) and
Web-Age Information Management (WAIM) Joint
Conference on Web and Big Data, pages 64–72.
Springer.

Sven-Oliver Proksch and Jonathan B Slapin. 2010.
Position taking in European Parliament speeches.
British Journal of Political Science, 40(3):587–611.

Zaher Salah. 2014. Machine learning and sentiment
analysis approaches for the analysis of parliamen-
tary debates. Ph.D. thesis, University of Liverpool.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out
the vote: Determining support or opposition from
congressional floor-debate transcripts. In Proceed-
ings of the 2006 Conference on Empirical Methods
in Natural Language Processing, pages 327–335.
Association for Computational Linguistics.

Cäcilia Zirn. 2014. Analyzing positions and topics
in political discussions of the German Bundestag.
In Proceedings of the ACL 2014 Student Research
Workshop, pages 26–33. Association for Computa-
tional Linguistics.

Janneke M van der Zwaan, Maarten Marx, and Jaap
Kamps. 2016. Validating cross-perspective topic
modeling for extracting political parties’ positions
from parliamentary proceedings. In Proceedings of
ECAI: 22nd European Conference on Artificial In-
telligence, pages 28–36. IOS Press.

285

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 286–291
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Homonym Detection For Humor Recognition In Short Text

Sven van den Beukel
Faculteit der Bèta-wetenschappen
VU Amsterdam, The Netherlands
sbl530@student.vu.nl

Lora Aroyo
Faculteit der Bèta-wetenschappen
VU Amsterdam, The Netherlands

l.m.aroyo@vu.nl

Abstract

In this paper, automatic homophone- and ho-
mograph detection are suggested as new useful
features for humor recognition systems. The
system combines style-features from previous
studies on humor recognition in short text with
ambiguity-based features. The performance
of two potentially useful homograph detec-
tion methods is evaluated using crowdsourced
annotations as ground truth. Adding homo-
phones and homographs as features to the clas-
sifier results in a small but significant improve-
ment over the style-features alone. For the
task of humor recognition, recall appears to be
a more important quality measure than preci-
sion. Although the system was designed for
humor recognition in oneliners, it also per-
forms well at the classification of longer hu-
morous texts.

1 Introduction

Humor has the potential to help form, strengthen
and maintain human relationships and could thus
bring humans and computers closer to each other.
It helps regulate conversations, builds trust be-
tween partners, facilitates self-disclosure and it is
an important factor in social attraction (Nijholt
et al., 2003). Furthermore, humans react in the
same way to computers as they do to other hu-
man beings when it comes to psycho-social phe-
nomena (Morkes et al., 1998; Reeves and Nass,
1996). Experiments have shown that people that
received a joke, perceived the computer they in-
teracted with as more likable and competent, re-
ported greater cooperation and responded more
sociable (Morkes et al., 1998). Automatic humor
recognition could help computers respond more
appropriately, making human-computer interac-
tion feel more natural and enjoyable.

This paper focuses on humor recognition of
written oneliners, which in this study are defined

as short jokes that are at most 140 characters
long. The popularity of Twitter has likely caused
an increase in availability of both humorous and
non-humorous texts shorter than 140 tokens. The
choice for oneliners increases difficulty of humor
recognition as they contain less contextual infor-
mation than longer humorous texts. The built clas-
sifier is also tested on humor recognition in larger
texts. In this study, features that capture text style
are selected from the State-of-the-Art on humor
recognition in oneliners (Mihalcea and Strappar-
ava, 2005), cartoon captions (Radev et al., 2015)
and tweets (Zhang and Liu, 2014) and are com-
bined with newly suggested ambiguity features.
When referring to ”The State-of-the-Art”, we re-
fer to Mihalcea and Strapparava (2005). This al-
lows us to evaluate the usefulness of the style-
features for application on humor recognition in
oneliners (rather than cartoons or tweets), as well
as the potential of automatic homophone and ho-
mograph detection as signalers of ambiguity, and
subsequently humor.

The release of the datasets and code that were
used (Appendix A) are also a valuable contribu-
tion, since it allows others to replicate the exper-
iments and to explore further directions. The hu-
morous oneliners and Reuters datasets themselves
are not publicly released to prevent potential copy-
right infringements, but these can be requested
from the authors. Two methods for detecting ho-
mophones and homographs are designed to detect
ambiguity, after which the performance of the pro-
posed methods is evaluated. In the remainder of
this document these features might be referred to
as “homonyms”, the category of words to which
homographs and homophones belong. The de-
ployment of content-based features (e.g. LSA) are
outside the scope of this study, despite their previ-
ously reported usefulness (Mihalcea and Strappa-
rava, 2005; Sjöbergh and Araki, 2007). The per-

286

https://doi.org/10.18653/v1/P17

formance achieved through content-based features
might be unsustainable over time due to the chang-
ing nature of language. Style- and ambiguity-
features have the potential to make classification
results more sustainable. At the end of this paper,
four research questions are answered.

1. How should high quality data for training a
humor recognition system be gathered?

2. Which automatic homograph recognition
method adds the highest information gain for
humor recognition in oneliners?

3. Does the presence of automatically extracted
homophones and homographs improve the
accuracy of humor recognition in oneliners?

4. Can the proposed classification framework be
used for recognizing humor in longer texts?

2 Related work

First of all, in this study the incongruity-resolution
theory of humor is used as a frame for selecting
useful stylistic features. It is argued to be the most
influential theory used to study humor and laugh-
ter (Mulder and Nijholt, 2002). When one exam-
ines jokes according to the incongruity frame, two
concepts within the joke are examined through one
frame. When the recipient of the joke notices that
the frame actually only applies to one of the ob-
jects, the difference between the two objects and
the frame becomes apparent (incongruity). The
humorous situation occurs when the recipient rec-
ognizes the congruous resolution of the apparent
incongruity. This theory fits this study best, since
it explains the structure of a joke. First there is
an incongruity, then a congruous resolution is pro-
vided (Gruner, 2000).

2.1 Stylistic features
The stylistic features used in the State-of-the-Art
are alliteration, antonymy and adult slang (Mi-
halcea and Strapparava, 2005). In this study, the
features capturing alliteration and rhyme are sep-
arated, which was found to be useful by Zhang
and Liu (2014). The reason these stylistic fea-
tures are informative, could be that oneliners use
rhyme or alliteration to create expectation and -
if humorous - to break it. The expectation cre-
ates incongruity, which is resolved through break-
ing it. Secondly, negations (Mihalcea and Pul-
man, 2007) and antonyms (Mihalcea and Strappar-

ava, 2005) signal incongruity by having contradic-
tions within a sentence. Thirdly, humorous one-
liners were found to contain adult slang. Whereas
the State-of-the-Art represented adult slang using
sex-related words, insults and vulgar words are in-
cluded in this study as well. Moreover, researchers
have reported that negative and positive sentiment
can help distinguish humorous from less humor-
ous samples (Mihalcea and Pulman, 2007; Radev
et al., 2015). Furthermore, humorous texts gen-
erally have higher sentiment polarity than non-
humorous texts, which was found useful for clas-
sifying humorous tweets (Zhang and Liu, 2014).
Additionally, the latter study found that the ratios
of several Part of Speech tags are informative.

2.2 Ambiguity detection

Some types of humor (e.g. wordplay), owe their
funniness directly to the presence of ambiguity
(Taylor and Mazlack, 2004). In order to iden-
tify wordplays, the computer has to combine gen-
eral knowledge of the world and of pronunciation.
Wordplays surprise the recipient of the joke by
breaking an expectation. This can be achieved
through homographs (e.g. “Cliford: The Post-
master General will be making the toast. Woody:
Wow, imagine a person like that helping out in the
kitchen!” (Taylor and Mazlack, 2004), in which
toast is written the same yet has multiple mean-
ings). Another possibility is the use of homo-
phones, which are words that sound alike yet have
different meanings (e.g. “What is everybody’s fa-
vorite aspect of mathematics? Knot theory, that’s
for sure.”, in which “knot” and “not” sound alike).
Homophones are not necessarily spelled the same.
Example previous attempts at ambiguity detection
include a count of the number of senses available
for a word (Barbieri and Saggion, 2014; Sjöbergh
and Araki, 2007) and the number of parses pos-
sible for a sentence (Sjöbergh and Araki, 2007).
Since ambiguity is such a complex problem to
solve, there is room for improvement. Kao et al.
(2015) have recently shown that homophones can
be humorous, but only if both interpretations of
the homophone are supported by the other words
in the sentence. The more distinct the support
for the multiple interpretations, the bigger the
incongruity-resolution and thus the more humor-
ous the oneliner is perceived. A similar observa-
tion has been reported for homographs (McHugh
and Buchanan, 2016). However, to our knowl-

287

edge no automatic homophone- or homograph-
detection methods exist yet.

3 Approach

All sentences are at most 140 characters long, to
prevent classification based on sentence length. In
this study we used one humorous dataset, two non-
humorous datasets that are stylistically similar to
it (Reuters news headlines and English proverbs),
and a third non-humorous dataset that has content
comparable to the humorous dataset (wikipedia
sentences).

3.1 Data gathering

Reuters news headlines were selected as they share
the properties with humorous oneliners of being
concise sentences that attract the attention of the
reader to transfer a message. The second stylis-
tically similar, non-humorous dataset consists of
English proverbs. Proverbs are short texts that
transmit facts or experiences of everyday life that
many people consider to be true. Finally, the neg-
ative set containing short wikipedia sentences at-
tempts to represent real-world scenarios. This set
replaces the British National Corpus or the Open
Mind Common Sense corpus used in the State-of-
the-Art, which we were unable to collect.

Humorous oneliners are collected with a web-
scraper designed for five manually selected web-
sites dedicated to jokes1. The resulting dataset
contains 12,046 oneliners and 5,606 jokes longer
than 140 characters.

News Headlines are scraped from the website
of publishing agency Reuters and were retrieved
on August 15th, 2017. Headlines from multiple
categories (“Business”, “Politics”, “World” and
“Technology”) were extracted to prevent topic-
based classification. The full dataset contains
13,798 headlines.

English proverbs were collected manually 2,
and due to scarcity this set is limited to 1,019 sam-
ples. The classifiers trained with proverbs as non-
humorous samples, use an equal amount of hu-
morous samples to prevent overfitting.

Wikipedia sentences were retrieved from a
dataset provided in a study on text simplifica-
tion (Kauchak, 2013), of which 12,046 items are
selected based on size and content similarity (TF-

1funnyshortjokes.com, goodriddlesnow.com, laughfac-
tory.com, onelinefun.com and unijokes.com

2www.english-for-students.com and www.citehr.com

IDF). This dataset is expected to be the hardest to
classify due to the similarity in content with the
humorous oneliners.

3.2 Detecting style and ambiguity

This paragraph lists the approaches for extracting
the style- and ambiguity features. Since the ap-
proaches for extracting homonyms are designed
from the ground up, they require evaluation.

Alliteration & Rhyme presence is measured
through the CMUDict3 phoneme dictionary. For
alliterations, n-grams are considered an allitera-
tion chain only if the first phoneme of a word is
the same as the first one of one of the two next
words. Rhymes are identified the same way, but
consider the last phonemes rather than the first
ones. For example, goal and Glasgow alliterate,
and score rhymes with more. For both alliteration
and rhyme, one feature is created containing the
number of chains in a sentence, and a second con-
sisting of the length of the longest chain in the sen-
tence, divided by the number of words.

Sentiment polarity is the total sentiment score
of a sentence, calculated using the Senticnet 4
package for Python (Cambria et al., 2016). The
sentiment intensity scores ranging from very neg-
ative (-1) to very positive (+1) are used to calculate
the total sentiment polarity of a sentence. A sen-
tence that has both positive and negative parts in it,
might result in a neutral score. In order to account
for this, a second feature is introduced using only
natural numbers. For example, a oneliner scoring
-2 and +2 sentiment scores, is represented in the
second feature with a value of 4.

Part of Speech-tag ratios are calculated using
Stanford CoreNLP to tag sentences with Treebank
pos-tags (Manning et al., 2014) and dividing the
number of occurrences for each POS-category by
the number of words in a sentence. The POS-tag
categories included are pronouns, verbs, common
nouns, proper nouns and modifiers.

Antonymy presence is evaluated using the
WordNet “Antonymy”-relationship. Since not all
antonyms are listed (Mihalcea and Strapparava,
2005), this set is expanded by also checking
whether the antonyms of synonyms of any adjec-
tives are present.

Adult Slang is identified in text, by putting all
synsets that are hyponyms of the WordNet synsets
‘sexuality’ and ‘sexual activity’ up to a depth of

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict

288

three layers of hyponyms in a lexicon, and com-
paring the words in the sentence to it. Moreover,
the definitions of each remaining word are scanned
for phrases that signal adult slang, such as ‘offen-
sive word’, ‘obscene word’ and ‘vulgar term’.

Negations are identified by checking whether
the word “not” or contraction “..n’t” occurs.

Homophones are recognized using CMUDict
to find words that have similar pronunciations. For
each word in a sentence, another word is sought
with the same pronunciation. A small experiment
showed that this approach detects over 83% of
the homephones found on an expert-created list4,
while capturing more than are on the list.

Homographs are identified using two methods.
The first method matches words from sentences
to a list of 160 common homographs retrieved
from Wikipedia. The second method uses Word-
Net to extract the definitions of all senses found
for a word and only keeps those definitions with no
overlap in used vocabulary. A word is considered
a homograph if more than two definitions remain.

3.3 Crowdsourcing homograph annotation

The performance of the two proposed homograph
detection algorithms is measured by comparing
the accuracy on a dataset containing 301 sentences
with annotated homographs. The users of crowd-
sourcing platform Crowdflower5 were presented
with a sentence, and a list of answer options on
clickable buttons. The 301 annotated sentences
were randomly selected from the oneliners, reuters
and wiki datasets and excluded for training.

For assessment of annotation quality, three
metrics from the CrowdTruth approach were
used (Dumitrache et al., 2015). This approach
helps to extract more information from annota-
tions by taking both annotator agreement and -
disagreement into account, requiring less annota-
tions for high quality results. The formulas for the
used metrics can be found on GitHub6.

First of all, the Media Unit Quality score (UQS)
captures the level of agreement in annotation of a
media unit. This metric helps identify ambiguity
in the task of annotating specific sentences. Sen-
tences that are hard to annotate, have a low UQS.

4www.singularis.ltd.uk/bifroest/misc/homophones-
list.html

5www.elite.crowdflower.com
6https://github.com/CrowdTruth/CrowdTruth-

core/blob/master/tutorial/ CrowdTruth%20metrics
%202.0%20documentation.ipynb

In this particular annotation task, this means that
sentences with a low UQS likely contain homo-
graphs that are difficult to recognize or that are
debatable. Secondly, the Worker Quality Score
(WQS) assigns a score to each worker based on its
annotation agreement with others that worked on
the same sentences (Worker-Worker Agreement)
and a workers’ disagreement compared to the
crowd, on a sentence basis. By using the weighted
average, poor annotations of sentences that were
found to be difficult to classify, have a lower im-
pact on the final WQS of a worker. Finally, the
UQS and WQS are combined into a weighted
annotation score (Unit Annotation Score), giving
better annotators more influence on the final anno-
tation score of a sentence. The results are reported
in sections 4.1 and 4.2.

3.4 Machine Learning algorithms

Three machine learning algorithms are deployed
in this study, consisting of one Naive Bayes
(Bernoulli NB) implementation and two Support
Vector Machines (SVMs) with a linear and RBF
kernel respectively. The main advantage NB clas-
sifiers have over their more sophisticated counter-
parts are its speed and reduced complexity. On
the other hand, SVMs (Burges et al., 1996) out-
performed other commonly used algorithms such
as Naive Bayes, K-NN and C4.5 Decision Tree
learners at the widely used benchmark task of text
categorization of Reuters data (Joachims, 1998).

3.5 Experimental Setting

In the first experiment, all the style-features are
used for training the classifiers. The classifier per-
formance is reported by its average accuracy over
30 runs using 10-fold cross-validation, to mini-
mize variability in results. This is repeated once
with homographs extracted using the list-approach
and once with the WordNet approach. Compari-
son with the State-of-the-Art is not useful, since
different datasets were used.

4 Results

4.1 Homograph annotation

A total of 221 out of 301 sentences have a UQS
below 0.5, meaning they were difficult to anno-
tate. Since only people from natively English-
speaking countries were invited, homograph anno-
tation seems to be a difficult task for humans. The
WQS are also low, with the best worker reaching

289

a score of 0.7 and 70 workers achieving a score
lower than 0.3. The annotators achieving a WQS
lower than 0.1 are most likely spam-workers. For
the Media Unit Annotation Score, we find 248
words with a score higher than 0.5 that are thus
labeled a homograph.

4.2 Homograph recognition performance

The performance results of the two homograph
recognition methods is reported in Table 1. The
acceptance threshold of 0.5 indicates that only
words with a weighted annotation value higher
than 0.5 are labeled as homographs (weighted ma-
jority vote). The fixed list of homographs per-
forms rather well on precision and accuracy, as the
data contains much more non-homographs than it
does homographs. The poor recall however, sug-
gests that the list contains an insufficient number
of homographs. Although its precision and accu-
racy are lower, the WordNet approach results in a
higher recall and f-measure, but suffers from a low
precision due to its high number of false positives.

Table 1: Homograph recognition results
Homograph list WordNet

Precision 82.6 35.3
Recall 8.2 82.5
F-Measure 14.9 49.5
Accuracy 85.9 74.6

4.3 Experiments

The results for the experiments are reported in Ta-
ble 2. The table shows, per column and in this or-
der, the results using 14) only style-features, 15)
features in 14 + homophones, 16L) features in
15 + list-matched homographs and finally 16W)
features in 15 + the WordNet-homograhps. Bold
results have a significantly higher mean accuracy
when compared with featureset 14 with probabil-
ity P ≤ 0.025. The results of the system trained
on oneliners an short wikipedia sentences and
tested on humorous- and Wikipedia-texts longer
than 140 characters, achieved a mean accuracy of
87.14%. All the results reported in Table 2 were
achieved using the overall best performing classi-
fication algorithm (Linear SVM).

5 Discussion

The first research question concerned how high-
quality data for training a humor recognition sys-

Table 2: Mean accuracy for each experiment
Featureset 14 15 16L 16W
Reuters 91.16% 91.11% 91.10% 91.45%
Wikipedia 69.66% 69.74% 69.66% 69.94%
Proverbs 75.78% 75.98% 75.97% 76.91%

tem should be gathered. Designing webscrapers
targeting dedicated websites resulted in a dataset
containing much less noise than the seedlist-
webscraping approach reported in the State-of-
the-Art (+-2% vs. +- 9% in a random 200 sen-
tence sample) (Mihalcea and Strapparava, 2005).
The second goal was to identify the best automatic
homograph recognition method. For the task of
humor recognition, the WordNet approach signif-
icantly outperforms the fixed list approach, which
could suggest that recall is more important than
precision for this task. The third goal was to eval-
uate whether automatically extracted homophones
and homographs improve the accuracy of humor
recognition in oneliners. Significant improvement
in classification accuracy was found for homo-
graphs extracted through the WordNet approach,
but not for homophones. Finally, the classifier
trained on humorous and non-humorous onelin-
ers performed well on humor classification in texts
longer than 140 tokens (87.14% accuracy), sug-
gesting the features are robust to variations in sen-
tence length.

In future work, it might be interesting to find out
through feature selection which features are most
informative. Although the homophone detection
seems to work well, homophone presence in a sen-
tence does not seem to hold significant predictive
value without a measure of strength of support for
different senses of the homophone in question.

6 Conclusions

This paper presents a method (and code, see Ap-
pendix A) for gathering high-quality training data,
a homograph recognition evaluation set and a set
of features that can be used alongside content-
features to achieve a robust high classification per-
formance. Homographs help detect ambiguity in
sentences, which in turn was found to slightly
increase classification performance. Homophone
detection is possible, but does not yet add signifi-
cant predictive value in its current implementation.
A humor recognition classifier trained on onelin-
ers can also accurately label longer texts.

290

References
Francesco Barbieri and Horacio Saggion. 2014. Auto-

matic detection of irony and humour in twitter. In
ICCC, pages 155–162.

Christopher JC Burges et al. 1996. Simplified support
vector decision rules. In ICML, volume 96, pages
71–77. Citeseer.

Erik Cambria, Soujanya Poria, Rajiv Bajpai, and Bjo-
ern Schuller. 2016. Senticnet 4: A semantic re-
source for sentiment analysis based on conceptual
primitives. In Proceedings of COLING 2016, the
26th International Conference on Computational
Linguistics: Technical Papers, pages 2666–2677.
The COLING 2016 Organizing Committee.

Anca Dumitrache, Lora Aroyo, and Chris Welty.
2015. Achieving expert-level annotation quality
with crowdtruth. In Proc. of BDM2I Workshop,
ISWC.

Charles R Gruner. 2000. The game of humor: A com-
prehensive theory of why we laugh. Transaction
publishers.

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In European conference on machine
learning, pages 137–142. Springer.

Justine T Kao, Roger Levy, and Noah D Goodman.
2015. A computational model of linguistic humor
in puns. Cognitive science.

David Kauchak. 2013. Improving text simplification
language modeling using unsimplified text data. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1537–1546. Association for
Computational Linguistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60. As-
sociation for Computational Linguistics.

Tara McHugh and Lori Buchanan. 2016. Pun process-
ing from a psycholinguistic perspective: Introducing
the model of psycholinguistic hemispheric incon-
gruity laughter (m. phil). Laterality: Asymmetries
of Body, Brain and Cognition, 21(4-6):455–483.

Rada Mihalcea and Stephen Pulman. 2007. Charac-
terizing humour: An exploration of features in hu-
morous texts. In International Conference on Intel-
ligent Text Processing and Computational Linguis-
tics, pages 337–347. Springer.

Rada Mihalcea and Carlo Strapparava. 2005. Making
computers laugh: Investigations in automatic humor
recognition. In Proceedings of Human Language

Technology Conference and Conference on Empir-
ical Methods in Natural Language Processing.

John Morkes, Hadyn K Kernal, and Clifford Nass.
1998. Humor in task-oriented computer-mediated
communication and human-computer interaction. In
CHI 98 Cconference Summary on Human Factors in
Computing Systems, pages 215–216. ACM.

Matthijs P Mulder and Antinus Nijholt. 2002. Humour
research: State of art.

Anton Nijholt, Oliviero Stock, Alan Dix, and John
Morkes. 2003. Humor modeling in the interface.
In CHI’03 Extended Abstracts on Human Factors in
Computing Systems, pages 1050–1051. ACM.

Dragomir Radev, Amanda Stent, Joel Tetreault, Aa-
sish Pappu, Aikaterini Iliakopoulou, Agustin Chan-
freau, Paloma de Juan, Jordi Vallmitjana, Alejandro
Jaimes, Rahul Jha, et al. 2015. Humor in collective
discourse: Unsupervised funniness detection in the
new yorker cartoon caption contest. arXiv preprint
arXiv:1506.08126.

Byron Reeves and Clifford Nass. 1996. How people
treat computers, television, and new media like real
people and places. CSLI Publications and Cam-
bridge university press.

Jonas Sjöbergh and Kenji Araki. 2007. Recognizing
humor without recognizing meaning. In Proceed-
ings of the 7th International Workshop on Fuzzy
Logic and Applications: Applications of Fuzzy Sets
Theory, WILF ’07, pages 469–476, Berlin, Heidel-
berg. Springer-Verlag.

Julia M Taylor and Lawrence J Mazlack. 2004. Com-
putationally recognizing wordplay in jokes. In Pro-
ceedings of the Annual Meeting of the Cognitive Sci-
ence Society, volume 26.

Renxian Zhang and Naishi Liu. 2014. Recognizing hu-
mor on twitter. In Proceedings of the 23rd ACM In-
ternational Conference on Conference on Informa-
tion and Knowledge Management, CIKM ’14, pages
889–898, New York, NY, USA. ACM.

Appendix A. Github project depository

The code and datasets are available here:
https://github.com/svenvdbeukel/Short-text-
corpus-with-focus-on-humor-detection

Appendix B. Link to supplementary
information

Supplementary information useful for re-
production of the described experiments
can be found by copying the following link:
http://bit.ly/2MuVQg1Humor

291

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 292–298
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Emo2Vec: Learning Generalized Emotion Representation by Multi-task
Training

Peng Xu, Andrea Madotto, Chien-Sheng Wu, Ji Ho Park and Pascale Fung
Center for Artificial Intelligence Research (CAiRE)

The Hong Kong University of Science and Technology, Clear Water Bay
[pxuab,eeandreamad,cwuak,jhpark,pascale]@ust.hk

Abstract

In this paper, we propose Emo2Vec which en-
codes emotional semantics into vectors. We
train Emo2Vec by multi-task learning six dif-
ferent emotion-related tasks, including emo-
tion/sentiment analysis, sarcasm classification,
stress detection, abusive language classifica-
tion, insult detection, and personality recog-
nition. Our evaluation of Emo2Vec shows
that it outperforms existing affect-related rep-
resentations, such as Sentiment-Specific Word
Embedding and DeepMoji embeddings with
much smaller training corpora. When concate-
nated with GloVe, Emo2Vec achieves compet-
itive performances to state-of-the-art results on
several tasks using a simple logistic regression
classifier.

1 Introduction

Recent work on word representation has been fo-
cusing on embedding syntactic and semantic in-
formation into fixed-sized vectors (Mikolov et al.,
2013; Pennington et al., 2014) based on the distri-
butional hypothesis, and have proven to be useful
in many natural language tasks (Collobert et al.,
2011). However, despite the rising popularity re-
garding the use of word embeddings, they of-
ten fail to capture the emotional semantics the
words convey. For example, the GloVe vector cap-
tures the semantic meaning of “headache”, as it is
closer to words of ill symptoms like “fever” and
“toothache”, but misses the emotional association
that the word carries. The word “headache” in the
sentence “You are giving me a headache” does not
really mean that the speaker will get a headache,
but instead implies the negative emotion of the
speaker.

To include affective information into the word
representation, Tang et al. (2016) proposed
Sentiment-Specific Word Embeddings (SSWE)
which encodes both positive/negative sentiment

and syntactic contextual information in a vec-
tor space. This work demonstrates the effective-
ness of incorporating sentiment labels in a word-
level information for sentiment-related tasks com-
pared to other word embeddings. However, they
only focus on binary labels, which weakens their
generalization ability on other affect tasks. Yu
et al. (2017) instead uses emotion lexicons to tune
the vector space, which gives them better results.
Nevertheless, this method requires human-labeled
lexicons and cannot scale to large amounts of data.
Felbo et al. (2017) achieves good results on affect
tasks by training a two-layer bidirectional Long
Short-Term Memory (bi-LSTM) model, named
DeepMoji, to predict emoji of the input docu-
ment using a huge dataset of 1.2 billions of tweets.
However, collecting billions of tweets is expensive
and time consuming for researchers.

Furthermore, most works in sentiment and emo-
tion analysis have focused solely on a single task.
Nevertheless, as emotion is a complex concept, we
believe that all emotion involving situations such
as stress, hate speech, sarcasm, and insult, should
be included for a deeper understanding of emo-
tion. Thus, one way to achieve this is through a
multi-task training framework, as we present here.
Contributions: 1) We propose Emo2Vec 1 which
are word-level representations that encode emo-
tional semantics into fixed-sized, real-valued vec-
tors. 2) We propose to learn Emo2Vec with a
multi-task learning framework by including six
different emotion-related tasks. 3) Compared
to existing affect-related embeddings, Emo2Vec
achieves better results on more than ten datasets
with much less training data (1.9M vs 1.2B doc-
uments). Furthermore, with a simple logistic re-
gression classifier, Emo2Vec reaches competitive
performance to state-of-the-art results on several

1https://github.com/pxuab/emo2vec wassa paper

292

https://doi.org/10.18653/v1/P17

Figure 1: Multi-task learning diagram

datasets when combined with GloVe.

2 Methodology

We train Emo2Vec using an end-to-end multi-task
learning framework with one larger dataset and
several small task-specific datasets. The model is
divided into two parts: a shared embedding layer
(i.e. Emo2Vec), and task-specific classifiers. All
datasets share the same word-level representations
(i.e. Emo2Vec), thus forcing the model to encode
shared knowledge into a single matrix. For the
larger dataset, a Convolutional Neural Network
(CNN) (LeCun et al., 1998) model is used to cap-
ture complex linguistic features present in the cor-
pus. On the other hand, the classifier of each small
dataset is a simple logistic regression.

Notation: We define D = {dL, d1, d2, · · · , dn}
as the set of n + 1 datasets, where dL is the larger
dataset and the other di are the small datasets. We
denote a sentence Xi with i ∈ {L, 1, 2, · · · , n} as
[wi,1, wi,2, · · · , wi,Ni] where wi,j is the j-th word
in the i-th sample and Ni is the number of words.
All the models’ parameters are defined as MΦ =
{T, CNN, LRϕ1 , . . . , LRϕn}, where T ∈ R|V |×k

is the Emo2Vec matrix, |V | is the vocabulary size
and k is the embedding dimension, CNN is a Con-
volutional Neural Network model and LRϕi

for
i ∈ [1, n] is a logistic regression classifier param-
eterized by ϕi which is specific for the dataset di.
We denote the embedded representation of a word
wi,j with ewi,j .

2.1 CNN model
The CNN architecture used is illustrated in Fig-
ure 2. Firstly, 1-D convolution is used to extract n-

Figure 2: Structure of CNN model

gram features from the input embeddings. Specif-
ically, the j-th filter denoted by Fj , is convolved
with embeddings of words in a sliding window of
size kj , giving a feature value cj,t. J filters are
learned trough this process:

cj,t = Fj ∗ ewL,t:t+kj−1
+ bj

where ∗ is the 1-D convolution operation. This is
followed by a layer of ReLU activation (Nair and
Hinton, 2010) for non-linearity. After that, we add
a max-pooling layer of pooling size M − Fj +
1 along the time dimension to force the network
to find the most relevant feature for predicting yL

correctly. The result of this series of operations is
a scalar output of fmj . All fmj for j ∈ [1, J]
are then concatenated together to produce a vector
representation fm1:J of the whole input sentence.

fmj = Max Pooling (ReLU (cj,t))

To make the final classification, the vector
fmi,1:J is projected to the target label space by
adding another fully connected layer (i.e. parame-
terized by W and b), with a softmax activation.

ŷL = Softmax(W · [fm1:J] + b)

2.2 Multi-task learning
Since collecting a huge amount of labeled datasets
is expensive, we collect two types of corpora,
one larger dataset (millions of training samples)
and a set of small datasets (thousands of train-
ing samples each) with accurate labels. For small
datasets, sentiment analysis, emotion classifica-
tion, sarcasm detection, abusive language classi-
fication, stress detection, insult classification and

293

personality recognition are included. The reason
why we include many datasets is to 1) leverage dif-
ferent aspects of words emotion knowledge, which
may not be present in single domain dataset; 2)
create a more general embedding emotional space
that can generalize well across different tasks and
domains. To avoid over-fitting, L2 regularization
penalty is added from the weights of all logistic
regression classifiers ϕi for i ∈ [1, n]. Hence, we
jointly optimize the following loss function:

L(MΦ) =
1

n

n∑

j=1

Lj + λ
n∑

j=1

∥LRϕj
∥2

Where Lj is the negative log likelihood (NLL) be-
tween ŷj and yj , and λ an hyper-parameter for the
regularization terms.

3 Experimental Setup

3.1 Dataset

Larger dataset
We collect a larger dataset from Twitter with hash-
tags as distant supervision. Such distant super-
vision method using hashtags has already been
proved to provide reasonably relevant emotion la-
bels by previous works (Wang et al., 2012).We
construct our hashtag corpus from Wang et al.
(2012), and Sintsova et al. (2017) 2. More tweets
between January and October 2017 are addition-
ally added using the Twitter Firehose API by us-
ing the hashtags based on the hierarchy mentioned
in Shaver et al. (1987). The hashtags are trans-
formed into corresponding emotion labels of Joy,
Sadness, Anger, and Fear. When extending the
dataset, we only use documents with emotional
hashtags at the end and filter out any documents
with URLs, quotations, or less than five words as
Wang et al. (2012) did. The total number of doc-
uments is about 1.9 million with four classes: joy
(36.5%), sadness (33.8%), anger (23.5%), and fear
(6%). The dataset is randomly split into a train
(70%), validation (15%), and test set (15%) for ex-
periments.

Small datasets
For sentiment, we include 8 datasets. (1,2) SST-
fine and SST-binary (Socher et al., 2013) (3)
OpeNER (Agerri et al., 2013) (4,5) tube auto

2http://hci.epfl.ch/sharing-emotion-lexicons-and-
data#emo-hash-data

and tube tablet (Uryupina et al., 2014) (6) Se-
mEval (Hltcoe, 2013) (7,8) SS-Twitter and SS-
Youtube (Thelwall et al., 2010). For emotion
tasks, we include 4 datasets, (1) ISEAR (Wallbott
and Scherer, 1986) (2) WASSA (Mohammad and
Bravo-Marquez, 2017) (3) Olympic Sintsova et al.
(2013) (4) SE0714 (Staiano and Guerini, 2014).
We further include 6 other affect-related datasets.
(1,2) SCv1-GEN and SCv2-GEN for sarcasm de-
tection, (3) Stress (Winata et al., 2018), (4) Abu-
sive (Waseem, 2016; Waseem and Hovy, 2016).
(5) Personality (Pennebaker and King, 1999) (6)
Insult. The detailed statistics can be found in Table
4 and Table 5 in Supplemental Material.

3.2 Pre-training Emo2Vec

Emo2Vec embedding matrix and the CNN model
are pre-trained using hashtag corpus alone. Pa-
rameters of T and CNN are randomly initialized
and Adam is used for optimization. Best param-
eter settings are tuned on the validation set. For
the best model, we use the batch size of 16, em-
bedding size of 100, 1024 filters and filter sizes
are 1,3,5 and 7 respectively. We keep the trained
embedding and rename it as CNN embedding for
comparison. 100-dim for Emo2Vec is used in all
experiments.

3.3 Multi-task training

We tune our parameters of learning rate, L2 reg-
ularization, whether to pre-train our model and
batch size with the average accuracy of the devel-
opment set of all datasets. We early stop our model
when the averaged dev accuracy stop increasing.
Our best model uses learning rate of 0.001, L2
regularization of 1.0, batch size of 32. We save
the best model and take the embedding layer as
Emo2Vec vectors.

3.4 Evaluation

Baselines: We use 50-dimension Sentiment-
specific Word Embedding (SSWE) (Tang et al.,
2016) as our baseline, which is an embedding
model trained with 10 millions of tweets by en-
coding both semantic and sentiment information
into vectors. Also, lots of work about the detec-
tion/classification in sentiment analysis implicitly
encodes emotion inside the word vectors. For ex-
ample, Felbo et al. (2017) trains a two-layer bidi-
rectional Long Short-Term Memory (bi-LSTM)
model, named DeepMoji, to predict emoji of the

294

model SS-T SS-Y SS-binary SS-fine OpeNER tube auto tube tablet SemEval average
SSWE 0.815 0.835 0.698 0.365 0.701 0.620 0.654 0.629 0.665

DeepMoji embedding 0.788 0.841 0.751 0.369 0.754 0.628 0.675 0.676 0.685
CNN embedding 0.803 0.862 0.734 0.369 0.713 0.605 0.667 0.622 0.672

Emo2Vec 0.801 0.859 0.812 0.416 0.744 0.629 0.688 0.638 0.698

Table 1: Comparison between different emotion representations on sentiment datasets, all results are reported with
accuracy. The best results are highlighted with bold fonts. Emo2Vec achieves best average score.

model ISEAR WASSA SE0714 Olympic Stress SCv1-GEN SCv2-GEN Insult Abusive Personality average
SSWE 0.327 0.466 0.217 0.508 0.704 0.660 0.678 0.559 0.539 0.674 0.533

DeepMoji embedding 0.379 0.532 0.286 0.485 0.739 0.658 0.685 0.666 0.586 0.678 0.569
CNN embedding 0.384 0.549 0.259 0.480 0.744 0.657 0.707 0.623 0.560 0.676 0.564

Emo2Vec 0.372 0.559 0.323 0.506 0.744 0.674 0.710 0.647 0.588 0.675 0.580

Table 2: Comparison between different representations on other affect related datasets. All results are reported
with f1 score. The best results are highlighted with bold fonts. On average, Emo2Vec achieves best f1 score.

input document using a huge dataset of 1.2 bil-
lion tweets. Their embedding layer is implicitly
encoded with emotion knowledge. Thus, we use
the DeepMoji embedding, the 256-dimension em-
bedding layer of DeepMoji as another baseline.
Evaluation method: To make a fair comparison
with other baseline representations, we first take
one dataset di out from n small datasets as the test
set. The remaining n − 1 small datasets and the
larger dataset are used to train Emo2Vec through
multi-task learning. We take the trained Emo2Vec
as the feature for di and train a logistic regression
on di to compare the performance with other base-
line representations. The procedure is repeated n
times to see the generalization ability on differ-
ent datasets. We release Emo2Vec trained on all
datasets. For sentiment tasks, accuracy score is
reported. For other tasks, if it is binary task, we
report f1 score for the positive class. If it is multi-
class classification tasks, we make it binary clas-
sification problem for each class and report aver-
aged f1 score.

4 Results

We compare our Emo2Vec with SSWE, CNN em-
bedding, DeepMoji embedding and state-of-the-
art(SOTA) results on 18 different datasets. The
results can be found in Table 1 and Table 2.
Compared with CNN embedding: Emo2Vec
works better than CNN embedding on 14/18
datasets, giving 2.6% absolute accuracy improve-
ment for the sentiment task and 1.6% absolute f1-
score improvement on the other tasks. It shows
multi-task training helps to create better general-
ized word emotion representations than just using
a single task.
Compared with SSWE: Emo2Vec works much
better on all datasets except SS-T datasets, which
gives 3.3% accuracy improvement and 4.7% f1

score improvement respectively on sentiment and
other tasks. This is because SSWE is trained on
10M binary classification task on twitter which
then over-fits on dataset SS-T, and generalizes
poorly to other tasks.
Compared with DeepMoji embedding:
Emo2Vec outperforms DeepMoji on 13/18
datasets despite the much smaller size of our
training corpus (1.9M documents for us vs 1.2B
documents for DeepMoji). On average, it gives
1.3% improvement in accuracy for the sentiment
task and 1.1% improvement of f1-score on the
other tasks.
Compared with SOTA results: We further com-
pare the performance of Emo2Vec vectors with
SOTA results on 14 datasets where the same split
is shared. Since Emo2Vec is not trained by pre-
dicting contextual words, it is weak on capturing
synthetic and semantic meaning. Thus, we con-
catenate Emo2Vec with the pre-trained GloVe vec-
tors, which are trained on Twitter and Wikepedia
3. Then, the concatenated vector of GloVe and
Emo2Vec, the concatenated vector of GloVe and
DeepMoji embeddings and GloVe are included for
comparison with SOTA results. Note that SOTA
results require complex bi-LSTM model while all
these representations are trained and reported with
a logistic regression classifier. Here, we want to
highlight that solely using a simple classifier with
good word representation can achieve promising
results.

Table 3 shows that GloVe+Emo2Vec out-
performs GloVe on 13/14 datasets. Com-
pared with GloVe+DeepMoji, GloVe+Emo2Vec
achieves same or better results on 11/14 datasets,
which on average gives 1.0% improvement.
GloVe+Emo2Vec achieves better performances on

3http://nlp.stanford.edu/data/glove.twitter.27B.zip and
http://nlp.stanford.edu/data/glove.6B.zip

295

dataset Previous SOTA results GloVe GloVe+DeepMoji GloVe+Emo2Vec
SS-Twitter bi-LSTM (Felbo et al., 2017) 0.88 0.78 0.81 0.81
SS-Youtube bi-LSTM (Felbo et al., 2017) 0.93 0.84 0.86 0.87
SS-binary bi-LSTM (Yu et al., 2017) 0.886 0.795 0.809 0.823

SS-fine bi-LSTM (Yu et al., 2017) 0.497 0.414 0.421 0.436
OpeNER bi-LSTM (Barnes et al., 2017) 0.825 0.750 0.781 0.778
tube auto SVM (Barnes et al., 2017) 0.662 0.630 0.628 0.660
tube tablet SVM (Barnes et al., 2017) 0.681 0.650 0.678 0.684
SemEval bi-LSTM (Barnes et al., 2017) 0.685 0.671 0.695 0.680
ISEAR bi-LSTM (Felbo et al., 2017) 0.57 0.41 0.43 0.45
SE0714 bi-LSTM (Felbo et al., 2017) 0.37 0.36 0.36 0.43
Olympic bi-LSTM (Felbo et al., 2017) 0.61 0.52 0.52 0.53

stress bi-LSTM (Winata et al., 2018) 0.743 0.759 0.793 0.770
SCv1-GEN bi-LSTM (Felbo et al., 2017) 0.69 0.69 0.68 0.68
SCv2-GEN bi-LSTM (Felbo et al., 2017) 0.75 0.73 0.74 0.74

Average 0.642 0.657 0.667

Table 3: Comparison between different word-level emotion representations with state-of-the-art results. The best
results are in bold. New state-of-the-art results Emo2Vec that achieves are highlighted with boxes.

SOTA results on three datasets (SE0714, stress
and tube tablet) and comparable result to SOTA on
another four datasets (tube auto, SemEval, SCv1-
GEN and SCv2-GEN). We believe the reason why
we achieve a much better performance than SOTA
on the SE0714 is that headlines are usually short
and emotional words exist more commonly in
headlines. Thus, to detect the corresponding emo-
tion, more attention needs to be paid to words.

5 Related work

For sentiment analysis, numerous classification
models (Kalchbrenner et al.; Iyyer et al., 2015;
Dou, 2017) have been explored. Multi-modal sen-
timent analysis (Zadeh et al., 2017; Poria et al.,
2017) extends text-based model to the combi-
nation of visual, acoustic and language, which
achieves better results than the single modality.
Various methods are developed for automatic con-
structions of sentiment lexicons using both su-
pervised and unsupervised way (Wang and Xia,
2017). Aspect-based sentiment (Chen et al., 2017;
Wang et al., 2016) is also a hot topic where re-
searchers care more about the sentiment towards
a certain target. Transfer learning from the large
corpus is also investigated by Felbo et al. (2017)
to train a large model on a huge emoji tweet
corpus, which boosts the performance of affect-
related tasks. Multi-task training has achieved
great success in various natural language tasks,
such as machine translation (Dong et al., 2015;
Malaviya et al., 2017), multilingual tasks (Duong
et al., 2015; Gillick et al., 2016), semantic pars-

ing (Peng et al., 2017). Hashimoto et al. (2017)
jointly learns POS tagging, chunking, dependency
parsing, semantic relatedness, and textual en-
tailment by considering linguistic hierarchy and
achieves state-of-the-results on five datasets. For
sentiment analysis, Balikas et al. (2017) jointly
trains ternary and fine-grained classification with
a recurrent neural network and achieves new state-
of-the-art results.

6 Conclusion and Future Work

In this paper, we propose Emo2Vec to represent
emotion with vectors using a multi-task train-
ing framework. Six affect-related tasks are uti-
lized, including emotion/sentiment analysis, sar-
casm classification, stress detection, abusive lan-
guage classification, insult detection, and per-
sonality recognition. We empirically show how
Emo2Vec leverages multi-task training to learn a
generalized emotion representation. In addition,
Emo2Vec outperforms existing affect-related em-
beddings on more than ten different datasets. By
combining Emo2Vec with GloVe, logistic regres-
sion can achieve competitive performances on sev-
eral state-of-the-art results.

7 Acknowledgements

This work is partially funded by ITS/319/16FP
of Innovation Technology Commission, HKUST
16248016 of Hong Kong Research Grants Coun-
cil.

296

References
Rodrigo Agerri, Montse Cuadros, Sean Gaines, and

German Rigau. 2013. Opener: Open polarity en-
hanced named entity recognition. Procesamiento
del Lenguaje Natural, (51).

Georgios Balikas, Simon Moura, and Massih-Reza
Amini. 2017. Multitask learning for fine-grained
twitter sentiment analysis. In Proceedings of the
40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR ’17, pages 1005–1008, New York, NY, USA.
ACM.

Jeremy Barnes, Roman Klinger, and Sabine Schulte
im Walde. 2017. Assessing state-of-the-art senti-
ment models on state-of-the-art sentiment datasets.
In Proceedings of the 8th Workshop on Computa-
tional Approaches to Subjectivity, Sentiment and So-
cial Media Analysis, pages 2–12.

Steven Bird and Edward Loper. 2004. Nltk: the nat-
ural language toolkit. In Proceedings of the ACL
2004 on Interactive poster and demonstration ses-
sions, page 31. Association for Computational Lin-
guistics.

Peng Chen, Zhongqian Sun, Lidong Bing, and Wei
Yang. 2017. Recurrent attention network on mem-
ory for aspect sentiment analysis. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 452–461.

Ronan Collobert, Jason Weston, Lon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), volume 1, pages 1723–1732.

Zi-Yi Dou. 2017. Capturing user and product informa-
tion for document level sentiment analysis with deep
memory network. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 521–526.

Long Duong, Trevor Cohn, Steven Bird, and Paul
Cook. 2015. Low resource dependency parsing:
Cross-lingual parameter sharing in a neural network
parser. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
volume 2, pages 845–850.

Bjarke Felbo, Alan Mislove, Anders Sgaard, Iyad Rah-
wan, and Sune Lehmann. 2017. Using millions of

emoji occurrences to learn any-domain representa-
tions for detecting sentiment, emotion and sarcasm.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1616–1626.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag
Subramanya. 2016. Multilingual language process-
ing from bytes. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 1296–1306.

Kazuma Hashimoto, Yoshimasa Tsuruoka, Richard
Socher, et al. 2017. A joint many-task model: Grow-
ing a neural network for multiple nlp tasks. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1923–
1933.

J Hltcoe. 2013. Semeval-2013 task 2: Sentiment anal-
ysis in twitter. Atlanta, Georgia, USA, 312.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered com-
position rivals syntactic methods for text classifica-
tion. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), vol-
ume 1, pages 1681–1691.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. A convolutional neural network for modelling
sentences.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Chaitanya Malaviya, Graham Neubig, and Patrick Lit-
tell. 2017. Learning language representations for ty-
pology prediction. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2529–2535.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, pages 34–49.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference
on machine learning (ICML-10), pages 807–814.

297

Hao Peng, Sam Thomson, and Noah A Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 2037–
2048.

James W Pennebaker and Laura A King. 1999. Lin-
guistic styles: Language use as an individual differ-
ence. Journal of personality and social psychology,
77(6):1296.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Soujanya Poria, Erik Cambria, Rajiv Bajpai, and Amir
Hussain. 2017. A review of affective computing:
From unimodal analysis to multimodal fusion. In-
formation Fusion, 37:98–125.

Phillip Shaver, Judith Schwartz, Donald Kirson, and
Cary O’connor. 1987. Emotion knowledge: Further
exploration of a prototype approach. Journal of per-
sonality and social psychology, 52(6):1061.

Valentina Sintsova, Margarita Bolvar Jimnez, and Pearl
Pu. 2017. Modeling the impact of modifiers on emo-
tional statements. In Proceedings of the 18th Int.
Conference on Computational Linguistics and Intel-
ligent Text Processing (CICLing).

Valentina Sintsova, Claudiu-Cristian Musat, and Pearl
Pu. 2013. Fine-grained emotion recognition in
olympic tweets based on human computation. In 4th
Workshop on Computational Approaches to Subjec-
tivity, Sentiment and Social Media Analysis.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Jacopo Staiano and Marco Guerini. 2014. Depeche
mood: a lexicon for emotion analysis from crowd
annotated news. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), volume 2, pages
427–433.

Duyu Tang, Furu Wei, Bing Qin, Nan Yang, Ting
Liu, and Ming Zhou. 2016. Sentiment embed-
dings with applications to sentiment analysis. IEEE
Transactions on Knowledge and Data Engineering,
28(2):496–509.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou,
Di Cai, and Arvid Kappas. 2010. Sentiment strength
detection in short informal text. Journal of the As-
sociation for Information Science and Technology,
61(12):2544–2558.

Olga Uryupina, Barbara Plank, Aliaksei Severyn,
Agata Rotondi, and Alessandro Moschitti. 2014.
Sentube: A corpus for sentiment analysis on youtube
social media. In LREC, pages 4244–4249. Citeseer.

Harald G. Wallbott and Klaus R. Scherer. 1986. How
universal and specific is emotional experience? ev-
idence from 27 countries on five continents. In-
formation (International Social Science Council),
25(4):763–795.

Leyi Wang and Rui Xia. 2017. Sentiment lexicon con-
struction with representation learning based on hi-
erarchical sentiment supervision. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 502–510.

Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan,
and Amit P. Sheth. 2012. Harnessing twitter”
big data” for automatic emotion identification. In
Privacy, Security, Risk and Trust (PASSAT), 2012
International Conference on and 2012 Interna-
tional Confernece on Social Computing (Social-
Com), pages 587–592. IEEE.

Yequan Wang, Minlie Huang, Li Zhao, et al. 2016.
Attention-based lstm for aspect-level sentiment clas-
sification. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 606–615.

Zeerak Waseem. 2016. Are you a racist or am i seeing
things? annotator influence on hate speech detection
on twitter. In Proceedings of the first workshop on
NLP and computational social science, pages 138–
142.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Genta Indra Winata, Onno Pepijn Kampman, and Pas-
cale Fung. 2018. Attention-based lstm for psycho-
logical stress detection from spoken language using
distant supervision. 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing.

Liang-Chih Yu, Jin Wang, K Robert Lai, and Xuejie
Zhang. 2017. Refining word embeddings for sen-
timent analysis. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 534–539.

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik
Cambria, and Louis-Philippe Morency. 2017. Ten-
sor fusion network for multimodal sentiment analy-
sis. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1103–1114.

298

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 299–308
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Learning representations for sentiment classification using Multi-task
framework

Hardik Meisheri
TCS Research
Mumbai, India

hardik.meisheri@tcs.com

Harshad Khadilkar
TCS Research
Mumbai, India

harshad.khadilkar@tcs.com

Abstract

Most of the existing state of the art senti-
ment classification techniques involve the use
of pre-trained embeddings. This paper postu-
lates a generalized representation that collates
training on multiple datasets using a Multi-
task learning framework. We incorporate pub-
licly available, pre-trained embeddings with
Bidirectional LSTM’s to develop the multi-
task model. We validate the representations
on an independent test Irony dataset that can
contain several sentiments within each sample,
with an arbitrary distribution. Our experiments
show a significant improvement in results as
compared to the available baselines for indi-
vidual datasets on which independent models
are trained. Results also suggest superior per-
formance of the representations generated over
Irony dataset.

1 Introduction

Sentiment analysis has attracted substantial re-
search interest, especially in the field of social me-
dia, owing to the growing number of data and ac-
tive users. In addition, the research community
has gravitated towards a pragmatic characteriza-
tion of language with the division into (and quan-
tification of) specific emotions for sentiment anal-
ysis. This approach has come to prominence in
recent times as a large number of enterprises (not
just social media corporations) now rely on under-
standing customer sentiments for defining prod-
uct and marketing strategies (Pang and Lee, 2004;
Socher et al., 2012).

Beyond strategic inputs, sentiment analysis also
performs a tactical role in the age of rapid (viral)
increases and decreases in the visibility of spe-
cific events, with magnified consequences for cor-
porations and communities at large. For exam-
ple, United Airlines faced significant business im-
pact due to a single (possibly isolated) passenger-

related incident, due to its spread over Twitter1. It
is conceivable that an automated system quickly
alerting the management about the rate and depth
of negative sentiments due to the incident, would
have enabled them to produce a more amelioratory
response from the outset.

Complementary to such motivating incidents is
the recent availability of large datasets from social
media sources. Twitter has become a go-to choice
for scraping data due to its large user base and the
easy accessibility of tweets through its API. The
result is a large corpus of complex sentiments for
identification and analysis. Tweets (the messages
posted on Twitter) are limited to 140 characters,
which creates a plethora of challenges as the users
find new and innovative ways of condensing the
messages using slang, hashtags, and emojis, often
defying traditional grammatical rules of the lan-
guage. This is further complicated by the fast, lo-
calized rise and decay of popular memes, slang,
and hashtags.

Traditional sentiment analysis using dictionary-
based methods has failed to capture these nuances,
as the methods rely on grammatically correct, in-
tact syntactic and semantic structures which are
not followed in this space. Traditional senti-
ment analyzers such as (Akkaya et al., 2009; Po-
ria et al., 2014; Sharma and Bhattacharyya, 2013)
that worked well with well-written texts, face chal-
lenges at lexical, syntactic and semantic levels
when dealing with tweets as analyzed in (Liu,
2012). Bag-of-words models and naive Bayes
models are sequence-agnostic, and have therefore
failed to generalize over a diverse distribution of
sentiments, especially when multiple fine-grained
emotions are compressed into a 140 character
message. Word vectors trained on a large corpus
to represent the word in dense representations have

1https://twitter.com/i/moments/851423833160634368

299

https://doi.org/10.18653/v1/P17

proved to be efficient in handling sentiment anal-
ysis and effective emotions. Deep learning and
specifically Recurrent Neural Networks have been
extensively used with word vectors to achieve state
of the art results on various sentiment analysis
tasks. Although there are large datasets available
on social media space, deep learning models re-
quire annotated data for supervised training. An-
notation for such a large dataset is expensive, since
multiple human annotators are required per sam-
ple for stable convergence.

A useful research question is how to leverage
resources available on social media sites to im-
prove sentiment classification across datasets by
leveraging the generic representations and han-
dling the noise present in the space. These chal-
lenges have led people to use transfer learning and
multi-task learning approaches to transfer knowl-
edge across different datasets and languages. Re-
cently, neural-network-based models for multi-
task learning have become very popular, ranging
from computer vision (Misra et al., 2016; Nam and
Han, 2016) to natural language processing (Col-
lobert et al., 2011a; Luong et al., 2015), since they
provide a convenient way of combining informa-
tion from multiple tasks.

We propose a dual Attention based deep learn-
ing model which creates representations using
Bidirectional LSTM. In particular, given an in-
put tweet, our model first uses a pair of bidirec-
tional LSTMs to learn a general representation.
This portion of the model is trained in a multi-
task framework. The general sentence representa-
tion is then mapped into a task-specific represen-
tation through an attention mechanism, so that the
most salient parts of the input are selected for each
task. We achieve significant improvement over the
baselines and obtain comparable results with the
state of the art methods without any feature engi-
neering.

We have selected datasets which classify a text
into 3 classes, along with affect dataset. Affec-
tive dimensions provide much more granular anal-
ysis over emotions that are being conveyed. Af-
fective emotions are classified along the valence,
arousal and dominance axis according to circum-
plex model of affect, a well-established system for
describing emotional states (Russell, 1980; Posner
et al., 2005). Of these states, valence can directly
be mapped to sentiment classification. These
scales represent valence (or sentiment) and arousal

(or intensity), which defines each posts position on
the circumplex of the 3 dimension

The major contributions of this paper are:

• Generating robust representation of a tweet
from three different set of pre-trained embed-
dings which can handle emoji/smileys and
out-of-vocabulary words in the dataset.

• Multi Task learning frame work using Bidi-
rectional Long short Memory Networks
(BiLSTM) and attention mechanism to ef-
fectively learn the representations across
datasets.

We evaluate the effectiveness of the model with
respect to both internal and external distribution.
The former refers to the setting where distribution
of the test data falls in one of the m training tasks,
and the latter refers to the setting where task and
data are different and we use just the representa-
tion to train the task-specific layers.

Rest of the paper is organized as follows, sec-
tion 2 discusses works related to multi-task learn-
ing along the lines of sentiment analysis. We
present our proposed approach in section 3, which
details the system architecture and its key compo-
nents. Two sets of experiments and results shown
in section 4 and 5 respectively. Finally section 6
concludes the paper with future direction.

2 Related Work

The current state of the art models for classifying
the sentiments over social media text specifically
tweets use a mixture of handcrafted features and
pre-trained embeddings. Lexicon-based features
along with neural network models to predict inten-
sity of emotions have been proposed (Mohammad
et al., 2013; Wilson et al., 2005; Ding et al., 2008;
Bravo-Marquez et al., 2016; Esuli and Sebastiani,
2007) which have proved successful. However,
these representations do not generalize well when
there is a change in the vocabulary and the distri-
bution. In addition, refining and generating hand-
crafted features is an expensive and tedious pro-
cess. Our model do not require any hand-crafted
features and can work with raw text and hence it
can generalize well.

Two most popular embeddings that are being
used are word2vec (Mikolov et al., 2013) and
Glove (Pennington et al., 2014). Although these
embeddings have improved the baselines from the

300

traditional bag-of-words model, they have been
trained over large corpus in an unsupervised man-
ner, they do not encode any sentiment information
in them. The words like good and bad, due to
their similar usage in the text appear to be close in
the embedding space. To better represent the sen-
timent in the embeddings, several approaches to
refine and learn embeddings have been reported.
Learning of sentiment specific word embedding
(SSWE) is presented in (Tang et al., 2014) where,
embeddings were learned from a large corpus by
incorporating the sentiment signal in the loss func-
tion. These embeddings are then used with dif-
ferent classifier such as convolutional Neural net-
works (CNN) followed by max-pooling (Collobert
et al., 2011b; Socher et al., 2011; Mitchell and La-
pata, 2010). We have considered this as one of our
baselines.

Enriching of embedding using the distant-
supervised method to learn set of embeddings us-
ing standard word2vec (Mikolov et al., 2013) and
GLove (Pennington et al., 2014) is shown in (De-
riu et al., 2016). Although this enrichment of em-
beddings is done using a large corpus of tweets,
the basic assumption is that positive emoticons
and emoji relate to the overall positive sentiment
of the tweets create a lot of instability in the em-
bedding space (Kunneman et al., 2014). This is
due to the fact that, emoticons and emoji are used
in various context and quite often in a polar oppo-
site way to express sarcasm and irony (Poria et al.,
2014). In addition, these methods are inefficient
for more granular and fine-grained sentiment anal-
ysis.

3 Proposed Framework

In Figure 1 we present our generalized system di-
agram. Raw text is first preprocessed to normalize
noise using standard text processing techniques.

3.1 Pre-processing
Tweets are essentially short text messages that are
generated by humans to express their sentiments
and reviews, and are known to be inherently noisy
due to their condensed nature. This poses a chal-
lenge when trying to understand sentiment and af-
fect. We have used standard text processing tech-
niques with some modification to better suit the
sentiment and affect domain:

• All the letters are converted to lower case
form

• Significant amount of words are elongated
with repeated number of characters such as
”ANGRYYYYYYYYYYY”, we have lim-
ited these consequent characters to maximum
of 2

• All the hyperlinks are removed as they do not
serve the sentiment that is conveyed by the
text itself and might relate to the sentiment
pointed out by that links

• For words represented in hastags we remove
”#” symbol, and if the word is not found
in the vocabulary we try to segment it us-
ing Viterbi algorithm (Segaran and Hammer-
bacher, 2009)

• Usernames are replaced with ”mention” to-
ken

• Compacted versions of word phrases such as
”wasn’t”, ”when’s”, etc., are replaced with
corresponding expanded words

3.2 Embedding Generation
Processed text is then used to generate two sets
of embeddings. First set of embeddings are gen-
erated by using three different pre-trained embed-
dings.

• Pre-trained embeddings which are generated
from common crawl corpus have 6 Billion to-
kens which help in a better encoding of the
syntactic and semantic structure of the lan-
guage.

• Pre-trained emoji (Eisner et al., 2016) em-
beddings are used to represent the emojis and
emoticons in the text. Emojis and emoticons
are essential part of text which strongly con-
vey the sentiments.

• To handle out of vocabulary words after the
segmentations and the spelling corrections,
we use character embedding2 to generate a
representations by summing all the character
embeddings in that word. This helps in cap-
turing sentiment related signals better than
assigning it to the random tokens.

Pseudo code 1 details the process of generating
first set of embedding which uses Glove embed-
dings trained over common crawl corpus of vector

2https://github.com/minimaxir/char-embeddings

301

Attention
Pr

e-
pr

oc
es

se
d

Te
xt

…

…

…

…

…

…

…

…

Twitter Embedding

News Embedding Shared layers

Attention

…
…

Attention

Attention
…

…
.
.
.

Task 1

Task 2

Attention

Attention

…
…

Task n

Fully
connected

layers
Output

Fully
connected

layers
Output

Fully
connected

layers
Output

Figure 1: System Architecture

for each word. Second set of embeddings are ex-
tracted from pre-trained embeddings over Twitter
corpus to get vectors that represents the nuances
of the Twitter platform and in general of short
and noisy text. These embeddings provide varied
vector sizes, we use 300 and 200 dimensions of
embedding for common crawl and twitter respec-
tively.

word token = Tokenize tweet
for each word in word token do

if word is in EmojiEmbb then
word vector =

get vector(EmojiEmbb,
word vector)

else if word is in Glove then
word vector = get vector(Glove,

word vector)
else if word is in CharEmbb then

word vector = get vector(charEmbb,
word vector)

else
chars = tokeinze word token into

character
n = length(chars) word vector =∑n

1 get vector(charEmbb, chars)
end

end
Algorithm 1: Embedding Matrix generation

Embeddings are then zero padded to match the
sequence length across the datasets of different
task. We have used 90 words as the maximum se-
quence length to account for any variations in val-
idation datasets. For generalization, single sam-
ple of processed text can be represented in form of
two sets of matrix as 〈nw × dg〉 and 〈nw × dt〉,
where nw is maximum sequence length or maxi-
mum number of words present in the text and dg,
dt are the dimension of each embeddings. In this
paper nw = 90, dg = 300 and dt = 200.

These embeddings are then fed into 2 separate
BiLSTM layers for each set of embeddings.

3.3 Model Description

We use LSTM architecture that was proposed in
(Graves, 2013), which is governed by following
equations,

it = tanh(Wxixt + Whiht−1 + bi)
jt = sigm(Wxjxt + Whjht−1 + bj)
ft = sigm(Wxfxt + Whfht−1 + bf)
ot = tanh(Wxoxt + Whoht−1 + bo)

ct = ct−1 ⊕ ft + it ⊕ jt

ht = tanh(ct) ⊕ ot

In these equations, the W∗ are the weight matri-
ces and b∗ are biases. The operation ⊕ denotes
the element-wise vector product. The variable ct

denotes memory of LSTM at time step t.

302

Bidirectional Long Short Term memory (BiL-
STMs) are improvement over LSTM networks
where, two LSTM layers are stacked over each
other. One of the layer processes the sequence in
the forward pass and another process the seqeunce
in backward fashion. Equations for the LSTM lay-
ers remain same and training can be done using
stochastic gradient descent. So at each time step
t, we receive set of ht, one from forward pass and
one from backward pass in BiLSTM, we concate-
nate and term it as a single output ht.

As can be seen from above equation, forget
gate bias can prove to be inefficient if it is initial-
ized to random value and might introduce prob-
lem of vanishing gradient problem by a factor of
0.5 (Hochreiter and Schmidhuber, 1997; Martens
and Sutskever, 2011). This can adversely affect
the long term dependencies, to address this prob-
lem we initialize forget gate bias bf to value just
above 1 to facilitate the gradient flow as suggested
in (Gers et al., 2000; Jozefowicz et al., 2015). To
further regularize and avoid over-fitting dropout is
used.

The output of both BiLSTM layers is then fed
into the task-specific layers. Figure 1 shows the
task-specific layers, where attention is used over
the output of each BiLSTM layer. Attention was
initially proposed for Neural Machine Translation
(NMT) for encoder-decoder architecture to pro-
vide a context in terms of weights to important
words (Bahdanau et al., 2014). In our problem
where the final goal is to classify or to predict the
intensity, attention is only required at the encod-
ing level. Context vector can be computed using
for the output of RNNs are follows,

ct =
∑T

j=1 αtjhj

et = a(ht), at = exp(et)∑T

k=1
exp(ek)

where T is the total number of time steps in the
sequence(in our case maximum sequence length)
and αtj is the weight computed for hidden state hj

at each time step t. Context vector ct are then used
to compute new sequence using previous state in
the sequence and the context vectors. This ensures
the new sequences have direct access to the entire
sequence h.

Output of the attention layer is then fed to the
fully connected layers, and the size and activation
of the final layer depends on the task at hand.

4 Experiments

In order to validate our approach we perform two
experiments. In experiment-1 we train our model
on mixture of regression and classification tasks
and access its performance over the same task by
fine tuning it for the same task. In experiment-2
we accesses the representations that are obtained
during experiment-1 on a different task.

4.1 Experiment-1: Multi-task training

We train and evaluate our model on sentiment
classification SemEval dataset obtained through
shared task and affect emotion dataset from
SemEval-2018. These tasks are based on Twitter
text and align to our objective of classifying short
and noisy text present in the social media space.
Although sentiment and affect task require a vary-
ing degree of representation where sentiment clas-
sification in positive, negative and neutral space
can be relatively easier, representations required
for this tasks are not present in the pre-trained em-
beddings.

4.1.1 Datasets
For sentiment classification dataset we use
SemEval-2017 Task 4 Subtask A dataset. It con-
tains a tweet and its respective label from pos-
itive, negative and neutral in english language.
From here on we refer to this dataset as Sem-3.
The classes presented are imbalance and negative
tweets are around 15% in training set and 32% in
test set (Rosenthal et al., 2017).

For Affective emotion, we use dataset which
was presented as in SemEval-2018 task 1 (Mo-
hammad et al., 2018) subtask EI-reg, EI-oc con-
tains tweets specific to 4 emotions namely, Anger,
fear, Joy and Sadness for english language. Sub-
task V-reg, V-oc contains the tweets for valence de-
noting range of positive to negative of sentiment.
In subtasks EI-reg and V-reg, Given a tweet and its
corresponding emotion, predict the intensity score
of that emotion between 0 to 1, 0 being lowest
and 1 being highest. Whereas, for subtasks EI-
oc and V-oc we need to classify them into prede-
fined classes, where oc means ordinal classifica-
tion. In this dataset, emotions are classified in 4
distinct labels from mildly felt emotion to strongly
felt emotion, while valence is classified into 7 dis-
tinct classes. Distribution of the datasets into the
train development and test set is presented in ta-
ble 1.

303

Table 1: Data Distribution.
Train Dev Test

Anger 1701 388 1002
Fear 2252 389 986
Joy 1616 290 1105
Sadness 1533 397 975
Valence 1181 449 937
Sem-3 50334 20632 12284

Predicting intensity for emotions and valence
are considered as regression task, while classify-
ing into one of the classes is considered as clas-
sification task. We have 5 regression tasks and 6
classification tasks across these two datasets.

4.1.2 Training Procedure
The sem-3 dataset have approximately 15 time
more training samples on an average when com-
pared to all the rest of tasks assuming regression
and classification are different tasks for each emo-
tions. We define a training algorithm mentioned in
algorithm 2. We train for sem-3 task for 1 epochs
while others are trained for 15 epochs to account
for the sample imbalances. We have chosen to
keep the validation and test dataset as it is to better
compare over the baselines.

for episode in episodes do
train sem-3 for 1 epoch
list = random order of task rest of 10

classes
for task in list do

train task for 15 epochs
end

end

For classification tasks we have used categorical
crossentropy as loss function, while for regression
task we have defined a custom loss function as fol-
lows,

Loss = 0.7 × (1 − pearson) + 0.3 × MSE (1)

where pearson is the pearson correlation and MSE
is the mean squared error. As pearson correlation
was the official metric for the regression task and
has proven to be better representative than mean
squared error. We have taken mean squared error
into account to decrease the bias than creeps in due
to batch size while training.

For classification tasks, class weights were ap-
plied in the loss function to handle class imbal-

ances. Weights were set according to the inverse
of their frequency.

Model hyper-parameters are shown in table 2.
In addition, 0.5 and 0.35 dropout was used for
fully connected layer and BiLSTM respectively.
These parameters were chosen using grid search
over validation dataset. We have used Tanhyper-
bolic as for BiLSTM and Scaled Exponential Lin-
ear Units (selu) (Klambauer et al., 2017) for fully
connected layers as activation function. Fine tun-
ing for each task is by freezing the shared layer
weights after training to generate results for indi-
vidual tasks.

Table 2: Details of layers
Layers Classification Regression

BiLSTM Layer 1 70 70

BiLSTM Layer 2 70 70

Fully connected layer 1 100 100

Fully connected layer 2 50 50

Fully connected layer 3 3/5/7 1

4.2 Experiment 2: Validating on external
distribution

Irony detection in the social media is one such
field which is correlated with the sentiment analy-
sis. Although it requires different set of features,
sentiment and affective emotions enhances the de-
tection accuracies as reported in (Farı́as et al.,
2016; Wallace, 2015). In this experiment, we ap-
ply representations generated earlier to irony clas-
sification to access its robustness. We have used
irony detection dataset introduced in SemEval-
2018 task 3 (Van Hee et al., 2018). Dataset was
augmented and hashtags used to mine the tweets
such as ”#irony”, ”#sarcasm”, etc., were omitted
for testing. We have removed this hashtags during
training as well to keep the dataset consistent.

This task contained two subtask, namely Sub-
task A and Subtask B. Objective of Subtask A
was to classify whether a tweet contains irony or
not, while of Subtask B was to classify into verbal
irony (V-irony), situational irony (S-irony), other
types of irony (O-irony) and non-ironic. Distribu-
tion of the dataset along the training and testing is
presented in table 3.

Table 3: Distribution of Irony Dataset across train and
test

Subtask A Subtask B
Ironic Non-Ironic V-irony S-irony O-irony Non-ironic

Train 1911 1923 1390 316 205 1923
Test 311 473 164 85 62 473

304

For this we extract the representations from the
model trained in experiment 1, specifically we take
output of 2 BiLSTM layers. So for each sam-
ple in this dataset we have a 2D matrix of shape
〈nw × b1〉, nw is the maximum sequence length
and b1 is the number of hidden units in the BiL-
STM layer 1. Similarly we obtain the representa-
tion from BiLSTM layer 2. We concatenate this
representation and pass it on to classification net-
work consisting of single BiLSTM layer and two
fully connected layers.

5 Results and Discussions

We ran our multi-task experiment for 10 episodes
which translates to 100 training rounds. Figure 2
shows loss vs timesteps graph. Graphs are plotted
differently to account for the different loss func-
tion scales. We can clearly observe the conver-
gence over the time steps across tasks.

0.2

0.3

0.4

0.5

0.6

1.0

1.5

2.0

2.5

3.0

0 25 50 75 100

0 25 50 75 100
Epochs

Lo
ss

Lo
ss

Emotions
anger_reg
fear_reg
sadness_reg
joy_reg
valence_reg

sem−3

Figure 2: Upper graph shows the plot of loss vs
episodes for regression task, while lower graph shows
the corresponding plot for classification task for sem-3
task

For experiment 1, we use standard baselines as
reported for the respective subtasks. In addition,
we train a simple CNN classifier and LSTM clas-
sifier as our baselines. For EI-reg, EI-oc, V-reg
and V-oc, baseline system was developed using
wordvectors along with lexicons and support vec-
tor as final classification/regressor. We also com-
pare the results with sentiment specific word em-
beddings (Tang et al., 2014), where we use Fully
connected layers along with attention as the down-
stream model. For Sem-3 dataset we compare our
results with RCNN (Yin et al., 2017) and Siamese
network (Baziotis et al., 2017), which were top
performing teams in the task. In addition, we sepa-
rately train each task with same model parameters

Truth Value: 0.26

0.2

0.4

0.6

0.8

m
en

tio
n

m
an u r

ju
st

bi
tte

r

ab
ou

t

m
an

u

m
ak

in
g

gr
ea

t

st
rid

es

.

words

In
te
ns
ity Models

Multitask
Separately trained
SSWE

Figure 3: Plot of how intensity of the tweet changes
with the words, signifying the importance of the se-
quence

without multi-task frame work, to observe the im-
provement due to multi-task and also to access the
ability of the model architecture proposed. Results
are shown in table 4, where for emotions and va-
lence pearson correlation is reported and for sem-
3 task accuracy and F1 score(F1 score is averaged
for positive and negative class) is reported. Our
model clearly out performs the baselines, and also
provides significant increase over the recently pro-
posed model architecture. Results also shows that
separately trained model is able to beat the base-
lines, while adding the multi-task framework is
able to boost the results further.

For experiment 2, baseline is unigram tf-idf fea-
tures with Support vector classifiers. We com-
pare it with the standard CNN and BiLSTM ar-
chitectures. In addition, we also compare against
recently proposed generalized representation for
language modeling (Peters et al., 2018), which has
been a state of the art for Yelp and IMDB dataset.
These representations are available in two sets; a
weighted sum of three layers of BiLSTMs (sam-
ples size, max length, 1024) refereed as ELMO-
3D and fixed mean-pooling of all contextualized
word representations (samples size, 1024) refer-
eed as ELMO-2D. For ELMO-3D embeddings we
have used attention and fully connected layer as
the classifier and for 2 dimension embeddings, we
have used fully connected layers as classifiers. Re-
sults are shown in table 5, where F1-score is re-
ported over the classes, for multiclass subtask av-
erage of F1 score for each class has been reported,
this was the official metric of this task. We find
that our framework out-performs all the baselines

305

Figure 4: Attention weights comparison of Multi-task and SSWE

Table 4: Results of Experiment 1
anger fear joy sadness valence sem-3

reg oc reg oc reg oc reg oc reg oc Acc. F1PN

Baseline 0.526 0.382 0.525 0.355 0.575 0.469 0.453 0.370 0.585 0.509 0.333 0.162
CNN 0.556 0.445 0.579 0.462 0.601 0.534 0.573 0.459 0.714 0.591 0.545 0.556
BiLSTM 0.627 0.511 0.635 0.497 0.612 0.556 0.613 0.507 0.73 0.621 0.637 0.646
SSWE 0.641 0.498 0.637 0.483 0.655 0.60 0.623 0.539 0.784 0.634 0.639 0.645
RCNN Ensemble (Yin
et al., 2017)

- - - - - - - - - - 0.664 0.658

Siamese LSTM (Baziotis
et al., 2017)

- - - - - - - - - - 0.651 0.677

Separately trained 0.697 0.551 0.696 0.527 0.689 0.629 0.685 0.597 0.804 0.667 0.642 0.64
Multitask 0.732 0.622 0.736 0.575 0.728 0.664 0.722 0.628 0.832 0.703 0.672 0.670

reported. Results are averaged across 10 runs to
reduce the variance.

Table 5: Irony Detection F1 score
Subtask A Subtask B

Baseline 0.585 0.327
CNN 0.535 0.329
BiLSTM 0.592 0.396
ELMO-2Dim 0.591 0.406
ELMO-3Dim 0.604 0.412
SSWE 0.557 0.361
Multitask Representation 0.629 0.425

A possible reason for the low performance of
pre-trained SSWE might be narrow vocabulary.
We have around 95K words in our vocabulary
whereas, SSWE had 137052 words in its pre-
trained vocabulary out of which only 33473 words
were in overlap with the dataset vocabulary. Al-
though the embeddings are refined for sentiment
words, social media space often contains words
which are not present in the formal dictionaries,
here as our model was able to generate embed-
dings of out of vocabulary words using charac-
ter embeddings. Figure 3 shows an example from
fear emotion, where plot of how the final intensity
of the sentence is changed over different model
is shown. SSWE jumps on the word ”bitter” as
the word contains highly negative sentiment as-
sociated with it, whereas the true value is low
for fear. Proposed model is able to normalize

over the sequence as the jump is not that drastic.
Figure 4 shows comparison of how our proposed
model learns to put weights to the words as com-
pared to SSWE model. We believe that adding the
sentiment context over in the embedding through
multi-task training aided in the Irony classification
dataset.

6 Conclusion

In this paper, we present an approach for gener-
ating representations using sentiment and affect
dataset in the multi-task framework. We present
our deep learning based model with a dual atten-
tion over two sets of embedding space to capture
more rich nuances of Twitter while still keeping
the semantic and syntactic structure of language.
In addition, we use emoji and character embed-
dings to help in getting better sentiment specific
signals and to mitigate the effect of out of vocabu-
lary problem. Our experiments over both internal
and external distribution of data show the effec-
tiveness of the representation. We observe that our
model perform significantly better as compared to
the baselines and the current state of the art meth-
ods for the tasks. Going further, it would be ef-
fective to devise an algorithm to modify these rep-
resentations with minimum computation and still
adapt to a different domain.

306

References
Cem Akkaya, Janyce Wiebe, and Rada Mihalcea. 2009.

Subjectivity word sense disambiguation. In Pro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing: Volume 1-
Volume 1, pages 190–199. Association for Compu-
tational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task 6:
Siamese lstm with attention for humorous text com-
parison. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 390–395, Vancouver, Canada. Association for
Computational Linguistics.

Felipe Bravo-Marquez, Eibe Frank, Saif M Moham-
mad, and Bernhard Pfahringer. 2016. Determining
word–emotion associations from tweets by multi-
label classification. In WI’16, pages 536–539. IEEE
Computer Society.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011a. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011b. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Au-
relien Lucchi, Valeria De Luca, and Martin Jaggi.
2016. Swisscheese at semeval-2016 task 4: Senti-
ment classification using an ensemble of convolu-
tional neural networks with distant supervision. In
SemEval@ NAACL-HLT, pages 1124–1128.

Xiaowen Ding, Bing Liu, and Philip S Yu. 2008. A
holistic lexicon-based approach to opinion mining.
In Proceedings of the 2008 international conference
on web search and data mining, pages 231–240.
ACM.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bosnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description.

Andrea Esuli and Fabrizio Sebastiani. 2007. Senti-
wordnet: A high-coverage lexical resource for opin-
ion mining. Evaluation, pages 1–26.

Delia Irazú Hernańdez Farı́as, Viviana Patti, and Paolo
Rosso. 2016. Irony detection in twitter: The role
of affective content. ACM Transactions on Internet
Technology (TOIT), 16(3):19.

Felix A. Gers, Jürgen A. Schmidhuber, and Fred A.
Cummins. 2000. Learning to forget: Continual pre-
diction with lstm. Neural Comput., 12(10):2451–
2471.

A. Graves. 2013. Generating Sequences With Recur-
rent Neural Networks. ArXiv e-prints.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of recur-
rent network architectures. In Proceedings of the
32nd International Conference on Machine Learn-
ing (ICML-15), pages 2342–2350.

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochre-
iter. 2017. Self-Normalizing Neural Networks.
ArXiv e-prints.

FA Kunneman, CC Liebrecht, and APJ van den Bosch.
2014. The (un) predictability of emotional hashtags
in twitter.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language tech-
nologies, 5(1):1–167.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114.

James Martens and Ilya Sutskever. 2011. Learning
recurrent neural networks with hessian-free opti-
mization. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages
1033–1040.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and
Martial Hebert. 2016. Cross-stitch networks for
multi-task learning. CoRR, abs/1604.03539.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive sci-
ence, 34(8):1388–1429.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. Semeval-
2018 task 1: Affect in tweets. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 1–17. Association for Computational
Linguistics.

Saif M Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

307

Hyeonseob Nam and Bohyung Han. 2016. Learning
multi-domain convolutional neural networks for vi-
sual tracking. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 4293–4302.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd annual meeting on Association for Compu-
tational Linguistics, page 271. Association for Com-
putational Linguistics.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. CoRR, abs/1802.05365.

Soujanya Poria, Erik Cambria, Gregoire Winterstein,
and Guang-Bin Huang. 2014. Sentic patterns:
Dependency-based rules for concept-level sentiment
analysis. Knowledge-Based Systems, 69:45–63.

Jonathan Posner, James A Russell, and Bradley S Pe-
terson. 2005. The circumplex model of affect: An
integrative approach to affective neuroscience, cog-
nitive development, and psychopathology. Develop-
ment and psychopathology, 17(3):715–734.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518, Vancouver, Canada. Association for
Computational Linguistics.

James A Russell. 1980. A circumplex model of af-
fect. Journal of personality and social psychology,
39(6):1161.

Toby Segaran and Jeff Hammerbacher. 2009. Beautiful
data: the stories behind elegant data solutions. ”
O’Reilly Media, Inc.”.

Raksha Sharma and Pushpak Bhattacharyya. 2013.
Detecting domain dedicated polar words. In IJC-
NLP, pages 661–666.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in Neural In-
formation Processing Systems, pages 801–809.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 joint conference on empirical
methods in natural language processing and com-
putational natural language learning, pages 1201–
1211. Association for Computational Linguistics.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1555–
1565.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
2018. Semeval-2018 task 3: Irony detection in en-
glish tweets. In Proceedings of The 12th Interna-
tional Workshop on Semantic Evaluation, pages 39–
50. Association for Computational Linguistics.

Byron C Wallace. 2015. Computational irony: A sur-
vey and new perspectives. Artificial Intelligence Re-
view, 43(4):467–483.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the con-
ference on human language technology and empiri-
cal methods in natural language processing, pages
347–354. Association for Computational Linguis-
tics.

Yichun Yin, Yangqiu Song, and Ming Zhang. 2017.
Nnembs at semeval-2017 task 4: Neural twitter sen-
timent classification: a simple ensemble method
with different embeddings. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 621–625, Vancouver,
Canada. Association for Computational Linguistics.

308

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 309–315
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Super Characters: A Conversion from Sentiment Classification to Image
Classification

Baohua Sun, Lin Yang, Patrick Dong, Wenhan Zhang, Jason Dong, Charles Young
Gyrfalcon Technology Inc.

1900 McCarthy Blvd. Milpitas, CA 95035
{baohua.sun,lin.yang,patrick.dong,wenhan.zhang}@gyrfalcontech.com

Abstract

We propose a method named Super Charac-
ters for sentiment classification. This method
converts the sentiment classification problem
into image classification problem by project-
ing texts into images and then applying CNN
models for classification. Text features are ex-
tracted automatically from the generated Su-
per Characters images, hence there is no need
of any explicit step of embedding the words
or characters into numerical vector represen-
tations. Experimental results on large so-
cial media corpus show that the Super Char-
acters method consistently outperforms other
methods for sentiment classification and topic
classification tasks on ten large social media
datasets of millions of contents in four dif-
ferent languages, including Chinese, Japanese,
Korean and English.

1 Introduction

Sentiment classification is an interest-
ing topic that has been studied for many
years (Hatzivassiloglou and McKeown, 1997;
Pang et al., 2002; Hong and Fang, 2015). Word
embedding is a widely used technique for sen-
timent classification tasks, which embeds the
words into numerical vector representation before
the sentences are fed into models for classifi-
cation (Mikolov et al., 2013; Le and Mikolov,
2014; Pennington et al., 2014; Yu et al., 2017;
Cao et al., 2018). For sequential input, RNNs are
usually used and have very good results for text
classification tasks (Lai et al., 2015; Tang et al.,
2015). Recently, there are also works using
Convolutional Neural Networks (CNN) for text
classification (Kim, 2014; Severyn and Moschitti,
2015; Vaswani et al., 2017; Bai et al., 2018).
CNN models have feature extraction and classifi-
cation in a whole model, which require no need
of manually extracting features from images and

are proved to be successful in image classification
tasks (LeCun et al., 1998; Krizhevsky et al., 2012;
Simonyan and Zisserman, 2014; Szegedy et al.,
2015; He et al., 2016a; Hu et al., 2017). There
are also works on character level text classifi-
cations (Zhang et al., 2015; Zhang and LeCun,
2015; Kim et al., 2016). However, the input for
CNNs are still using the embedding vectors.

Zhang and LeCun (2017) had studied the differ-
ent ways of encoding Chinese, Japanese, Korean
(CJK) and English languages for text classifica-
tion. These encoding mechanisms include One-
hot encoding, embedding and images of charac-
ter glyphs. Comparisons with linear models, fast-
Text (Joulin et al., 2016), and convolutional net-
works were provided. This work studied 473
models, using 14 large-scale text classification
datasets in 4 languages including Chinese, En-
glish, Japanese and Korean.

Our work in this paper is based on the datasets
provided in (Zhang and LeCun, 2017) and down-
loadable at (Zhang, 2017). Different from existing
methods, our method has no explicit step of em-
bedding the text into numerical vector representa-
tions. Instead, we project the text into images and
then directly feed the images into CNN models to
classify the sentiments.

Before introducing the details of our solution,
let us first look at how humans read text and do
sentiment analysis. Humans read sentences and
can immediately understand the sentiment of the
text; Humans can also read multiple lines at a first
sight of paragraphs and get the general idea in-
stantly. This fast process consists of two steps.
First, the texts are perceived by human’s eyes as
a whole picture of text, while the details of this
picture are block-built by many characters. Sec-
ond, the image containing the texts are fed into the
brain. And then the human brain processes the im-
age of texts to output the sentiment classification

309

https://doi.org/10.18653/v1/P17

Figure 1: A Super Character example.

results. During the processing, the human brain
may recognize words and phrases as the interme-
diate results, in order to further analyze the senti-
ment. However, if we treat the human brain as a
black box system, its input is the image of texts re-
ceived by the eyes, and its output is the sentiment
classification result.

In this paper, we propose a two-step method that
is similar to how humans do sentiment classifica-
tion. We tested our method using the datasets pro-
vided by Zhang and LeCun (2017) on text classi-
fication tasks for social media contents from dif-
ferent countries in four languages, including En-
glish, Chinese, Japanese, and Korean. And com-
pared with other existing methods, including fast-
Text, EmbedNet, OnehotNet, and linear models.
The results show our method consistently outper-
forms other method on these datasets for sentiment
classification tasks.

2 Super Characters Method

The Super Characters method converts the senti-
ment classification problem into an image classifi-
cation problem. It is defined in two steps.

• First, the texts, e.g. sentences or paragraphs,
are “drawn” onto blank images, character by
character. For example, a generated Super
Characters image from Chinese text inputs
(including punctuation marks) is shown in
Figure 1. The Chinese text means “Super
characters are a method for NLP. It consists
of two steps: Frist, “draw” text onto images;
second, feed images into CNN”. Each gener-
ated Super Character image is attached with
the same sentiment labels as its original text.

• Second, feed the generated Super Characters
images with its labels to train CNN models.

The information embedded in the Super Char-
acters image is near identical to that in the orig-

inal text, so we convert the sentiment classifica-
tion problem into image classification problem.
The Super Characters images are similar to how
humans perceive text: as whole pictures contain-
ing text, whether printed on paper, projected on a
screen, or written by hand. After the texts are con-
verted to images, the performance of our text clas-
sification method is determined by the accuracy
of image classification models. For large scale
image classification tasks, CNN models such as
ResNet(He et al., 2016b) have outperformed hu-
mans in image classification tasks as an end to
end solution. Thus, if we feed the Super Char-
acters images into CNN models such as ResNet,
we expect the text classification using this 2-step
pipeline to have a high accuracy.

For detailed implementation of projecting text
into Super Characters image, there are a few set-
tings to configure, including the image size of
the whole Super Characters image; number of
characters per row/column; size of each charac-
ter; cut-length, which is the length of sentence to
cut/padding in order to fit into the image; the fonts
used to project each character into an image, and
so on.

For Latin languages, we have the option of pro-
jecting text at the word level or at the alphabet
level, which will make differences at some cases.
For example, how to handle line-change if a word
is at the end of a row in the Super Characters im-
age and can’t fit in the residual space in that row.
If we separate the words into separate alphabets,
we can fit as many characters in the residual space
in that row and change to the next row for the rest
of the alphabets in that word. Or, if we keep the
word as a whole entity and avoid spliting, we have
to change to the next line for that word.

For example, here are the settings used in one
of our experiments in Section 3. We use a fixed
image size of 224x224. And we also prefer inte-
ger numbers of characters in each row and hav-
ing same-sized characters. Thus, we prefer to use
8x8=64, or 28x28=784, or 32x32=1024 charac-
ters per image. And we set the cut/padding length
as the same. That also means, for 8x8 =64 set-
tings, we will have 8 characters per row, and we
have 8 rows in total. And each character is set
to be of size 224/8=28 square pixels. The Ar-
ial Unicode MS font is selected as font to draw
text onto image. For padding, we just draw noth-
ing on the image.

310

From the definition and description of Super
Character, we can see it has the following advan-
tages. 1. Its speed is not sensitive to the length of
the text input, so it can easily handle long and short
texts input. This advantage will be more obvious
when the input text is long, because super charac-
ter using CNN as model will be parallel processing
the input. And the processing time is invariant for
training and inference. 2. The feature engineering
work is no longer needed, which includes gener-
ating manmade features of each character related
to the culture behind each language. The Super
Characters image is treated as an input for CNN
models, and the feature extraction task are han-
dled automatically by CNN models. 3. Similar to
image classification using CNN networks which
requires large amount of labeled image data, this
method of Super Characters for sentiment analysis
also requires large amount of labeled text data.

3 Experiments

3.1 Sentiment Classification on Large
Datasets from Online Social Media

Ten of 14 datasets provided by (Zhang and LeCun,
2017) were tested on, a brief description of which
is provided:

Dianping: Chinese restaurant reviews were
evenly split as follows: 4 and 5 star reviews were
assigned to the positive class while 1-3 star re-
views were in the negative class.

JD Full: Chinese shopping reviews wer evenly
split for predicting full five stars. JD Binary Chi-
nese shopping reviews are evenly split into posi-
tive (4-and-5 star reviews) and negative (1-and-2
star reviews) sentiments, ignoring 3-star reviews.

Rakuten Full Japanese shopping reviews were
evenly split into predicting full five stars. Rakuten
Binary Japanese shopping reviews were evenly
split into positive (4-and-5 star reviews) and neg-
ative (1-and-2 star reviews) sentiments, removing
duplicates and ignoring 3-star reviews.

11st Full Korean shopping reviews were evenly
split into predicting full five stars. 11st Binary
Korean shopping reviews were evenly split into
identifying positive (4-and-5 star reviews) or neg-
ative (1-3 star reviews) sentiments.

Amazon Full: English shopping reviews were
evenly split into predicting full five stars.

Ifeng: First paragraphs of Chinese news arti-
cles from 2006-2016 were evenly split into 5 news
channels.

Chinanews: Chinese news articles from 2008-
2016 were evenly split into 7 news channels, re-
moving duplicates.

The statistics of these datasets are given in Table
1. We can see that eight out of the ten datasets has
more than millions of samples in training, and the
largest datasets have 4 millions of samples in train-
ing set. The test datasets are in the range of 1/4
to 1/16 of the training datasets respectively. The
languages used in these datasets include Chinese,
Japanese, Korean, and English. And the number
of classes ranges from 2, 5 to 7.

For each dataset, we generate Super Characters
images first. We draw text with the Python Imag-
ing Library (PIL) (Lundh, 2009), and set all the
Super Character image sizes to 224x224 pixels,
the background set to black. For long text in-
puts such as paragraphs or articles, the length of
which is different so we set a cut-length from the
beginning of the news article. Although we may
forcely cut the input and ignore the rest, this cut-
length still works well since the first few sentences
usually convey the general information about the
whole contents. For other text sources and tasks,
the starting point of the text for the cut-length may
change accordingly. For each experiment, we de-
termine the estimated cut-length by using a thresh-
old on sentence lengths. We have only tried one
cut-length of 14x14=196 for every experimental
data set. We set the size of each character as
224/14=16 square pixels.

And then, we feed the generated Super Charac-
ters to train CNN models. We use successful pre-
trained model SENet-154 (Hu et al., 2017) in the
ImageNet competition (Russakovsky et al., 2015),
which is the winner in ImageNet2017 competition
and achieves 81.32% Top1 accuracy and 95.53%
Top5 accuracy. We used pretrained model down-
loadable at (Hu, 2017) because it gave a good ini-
tialization for transfer learning tasks. We changed
the last layer to the corresponding number of cat-
egories in each data set to train on the Super Char-
acters images.

The sentiment classification results on test
datasets are shown in Table 2. The accuracy
numbers for the models of OnehotNet, Em-
bedNet, Linear Model, and fastText are given
by (Zhang and LeCun, 2017). Note that in
(Zhang and LeCun, 2017), each model is tried
with different encoding methods. For example,
OnehotNet uses 4 different encodings, EmbedNet

311

uses 10, Linear Models uses 11, and fastText uses
10. We only listed the best results for each ex-
isting method across different encodings. And
compare our results with the best of them. That
means we compare our results with the finetuned
best encoding of each existing model in 2. From
the results we can see that our Super Characters
method (short as S.C.) consistently outperforms
other methods, even with their best encodings.

3.2 Experiments on THUCTC corpus

THUCTC (Sun et al., 2016) was provided by the
Tsinghua University NLP lab in 2016. It to-
tals 836075 documents after downloaded, cov-
ering 14 topics including 24373 Game, 37098
Finance, 63086 Politics, 50849 Society, 32586
Living, 20050 Real Estate, 7588 Lottery, 92632
Entertainment, 41936 Education, 13368 Fashion,
3578 Constellation, 162929 Technology, 131604
Sports and 154398 Stocks. The majority of
the documents are long articles with hundreds
or sometimes thousands of characters in mul-
tiple sentences or paragraphs. We use a cut-
length of 28x28=784, each having an 8x8 pixel
size and utilize simhei font for Super Characters
on the THUCTC data. In Table 3, we showed
our Super Character method using ResNet-50
(SC+ResNet50) attained an accuracy of 94.85%
and our Super Character method using ResNet-
152 (SC+ResNet152) attained an accuracy of
94.35%, while the result given by Sun et al. (2016)
achieved only an accuracy of 88.6% using LibLin-
ear. LibLinear (Fan et al., 2008) implements lin-
ear SVMs and logistic regression models trained
using a coordinate descent algorithm. Our models
reduce the error by 50.4% compared to this exist-
ing model.

3.3 Experiments on Fudan Corpus

The Fudan corpus (Li, 2011) contains 9804 doc-
uments of long sentences and paragraphs in 20
categories. We use the same split as (Xu et al.,
2016; Cao et al., 2018) in selecting the same 5 cat-
egories: 1218 environmental, 1022 agricultural,
1601 economical, 1025 political and 1254 sport
documents; 70% of the total data is used for train-
ing and the rest for testing.

• SC+ResNet-50: Using a ResNet-50 model
pretrained on the ImageNet dataset, we fine-
tuned the transfer learning model on the new
generated super character dataset.

• SC+ResNet-50-THUCTC: Using a ResNet-
50 model pretrained on THUCTC data, we
fine-tuned the trasfere learning model on the
new generated super character dataset.

We used a cut-length of 28x28=784 and words of
pixel size 8x8 with the simhei font for our Su-
per Characters in this experiment. In Table 4, the
first 7 rows of model accuracies for different al-
gorithms are given by (Cao et al., 2018). We can
see that our SC+ResNet-50-THUCTC model at-
tained an accuracy of 97.8% while the best exist-
ing method achieved only a 95.3% accuracy. Our
SC+ResNet50-THUCTC model reduces the error
by 53.2% compared with the best existing model.
The SC+ResNet-50 model with 95.7% accuracy
also outperforms the best existing model. The pre-
trained model on THUCTC dataset gives 2.1% ac-
curacy improvement than SC+ResNet-50 model,
which means pretrained models on the same lan-
guage and a larger dataset will help for a better ini-
tialization and better model. For this data set, we
did not delete the non-Chinese characters as (Cao
et al., 2018) did. The result shows that our simple
projection from text to Super Characters image is
easy to implement and very robust. Users do not
even need to perform complicated preprocessing
techniques for the data.

3.4 Analysis on the Impact of the Cut-length
for Configuring Super Characters Image

The cut-length determines how many characters in
each generated Super Characters image. So it will
impact if an input text needs clipping or padding,
in order to have the same pixel size of each char-
acter and same length for all the text samples in
the same dataset. The short cut-length may clip
long sentences and cause information loss, which
will decrease the sentiment classification accuracy.
But increasing the cut-length of the text may pre-
vent inadvertently clipping long sentences but also
increases the number of blank spaces for short sen-
tences. Thus it may impact the model and the
sentiment analysis accuracy. The best setting for
cut-length should be based on the dataset statis-
tics. We have a study on different settings of cut-
length using ResNet-50 on the Fudan corpus, and
the results are given in Table 5. For this Fudan
data, the average sentence length is 530, and the
median sentence length is 509. It shows that the
setting of cut-length=784 is the best configuration
for this dataset compared with other options. This

312

Dataset Short Name Language Classes Train Test
Dianping D.P. Chinese 2 2,000,000 500,000
JD full JD.f Chinese 5 3,000,000 250,000

JD binary JD.b Chinese 2 4,000,000 360,000
Rakuten full RKT.f Japanese 5 4,000,000 500,000

Rakuten binary RKT.b Japanese 2 3,400,000 400,000
11st full 11st.f Korean 5 750,000 100,000

11st binary 11st.b Korean 2 4,000,000 400,000
Amazon full AMZ.f English 5 3,000,000 650,000

Ifeng Ifeng Chinese 5 800,000 50,000
Chinanews Cnews Chinese 7 1,400,000 112,000

Table 1: Datasets statistics used in Table 2 and short names used for convenience.

Model D.P. JD.f JD.b RKT.f RKT.b 11st.f 11st.b AMZ.f Ifeng Cnews
OnehotNet 76.83 51.90 90.69 54.90 94.07 67.57 86.70 57.79 83.51 89.38
EmbedNet 76.40 51.71 90.81 54.80 93.93 67.71 86.75 56.30 82.99 89.45

Linear 76.97 51.82 91.18 54.74 93.37 56.58 86.60 57.30 81.70 89.24
fastText 77.66 52.01 91.28 56.73 94.55 61.42 86.89 59.98 83.69 90.90

S.C.(ours) 77.80 54.10 92.20 57.70 94.85 68.70 87.60 60.70 84.40 92.00

Table 2: Results of our Super Character (SC) method against other models on datasets provided
by (Zhang and LeCun, 2017).

Model Accuracy
LibLinear (Sun et al., 2016) 88.6%
SC+ResNet-50 (ours) 94.85%
SC+ResNet-152 (ours) 94.35%

Table 3: Results of our Super Character (SC) method
against other models on THUCTC data set.

Model Accuracy
skip-gram (Mikolov et al., 2013) 93.4%
cbow (Mikolov et al., 2013) 93.4%
GloVe (Pennington et al., 2014) 94.2%
CWE (Chen et al., 2015) 93.2%
GWE (Su and Lee, 2017) 94.3%
JWE (Yu et al., 2017) 94.2%
cw2vec (Cao et al., 2018) 95.3%
SC+ResNet-50-THUCTC (ours) 97.8%
SC+ResNet-50 (ours) 95.7%

Table 4: Results of our Super Character (SC) method
against other models on the Fudan dataset.

indicates that setting the cut-length according to
the median or average sentence length could be a
good option.

Cut-length 196 256 784 1024
Accuracy(%) 93.45 93.3 95.7 89.35

Table 5: Cut-length Impact on Accuracy.

4 Conclusion and Future Work

In this paper, we proposed the Super Characters
method for sentiment classification. It converts
text into images and then applies CNN models to
classify the sentiment. The text features are au-
tomatically extracted by CNN models. We have
tested our method on social media text contents
from four different languages. The experimen-
tal results showed that our method consistently
outperforms other methods for Chinese, English,
Japanese, and Korean text contents for sentiment
classification tasks. We also showed that pre-
trained Chinese text classification models on large
datasets helps attain a higher accuracy for text
classification on other Chinese datasets.

For future work, we can apply various prepro-
cessing techniques such as the elimination of com-
mon words and other methods to further increase
the accuracy of this method, and fine-tune the cut
length to analyze its impact on different data sets.
And we also need to compare with other RNN
methods on the same datasets.

313

References
Shaojie Bai, J Zico Kolter, and Vladlen Koltun.

2018. An empirical evaluation of generic convolu-
tional and recurrent networks for sequence model-
ing. arXiv preprint arXiv:1803.01271.

Shaosheng Cao, Wei Lu, Jun Zhou, and Xiaolong Li.
2018. cw2vec: Learning chinese word embeddings
with stroke n-gram information.

Heng Chen, Junying Liang, and Haitao Liu. 2015. How
does word length evolve in written chinese? PloS
one, 10(9):e0138567.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of ma-
chine learning research, 9(Aug):1871–1874.

Vasileios Hatzivassiloglou and Kathleen R McKeown.
1997. Predicting the semantic orientation of adjec-
tives. In Proceedings of the 35th annual meeting
of the association for computational linguistics and
eighth conference of the european chapter of the as-
sociation for computational linguistics, pages 174–
181. Association for Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016a. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016b. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

James Hong and Michael Fang. 2015. Sentiment anal-
ysis with deeply learned distributed representations
of variable length texts. Technical report, Technical
report, Stanford University.

Jie Hu. 2017. Senet-154. Github and model download:
https://github.com/hujie-frank/SENet.

Jie Hu, Li Shen, and Gang Sun. 2017. Squeeze-
and-excitation networks. arXiv preprint
arXiv:1709.01507, 7.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In AAAI, pages 2741–2749.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In AAAI, volume 333, pages 2267–
2273.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Ronglu Li. 2011. Fudan corpus for
text classification. Data download:
http://www.datatang.com/data/44139.

Fredrik Lundh. 2009. Python imag-
ing library (pil). Webpage:
http://www.pythonware.com/products/pil/.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. As-
sociation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2015. Ima-
geNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Twitter sentiment analysis with deep convolutional
neural networks. In Proceedings of the 38th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 959–
962. ACM.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Tzu-Ray Su and Hung-Yi Lee. 2017. Learning chi-
nese word representations from glyphs of characters.
arXiv preprint arXiv:1708.04755.

314

Maosong Sun, Jingyang Li, Zhipeng Guo,
Yu Zhao, Yabin Zheng, Xiance Si, and
Zhiyuan Liu. 2016. Thuctc: An efficient chi-
nese text classifier. Github and data download:
https://github.com/thunlp/THUCTC.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. 2015. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 1–9.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the
2015 conference on empirical methods in natural
language processing, pages 1422–1432.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

Jian Xu, Jiawei Liu, Liangang Zhang, Zhengyu Li, and
Huanhuan Chen. 2016. Improve chinese word em-
beddings by exploiting internal structure. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1041–1050.

Jinxing Yu, Xun Jian, Hao Xin, and Yangqiu Song.
2017. Joint embeddings of chinese words, char-
acters, and fine-grained subcharacter components.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
286–291.

Xiang Zhang. 2017. Which encoding is the best
for text classification in chinese, english, japanese
and korean? Github and data download:
https://github.com/zhangxiangxiao/glyph.

Xiang Zhang and Yann LeCun. 2015. Text understand-
ing from scratch. arXiv preprint arXiv:1502.01710.

Xiang Zhang and Yann LeCun. 2017. Which en-
coding is the best for text classification in chinese,
english, japanese and korean? arXiv preprint
arXiv:1708.02657.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

315

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 316–321
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Learning Comment Controversy Prediction in Web Discussions
Using Incidentally Supervised Multi-Task CNNs

Nils Rethmeier, Mark Hübner, Leonhard Hennig
German Research Center for Artificial Intelligence (DFKI), Germany

firstname.lastname@dfki.de

Abstract
Comments on web news contain controver-
sies that manifest as inter-group agreement-
conflicts. Tracking such rapidly evolving
controversy could ease conflict resolution or
journalist-user interaction. However, this pre-
supposes controversy online-prediction that
scales to diverse domains using incidental
supervision signals instead of manual label-
ing. To more deeply interpret comment-
controversy model decisions we frame predic-
tion as binary classification and evaluate base-
lines and multi-task CNNs that use an auxil-
iary news-genre-encoder. Finally, we use abla-
tion and interpretability methods to determine
the impacts of topic, discourse and sentiment
indicators, contextual vs. global word influ-
ence, as well as genre-keywords vs. per-genre-
controversy keywords – to find that the models
learn plausible controversy features using only
incidentally supervised signals.

1 Introduction

Online discussion comments are exchanged in
parallel, creating redundancy that prohibits dis-
cussions from developing beyond a superficial
stage of confirming previously held opinions.
Instead, Mahyar et al. (2017) recently demon-
strated that focusing users on controversial com-
ments – i.e. comments that cause inter-group
agreement-conflicts (Dori-Hacohen et al., 2015)
– helps speed up inter-group consensus finding
leading to improved group decisions. However,
their system (ConsensUS) uses manual contro-
versy labels which can not capture rapidly evolv-
ing comment-controversy at scale or over diverse
domains. Hence, to fully automate comment-
controversy prediction systems we contribute the
following solutions to a number of challenges.
(I) We extend controversy prediction to comment-
level, and to German news discussions. We eval-
uate topic, sentiment and discourse importance

(Cramer, 2011) and analyze whether models plau-
sibly capture controversy aspects using explain-
ability methods (see Sec. 5.3). (II) We use com-
ment vote-agreement to create an incidentally su-
pervised (Roth, 2017) controversy signal as seen
in Figure 1. Structural (output feature) signals like
genre, are predicted by a sub-encoder (see Sec. 4)
rather than required as input. (III) Sentiment and
discourse input feature creation work on any tok-
enizable language (see Sec. 3).

Figure 1: A comment is assumed controversial if
its up and down votes show no clear 2/3 majority
decision.

2 Related Research

Since predicting user agreement-conflicts upon
web news comments is a special case of contro-
versy prediction, we list in the following related
works that: (a) learn to predict controversy, using
(b) incidental supervision, and (c) work on online
(news) discussions. Chen et al. (2016) visualized
controversial words using dissimilarities in pro vs.
contra argument embeddings. Garimella et al.
(2017) identified controversial topics using bipar-
tite Twitter follower-graphs, while Dori-Hacohen
and Allan (2015) proposed an incidentally super-
vised binary classification to predict controversial
topics via Wikipedia tags. Jang et al. (2016) used
language modeling to predict controversial doc-
uments, based on earlier hypotheses by Cramer
(2011): “that language in news discussions is a
good indicator of controversy”. Choi et al. (2010)
focused on using sentiment polarity indicators and

316

https://doi.org/10.18653/v1/P17

subtopics, i.e. topically related phrases of nouns.
Vote-based learning signals have been exploited
by both Pool and Nissim (2016); Basile et al.
(2017) who predict the sentiment distributions of
news outlets or find controversial news pieces us-
ing Facebook-article emoticon-votes. Instead of
predicting controversial topics (articles), we pre-
dict controversial comments, hence putting the fo-
cus on users (commentators) as curators of contro-
versial content.

3 Incidental Supervision Signals

Controversy signal: We use comment vote-
agreement ratios and news tags as incidental su-
pervision signals (Roth, 2017) to label comments
as controversial and by genre. Comments without
a clear 2/3 majority of either agreeing (up) or dis-
agreeing (down) votes are considered controver-
sial – i.e. of conflicted agreement. The ratio is cal-
culated as r = min(up, down)/max(up, down).
Ratios below 0.5 mark a 2/3 majority. Ratios
above 0.5 mark conflicted agreement. We re-
duce labeling noise via two noise margins: (a)
controversial comments must have a vote-ratio
r > 0.6 and (b) that both the up-votes (group)
and down-votes (group) should each have more
than 2 votes. Article Genre signal: Predicting
controversy without context structure is difficult,
hence we use article-genre (topic) prediction as
an incidental structure signal. The data contains
15 genres – some of which are noisy mixes of
others. However, to keep preprocessing general,
we use genres ”as-is”. Corpus: We collected
comments and the above training signals for ev-
ery article published by the Austrian newspaper
DerStandard.at in 2015. Each article has a
news genre tag and user comments, that in turn
receive up and down votes. The corpus contains
813k comments, from which we extracted 8.9k
controversial and 12.6k non-controversial com-
ments after removing duplicates and short com-
ments with less than five words. Text prepro-
cessing: is source agnostic without language-
specific NLP. We remove noise like low-frequency
words. We create special tokens for discourse
(repeated punctuation) and reactionary sentiment
(emoticons) by categorizing emoticons into four
(non-overlapping) types using a Wikipedia emoti-
con list1, see Table 1. We keep stop words, as they

1https://en.wikipedia.org/wiki/List_
of_emoticons

often overlap with discourse markers (see Sec. 5).
Compounds are separated with a $comp$ token.
Finally, we pre-trained word2vec (Mikolov et al.,
2013) embeddings on 3.35M preprocessed article
and comment sentences to cover standard German
and mixed (non)dialect.

Pattern Replacement Example
URL url web.de
happy $happy$:) :D
sad sad :(
skeptical $skeptical$:S, :/
unserious $unserious$:P ;p
rep. punct. $.$, $,$, $?$, $!$... !!!
compounds word $comp$ word Go-Fan

Table 1: Text normalization reduces vocabulary
noise and creates input features.

4 Models

Baselines: As baselines we use Multinomial
Naive Bayes (MNB) and Regularized Logistic Re-
gression (LR) trained on TF or TFIDF Bag-of-
Ngrams. FastText (FT) (Joulin et al., 2016) is
trained on embedding 1-3grams.

Single / Multi-task CNNs : We also use con-
volutional neural nets (CNN) as they are widely
used in text classification. Below, we describe how
we modified the single-task model (ST) by Kim
(2014) to create a multi-task architecture (MT)
as follows. ST: A CNN that predicts comment-
controversy only. It uses a deeper classifier, input-
token dropout, custom word2vec embeddings and
trains on comment, controversy label pairs via a
binary cross-entropy – see Controversy CNN in
Figure 2. MT: This model adds a genre-encoder to
the ST. The encoder predicts multi-class genre via
categorical cross-entropy and softmax on genre
labels. Its penultimate activation map is fed to
the ST’s controversy classifier, to provide genre
plus controversy features – see red downward ar-
row entitled genre encoding in Figure 2. The two
losses are trained as a weighted sum. Thus, genre
features are not required when predicting on new
data.

MT modifications: Since feature extraction
module design is central to CNNs, we evaluate
a range of different design choices. We separate
extraction modules into three categories from left
to right: convolution methods, activation schemes,

317

and pooling mechanisms as seen in the upper and
middle parts of Figure 2. White boxes are mod-
ules, dashed/dotted lines are module-combination
options. Modules are marked by author, or with *
for our own modifications. Module details are as
follows:

MaxPool

μ AvgPool

Concat

- Invert input sign
lin. Conv. n-gramn

R ReLU

Multiply

Genre encodingR

σ StdPool

R S

Squeeze & Excite
2018 [Hu]

μ
R

 CReLU 2016
[Shang]

R
-

Swish 2018
[Ramachandran]

S

ReLU 2000
[Hahnloser]

R

Genre Encoder CNN

MT
CNN

Controversy CNN

activateconv-
olve

activateconv-
olve

pool

pool

R R

R R

Embedding

Input
Token dropout

1

...

5

N-gram Conv.
2014 [Kim]

PosNeg Conv *
[this work]

1-
1

... ...
...

Dropout Softmax
Sigmoid

Fully con. R/S

MaxPool
2014 [Kim]

MaxStdPool *
[this work]

σ

Figure 2: CNN modifications. Upper white box
classifies genre to encode it, lower one classifies
controversy. Colored rectangles are layers and op-
erations as per the legend.

Conv: Kim (2014). CReLU Appends negated
activations before applying ReLU (Shang et al.,
2016). PosNeg Conv* (PNC): Learns separate
convolutions for negated and positive embedding-
activations, to extend CReLU. ReLU: (Hahnloser
et al., 2000). Swish: Self-attention multiplying
inputs x by their sigmoid σ(x) (Ramachandran
et al., 2018). Squeeze and Excite (SE): Bottle-
necked multi-layer attention that learns convolu-
tion filter importances (Hu et al., 2018). MaxPool:
(LeCun et al., 1998). Max(SPool)*: Appends per-
filter Standard Deviation Pooling (SPool) to Max-
Pool, to preserve variance info. In the next section
we evaluate the most successful combinations.

5 Results and Discussion

We evaluate on 8.9k controversial and 12.6k non-
controversial comments that each belong to ex-
actly one genre. We created 5 randomly sampled
(stratified) folds – 4 folds for cross validation (CV)
and 1 as holdout set. MNB, LR, FT, Conv+ReLU
(ST) only predict controversy. The MT models
jointly predict controversy + genre and are tested
for various modification combos. Finally, we in-
vestigate models decision semantics and feature
type importances via ablation studies.

5.1 Baselines: MNB, LR, FT

In Table 2 we list F1, area under the ROC curve
(AUC) and accuracy (Acc) controversy prediction
results on the holdout test set. We see that FastText
is the best baseline2. Optimal hyperparameters
from 4-fold CV were: word-embedding 1-3gram
with 128 dimensional w2v embeddings for FT,
and TFIDF 1+2grams with a maximum document-
frequency of 100% and a minimum term fre-
quency of 2 for MNB and LR.

5.2 ST, MT CNNs

Stopwords and punctuation are kept as they con-
tain discourse and sentiment features – see sec.
5.3 for details. Low-frequency words are re-
placed with a pre-trained unknown word token
(UNK). Conv+ReLU (ST): The controversy-only
CNN outperformed FT at optimal CV parame-
ters of: 1-5gram, global max pooling, 128 fil-
ters and 1k classifier widths. More filters or a 4k
width decreased CV and test performance. Stan-
dard dropout (Hinton et al., 2012) and Batch Nor-
malization (Ioffe and Szegedy, 2015) decreased
performance, while 20% token-dropout (Gal and
Ghahramani, 2016) led to consistent improve-
ment. Conv+ReLU (MT): Adding a genre-task
network to ST improved performances by 2 –
4 points each, despite working on halved hy-
per parameters – i.e. MTs performed best us-
ing only 64 filters and 512 classifier units, giv-
ing less model parameters than the ST, especially
since increasing ST’s parameters hurt its perfor-
mance. MT modifications: Since some modifica-
tions underperformed we only list combinations
that are top-3 in one of the measures. Notice-

2An always-controversial predictor gives F1 = 58%,
Acc = 42% and sample weighted class average F1 =
24%. A always-non-controversial predictor gives F1 = 42%,
Acc = 58% and F1 = 43%). Neither is useful in practice.

318

ably, the MT+PNC+SPool+Swish variant signifi-
cantly improved AUCROC and Acc over the sim-
pler Conv+ReLU (MT) model, which produced
the best F1. Overall, we see that adding more inci-
dental supervision signals beats adding advanced
network modules.

Model AUC F1 Acc

MNB 59.84 55.72 57.44
LR 62.92 58.14 60.12
FT 65.06 60.57 63.82

Conv+ReLU (ST) 68.25 62.03 66.42

Conv+ReLU (MT↓) 72.12 64.48 68.37
PNC+CReLU 72.06 63.40 68.72
PNC+SPool+Swish 72.28 64.21 68.82
Conv+SE+ReLU 71.91 63.93 68.76

Table 2: Holdout performances for the controver-
sial class (y=1). Baselines: top 3. ST: middle,
MT: last 4 – only module combinations with top-
3 performance in one measure are listed as: best,
2nd best, 3rd best.

5.3 Feature-type ablation

We ablated sentiment, discourse and topical fea-
tures (Choi et al., 2010; Cramer, 2011). Then, we
re-tuned the Conv+ReLU (MT) on the 4, now ab-
lated, CV folds to measured test set performance
changes as follows. Three sentiment ablations:
(1) polarity words (sent ws by Waltinger (2010)),
(2) repeated punctuation (punct.), and (3) emoti-
cons (emotes) as mentioned in sec. 3. Discourse:
Removal of German discourse markers (DiMLex)
(Stede and Umbach, 1998). Topic: Noun removal
as in Choi et al. (2010) to represent topical indi-
cators. Figure 3 shows the relative percentual per-
formance drop per ablation. Thus, for controversy
prediction: topic was the most important, fol-
lowed by discourse markers3 and sentiment with
repeated punctuation and emoticons being impact-
ful style/sentiment features. Polarity words affect
prediction, but are not language independent.

3Markers overlap with a stop word list in approximately
49% of occurrences in our dataset. Stop words: http://
www.ranks.nl/stopwords/german.

sent ws punct. emotes discourse topical

5
10
15
20

 R

O
C

2
4
6

 F

1

5

10

A

c
c

10.3610.00 10.37 15.9512.81

5.54 5.264.97 5.755.13

11.397.906.776.45 6.75

Figure 3: Relative controversy prediction per-
formance drop in % for removal of: sentiment
(blues), discourse (orange) and topic/nouns (red).

5.4 Per-word impacts

Inspired by explainability methods (Li et al., 2016;
Arras et al., 2017) we also measured the contro-
versy prediction-score change when replacing a
token with a class neutral UNK token4.

Discourse or punctuation ($):
Because it not_a UNK country but a dictatorship is .
What UNK Putin of human_rights and peace $.$.
Had you the UNK or are you vaccinated $?$? ii ii

Emoticons:
They employ the same word_choice :((. a.
Was easily UNK the tradition UNK ? ;)

Context dependent word influence:
Interestingly , if one something negative against ⏎
Windows posts will one instantly_be with UNK ⏎
bombarded .
But 2 years were we by Microsoft marketing ⏎
and by Microsoft fan_boys UNK how cool yet not ⏎
Windows 8 and 8 .1 is .

Figure 4: DE → EN Per-token controversy im-
pacts: Red is important for controversy. Blue low-
ers the controversy score. Last paragraph: context
dependent word influence of the word Windows.

In Figure 4 we colored per-token score drops
(red) or increases (blue) for German-to-English
word-by-word translations on test set comments.
We show examples by ablation types as de-
scribed in section 5.3. As before, nouns and
discourse markers increase controversy, while, ex-
pectedly, an (#unserious) ;) emoticon is strongly
counter-indicative of controversy. Repeated punc-
tuation, like $.$ or $?$, also impacts prediction.
Finally, the model learned context dependent con-

4Removing tokens would create unusual n-grams, and
hence wrong results.

319

domestic politics international politics economy panorama

kpö afd ceasefire poroschenko bonds tsipras entry pegida
pühringer fpö mariupol separatists rbi troika battery prejudices
spö grünen rebels putin hedge funds syriza property dmg. refugee policy
state elections parties hamas arabs budget greece passage hate-monger
federal level faymann air raid israelis credits varoufakis tents antisemitism

genre + controversy genre + controversy genre + controversy genre + controversy

Table 3: Token importances in descending order. On the left genre: most important genre tokens. On the
right (+ controversy): most controversial tokens per genre. Tokens are sorted by mean positive impact
on genre and genre+controversy predictions.

troversy polarity for the word Windows, with has
both strong positive and negative polarity.

5.5 Token impacts on genre and controversy
To generate keywords for controversy and genre
vs. controversy-per-genre, we averaged UNK
token-replacement prediction-impacts over all oc-
currences of a token ti and calculated its im-
pact mean µ(impacts(ti)) and standard deviation
σ(impacts(ti)), similar to how Horn et al. (2017)
extract topic keywords.

Controversy keywords: In Table 4 we divided
tokens into infrequent (top half) and common to-
kens (lower half). Infrequent tokens have over 10
occurrences, frequent ones at least 200.

(a) 0 con (b) ↑↓ con (c) ↑ con (d) ↓ con

” pkk separatists yet
. kurds putin thx
; crimea pegida has
– tsipras israelis ain’t
possibly israelis hamas yeah

. eu eu have
- usa usa #happy#
? #unser.# country #unser.#
” #happy# people anyway
with $.$ austria from

σ(impacts(token)) µ(impacts(token))

(a) No impact := smallest σ(impacts) ≈ 0 top.
(b) Impactful := largest σ(impacts) top.
(c) Pro controv. := most positive µ(impacts) top.
(d) Contra cont. := most negative µ(impacts) top.

Table 4: Controversy impacts for seldom (upper
half) and frequent token (lower half).

The tokens impact controversy either: (a) not
at all, (b) positively or negatively, (c) generally

increase it or (d) generally decrease it. We see
that, standard punctuation has no impact on
controversy (a), but repeated punctuation, emotes
and political terms do (b). Expectedly, political
terms generally increase controversy (c), while
colloquialisms and friendly emotes lower it (d).

Genre vs. controversy-per-genre keywords:
We examined mean token impacts µ(impacts)
on genre classification vs. per-genre controversy
in Table 3 for the four most interesting gen-
res. The domestic politics genre is dominated
by established Austrian parties or generic politi-
cal terms, while right-wing, left-wing and liberal
parties characterize domestic controversy. The in-
ternational genre shows mostly war related terms.
Its controversy focuses on the 2015 Ukraine and
middle east conflicts. Keywords for the econ-
omy genre are general finance terms, whereas the
Greek debt crisis dominates genre controversy.
The panorama genre focuses on refugee-related
terms, where the related right-wing issues caused
controversy in 2015.

6 Conclusion

We proposed a fully automated, incidentally
supervised, multi-task approach for comment-
controversy prediction and showed that it suc-
cessfully captures contextual controversy seman-
tics despite only using minimal, language inde-
pendent, preprocessing and feature creation. In the
future, we aim to extend data collection to study
controversy drift over time.

Acknowledgements

This work was supported by the German Fed-
eral Ministry of Education and Research (BMBF)
through the project DEEPLEE (01IW17001).

320

References
Leila Arras, Franziska Horn, Grégoire Montavon,

Klaus-Robert Müller, and Wojciech Samek. 2017.
”What is relevant in a text document?”: An inter-
pretable machine learning approach. PloS one 12
(2017).

Angelo Basile, Tommaso Caselli, and Malvina Nissim.
2017. Predicting Controversial News Using Face-
book Reactions.. In CLiC-it.

Wei-Fan Chen, Fang-Yu Lin, and Lun-Wei Ku. 2016.
WordForce: Visualizing Controversial Words in De-
bates. In COLING.

Yoonjung Choi, Yuchul Jung, and Sung-Hyon Myaeng.
2010. Identifying Controversial Issues and Their
Sub-topics in News Articles. In PAISI.

Peter A Cramer. 2011. Controversy as news discourse.
Vol. 19. Springer Science & Business Media.

Shiri Dori-Hacohen and James Allan. 2015. Auto-
mated Controversy Detection on the Web. In ECIR.

Shiri Dori-Hacohen, Elad Yom-Tov, and James Allan.
2015. Navigating Controversy as a Complex Search
Task. In SCST@ECIR.

Yarin Gal and Zoubin Ghahramani. 2016. A Theoreti-
cally Grounded Application of Dropout in Recurrent
Neural Networks. In NIPS.

Venkata Rama Kiran Garimella, Gianmarco De Fran-
cisci Morales, Aristides Gionis, and Michael Math-
ioudakis. 2017. Reducing Controversy by Connect-
ing Opposing Views. In WSDM.

Richard HR Hahnloser, Rahul Sarpeshkar, Misha A
Mahowald, Rodney J Douglas, and H Sebastian Se-
ung. 2000. Digital selection and analogue ampli-
fication coexist in a cortex-inspired silicon circuit.
Nature 405, 6789 (2000).

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors. CoRR
(2012).

Franziska Horn, Leila Arras, Grgoire Montavon,
Klaus-Robert Mller, and Wojciech Samek. 2017.
Discovering topics in text datasets by visualizing rel-
evant words. CoRR (2017).

Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-
Excitation Networks. IEEE Conference on Com-
puter Vision and Pattern Recognition (2018).

Sergey Ioffe and Christian Szegedy. 2015. Batch Nor-
malization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In ICML.

Myungha Jang, John Foley, Shiri Dori-Hacohen, and
James Allan. 2016. Probabilistic Approaches to
Controversy Detection. In CIKM.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016. Bag of Tricks
for Efficient Text Classification. arXiv preprint
arXiv:1607.01759 (2016).

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In EMNLP.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proc. IEEE 86, 11 (1998).

Jiwei Li, Will Monroe, and Daniel Jurafsky. 2016. Un-
derstanding Neural Networks through Representa-
tion Erasure. CoRR (2016).

Narges Mahyar, Weichen Liu, Sijia Xiao, Jacob
Browne, Ming Yang, and Steven Dow. 2017. Con-
sensUs: Visualizing Points of Disagreement for
Multi-Criteria Collaborative Decision Making. In
CSCW Companion.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 (2013).

Chris Pool and Malvina Nissim. 2016. Distant
supervision for emotion detection using Face-
book reactions. In Proceedings of the Workshop
on Computational Modeling of People’s Opin-
ions, Personality, and Emotions in Social Me-
dia (PEOPLES). The COLING Organizing Com-
mittee, Osaka, Japan. http://aclweb.org/
anthology/W16-4304

Prajit Ramachandran, Barret Zoph, and Quoc V Le.
2018. Searching for activation functions. ICLR
(2018).

Dan Roth. 2017. Incidental Supervision: Moving be-
yond Supervised Learning. In AAAI.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and
Honglak Lee. 2016. Understanding and improving
convolutional neural networks via concatenated rec-
tified linear units. In International Conference on
Machine Learning.

Manfred Stede and Carla Umbach. 1998. DiMLex:
A lexicon of discourse markers for text generation
and understanding. In Proceedings of the 17th inter-
national conference on Computational linguistics-
Volume 2. Association for Computational Linguis-
tics.

Ulli Waltinger. 2010. GERMANPOLARITYCLUES:
A Lexical Resource for German Sentiment Anal-
ysis. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation
(LREC). electronic proceedings, Valletta, Malta.

321

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 322–327
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Words Worth: Verbal Content and Hirability Impressions in YouTube
Video Resumes

Skanda Muralidhar
Idiap and EPFL

Switzerland
smuralidhar@idiap.ch

Laurent Son Nguyen
Idiap

Switzerland
lnguyen@idiap.ch

Daniel Gatica-Perez
Idiap and EPFL

Switzerland
gatica@idiap.ch

Abstract

Automatic hirability prediction from video
resumes is gaining increasing attention in
both psychology and computing.Most exist-
ing works have investigated hirability from
the perspective of nonverbal behavior, with
verbal content receiving little interest.In this
study, we leverage the advances in deep-
learning based text representation techniques
(like word embedding) in natural language
processing to investigate the relationship be-
tween verbal content and perceived hirabil-
ity ratings.To this end, we use 292 conversa-
tional video resumes from YouTube, develop a
computational framework to automatically ex-
tract various representations of verbal content,
and evaluate them in a regression task.We ob-
tain a best performance of R2 = 0.23 using
GloVe, and R2 = 0.22 using Word2Vec repre-
sentations for manual and automatically tran-
scribed texts respectively.Our inference results
indicate the feasibility of using deep learn-
ing based verbal content representation in in-
ferring hirability scores from online conversa-
tional video resumes.

1 Introduction

First impressions play an important role in many
social interactions, be it in personal life (like a first
date) or in the professional contexts (like job inter-
views) (Ambady and Skowronski, 2008).Psychol-
ogists define first impressions as the “mental im-
age formed about something or someone after a
first meeting”.People form impressions about oth-
ers’ attractiveness, personality, hirability or trust-
worthiness within a very short amount of time;
nonverbal cues have been shown to play an impor-
tant role in the formation of first impressions (Am-
bady and Rosenthal, 1992; Willis and Todorov,
2006).Despite the importance of verbal content
and its relationship with various social constructs,
it has been studied relatively rarely in comparison

with nonverbal behavior.This work explores the
relationship between verbal content and hirability
impressions using a previously collected dataset
consisting of noisy, real-world video resumes from
YouTube (Nguyen and Gatica-Perez, 2016).

Literature in NLP and social computing have
investigated the relation between verbal content
and various social contrasts.In particular, Sinha et
al. (Sinha et al., 2015) infered personality traits
(HEXACO) of employees from Enterprise Social
Media posts.Plank et al. (Plank and Hovy, 2015)
collected a novel corpus of 1.2M English tweets
annotated with Myers-Briggs personality type and
reported the feasibility of using linguistic content
from social media data to reliably predict some
personality dimensions.Biel et al. (Biel et al.,
2013), using 442 YouTube video blogs, investi-
gated the relation between verbal content and per-
sonality impressions.The authors reported a per-
formance of R2 = 0.31 in inferring Agreeableness
using manual transcriptions.

In the context of job interviews, literature has
examined face-to-face interviews (Muralidhar and
Gatica-Perez, 2017; Chen et al., 2016) and video
interviews (Chen et al., 2017) to understand the
relationship between verbal content and hirabil-
ity impression.In this study, we investigate this
relationship in the context of “in-the-wild”, real-
world conversational video resumes.To the best
of our knowledge, we are the first to utilize ad-
vances in natural language processing (Doc2Vec,
Word2Vec, GloVe) to understand verbal behav-
ior in this context.In particular, using a dataset of
292 YouTube video resumes, we address three re-
search questions; (1)How can verbal content be
represented to infer hirability impressions in video
resumes?(2)What is the effect of automatic speech
recognition (ASR) on inference performance com-
pared to manual transcription? (3)What is the im-

322

https://doi.org/10.18653/v1/P17

pact of video duration on inferring hirability im-
pressions using verbal content?

Towards this goal, we develop a computational
model to automatically extract various verbal rep-
resentations from text corpus and evaluate their
performance in a regression task.The contribution
of this work are: (1)We transcribe 292 videos both
manually and automatically; (2) We extract var-
ious representations of verbal content (Doc2Vec,
Word2Vec and GloVe); (3) For manual transcrip-
tion, we evaluate the various representations in an
inference task and observe best inference perfor-
mance for Overall Hirability (R2 = 0.23) using
GloVe; (4) We then assess the performance of au-
tomatic transcription versus manual and observe
comparable inference performances, with R2 =
0.21 for Overall Hirability; (5) We assess the dif-
ference in performance between automatic tran-
scription of 2 minutes versus full video duration
and observe that inference performance improve
slightly with R2 = 0.22 for Overall Hirability.

2 Dataset
2.1 YouTube Video Resume Dataset
In this work, we use a dataset previously col-
lected by our group (Nguyen and Gatica-Perez,
2016).Nguyen et al. collected 939 videos us-
ing various keywords (like video resume, video
cv etc), collected these videos from YouTube.Of
these, we randomly selected a subset of 313
videos (i.e. 1/3 of the data) as manual transcrip-
tions is an expensive and time consuming pro-
cess.Furthermore, of the 313 videos, 21 were dis-
carded due to difficulty in transcription (due to
music, accent of speakers) and missing annota-
tions.Hence in this work, we use a corpus of 292
YouTube video resumes.

2.2 Annotations
The 292 videos were manually annotated for de-
mographics and hirability impressions (on a 1 −
5 Likert scale) by Amazon Mechanical Turkers
(Nguyen and Gatica-Perez, 2016) with each video
rated by at least 5 workers.We use Intraclass Cor-
relation Coefficient (ICC) to measure inter rater
agreement, a commonly used metric in psychol-
ogy and social computing.ICC values were greater
than 0.5 and is considered acceptable (Nguyen and
Gatica-Perez, 2016).

2.3 Transcriptions
Manual Transcription: It was carried out by a
native English speaker, who transcribed the videos

Figure 1: Box plot illustrating the distribution of number
of words obtained by (a) manual transcription [Man] (b)
ASR for first 2 minutes [ASR-2min] (c) ASR for full video
[ASR-Full] for a random subset of 292 videos. The dotted
line indicates the mean value.

as is (with no changes or corrections).As manual
transcription is a tedious and expensive process,
only the first 2 minutes were transcribed.These
transcriptions constitute the “gold-standard” as
they can be considered the output of an ideal, er-
rorless ASR system.
Automatic Transcription: To address our re-
search questions, we used an off-the-shelf ASR,
Google Speech API (Cloud Services) for speech-
to-text transcription.This API was selected as it
is the best performing ASR system (Këpuska
and Bohouta, 2017) and is readily available.Using
Google Speech API, we generate two sets of tran-
scriptions (a) first two minutes (to compare with
manual transcription) (b) full video.Performance
of the ASR was measured using word error rate
(WER), and for this dataset was 41.5%.To put
these results in perspective, Biel et al. reported
an WER of 62.4% in their work (Biel et al., 2013)
where the videos were comparable in terms of au-
dio quality.Figure 1 shows the descriptive statistics
of transcribed word count.
3 Method

Our methodology is illustrated in Figure 2. To ob-
tain a feature representation of verbal content, we
evaluated two distinct approaches: (a) represen-
tation at the document level; and (b) representa-
tion at the word level, followed by an aggrega-
tion step.For Doc2Vec and word-based representa-
tions, the text is pre-processed by converting them
into lower case, removing the stop words, then
stemmin and tokenizing.This was done using the
Natural Language Toolkit (NLTK) python pack-
age (Bird et al., 2009).
3.1 Document-Based Representation
Linguistic Inquiry and Word Count (LIWC)
is a software (Pennebaker and King, 1999) we use

323

Figure 2: Overview of the work flow used in this study. The two classes of verbal content representation methods (a)
document-based (b) word-based investigated is illustrated. For the document-based method, performance of LIWC and
Doc2Vec in inferring hirability impressions is investigated. For the word-based method, all combinations of algorithm
and aggregation techniques are investigated.

to extract lexical features.It computes these fea-
tures by looking up each word in the transcript to
the in-built English dictionary and is maps it to
one of 70 categories.LIWC does not need text to
be pre-processed and is a common text representa-
tion technique in computing literature (Muralidhar
and Gatica-Perez, 2017; Biel et al., 2013).

Doc2Vec or paragraph vector was proposed by
Le et al.(Le and Mikolov, 2014) to represent doc-
uments. After the text is pre-processed, we gener-
ate document vectors by training a model for word
embedding using the Gensim package (Řehůřek
and Sojka) in python. For the model generation,
we use a constant learning rate for 10 epochs with
100 iterations and a vector of length 100. These
numbers were empirically determined.

3.2 Word-Based Representations

For word-based representations, we use a two-
step approach.First, word embedding from the
transcripts are computed using pre-trained models
(Word2Vec and GloVe).Next, these embedding are
aggregated for a document level representation.

3.2.1 Word Representation
Word2Vec: developed by Mikolov et al., is an
unsupervised learning algorithm that learns word
embedding from a text corpus (Mikolov et al.,
2013) with two models (a) continuous bag of
words (CBOW) (b) continuous skip-gram (skip-
gram).In both, the algorithm starts with a ran-
domly initialized vectors and then learns the em-
bedding by prediction.In this work, we use pre-
trained CBOW model (300-dimensional) provided

by Google which is trained on the Google News
Dataset consisting of 100 billion words and a vo-
cabulary of 3 million words (Mikolov et al., 2013).

GloVe: is a statistical method to learn word em-
bedding developed by Pennington et al. (Penning-
ton et al., 2014).This algorithm uses the global
co-occurrence statistics, i.e count of word co-
occurrences in a text corpus.In this work, we
use GloVe with two different pre-trained models
(both 300-dimensional vector) provided by the au-
thors; (a) GloVe(S) trained on 6 billion words of
Wikipedia (2014) with a vocabulary size of 400K
words, and (b) GloVe(B) trained on a larger cor-
pus of 840 billion words with a vocabulary of 2.2
million words.

3.2.2 Aggregation Techniques
In order to use Word2Vec and GloVe for repre-
senting documents (document embedding), vari-
ous aggregation techniques were applied as not
all words represent a sentence equally.The most
common aggregation techniques are averaging and
term frequency-inverse document frequency (TF-
IDF). They have been shown in literature to work
better than Doc2Vec for short sentences and small
documents (Kenter et al., 2016; De Boom et al.,
2016; Yih et al., 2011).

3.3 Regression

We outline our proposed computational frame-
work for evaluating the research questions posed
as a regression task. We define this task as
inferring the impressions of hirability and soft
skills using various verbal content representa-

324

tions. Towards this, we evaluate two regression
techniques (Support Vector Machines regression
(SVM-R) and Random Forest regression (RF)) im-
plemented in the “scikit-learn” package for Python
(Pedregosa et al., 2011). The hyper-parameters of
the machine learning algorithms were optimized
for best performance using 10-fold inner cross-
validation (CV) and grid search, while the per-
formance was assessed using the 100 independent
runs of Leave-one-video-out CV. The performance
of machine learning algorithms was evaluated us-
ing the coefficient of determination (R2). We re-
port the best performing algorithm only (RF).

4 Results and Discussion

4.1 RQ-1: Manual Transcriptions

Regression results using manual transcriptions are
presented in Table 1.We observe that in an ideal
case (i.e. using manual transcriptions) best in-
ference performance for Overall Hirability is ob-
tained using GloVe(S) with R2 = 0.23.This im-
plies that raters, at least partially, formed their
hirability impressions based on verbal content.

In terms of inference performance, Doc2Vec
consistently performs worse for all the hirability
variables with R2 = 0.08 (Overall Hirability) be-
ing highest.We hypothesize that this poor results
could be the relatively short length of the docu-
ments (mean number of words = 232.67; min=50;
max=453).As the performance is much lower than
the other representation methods, thereon we will
not discuss the results of Doc2Vec.Competitive re-
sults were obtained for LIWC features, with high-
est inference performance for Professional (R2 =
0.24), followed by Overall Hirability, indicating
that simple features like LIWC captures some of
the variances in data.

Using GloVe(B) (Tf-Idf), best performance was
obtained for Overall Hirability (R2 = 0.19), while
GloVe(B) (Avg) performed little lower, (high-
est for Overall Hirability with R2 = 0.14).The
GloVe(S) (Avg), performed best amongst all the
representations for all hirability variables except
Professional.The best performance was achieved
for Overall Hirability (R2 = 0.23) and lowest for
Professional and Social (R2 = 0.17).It is inter-
esting to note that GloVe(S) performed better than
GloVe(B) trained on a much larger data.

The Word2Vec representation performed better
than LIWC features for Overall Impression, Social
and Communication, but slightly lower for Overall

Hirability and Professional.Word2Vec (TF-IDF)
performed better then Word2Vec (Avg) for Over-
all Impression (R2 = 0.2 and R2 = 0.18) and
Professional (R2 = 0.20 and R2 = 0.16).In the
context of existing works, these results are bet-
ter than those reported in the literature.Muralidhar
et al., (Muralidhar and Gatica-Perez, 2017) us-
ing LIWC features extracted from 169 videos, re-
ported an inference performance of R2 = 0.11.

Using 1891 video interviews, Chen et al. (Chen
et al., 2017) obtained Precision and Recall of
0.67 and 0.66 respectively in a classification
task.The authors obtained the text corpus using
ASR provided by IBM Bluemix platform and
representation was achieved using Bag-of-Words
(BoW).Nguyen et al., (Nguyen and Gatica-Perez,
2016) investigated the impact of nonverbal behav-
ior in inferring first impressionn and reported a
inference performance of R2 = 0.15 for Overall
Hirability (N = 939).

In summary, using manually transcribed text,
GloVe(S) (Avg) achieves the best inference perfor-
mance for Overall Hirability.Our results indicate
the improved performance of word-based repre-
sentations of verbal content in inferring hirability
impressions, thus answering RQ-1.

4.2 RQ-2: Effect of Automatic Transcriptions

We observe that for ASR-2min corpus, the best
inference performance (Overall Hirability with
R2 = 0.21) is obtained using Word2Vec (Ta-
ble 1).We also observe that LIWC features ex-
tracted from Manual perform slightly better than
those from ASR-2min for Overall Hirability
(R2 = 0.20 compared to R2 = 0.17). Interest-
ingly, GloVe(S) model, which performed best for
Manual, does not perform as well for the ASR-
2min corpus with best performance for Overall
Impression (R2 = 0.14). Similarly, GloVe(B)
model performs worse than other models individ-
ually and in comparison with results from Manual
for Overall Impression (R2 = 0.12).

Word2Vec (TF-IDF) representation performs
best using ASR-2min text corpus with Profes-
sional (R2 = 0.26) and worse for Social (R2 =
0.13).We observe that except for Communica-
tion and Overall Impression, use of ASR-2min
performs slightly better than manual transcrip-
tions.We hypothesize that this improvement could
be due to Word2Vec, being a predictive model
is less sensitive to ASR errors (WER) than

325

Table 1: Results of the inference task using the random forest algorithm (N=292) using manually transcribed (Manual),
automatically transcribed (ASR-2min and ASR-Full) text corpus.The best performance is highligted in bold.

Overall Impression Overall Hirability Professional Skills Social Skills Communication Skills

Manual ASR-
2min

ASR-
Full Manual ASR-

2min
ASR-
Full Manual ASR-

2min
ASR-
Full Manual ASR-

2min
ASR-
Full Manual ASR-

2min
ASR-
Full

LIWC 0.13 0.13 0.14 0.20 0.17 0.19 0.24 0.18 0.20 0.07 0.11 0.09 0.13 0.17 0.20
Doc2Vec 0.03 0.01 0.01 0.08 0.04 0.03 0.03 0.01 0.06 0.03 0.0 0.0 0.05 0.02 0.06
Word2Vec
- Avg 0.18 0.09 0.16 0.18 0.08 0.26 0.16 0.17 0.13 0.14 0.09 0.22 0.22 0.14 0.21
- Tf-Idf 0.20 0.18 0.16 0.17 0.21 0.16 0.20 0.26 0.10 0.10 0.13 0.19 0.22 0.19 0.14
Glove(S)
- Avg 0.21 0.14 0.19 0.23 0.12 0.14 0.17 0.12 0.09 0.17 0.13 0.11 0.20 0.07 0.12
- Tf-Idf 0.15 0.14 0.20 0.23 0.14 0.18 0.15 0.11 0.14 0.12 0.15 0.10 0.15 0.09 0.16
Glove(B)
- Avg 0.12 0.13 0.16 0.14 0.09 0.12 0.11 0.06 0.12 0.14 0.11 0.14 0.16 0.08 0.16
- Tf-Idf 0.16 0.12 0.11 0.19 0.11 0.08 0.13 0.07 0.09 0.13 0.10 0.12 0.15 0.09 0.13

GloVe.Biel et al. (Biel et al., 2013) investigated
the use of manual and automatic transcription to
infer personality impressions in YouTube video
blogs.The authors reported a much lower perfor-
mance using ASR (R2 = 0.18) as compared
to manual transcriptions R2 = 0.31 for Agree-
ableness.This can be attributed to the high WER
(62.4%) of the ASR system used (Hain et al.,
2012) rather than the text representation methods.

In summary, the results indicate that the perfor-
mance of ASR-2min is slightly lower compared
to Manual (albeit with a different representation
(Word2Vec)), and suggest the potential of using
this approach (RQ-2).

4.3 RQ-3: Effect of Duration

The best performance using LIWC features ex-
tracted from ASR-Full text corpus (Table 1) was
obtained for Communication and Professional
(R2 = 0.20), and lowest for Social (R2 =
0.09).This seems to suggest that transcription of
the extra duration of the videos improves in-
ference performance.Word2Vec (Avg) performed
better than Word2Vec (TF-IDF) method for all so-
cial variables with best performances for Overal
Hirability (R2 = 0.26) and worse for Professional
(R2 = 0.13).Using this representation method,
ASR-Full out-performed the ASR-2min corpus for
all variables except Professional (R2 = 0.13)

Inference performance of GloVe(S)(TF-IDF)
performed slightly better than GloVe(S)(Avg) for
all variables (best performance for Overall Im-
pression (R2 = 0.20), worse for Social (R2 =
0.10)) and is better compared to ASR-2min (ex-
cept Social).The performance of GloVe(B) was
lower than that of all other representations with
best results for Overall Impression and Commu-
nication(R2 = 0.16).Although the performance
of GloVe(B) method was lower than other word-
based representations, these results are better than
those obtained using ASR-2min.

Overall, these inference results tend to be com-
parable to those obtained using 2-min manual
transcriptions (gold standard) and are higher than
those reported using nonverbal cues (Nguyen and
Gatica-Perez, 2016). We observe a moderate
improvement in inference performance with full
video duration transcribed for Word2Vec (Avg),
thus answering RQ3.

5 Conclusion

This work investigated the relationship between
verbal content and the formation of hirability im-
pressions in conversational video resumes from
YouTube. To this end, we use 292 video re-
sumes previously collected by Nguyen et al.
(Nguyen and Gatica-Perez, 2016).These videos
were transcribed into text using manual and auto-
matic (Google Speech API) transcriptions.Various
text representations (word2vec, GloVe) were com-
puted from both manual and automatic tran-
scripts.We then investigated the effect of various
document-based and word-based representations
on inference performance in the two text corpora.

To conclude, we acknowledge that there are cer-
tain limitations to this work.Firstly, our experi-
ments would benefit from having more data. In
particular, this could help in experiments with
doc2vec, which requires large amounts of data for
accurate document representation.In future work,
we will investigate the connect between verbal
content and personality impressions as well as fuse
other non-textual predictors.We will also analyze
the impact of verbal content on the hirability im-
pressions using the complete dataset (939 videos).

Acknowledgments

This work was partially funded by the Swiss Na-
tional Science Foundation (SNSF) through the
UBImpressed project. We thank Lesly Miculicich
and Nikolaos Pappas (Idiap) for discussions.

326

References
Nalini Ambady and Robert Rosenthal. 1992. Thin

slices of expressive behavior as predictors of inter-
personal consequences: A meta-analysis. Psycho-
logical Bulletin, 111(2).

Nalini Ambady and John Joseph Skowronski. 2008.
First impressions. Guilford Press.

Joan-Isaac Biel, Vagia Tsiminaki, John Dines, and
Daniel Gatica-Perez. 2013. Hi youtube! personal-
ity impressions and verbal content in social video.
In Proc. 15th ACM ICMI, pages 119–126. ACM.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. O’Reilly
Media, Inc.

Lei Chen, Gary Feng, Chee Wee Leong, Blair Lehman,
Michelle Martin-Raugh, Harrison Kell, Chong Min
Lee, and Su-Youn Yoon. 2016. Automated scoring
of interview videos using doc2vec multimodal fea-
ture extraction paradigm. In Proc. 18th ACM ICMI,
pages 161–168. ACM.

Lei Chen, Ru Zhao, Chee Wee Leong, Blair Lehman,
Gary Feng, and Mohammed Ehsan Hoque. 2017.
Automated video interview judgment on a large-
sized corpus collected online. In Affective Comput-
ing and Intelligent Interaction (ACII), 2017 Seventh
International Conference on, pages 504–509. IEEE.

Google Cloud Services. Google Speech API.

Cedric De Boom, Steven Van Canneyt, Thomas De-
meester, and Bart Dhoedt. 2016. Representation
learning for very short texts using weighted word
embedding aggregation. Pattern Recognition Let-
ters, 80:150–156.

Thomas Hain, Lukáš Burget, John Dines, Philip N
Garner, František Grézl, Asmaa El Hannani, Mar-
ijn Huijbregts, Martin Karafiat, Mike Lincoln, and
Vincent Wan. 2012. Transcribing meetings with
the amida systems. IEEE Transactions on Audio,
Speech, and Language Processing, 20(2):486–498.

Tom Kenter, Alexey Borisov, and Maarten de Rijke.
2016. Siamese cbow: Optimizing word embed-
dings for sentence representations. arXiv preprint
arXiv:1606.04640.

Veton Këpuska and Gamal Bohouta. 2017. Comparing
speech recognition systems (microsoft api, google
api and cmu sphinx). Int. J. Eng. Res. Appl, 7:20–
24.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Proc.
31st ICML, pages 1188–1196.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Skanda Muralidhar and Daniel Gatica-Perez. 2017.
Examining Linguistic Content and Skill Impression
Structure for Job Interview Analytics in Hospitality.
In Proc. 16th ACM MUM.

Laurent Son Nguyen and Daniel Gatica-Perez. 2016.
Hirability in the wild: Analysis of online conversa-
tional video resumes. IEEE Transactions on Multi-
media, 18(7):1422–1437.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

James W Pennebaker and Laura A King. 1999. Lin-
guistic styles: language use as an individual dif-
ference. J. Personality and Social Psychology,
77(6):1296.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Barbara Plank and Dirk Hovy. 2015. Personality traits
on twitterorhow to get 1,500 personality tests in
a week. In Proceedings of the 6th Workshop on
Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis, pages 92–98.

Radim Řehůřek and Petr Sojka. Software Framework
for Topic Modelling with Large Corpora. In Proc.
LREC 2010 Workshop on New Challenges for NLP
Frameworks. ELRA.

Priyanka Sinha, Lipika Dey, Pabitra Mitra, and Anu-
pam Basu. 2015. Mining hexaco personality traits
from enterprise social media. In Proceedings of
the 6th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 140–147.

Janine Willis and Alexander Todorov. 2006. First im-
pressions making up your mind after a 100-ms ex-
posure to a face. Psychological science, 17(7):592–
598.

Wen-tau Yih, Kristina Toutanova, John C Platt, and
Christopher Meek. 2011. Learning discriminative
projections for text similarity measures. In Proceed-
ings of the Fifteenth Conference on Computational
Natural Language Learning, pages 247–256. Asso-
ciation for Computational Linguistics.

327

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 328–334
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Predicting Adolescents’ Educational Track from Chat Messages on Dutch
Social Media

Lisa Hilte, Walter Daelemans and Reinhild Vandekerckhove
CLiPS, University of Antwerp

Prinsstraat 13, 2000 Antwerp, Belgium
{firstname.lastname}@uantwerpen.be

Abstract

We aim to predict Flemish adolescents’ ed-
ucational track based on their Dutch social
media writing. We distinguish between the
three main types of Belgian secondary edu-
cation: General (theory-oriented), Vocational
(practice-oriented), and Technical Secondary
Education (hybrid). The best results are ob-
tained with a Naive Bayes model, i.e. an F-
score of 0.68 (std. dev. 0.05) in 10-fold cross-
validation experiments on the training data and
an F-score of 0.60 on unseen data. Many of
the most informative features are character n-
grams containing specific occurrences of chat-
speak phenomena such as emoticons. While
the detection of the most theory- and practice-
oriented educational tracks seems to be a rela-
tively easy task, the hybrid Technical level ap-
pears to be much harder to capture based on
online writing style, as expected.

1 Introduction

While some social variables, such as gender and
age, have often been studied in author profiling
(see e.g. the overview paper by Reddy et al.
(2016)), educational track remains largely unex-
plored in this respect. The goal of this paper
is twofold: we aim to develop a model that ac-
curately predicts adolescents’ educational track
based on their language use in social media writ-
ing, and gain more insight in the linguistic char-
acteristics of youngsters’ educational background
through inspection of the most informative fea-
tures for this classification task.
The paper is structured as follows: we start by dis-
cussing related research (Section 2). Next, we de-
scribe the corpus, as well as the three main types
of Belgian secondary education, i.e. the three class
labels in the classification experiments (Section 3).
Finally, we discuss our methodology (Section 4)
and present the results (Section 5).

2 Related Research

Related work on this topic is scarce; only some
studies in education profiling can be found, and
they examine the impact of tertiary (and not sec-
ondary) education, on text genres other than so-
cial media writing. Furthermore, Dutch is never
the language of interest. Estival et al. (2007), for
instance, approached tertiary education profiling
as a binary classification task (none versus some
tertiary education) for a corpus of English emails.
They obtained promising results with an ensem-
ble learner (Bagging algorithm) using character-
based, lexical and structural text features while
explicitly excluding function words. Pennebaker
et al. (2014), however, stressed the importance of
function words in a related task: they linked stu-
dents’ writing in college admission essays to their
later performance in college. Obtaining higher or
lower grades appeared to be associated with the
use of certain function words, belonging to either
‘categorical’ or ‘dynamic’ writing styles. In pre-
vious work on language and social status, Pen-
nebaker (2011) had already pointed out the impor-
tance of pronouns: he described a more frequent
use of you- and we-words as more typical of high
status, as well as a less frequent use of I-words.
When we expand the scope of previous research
from profiling studies to other related linguis-
tic fields, we again conclude that this specific
topic is underresearched. There are many studies
on the characteristics of (youngsters’) computer-
mediated communication (CMC) (see e.g. Varn-
hagen et al. (2010), Tagliamonte and Denis (2008)
and many more) and even some on the interaction
between CMC and education (see e.g. Vandeker-
ckhove and Sandra (2016) for the impact of CMC
on school writing). However, the impact of edu-
cational track on adolescents’ online writing is not
addressed. For this specific topic, we can - to our

328

https://doi.org/10.18653/v1/P17

Educational track Participants Posts Tokens
General Secondary Education 596 (43%) 120 839 (28%) 739 831 (29%)

Technical Secondary Education 393 (28%) 197 534 (45%) 1 151 684 (46%)
Vocational Secondary Education 395 (29%) 116 164 (27%) 639 839 (25%)

Total 1 384 434 537 2 531 354

Table 1: Distributions in the corpus.

knowledge - only refer to our previous sociolin-
guistic work focusing on youngsters with distinct
secondary education profiles, in which we have
shown that teenagers in practice-oriented tracks
tend to deviate more from formal standard writ-
ing on social media, by using more typograph-
ical chatspeak features (e.g. emoji), more non-
standard lexemes (e.g. dialect words) and more
non-standard abbreviations (Hilte et al., 2018a,b).
While for all examined linguistic features, these
differences were very consistent between the two
‘poles’ of the continuum between theory and prac-
tice, i.e. General and Vocational students, the
Technical students did not always hold an inter-
mediate position, but their chat messages showed a
rather unpredictable linguistic pattern (Hilte et al.,
2018a,b). We investigate in this paper whether
these sociolinguistic results are confirmed in ma-
chine learning experiments.

3 Data Collection

Our corpus consists of Flemish1 adolescents’ pri-
vate chat messages, written in Dutch on the social
media platforms Facebook Messenger and Whats-
App. The data were collected through school vis-
its during which the students were informed about
the research, and could voluntarily donate chat
messages. We asked for the students’ (and for mi-
nors, their parents’) consent to store and analyze
their anonymized texts.
The final corpus contains 434 537 chat messages
(2 531 354 tokens) by 1384 authors. All authors
are Flemish high school students, aged 13-20, at-
tending one of the three main types of Belgian
secondary education: the theory-oriented General
Secondary Education (which prepares for higher
education), the practice-oriented Vocational Ed-
ucation (which prepares for a specific manual
profession) and the hybrid Technical Education,
which has both a strong theoretical and practical
focus (Flemish Ministry of Education and Train-

1I.e. living in Flanders, the Dutch-speaking part of Bel-
gium.

ing, 2017). An overview of the distributions in the
corpus can be found in Table 1.
We note that the Belgian secondary school sys-
tem is similar to that of several other countries.
The distinction between a vocational and an aca-
demic training is quite common (e.g. in Denmark,
Finland, Croatia, France, Paraguay, China, etc.).
The division between three main tracks (offering
a more general, technical and vocational program
respectively) is made in several countries as well
(e.g. Czech Republic, Italy, Turkey, etc.)2. Conse-
quently, the present classification task transcends
the Belgian context and may be relevant in differ-
ent countries and cultures, too.

4 Methodology

In this section, we describe the preprocessing of
the data and the feature design (resp. Sections 4.1
and 4.2) as well as the experimental setup (Section
4.3).

4.1 Preprocessing
Since we will predict educational track on a
participant-level, we must ensure to have suffi-
cient data (and thus a fairly representative sample
of online writing) for each participant. For this
purpose, we deleted the participants who donated
fewer than 50 chat messages. Next, we divided the
remaining corpus in a training set (70% of the par-
ticipants), and a test set (15%). A second test set
(15%) was put aside for future experiments. This
division was random but stratified, i.e. every sub-
set contained the same proportion of participants
per educational track.

4.2 Feature Design
The features used in the classification experiments
consist of general textual features and features rep-
resenting the frequency of typical chatspeak phe-
nomena.
The general features include frequencies for token

2en.wikipedia.org/wiki/List_of_
secondary_education_systems_by_country

329

n-grams (uni-, bi- and trigrams) and character n-
grams (bi-, tri- and tetragrams). In addition, av-
erage token and post length and vocabulary rich-
ness (type/token ratio) are taken into account as
well. Finally, we use the dictionary-based com-
putational tool LIWC (Pennebaker et al., 2001) in
an adaptation for Dutch by Zijlstra et al. (2004)
to count word frequencies for semantic and gram-
matical categories. While counts for individual
words are already captured by the token unigrams,
these counts per category can allow for broader
generalizations for words which are semantically
or functionally related. However, we note that the
accuracy of this feature might not be optimal, as
the social media texts are very noisy (and contain
many non-standard elements, e.g. in terms of or-
thography or lexicon), whereas LIWC is based on
standard Dutch word lists.
The set of chatspeak features contains counts for
occurrences of several typographic phenomena. It
includes the number of character repetitions (e.g.
‘suuuuuper nice!!!’) and combinations of ques-
tion and exclamation marks (e.g. ‘what?!’). The
number of unconventionally capitalized tokens is
added as well (alternating, inverse or all caps, e.g.
‘AWESOME’). The final typographic features are
emoticons and emoji (e.g. :), <3), the rendition
of kisses and hugs (e.g. ‘xoxoxo’), hashtags for
topic indication (e.g. ‘#addicted’) and ‘mentions’
for addressing a specific person in a group con-
versation (e.g. ‘@sarah’). We also add an ono-
matopoeic variable, i.e. the number of renditions
of laughter (e.g. ‘hahahahah’). Another typi-
cal element of chatspeak are non-standard abbre-
viations and acronyms (e.g. ‘brb’ for ‘be right
back’). The final feature concerns language or reg-
ister choice per token, in order to explicitly take
into account the authors’ use of words in a dif-
ferent language or linguistic variety than standard
Dutch. We count the number of standard Dutch,
English, and non-standard Dutch (e.g. dialect) lex-
emes. While the other chatspeak features are de-
tected with regular expressions (typographic and
onomatopoeic markers) or predefined lists (abbre-
viations), this lexical feature is extracted using a
dictionary-based pipeline approach. For each to-
ken, we first checked if it was an actual word (and
not e.g. an emoticon). Next, we checked if it oc-
curred in a list of standard Dutch words and named
entities. If not, we checked its presence in a stan-
dard English word list. Finally, if the token was

Figure 1: Example messages from the corpus.

absent again, it was placed in the ‘non-standard
Dutch’ category. Figure 1 shows a sample of au-
thentic chat messages from the corpus, illustrating
the use of several chatspeak features.
For each participant, an individual feature vector
was created containing the counts for all of these
features. We proceeded with relative counts (to
normalize for submission size) by dividing the ab-
solute counts by the author’s total number of to-
kens (e.g. for token unigrams, emoji,) or n-grams
(for n-gram frequencies). For initial dimensional-
ity reduction, we applied a frequency cutoff, only
taking features into account that are used at least
10 times in the corpus, by at least 5 different par-
ticipants.

4.3 Experimental Setup
We compared different models to predict Flem-
ish adolescents’ educational track based on their
social media messages. The classification al-
gorithms we tested were: Support Vector Ma-
chines, Naive Bayes (Multinomial, Gaussian and
Bernoulli), Decision Trees, Random Forest, and
Linear Regression. For all classifiers, we used
the Scikit-learn implementation (Pedregosa et al.,
2011). For each model, we searched for the op-
timal parameter settings through a randomized
cross-validation search on the training data. We
searched for optimal values for classifier-bound
parameters (e.g. kernel for SVM), as well as
an optimal feature scaler (no scaling, MinMax
scaling or binarization) and an optimal percentile
for univariate (chi-square based) feature selection,
chosen from a continuous distribution. We com-
pared the models’ performance in 10-fold cross-
validation experiments on the training data.

5 Results

In Section 5.1, we discuss the best model resulting
from the 10-fold cross-validation experiments on
the training data and compare it to different base-
line models. In addition, we inspect the most in-
formative features for the task. In Section 5.2, we
discuss additional experiments which provide fur-
ther insight in the classification problem.

330

Class levels Precision Recall F-score
General 0.67 0.78 0.72

Technical 0.70 0.54 0.61
Vocational 0.68 0.71 0.70
Avg/total 0.68 0.68 0.68

Table 2: Classification report (in cross-validation).

Predicted class
Gen. Tech. Voc.

Actual class
Gen. 153 22 22
Tech. 49 89 27
Voc. 25 17 105

Table 3: Confusion matrix (in cross-validation).

5.1 Model Performance and Feature
Inspection

The best performing model in CV-setting on the
training data is a Multinomial Naive Bayes clas-
sifier, with optimized parameters: the value for
the smoothing parameter alpha is 0.98, and the
model uses the 12.50% best features (according
to chi-square tests). The features were bina-
rized. The classification report (Table 2) indi-
cates that the performance is good, with a value
of 0.68 for (prevalence-weighted macro-average)
precision, recall and F-score (std. dev. 0.05).
While precision is very similar for the three ed-
ucational levels, recall is good for General Edu-
cation, but slightly worse for the Vocational and
much worse for the Technical level. Consequently,
the model seems to miss many Technical profiles,
confusing them with the other educational tracks.
The confusion matrix (Table 3) shows that most
(64%) misclassified Technical profiles were incor-
rectly labeled as the more theory-oriented General
track, rather than as the more practice-oriented Vo-
cational track (36%).
As Table 5 summarizes, the model strongly out-
performs a probabilistic baseline (0.34) in cross-
validation, as well as a simple bag-of-words model
(which only uses token unigrams as features) with-
out any parameter tuning, scaling or feature se-
lection (F-score = 0.22). However, when param-
eter tuning, scaling and feature selection are in-
troduced, the BoW-model obtains almost identi-
cal scores in cross-validation: it yields an over-
all precision, recall and F-score of 0.67 (std. dev.
0.03). There is, however, a difference in how
well both models generalize to unseen data. While

Class levels Precision Recall F-score
General 0.64 0.69 0.67

Technical 0.57 0.44 0.50
Vocational 0.58 0.68 0.63
Avg/total 0.60 0.61 0.60

Table 4: Classification report (on unseen data).

the first model reaches an average F-score of 0.60
(see Table 4 for the detailed classification report),
the BoW-model achieves a lower score of 0.55,
and particularly underperforms in the detection of
Technical profiles, with an F-score of 0.38 (vs 0.50
for the full model).
In order to better understand the differences and
similarities between both models, we compared
their feature sets (after feature selection was ap-
plied) and inspected the 1000 most informative
ones, using information gain as ranking criterion.
While we expected that the most informative fea-
tures for the BoW-model would be lexical and
the ones for the full model stylistic, this anal-
ysis suggests that in both models, many of the
most informative selected features are specific oc-
currences of chatspeak markers. For the BoW-
model, which uses only token unigrams as fea-
tures, many of the most informative tokens con-
tain one or more chatspeak features (e.g. collo-
quial register, a spelling manipulation, an emoti-
con, character repetition, etc.). Some other infor-
mative tokens seem to be more content- than style-
related, revealing topics such as hobbies, specific
locations, friends and school. Strikingly, although
the full model contains abstraction of chatspeak
phenomena (e.g. total count for emoticons), spe-
cific occurrences of these genre markers are still
most informative. The 1000 most informative fea-
tures are all character n-grams: only some reveal
topics (e.g. school), but many more indicate the
use of chatspeak features, and particularly com-
binations of emoji/emoticons. Other n-grams in-
dicate the use of English and Arabic words, of
colloquial terms, of chatspeak spelling, abbrevi-
ations and character repetition. As opposed to the
BoW-model’s token unigrams, these character n-
grams allow the model to capture stylistic features
on a sub-token level (e.g. the n-gram ‘sss’ cap-
tures repetition of the letter ‘s’ in different words).
We can illustrate a clear advantage by the Arabic
word ‘wallah’ (meaning ‘I swear on God’s name’),
which is often used by our participants with Ara-

331

Cross-validation Unseen data
Model Precision Recall F-score Precision Recall F-score

Best model 0.68 0.68 0.68 0.60 0.61 0.60
BoW (non-finetuned) 0.15 0.39 0.22 0.15 0.39 0.21

BoW (finetuned) 0.67 0.67 0.67 0.55 0.55 0.55
Stylistic 0.65 0.64 0.64 0.59 0.60 0.59

Prob. baseline 0.34 0.34 0.34 0.34 0.34 0.34

Table 5: Comparison of the different models and baselines.

Class levels Precision Recall F-score
General 0.86 0.80 0.83

Vocational 0.75 0.83 0.79
Avg/total 0.82 0.81 0.81

Table 6: Classification report for binary task (in cross-
validation).

bic roots, who spell it in many different ways. Be-
cause of these alternative spellings, ‘wallah’ does
not appear among the most informative tokens in
the BoW-model. However, for the full model, sev-
eral related character n-grams (e.g. ‘wlh’, ‘wll’)
do.
Next, we compared the full model to a stylistic
model using only chatspeak features (both abstrac-
tions and specific occurrences), and no token or
character n-grams. This stylistic model performs
slightly worse on both the training set (F-score =
0.64, std. dev. 0.04) and unseen data (F-score
= 0.59) (see Table 5). However, inspection of
the most informative features in this feature set
provides further insight in the education profiling
task. Many of the most informative features are
again specific occurrences of stylistic phenomena
(e.g. specific emoticons, specific lexemes contain-
ing letter repetition). Some abstract representa-
tions of online writing style characteristics appear
among the top-1000 features too (such as the to-
tal use of character repetition, of onomatopoeic
laughter, acronyms, English words, mentions and
hashtags, and emoticons), but much less promi-
nently. These findings suggest that even in a
purely stylistic model, abstract representation of
certain style features is not informative enough for
education profiling, and appears to be less impor-
tant than the use of these features within specific
tokens or contexts.

Class levels Precision Recall F-score
General 0.82 0.79 0.80

Vocational 0.73 0.77 0.75
Avg/total 0.78 0.78 0.78

Table 7: Classification report for binary task (on un-
seen data).

5.2 Additional Experiments

Additional experiments indicate that the task be-
comes much easier when the hybrid Technical Ed-
ucation level is not included. Performance for
this binary classification task (distinguishing be-
tween General and Vocational students only) is
much higher (F-score = 0.81 with std. dev. 0.04 in
cross-validation, and 0.78 on unseen data; see Ta-
bles 6 and 7 for the classification reports), showing
that Vocational and General students are not often
linguistically confused by the model. Strikingly,
in this setting, the purely stylistic model performs
similarly on the training data (F-score = 0.81, std.
dev. 0.08), and even better on the unseen data (F-
score = 0.82) than the full model. This suggests
that stylistic differences are more outspoken and
consistent between General and Vocational stu-
dents, and might be sufficient for classification.
Finally, first experiments with separate classifiers
for girls and for boys, and for younger versus older
teenagers, suggest interesting distinctions (see Ta-
ble 8). It appears to be easier to correctly predict
educational track for girls (F-score = 0.67 with
std. dev. 0.07 in cross-validation; and 0.69 on un-
seen data) than for boys (F-score = 0.60 with std.
dev. 0.09 in cross-validation; and 0.66 on unseen
data). This suggests that more education-based
linguistic variation can be found among girls than
among boys. Similarly, better predictions could be
made on unseen data for older teenagers, aged 17-
20 (F-score = 0.62 in cross-validation, std. dev.
0.07; and 0.63 on unseen data), than for younger

332

Cross-validation Unseen data
Model Precision Recall F-score Precision Recall F-score
Girls 0.67 0.67 0.67 0.69 0.69 0.69
Boys 0.61 0.61 0.60 0.67 0.67 0.66

Younger 0.69 0.69 0.69 0.55 0.55 0.55
Older 0.62 0.62 0.62 0.63 0.63 0.63

Table 8: Comparison of the models for separate groups.

adolescents, aged 13-16 (F-score = 0.69 in cross-
validation, std. dev. 0.09; and 0.55 on unseen
data). This might be due to the fact that the older
teenagers have been together in the same peer net-
works and class groups for a longer time, and
might write more similarly on social media. Fur-
thermore, some of the younger students might ac-
tually still change educational track.

6 Conclusion

We conducted classification experiments to pre-
dict educational track for Flemish adolescents,
based on their social media writing. These first
results are promising and indicate that the task
is doable. However, although the best model
strongly outperforms a probabilistic baseline, its
performance is similar to that of a simple BoW-
model. This might give the impression that lexi-
cal features are still very important; however, in-
spection of the most informative features revealed
that many of the most informative tokens con-
tain stylistic features typical of the informal online
genre. The most informative features for the full
model suggest that abstraction of these stylistic
chatspeak features (or at least, the current imple-
mentation) is still of lesser importance than spe-
cific occurrences.
While the distinction between General and Voca-
tional high school students appears to be relatively
easy to make, the detection of students in the in-
termediate Technical track is much harder. This
could indicate that these students are truly a hybrid
class with subsets of students that are simply not
that different from their peers in more theory- or
more practice-oriented tracks, respectively. In ad-
dition, related research shows that these students’
online writing is rather unpredictable and does not
follow a clear pattern (Hilte et al., 2018a,b).
In future work, we want to experiment with addi-
tional algorithms, such as ensemble methods, and
with a post-level rather than a participant-level ap-
proach (in order to have more data samples at our

disposal). We also want to improve the current
feature design and particularly the abstract repre-
sentation of style features, because as van der Goot
et al. (2018) write, abstract features may increase
generalizability to other corpora (and even gen-
res and languages) in author profiling tasks, com-
pared to lexical models. Finally, we want to fur-
ther investigate the creation of different classifiers
for different subgroups of participants (e.g. boys
versus girls).
Finally, we stress that this profiling task is not only
relevant in a Belgian context, since the educational
tracks serving as class labels correspond to several
countries’ secondary education programs. Fur-
thermore, the inclusion of stylistic features - i.e.
chatspeak phenomena occurring in any language
- adds to this generalizability. While specific lex-
emes or specific realizations of chatspeak mark-
ers may not always be relevant in other languages
or corpora, the abstract stylistic features are more
universal on social media. We argue that these
models for education profiling, when further im-
proved, could be used in different languages and
applications. For instance, the addition of an edu-
cational compound can increase existing profiling
tools’ performance, which can be important in dif-
ferent tasks (e.g. the detection of fake accounts on
social media, and many more).

7 Supplementary Materials

Because of the decision of our university’s ethical
committee, in line with European regulations to
ensure the adolescents’ privacy, we cannot make
the dataset publicly available. The code will be
made available.

8 Acknowledgments

We thank Stéphan Tulkens for his advice on the
setup and analyses. We are also grateful towards
the two anonymous reviewers for their feedback
on a previous version of this paper.

333

References
Dominique Estival, Tanja Gaustad, Son Bao Pham,

Will Radford, and Ben Hutchinson. 2007. Author
profiling for English emails. In Proceedings of the
10th Conference of the Pacific Association for Com-
putational Linguistics, pages 263–272.

Flemish Ministry of Education and Training. 2017.
Statistisch jaarboek van het Vlaams onderwijs.
Schooljaar 2015-2016. Department of Education
and Training, Brussels.

Lisa Hilte, Reinhild Vandekerckhove, and Walter
Daelemans. 2018a. Adolescents’ social background
and non-standard writing in online communication.
Dutch Journal of Applied Linguistics, 7(1):2–25.

Lisa Hilte, Reinhild Vandekerckhove, and Walter
Daelemans. 2018b. Social media writing and social
class: A correlational analysis of adolescent CMC
and social background. International Journal of So-
ciety, Culture & Language.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. Journal of machine
learning research, 12(Oct):2825–2830.

James W Pennebaker. 2011. The secret life of pro-
nouns. What our words say about us. Bloomsbury
Press, New York.

James W Pennebaker, Cindy K Chung, Joey Frazee,
Gary M Lavergne, and David I Beaver. 2014.
When small words foretell academic success: The
case of college admissions essays. PloS one,
9(12):e115844.

James W Pennebaker, Martha E Francis, and Roger J
Booth. 2001. Linguistic inquiry and word count:
LIWC 2001. Mahway: Lawrence Erlbaum Asso-
ciates, 71(2001):2001.

T. Taghunadha Reddy, B. Vishnu Vardhan, and P. Vi-
jayapal Reddy. 2016. A survey on authorship pro-
filing techniques. International Journal of Applied
Engineering Research, 11(5):3092–3102.

Sali A Tagliamonte and Derek Denis. 2008. Linguistic
ruin? LOL! Instant messaging and teen language.
American speech, 83(1):3–34.

Rob van der Goot, Nikola Ljubešić, Ian Matroos, Malv-
ina Nissim, and Barbara Plank. 2018. Bleaching
text: Abstract features for cross-lingual gender pre-
diction. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), volume 2, pages 383–389.

Reinhild Vandekerckhove and Dominiek Sandra. 2016.
De potentiële impact van informele online commu-
nicatie op de spellingpraktijk van Vlaamse tieners
in schoolcontext. Tijdschrift voor Taalbeheersing,
38(3):201–234.

Connie K Varnhagen, G Peggy McFall, Nicole Pugh,
Lisa Routledge, Heather Sumida-MacDonald, and
Trudy E Kwong. 2010. Lol: New language and
spelling in instant messaging. Reading and writing,
23(6):719–733.

Hanna Zijlstra, Tanja Van Meerveld, Henriët Van Mid-
dendorp, James W Pennebaker, and RD Geenen.
2004. De Nederlandse versie van de ‘linguistic in-
quiry and word count’(LIWC). Gedrag Gezond,
32:271–281.

334

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 335–341
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

Arabizi sentiment analysis based on transliteration and automatic corpus
annotation

Imane Guellil1,2, Ahsan Adeel3, Faical Azouaou2, Fodil Benali2,ala-eddine Hachani2,Amir Hussain3

1 Ecole Superieure des Sciences Appliquées d’Alger ESSA-alger
2 Laboratoire des Méthodes de Conception des Systèmes (LMCS),

Ecole nationale Supérieure d’Informatique,BP 68M, 16309, Oued-Smar, Alger, Algérie
3 Institute of Computing science and Mathematics, School of Natural Sciences

University of Stirling Stirling UK
i.guellil@essa-alger.dz

{i_guellil,f_azouaou,df_benali,da_hachani}@esi.dz
{ahsan.adeel,ahu}@cs.stir.ac.uk

Abstract

Arabizi is a form of writing Arabic text which
relies on Latin letters, numerals and punctua-
tion rather than Arabic letters. In the literature,
the difficulties associated with Arabizi senti-
ment analysis have been underestimated, prin-
cipally due to the complexity of Arabizi. In
this paper, we present an approach to automat-
ically classify sentiments of Arabizi messages
into positives or negatives. In the proposed
approach, Arabizi messages are first translit-
erated into Arabic. Afterwards, we automat-
ically classify the sentiment of the translit-
erated corpus using an automatically anno-
tated corpus. For corpus validation, shallow
machine learning algorithms such as Support
Vectors Machine (SVM) and Naive Bays (NB)
are used. Simulations results demonstrate the
outperformance of NB algorithm over all oth-
ers. The highest achieved F1-score is up to
78% and 76% for manually and automatically
transliterated dataset respectively. Ongoing
work is aimed at improving the transliterator
module and annotated sentiment dataset.

1 Introduction

Sentiment analysis (SA), also called opinion min-
ing, is the field of study that analyzes people’s
opinions, sentiments, evaluations, appraisals, at-
titudes, and emotions towards entities such as
products, services, organizations, individuals, is-
sues, events, topics, and their attributes. It repre-
sents a large problem space(Liu, 2012). To deter-
mine whether a document or a sentence expresses
a positive or negative sentiment, three main ap-
proaches are commonly used, the lexicon based
approach (Taboada et al., 2011), machine learn-
ing (ML) based approach (Maas et al., 2011) and
a hybrid approach (Khan et al., 2015). English has

the greatest number of sentiment analysis studies,
while research is more limited for other languages
including Arabic and its dialects (Alayba et al.,
2017; Guellil and Boukhalfa, 2015).

ML based sentiment analysis is a more domi-
nant approach in the literature but it requires an-
notated training data. One of the majors prob-
lems related to the treatment of Arabic and its
dialect is the lack of resources. Other domi-
nant problems include the non standard roman-
ization (called Arabizi) that Arabic speakers often
use in social media. Arabizi uses Latin alphabet,
numbers, punctuation for writing an Arabic word
(For example the word "mli7", combined with
Latin letters and numbers, becomes the romanized
form of the Arabic word "iJ
ÊÓ" meaning "good").
To the best of our knowledge, limited work has
been conducted on sentiment analysis of Arabizi
((Duwairi et al., 2016; Guellil et al., 2018)). The
reason behind the lack of contribution is the com-
plexity of Arabizi. Most researches are therefore
moving towards the transformation of Arabizi into
Arabic. This transformation or passage is recog-
nized by the transliteration. Therefore, transliter-
ation is only a process of passing from a written
text in a given script or alphabet to another (Guellil
et al., 2017c; Kaur and Singh, 2014). To bridge the
gap, this paper proposes an approach determining
the sentiment of Arabizi messages after translit-
erating them. This paper is organized as follows,
Section 2 presents an overview of Arabizi. Section
3 presents the related work on SA and machine
transliteration (MT). Section 4 presents the pro-
posed approach and related components. Section
5 presents the simulation and experimentation. Fi-
nally, Section 6 presents the conclusion with some
future directions.

335

https://doi.org/10.18653/v1/P17

2 Arabizi: An overview

Arabic speakers on social media, discussion fo-
rums, Short Messaging System (SMS), and on
line chat applications often use a non standard ro-
manization called "Arabizi" (Darwish, 2013; Bies
et al., 2014). For example, the sentence: "rani
fer7ana" (which means I am happy and correspond
to the arabic sentence: �é 	K A �gQ 	̄ ú

	G @ �P) is written in

Arabizi. Hence, Arabizi is an Arabic text written
using Latin characters, numerals and some punc-
tuations (Darwish, 2013). The challenge behind
Arabizi is the presence of many forms of the same
word. For example the authors in (Ryan et al.,
2014) argued that the word é<

�
Ë @ Z A ��� 	à@ (meaning

if the god willing) could be written in 69 different
manners.

3 Related work

3.1 Machine learning Arabic sentiment
analysis

ML based sentiment analysis requires annotated
data. Among the corpora presented in the lit-
erature and focused on MSA, we cite: LABR
(Aly and Atiya, 2013), AWATIF (Abdul-Mageed
and Diab, 2012), ASTD (Nabil et al., 2015) and
ArTwitter (Abdulla et al., 2013). LABR con-
tains 63,257 comments annotated with stars rang-
ing from 1 to 5. AWATIF is a multi-genre corpus
containing 10,723 sentences manually annotated
in objective and subjective sentences. ASTD con-
tains 10,000 Arab Tweets classified into objective,
subjective positive, subjective negative or subjec-
tive mixed. ArTwitter contains 2,000 tweets man-
ually annotated into positive and negative. How-
ever, most of the aforementioned works suffer
from manual annotation and almost all resources
are not publicly available. In addition, constructed
corpora are dedicated to some dialects, neglecting
others (specially Maghrebi dialect such as Moroc-
can or Algerian dialect).

3.2 Arabizi Transliteration
The proposed approach is inspired by the work
presented in (van der Wees et al., 2016), where
the authors used a table extracted from Wikipedia1

for the passage from Arabizi to Arabic. The orig-
inality of our transliteration approach compared
to this work is the treatment of ambiguities re-
lated to Arabizi transliteration such as: (a) Am-

1https://en.wikipedia.org/wiki/Arabic_chat_alphabet

biguity of the vowels, where each vowels can be
replaced by different letters or by NULL character
(b) Ambiguity of the characters having the same
sound or whose sounds are close, for example, the
letters ’s’ and ’c’ which can be replaced by the
two letters � and � (c) Ambiguity related to the
transliteration direction, unlike the different works
in (Guellil et al., 2017c,b), the rules of passage that
we defined are from Arabizi to Arabic. The re-
verse passage may cause several ambiguities. The
proposed approach is also inspired by the works
presented in (Guellil et al., 2017c,b; Nouvel et al.)
that uses a language model to determine the best
possible candidate for a word in Arabizi. How-
ever, their work relies on a parallel corpus corre-
sponding to the transliteration of a set of messages
from Arabizi to Arabic. The realization of this cor-
pus is usually done manually, which is a very time
and effort consuming work. Hence, we avoid us-
ing a parallel corpus between Arabizi and Arabic
and applied a language model (based on large cor-
pus extracted from social media) to extract the best
candidate.

3.3 Arabizi Sentiment Analysis

Different works have been proposed for han-
dling Arabizi Darwish (2013); Guellil and Faical
(2017); Azouaou and Guellil (2017); Guellil and
Azouaou (2016). However,to the best of our
knowledge, limited work has been conducted on
sentiment analysis of Arabizi (Duwairi et al.,
2016; Guellil et al., 2018). In (Duwairi et al.,
2016), the authors presents a transliteration step
before proceeding to the sentiment classification.
However their approach present two majors draw-
backs: (1) They rely on a very basic table for
the passage from Arabizi to Arabic which can-
not handle Arabizi ambiguities. (2) They con-
struct a small annotated corpus manually (contain-
ing 3026 messages). This corpus contains Ara-
bizi messages which therefore transliterated into
Arabic. In (Guellil et al., 2018), the authors au-
tomatically construct an annotated sentiment Ara-
bizi corpus and directly applied sentiment classi-
fication without calling the transliteration process.
However, the authors confronted several ambigu-
ity problems which resulted low F1-score of 66%.
In contrast, the purpose of our paper is to present
an approach dedicated to Arabizi sentiment anal-
ysis by calling transliteration process. The sen-
timent analysis corpus (training corpus) contains

336

Figure 1: A general architecture of our approach for
Arabizi sentiment analysis

Arabic messages (Modern Standard Arabic MSA
and Dialectal Arabic DA, specially Algerian di-
alect) and it is constructed automatically. For
transliteration step, this paper is focused on am-
biguities treatment (especially vowels).

4 Methodology

This paper presents an approach for Arabizi Sen-
timent Analysis. Figure 1 summarizes the main
steps of the proposed approach, including:

• Automatic construction of Arabic sentiment
lexicon.

• Automatic annotation of Arabic messages

• Arabizi transliteration

• Sentiment classification of Arabic messages

4.1 Automatic construction of Arabic
sentiment lexicon

In this study, the sentiment lexicon is constructed
by translating an existing English lexicon, namely
SOCAL (Taboada et al., 2011) to Arabic. We opt
for using SOCAL rather than other lexicons such
as SentiWordNet (Baccianella et al., 2010) or Sen-
tiStrength (Thelwall et al., 2010) because SOCAL
contains a large number terms and in this study,
we are not focusing on the context of terms but
only on its global valence. The text is translated
using the Glosbe API2, which takes an English

2https://glosbe.com/en/arq/excellent

word as input and returns a set of equivalent in
other languages. In this work we focus on Arabic
and its dialect (MSA + dialect). We choose this
API because, to the best of our language, it is the
unique API dealing with some dialects with scarce
resources such as the Algerian dialect. After the
automatic translation, the same score is assigned
to all the translated words. This score corresponds
to the score of English word from which they are
translated. For example, all the translations of the
English word ’excellent’ with a score of +5, such
as ù
 ëA�K. (bAhy), 	­J
¢Ë (lTyf), and ’iJ
ÊÓ’ (mlyH),

are assigned a score of +5. 6 769 terms were
obtained including negative sentiment terms (la-
bels ranging between -1 and -5) and positive terms
(labels ranging between +1 and +5). Since some
Arabic sentiment words result from different En-
glish words having different sentiment scores, an
average score is assigned to such English words.
Lastly, the resulted lexicon is manually reviewed
to retain correct sentiment words. The final lex-
icon contains 1 745 terms (in Algerian dialect)
where 968 are negative, 6 are neutral and 771 are
positives. We choose to apply our approach to Al-
gerian dialect for comparing our results to those
obtained in (Guellil et al., 2018).

4.2 Automatic Annotation of Arabic
messages

The constructed lexicon is used to automatically
provide a sentiment score for Arabic utterances.
The lexicon is used to build a large sentiment cor-
pus. To calculate the score, we considered: (1)
Opposition (2) Multi-word expressions (because
the constructed lexicon contains multi-word en-
tries) (3) Handling Arabic morphology by em-
ploying a simple rule-based light stemmer that
handles Arabic prefixes and suffixes (4) Negation
which can reverse polarity. Negation in some Ara-
bic dialect is usually expressed as an attached pre-
fix, suffix, or a combination of both.

To score a message, the sentiment scores of
all words in the message are averaged. Finally,
balanced dataset is constructed by keeping the
same number of messages in positive and nega-
tive dataset. The resulted corpus contains 255,008
messages (where both positive and negative cor-
pus contains 127,504 messages).

337

4.3 Arabizi Transliteration
The proposed transliteration approach includes
four important steps: (1) pretreatment of the Ara-
bic corpus and the Arabizi message. (2) Proposal
and application of the rules for the Algerian Ara-
bizi. (3) Generating the different candidates. (4)
Extraction of the best candidate. This part re-
ceives input, a set of messages written in Arabizi
and a voluminous corpus written in DA extracted
from Facebook. All these messages are pretreated
(i.e. deleting exaggeration, etc). Afterwards, a
set of passages rules are proposed (i.e. the letter
’a’ could be replaces by ’¨ ,

@ , ø , �è , @’, etc. It

could also be replaced by ”, none letters when it
represents a diacritic). By applying different re-
placements, as well as different rules developed,
each Arabizi word gives birth to several words in
Arabic. For example the word "kraht" generates
32 possible candidates, such as: ’ �IëQ»’, ’ �IëQ�̄’,
’ �Ië@ �Q»’ etc. The correctly transliterated word

is ’ �IëQ»’. The word "7iati" has 16 candidates

such as: ’ù
 ¢J
k’, ’ù
 ¢J
k’,’ù
 £A�J
k’. The correctly

transliterated word is ’ú

�GA�J
k’. To extract the best

candidate for the transliteration of a given Arabizi
word into Arabic, a language model is constructed
and applied.

4.4 Sentiment classification of Arabic
messages

In this paper, different classification models are
compared. The document embedding vectoriza-
tion (Doc2vec algorithm presented within (Le and
Mikolov, 2014)) is used (with default parameters).
For Doc2vec, the two methods presented in (Le
and Mikolov, 2014) were applied: (1) Distributed
Memory Version Of Paragraph Vector (PV-DM)
and (2) Distributed Bag of Words Version of Para-
graph Vector (PV-DBOW). Moreover, the imple-
mentation merging these two methods is used.
For the classification part, five different classifiers
are used: (1) Support Vector Machine (SVM) (2)
Naive Bayes (NB) (3) Logistic regression (LR) (4)
Decision Tree (DT) and 5) Random Forest (RF).

5 Experimentations and results

5.1 Experimental Setup
The proposed approach is applied on a Maghrebi
dialect (i.e. Algerian Arabizi) which suffers
from limited available tools and other handling

resources required for automatic sentiment anal-
ysis. Algerian dialect (DALG) is largely pre-
sented in (Meftouh et al., 2012). However, the re-
sources dedicated to the treatment of MSA can-
not be directly applied to DALG. In this con-
text, two large corpora were extracted from Face-
book using RestFB3. The first one was extracted
on September, 2017 which contains 8,673,285
messages with 3,668,575 written in Arabic let-
ters. The second one was extracted on Novem-
ber, 2017 that contains 15,407,910 messages with
7,926,504 written in Arabic letters. The first one
was used for transliteration task where the second
one was used in sentiment annotation task. For
testing our transliteration approach, we used Cor-
pus_50 which is a part of Cottrell’s corpus (Cot-
terell and Callison-Burch, 2014) used in (Guellil
et al., 2017c,b,a). For testing our sentiment anal-
ysis approach, we used Corpus_500 (an Algerian
Arabizi annotated corpus in (Guellil et al., 2018),
containing 250 positives and negatives messages)
.

5.2 Experimental results

The first experiment evaluates the translitera-
tion module. The transliteration of Corpus_50
achieves an accuracy up to 74.76% (as compared
to 45.35% in (Guellil et al., 2017c)). This re-
sults shows the efficacy of the proposed translit-
eration approach. For sentiment analysis, we used
Corpus_500. This dataset was transliterated auto-
matically with the transliterator module. To val-
idate the quality of the automatic transliteration,
this dataset was also transliterated manually by
Algerian dialect’s natives. The transliteration of
this dataset achieves an accuracy up to 72.05%.
Afterwards, we carried out two types of experi-
ments: (1) SA on test corpus transliterated auto-
matically (2) SA on test corpus transliterated man-
ually. Table 1 presents the performance of dif-
ferent shallow classification algorithms in terms
of Precision (P), Recall (R) and F1-score (F1)
for Doc2vec methods (PV_DBOW, PV_DM and
PV_DBOW + PV_DM) and for Tr_automatic and
Tr_manual dataset (respectively referring to the
dataset transliterated automatically and manually).

5.3 Results and errors analysis

Based on the simulations and analysis, three
major observations are: (1) The results with

3http://restfb.com/

338

Vectorization classifier Tr_automatic Tr_manual
P R F1 P R F1

SVM 0.67 0.82 0.74 0.68 0.84 0.75
NB 0.73 0.80 0.76 0.74 0.83 0.78

PV_DBOW LR 0.66 0.82 0.73 0.68 0.84 0.75
RF 0.70 0.79 0.75 0.72 0.82 0.77
DT 0.63 0.71 0.68 0.64 0.69 0.67

SVM 0.68 0.82 0.74 0.66 0.79 0.72
NB 0.66 0.77 0.71 0.68 0.76 0.72

PV_DM LR 0.66 0.82 0.73 0.66 0.8 0.72
RF 0.69 0.78 0.73 0.72 0.79 0.75
DT 0.60 0.68 0.64 0.60 0.63 0.61

SVM 0.64 0.79 0.71 0.67 0.83 0.74
PV_DBOW NB 0.68 0.78 0.72 0.69 0.80 0.75

+ LR 0.63 0.80 0.70 0.67 0.84 0.75
PV_DM RF 0.68 0.74 0.71 0.72 0.84 0.77

DT 0.61 0.69 0.65 0.62 0.70 0.65

Table 1: Classification results with shallow machine learning

Tr_manual are slightly better than Tr_automatic
(because the mistake on transliteration generally
appears on only one letter), (2) The implementa-
tion PV_DBOW of Doc2vec achieved best results,
(3) For classification, NB performed the best. (4)
The results presented in Table 1 largely outper-
form the resulted presented in (Guellil et al., 2018)
(which are up to 66%). However, we were not
able to compare our results to those presented in
(Duwairi et al., 2016) because their data are not
available.However, the most observed errors are as
follow:

• The principal error appears in transliteration
process is related to technique of choosing
the best candidate. The idea of language
model is to extract the candidate having the
most important number of occurrence. How-
ever, in some cases, this techniques returns
an incorrect candidate. For example the
word "rakom" meaning "you are" is translit-
erated as "Õ�̄P" meaning "a number" rather

than "Õ» @ �P" (which is the correct translitera-
tion). The solution to this problem is to in-
tegrate other parameters for determining the
best candidate such as distance.

• Some sentiment classification errors are
due to transliteration errors. For exam-
ple, "khlwiya" meaning good and quiet is
wrongly transliterated to " A�J
Ê 	g" (meaning

empty) rather than �éK
ñÊ 	g. Improving translit-
eration will improve sentiment classification.

• Other sentiment classification errors are
due to some errors occurred in the au-
tomatic annotated corpus (so the train-
ing corpus). For example, the messages
ù

	®º�K Õæ�B
�
@ �éÓA�	m 	̄ ñK. A �g. meaning Djabou the

excellency of the name is sufficient was an-
notated negative (where it is positive). Man-
ually reviewing the automatic annotation will
definitely improve the results.

6 Conclusion

In this paper, we present an approach to automati-
cally classify sentiments of Arabizi messages (ex-
tracted from Facebook). The proposed approach
constitutes an automatic annotation and transliter-
ation. An Arabic sentiment lexicon is automati-
cally constructed followed by automatic annota-
tion and transliteration (Arabizi to Arabic). The
developed dataset is validated using shallow ma-
chine learning, where the highest achieved preci-
sion is up to 78% and 76% for manual and auto-
matic transliteration respectively with NB classi-
fiers and PV_DBOW vectorization method.In the
future, we intend to further enhance the proposed
approach by improving the transliteration module
focusing the annotated corpus (i.e manually re-
viewing the automatic annotation).

339

Acknowledgment

Imane Guellil and Faical Azouaou are respectively
supported by Ecole Superieure des Sciences Ap-
pliquées d’Alger ESSA-alger and Ecole nationale
Supérieure d’Informatique. Amir Hussain and
Ahsan Adeel were supported by the UK Engineer-
ing and Physical Sciences Research Council (EP-
SRC) grant No.EP/M026981/1.

References
Muhammad Abdul-Mageed and Mona T Diab. 2012.

Awatif: A multi-genre corpus for modern standard
arabic subjectivity and sentiment analysis. In LREC,
pages 3907–3914. Citeseer.

Nawaf A Abdulla, Nizar A Ahmed, Mohammed A She-
hab, and Mahmoud Al-Ayyoub. 2013. Arabic sen-
timent analysis: Lexicon-based and corpus-based.
In Applied Electrical Engineering and Computing
Technologies (AEECT), 2013 IEEE Jordan Confer-
ence on, pages 1–6. IEEE.

Abdulaziz M Alayba, Vasile Palade, Matthew England,
and Rahat Iqbal. 2017. Arabic language sentiment
analysis on health services. In Arabic Script Analy-
sis and Recognition (ASAR), 2017 1st International
Workshop on, pages 114–118. IEEE.

Mohamed Aly and Amir Atiya. 2013. Labr: A large
scale arabic book reviews dataset. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
volume 2, pages 494–498.

Faical Azouaou and Imane Guellil. 2017. Alg/fr: A
step by step construction of a lexicon between al-
gerian dialect and french. In The 31st Pacific Asia
Conference on Language, Information and Compu-
tation PACLIC 31 (2017).

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. Sentiwordnet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining.
In LREC.

Ann Bies, Zhiyi Song, Mohamed Maamouri, Stephen
Grimes, Haejoong Lee, Jonathan Wright, Stephanie
Strassel, Nizar Habash, Ramy Eskander, and Owen
Rambow. 2014. Transliteration of arabizi into ara-
bic orthography: Developing a parallel annotated
arabizi-arabic script sms/chat corpus. In Proceed-
ings of the EMNLP 2014 Workshop on Arabic Natu-
ral Language Processing (ANLP), pages 93–103.

Ryan Cotterell and Chris Callison-Burch. 2014. A
multi-dialect, multi-genre corpus of informal writ-
ten arabic.

Kareem Darwish. 2013. Arabizi detection and conver-
sion to arabic. arXiv preprint arXiv:1306.6755.

Rehab M Duwairi, Mosab Alfaqeh, Mohammad War-
dat, and Areen Alrabadi. 2016. Sentiment analysis
for arabizi text. In Information and Communication
Systems (ICICS), 2016 7th International Conference
on, pages 127–132. IEEE.

Imane Guellil, Ahsan Adeel, Faical Azouaou, and
Amir Hussain. 2018. Sentialg: Automated corpus
annotation for algerian sentiment analysis. In 9th
International Conference on Brain Inspired Cogni-
tive Systems(BICS 2018).

Imane Guellil and Faiçal Azouaou. 2016. Arabic di-
alect identification with an unsupervised learning
(based on a lexicon). application case: Algerian di-
alect. In Computational Science and Engineering
(CSE) and IEEE Intl Conference on Embedded and
Ubiquitous Computing (EUC) and 15th Intl Sympo-
sium on Distributed Computing and Applications for
Business Engineering (DCABES), 2016 IEEE Intl
Conference on, pages 724–731. IEEE.

Imane Guellil, Faiçal Azouaou, and Mourad Abbas.
2017a. Comparison between neural and sta-tistical
translation after translitera-tion of algerian arabic
dialect. In WiNLP: Women & Underrepresented
Minorities in Natural Language Processing (co-
located withACL 2017).

Imane Guellil, Faical Azouaou, and Mourad Abbas.
2017b. Neural vs statistical translation of algerian
arabic dialect written with arabizi and arabic letter.
In The 31st Pacific Asia Conference on Language,
Information and Computation PACLIC 31 (2017).

Imane Guellil, Faiçal Azouaou, Mourad Abbas, and
Sadat Fatiha. 2017c. Arabizi transliteration of al-
gerian arabic dialect into modern standard arabic.
In Social MT 2017/First workshop on Social Media
and User Generated Content Machine Translation.

Imane Guellil and Azouaou Faical. 2017. Bilingual
lexicon for algerian arabic dialect treatment in social
media. In WiNLP: Women & Underrepresented
Minorities in Natural Language Processing (co-
located with ACL 2017). http://www.winlp.org/wp-
content/uploads/2017/final_papers_2017/92_Paper.pdf.

Imene Guellil and Kamel Boukhalfa. 2015. Social big
data mining: A survey focused on opinion mining
and sentiments analysis. In Programming and Sys-
tems (ISPS), 2015 12th International Symposium on,
pages 1–10. IEEE.

Kamaljeet Kaur and Parminder Singh. 2014. Review
of machine transliteration techniques. International
Journal of Computer Applications, 107(20).

Aamera ZH Khan, Mohammad Atique, and
VM Thakare. 2015. Combining lexicon-based
and learning-based methods for twitter sentiment
analysis. International Journal of Electronics,
Communication and Soft Computing Science &
Engineering (IJECSCSE), page 89.

340

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language tech-
nologies, 5(1):1–167.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies-volume 1, pages 142–150. As-
sociation for Computational Linguistics.

Karima Meftouh, Najette Bouchemal, and Kamel
Smaïli. 2012. A study of a non-resourced language:
The case of one of the algerian dialects. In The third
International Workshop on Spoken Languages Tech-
nologies for Under-resourced Languages-SLTU’12.

Mahmoud Nabil, Mohamed Aly, and Amir Atiya.
2015. Astd: Arabic sentiment tweets dataset. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
2515–2519.

Houda Saâdane1 Damien Nouvel, Hosni Seffih, and
Christian Fluhr. Une approche linguistique pour la
détection des dialectes arabes. In 24e Conférence
sur le Traitement Automatique des Langues Na-
turelles (TALN), page 242.

Cotterell Ryan, Adithya Renduchintala, Naomi Saphra,
and Chris Callison-Burch. 2014. An algerian
arabic-french code-switched corpus. In Workshop
on Free/Open-Source Arabic Corpora and Corpora
Processing Tools Workshop Programme, page 34.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, and Manfred Stede. 2011. Lexicon-based
methods for sentiment analysis. Computational lin-
guistics, 37(2):267–307.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou,
Di Cai, and Arvid Kappas. 2010. Sentiment strength
detection in short informal text. Journal of the
American Society for Information Science and Tech-
nology, 61(12):2544–2558.

Marlies van der Wees, Arianna Bisazza, and Christof
Monz. 2016. A simple but effective approach to im-
prove arabizi-to-english statistical machine transla-
tion. In Proceedings of the 2nd Workshop on Noisy
User-generated Text (WNUT), pages 43–50.

341

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 342–347
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

UBC-NLP at IEST 2018: Learning Implicit Emotion With an Ensemble of
Language Models

Hassan Alhuzali Mohamed Elaraby Muhammad Abdul-Mageed
Natural Language Processing Lab

The University of British Columbia
{halhuzali,mohamed.elaraby}@alumni.ubc.ca,muhammad.mageeed@ubc.ca

Abstract

We describe UBC-NLP contribution to IEST-
2018, focused at learning implicit emotion
in Twitter data. Among the 30 participating
teams, our system ranked the 4th (with 69.3%
F-score). Post competition, we were able to
score slightly higher than the 3rd ranking sys-
tem (reaching 70.7%). Our system is trained
on top of a pre-trained language model (LM),
fine-tuned on the data provided by the task or-
ganizers. Our best results are acquired by an
average of an ensemble of language models.
We also offer an analysis of system perfor-
mance and the impact of training data size on
the task. For example, we show that training
our best model for only one epoch with< 40%
of the data enables better performance than the
baseline reported by Klinger et al. (2018) for
the task.

1 Introduction

Emotion is essential in human experience and
communication, lending special significance to
natural language processing systems aimed at
learning it. Emotion detection systems can be ap-
plied in a host of domains, including health and
well-being, user profiling, education, and mar-
keting. There is a small, yet growing, body of
NLP literature on emotion. Early works focused
on creating and manually labeling datasets. The
SemEval 2007 Affective Text task Strapparava
and Mihalcea (2007) and Aman and Szpakowicz
(2007) are two examples that target the news and
blog domains respectively. In these works, data
were labeled for the 6 basic emotions of Ekman
(Ekman, 1972). More recent works exploit dis-
tant supervision (Mintz et al., 2009) to automat-
ically acquire emotion data for training systems.
More specifically, a number of works use hashtags
like #happy and #sad, especially occurring fi-
nally in Twitter data, as a proxy of emotion (Wang

et al., 2012; Mohammad and Kiritchenko, 2015;
Volkova and Bachrach, 2016). Abdul-Mageed and
Ungar (2017) report state-of-the-art results using a
large dataset acquired with hashtags. Other works
exploit emojis to capture emotion carrying data
(Felbo et al., 2017). Alhuzali et al. (2018) intro-
duce a third effective approach that leverages first-
person seed phrases like “I’m happy that” to col-
lect emotion data.

Klinger et al. (2018) propose yet a fourth
method for collecting emotion data that depends
on the existence of the expression ”emotion-word
+ one of the following words (when, that or be-
cause)” in a tweet, regardless of the position of the
emotion word. In the “Implicit Emotion” shared
task 1, participants were provided data represent-
ing the 6 emotions in the set (anger, disgust, fear,
joy, sad, surprise). The trigger word was removed
from each tweet. To illustrate, the task is to predict
the emotion in a tweet like “Boys who like Star-
bucks make me [#TRIGGERWORD#] because we
can go on cute coffee dates” (with the triggered
word labeled as joy). In this paper, we describe our
system submitted as part of the competition. Over-
all, our submission ranked the 4th out of the 30
participating teams. With further experiments, we
were able to acquire better results, which would
rank our model at top 3 (70.7% F-score).

The rest of the paper is organized as follows:
Section 2 describes the data. Section 3 offers a
description of the methods employed in our work.
Section 3 is where we present our results, and we
perform an analysis of these results in Section 5.
We list negative experiments in Section 6 and con-
clude in Section 7.

1http://implicitemotions.wassa2018.com

342

https://doi.org/10.18653/v1/P17

2 Data

We use the Twitter dataset released by the organiz-
ers of the “Implicit Emotion” task, as described in
the previous section. The data are partitioned into
153, 383 tweets for training, 9591 tweets for val-
idation, and 28, 757 data points for testing. The
training and validation sets were provided early
for system development, while the test set was
released one week before the deadline of system
submission. The full details of the dataset can be
found in Klinger et al. (2018). We now describe
our methods in the nesxt section.

3 Methods

3.1 Pre-processing

We adopt a simple pre-processing scheme, similar
to most of the pre-trained models we employ. This
involves lowercasing all text and filtering out urls
and user mentions. We also split clusters of emojis
into individual emojis, following Duppada et al.
(2018). For our vocabulary V, we retain the top
100k words and then remove all words occurring
< 2 times, which leaves |V | = 23, 656.

3.2 Models

We develop a host of models based on deep neural
networks, using some of these models as our base-
line models. As an additional baseline, we com-
pare to Klinger et al. (2018) who propose a model
based on Logistic Regression with a bag of word
unigrams (BOW). All our deep learning models
are based on variations of recurrent neural net-
works (RNNs), which have proved useful for sev-
eral NLP tasks. RNNs are able to capture sequen-
tial dependencies especially in time series data, of
which language can be seen as an example. One
weakness of RNNs, however, lies in gradient ei-
ther vanishing or exploding during training. Long-
short term memory (LSTM) networks were devel-
oped to target this problem, and hence we employ
these in our work. We also use a bidirectional ver-
sion (BiLSTM) where the vector of representation
is built as a concatenation of two vectors, one that
runs from left-to-right and another running from
right-to-left. Ultimately, we generate a fixed-size
representation for a given tweet using the last hid-
den state for the Fwd and Bwd LSTM. Our sys-
tems can be categorized as follows: (1) Systems
tuning simple pre-trained embeddings, (2) Sys-
tems tuning embeddings from language models,

and (3) Systems directly tuning language models.
We treat #1 and #2 as baseline systems, while our
best models are based on #3.

3.2.1 Systems With Simple Embeddings
Character and/or Word embeddings (Mikolov
et al., 2013; Pennington et al., 2014; Bojanowski
et al., 2016) have boosted performance on a host of
NLP tasks. Most state of the art systems now fine-
tune these embeddings as a simple transfer learn-
ing technique targeting the first layer of a network
(McCann et al., 2017). We make use of one such
pre-trained embeddings (fastText) to identify the
utility of tuning its learned weights on the task.

FastText: The first embedding model is fast-
Text 2(Bojanowski et al., 2016), which builds rep-
resentations based on characters, rather than only
words, thus alleviating issues of complex mor-
phology characetrestic of many languages like
Arabic, Hebrew, and Swedish, but also enhancing
representations for languages of simpler morphol-
ogy like English. Additionally, fastText partially
solves issues with out-of-vocabulary words since
it exploits character sequences. FastText is trained
on the Common Crawl dataset, consisting of 600B
tokens.

For this and the next set of experiments (i.e., ex-
periments in 3.2.2), we train both an LSTM and
BiLSTM. Since we treat these as baseline sys-
tems, especially with our goal to report our ex-
periments in available space for the competition,
we try a small set of hyper-parameters, identifying
best settings on our validation set. We train each
network for 4 epochs each. For optimization, we
use Adam (Kingma and Ba, 2014). The model’s
weights W are initialized from a normal distri-
bution W ∼ N with a small standard deviation
of σ = 0.05. We apply two sources of regular-
ization: dropout: we apply a dropout rate of 0.5
on the input embeddings to prevent co-adaptation
of hidden units’ activation, and L2 − norm: we
also apply an L2-norm regularization with a small
value (0.0001) on the hidden units layer to prevent
the network from over-fitting on training set. Each
of the networks has a single hidden layer. Net-
work architectures and hyper-parameters are listed
in Table 1.

3.2.2 Embedding From LMs
Peters et al. (2018) build embeddings directly from

2https://fasttext.cc/docs/en/
english-vectors.html

343

Hyper-Parameter Value
Embed-dim-fastText 300
Embed-dim-ELMo 1024
layers 1
units 300
batch size 32
epochs 4
dropout 0.5

Table 1: Network architecture and hyper-parameters
for experiments with simple pre-trained embeddings
with fastText 3.2.1 and ELMo 3.2.2 across our LSTM
and BiLSTM networks.

language models, which they refer to as ELMo.
ELMo is shown to capture both complex char-
acteristics of words (as syntax and semantics) as
well as the usage of these words across various
linguistic contexts, thanks to its language model-
ing component. ELMo is trained on a dataset of
Wikipedia and is publicly available 3, which we
use as our input layer. More specifically, we ex-
tract the weighted sum of the 3 layers (word em-
bedding, Bi-lstm-outputs1, and Bi-lstm-outputs2)
and follow the same network architectures and
hyper-parameters employed with fastText as we
explain before.

3.2.3 Fine-Tuning LMs: ULMFiT
Another recent improvement in training NLP sys-
tems is related to the way these systems are fine-
tuned, especially vis-a-vis how different layers in
the network operate during training time. Howard
and Ruder (2018) present ULMFiT4, an exam-
ple such systems that is pre-trained on a language
model exploiting Wikitext-103. Ultimately, ULM-
FiT employs a number of techniques for train-
ing. These include “gradual unfreezing”, which
aims at fine-tuning each layer of the network in-
dependently and then fine-tuning all layers to-
gether. Gradual unfreezing proves useful for re-
ducing the risk of overfitting as also found in Felbo
et al. (2017). ULMFiT also uses “discriminative
fine-tuning”, which tunes each layer with differ-
ent learning rates, the idea being different lay-
ers capture different types of information (Howard
and Ruder, 2018; Peters et al., 2018). Howard
and Ruder (2018) also use different learning rates,
which they refer to as “slanted triangular learning

3https://github.com/allenai/bilm-tf
4http://nlp.fast.ai/category/

classification.html.

rates”, at different times of the training process.
With ULMFiT, we experiment with different vari-
ations of LMs 5: forward (Fwd), backward (Bwd),
and an average of these (BiLM (Fwd+Bwd)). We
follow Howard and Ruder (2018) in training each
of the Fwd and Bwd models independently on the
training data provided by the task organizers, and
then combining their predictions using an ensem-
ble averaging. This is the setting we refer to as
BiLM. As we show in Section 3, this is a benefi-
cial measure (similar to what Howard and Ruder
(2018) also found). For our hyper-parameters for
this iteration of experiments, we identify them on
our validation set. We list the network architec-
tures and hyper-parameters for this set of experi-
ments in Table 2.

Hyper-Parameter Value
dim-size 400
vocab 23, 656
batches 64
layers 3
units 1, 150
epochs 19

Table 2: Hyper-parameters for our submitted system
exploiting fine-tuned language models from Howard
and Ruder (2018).

4 Results

Table 3 shows results of all our models in F-score.
As the Table shows, all our models achieve siz-
able gains over the logistic regression model in-
troduced by (Klinger et al., 2018) as a baseline for
the competition (F-score = 60%). Even though
our models trained based on fastText and ELMo
each has a single hidden layer, which is not that
deep, these at least 1.5% higher than the logistic
regression model. We also observe that ELMo em-
beddings, which are acquired from language mod-
els rather than optimized from sequences of to-
kens, achieves higher performance than FastText
embeddings. This is not surprising, and aligns
with the results reported by Peters et al. (2018).

For results with ULMFiT, as Table 3 shows, it
acquires gains over all the other models. As men-
tioned earlier, we experiment with different vari-
ations of LMs (Fwd, Bwd, and BiLM). Results in
our submitted system are based on the Fwd model,
and are at 69.4%. After system submission, we

5Fwd and Bwd LMs are offered by the authors of the
ULMFiT model (Howard and Ruder, 2018).

344

also experimented with the Bwd and BiLM mod-
els and were able to acquire even higher gains,
putting our best performance at 70.7% (which
moves us to the top 3 position).

System Dev Test
Baseline (Klinger et al., 2018)
BOW Log-Reg 0.601 0.601

Embeddings
FastText (Bojanowski et al., 2016)
LSTM 0.629 0.629
Bi-LSTM 0.628 0.626

Embed. from LM (ELMo) (Peters et al., 2018)
LSTM 0.635 0.635
Bi-LSTM 0.615 0.614

Fine-Tuned LM (Howard and Ruder, 2018)
Fwd LM (submitted system) 0.694 0.693
Bwd LM 0.686 0.693
BiLM 0.707 0.707

Table 3: Results: BiLM refers to an ensemble of both
the Fwd and Bwd LMs.

5 Analysis

5.1 Error Analysis

Figure 1: Confusion matrix of errors in F-score across
the different emotion classes.

Using predictions from our best model (as de-
scribed in Table 2), we investigate the extent with
which each emotion is mislabeled and the cate-
gories with which it is confused. Figure 1 shows
the confusion matrix of this analysis. As the Fig-
ure shows, anger is predicted with least F-score
(% = 63), followed by sadness (% = 66). Figure

1 also shows that anger is most confused for sur-
prise and sadness is most confused for anger. Ad-
ditionally, disgust is the third most confused cat-
egory (% = 66), and is mislabeled as surprise
9% of the time. These results suggest overlap in
the ways each of the emotions is expressed in the
training data.

To further investigate these observations, we
measure the shared vocabulary between the differ-
ent classes. Figure 2 shows percentages of lex-
ical overlap in the data, and does confirm that
some categories share unigram tokens to varying
degrees. Lexical overlap between classes seem to
align with the error matrix in Figure 1. For exam-
ple, anger overlaps most with surprise (% = 9)
and sadness overlaps most with anger (% = 10).
These findings are not surprising, since our mod-
els are based on lexical input and do not involve
other types of information (e.g., POS tags). Table
4 offers examples of overlap in the form of lexi-
cal sequences between test data and training data
across a number of classes.

Figure 2: Heat Map for percentages of shared vocabu-
lary between emotion classes.

5.2 Size of Training Data

We also investigate the impact of training data size
on model accuracy. For this purpose, we train
models with different data sizes with the best pa-
rameter settings shown in Table 2 6. Figure 3
shows the impact of different percentages of train-
ing examples on model performance. We test

6Due to the high computational cost of training these
models, we only train each model with one epoch for this
analysis.

345

Test Example True Predicted Train Example True
I’m [#TRIGGERWORD#]
that
like none of
my friends at school
have seen national
lamoon’s day

disgust sad

[#TRIGGERWORD#]
that like
none of
my videos
from last night ..

sad

hey luke! I’m so
[#TRIGGERWORD#]
because you
don’t follow me,
not lies,
but please follow me

anger sad

i’m so
[#TRIGGERWORD#]
because
you don’t
follow me

sad

Table 4: Examples overlapping lexical sequences in test and training data.

model performance for this analysis on our vali-
dation data.

Interestingly, as Figure 3 shows, the model ex-
ceeds the baseline model reported by the task or-
ganizers (Klinger et al., 2018) when trained on
only 10% of the training data. Additionally, the
model outperforms the fastText and ELMo mod-
els by only seeing 40% of the training data. Once
the model has access to 80% of the training data,
its gains start to increase relatively slowly. In ad-
dition to the positive, yet unsurprising, impact that
training data size has on performance, the results
also reflect the utility of employing the pre-trained
language model.

Figure 3: Impact of training data size on model per-
formance, tested on our validation data. Results in F-
score.

In order to further inspect this observation re-
garding the impact of language modeling, we use
the same architecture reported in Table 2 to train
a classifier that does not have access to the pre-
trained LM. We find the classifier to achieve only
63.8 F-score. Again, this demonstrates the advan-

tage of using the pra-trained LM.

6 Negative Experiments

We performed a number of negative experiments
that we report briefly here. Our intuition is
that training our models with Twitter-specific data
should help classification. For this reason, we
trained ULMFiT with 4.5 million tweets with the
same settings reported in Table 2. We did not find
this set of experiments to yield gains over the re-
sults reported in Table 3, however. For example,
an Fwd LM trained on Twitter domain data yields
67.9% F-score, which is 1.4% less than the F-
score obtained by the Wikipedia-trained Fwd LM
in 3. The loss might be due to the smaller size of
the Twitter data we train on, as compared to the
Wikipedia data the ULMFiT is originally trained
on (i.e., > 103 million tokens).

7 Conclusion

In this paper, we described our system submitted
to IEST-2018 task, focused on learning implicit
emotion from Twitter data. We explored the util-
ity of tuning different word- and character-level
pre-trained representations and language model-
ing methods to minimize training loss. We found
that the method introduced by Howard and Ruder
(2018) yields best performance on the task. We
note that our baselines employing sub-word em-
beddings (fastText) and embeddings from lan-
guage models (ELMo) can be improved by us-
ing deeper neural architectures with larger model
capacity, which we cast for future work. We
have also shown that the classifier confuses certain
emotion classes with one another, possible due to
overlap of lexical sequences between training and
test data. This reflects the difficulty of the task.

346

8 Acknowledgement

We acknowledge the support of the Natural
Sciences and Engineering Research Council of
Canada (NSERC). The research was enabled in
part by support provided by WestGrid (https:
//www.westgrid.ca/) and Compute Canada
(www.computecanada.ca).

References
Muhammad Abdul-Mageed and Lyle Ungar. 2017.

Emonet: Fine-grained emotion detection with gated
recurrent neural networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 718–728.

Hassan Alhuzali, Muhammad Abdul-Mageed, and
Lyle Ungar. 2018. Enabling deep learning of emo-
tion with first-person seed expressions. In Pro-
ceedings of the Second Workshop on Computational
Modeling of Peoples Opinions, Personality, and
Emotions in Social Media, pages 25–35.

Saima Aman and Stan Szpakowicz. 2007. Identifying
expressions of emotion in text. In Text, Speech and
Dialogue, pages 196–205. Springer.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Venkatesh Duppada, Royal Jain, and Sushant Hiray.
2018. Seernet at semeval-2018 task 1: Domain
adaptation for affect in tweets. arXiv preprint
arXiv:1804.06137.

P. Ekman. 1972. Universal and cultural differences in
facial expression of emotion. Nebraska Symposium
on Motivation, pages 207–283.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Jeremy Howard and Sebastian Ruder. 2018. Fine-
tuned language models for text classification. arXiv
preprint arXiv:1801.06146.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems, pages 6297–6308.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Vol-
ume 2-Volume 2, pages 1003–1011. Association for
Computational Linguistics.

Saif M Mohammad and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion cate-
gories from tweets. Computational Intelligence,
31(2):301–326.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Carlo Strapparava and Rada Mihalcea. 2007. Semeval-
2007 task 14: Affective text. In Proceedings of
the 4th International Workshop on Semantic Evalu-
ations, pages 70–74. Association for Computational
Linguistics.

Svitlana Volkova and Yoram Bachrach. 2016. Inferring
perceived demographics from user emotional tone
and user-environment emotional contrast. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL.

Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan,
and Amit P Sheth. 2012. Harnessing twitter”
big data” for automatic emotion identification. In
Privacy, Security, Risk and Trust (PASSAT), 2012
International Conference on and 2012 Interna-
tional Confernece on Social Computing (Social-
Com), pages 587–592. IEEE.

347

Author Index

Öhman, Emily, 24
Šnajder, Jan, 72

AbdelHady, Mohammad, 14
Abdul-Mageed, Muhammad, 342
Abercrombie, Gavin, 280
Abeysinghe, Supun, 254
Adeel, Ahsan, 335
Akcapinar Sezer, Ebru, 182
Alhuzali, Hassan, 342
Alkorta, Jon, 85
Almatarky, Akram, 14
Ambartsoumian, Artaches, 130
Aroyo, Lora, 286
AZOUAOU, Faical, 335

Balahur, Alexandra, 31
Balazs, Jorge, 2, 50
Batista-Navarro, Riza Theresa, 280
Baziotis, Christos, 57
benali, fodil, 335
Bhatia, Sumit, 79
Bielikova, Maria, 217
Brun, Caroline, 116
Buitelaar, Paul, 107
Byrkjeland, Mats, 97

Chen, I-Hsuan, 91
Chronopoulou, Alexandra, 57
Colombo, Pierre, 248
Crestani, Fabio, 231
Cuba Gyllensten, Amaru, 149

Daelemans, Walter, 328
Daudert, Tobias, 107
De Clercq, Orphee, 31
de Silva, Nisansa, 260
DOAN, Thang, 273
Dong, Jason, 309
Dong, Patrick, 309

Elaraby, Mohamed, 342
Evert, Stefan, 235

Farkaš, Michal, 217

Fleischer, Daniel, 43
Foster, Jennifer, 156
Fung, Pascale, 292

Gørvell de Lichtenberg, Frederik, 97
Gambäck, Björn, 97
Gatica-Perez, Daniel, 322
Giachanou, Anastasia, 231
Gjurković, Matej, 72
Gojenola, Koldo, 85
Gopalakrishna Pillai, Reshmi, 266
Gratian, Vachagan, 243
GUELLIL, Imane, 335

Hübner, Marc, 316
Hachani, Ala-eddine, 335
Haid, Marina, 243
Heinrich, Philipp, 235
Hennig, Leonhard, 316
Hilte, Lisa, 328
Honkela, Timo, 24
Hu, Junfeng, 8
Huang, Chu-Ren, 140
Hussain, Amir, 335

Ilić, Suzana, 2
Iruskieta, Mikel, 85

Kabashi, Besim, 235
Kajava, Kaisla, 24
Kaljahi, Rasoul, 156
Kapadia, Mubbasir, 248
Kelrich, Zohar, 43
Khadilkar, Harshad, 299
Klinger, Roman, 31

Lacko, Peter, 217
Liu, Man, 201
Long, Yunfei, 91, 140
Lu, Qin, 91, 140
Lukeš, Jan, 65

Ma, Mingyu, 140
Madotto, Andrea, 292
Manchanayake, Isura, 254

349

Manchanda, Prachi, 167
Margatina, Aikaterini, 57
Markov, Ilia, 123
Marrese-Taylor, Edison, 2, 50
Martínek, Jiří, 224
Martínez-Cámara, Eugenio, 195
Martin, Maite, 195
Mathur, Puneet, 167
Matsuo, Yutaka, 2, 50
Mazoure, Bogdan, 273
Meisheri, Hardik, 299
Modi, Ashutosh, 248
Mohammad, Saif, 31
Muralidhar, Skanda, 322

Naderalvojoud, Behzad, 182
Nastase, Vivi, 123
Nguyen, Laurent, 322
Nikoulina, Vassilina, 116

Orasan, Constantin, 266

P, Deepak, 79
Přibáň, Pavel, 224
Paetzold, Gustavo, 176
Park, Ji Ho, 292
Pecar, Samuel, 217
Perera, Amal Shehan, 260
Plaza del Arco, Flor Miriam, 195
Popowich, Fred, 130
Potamianos, Alexandros, 57
Proisl, Thomas, 235

Rathnayaka, Prabod, 254
Ratnayaka, Gathika, 260
Ray, Saibal, 273
Rethmeier, Nils, 316
Riloff, Ellen, 1
Rissola, Esteban, 231
Rozental, Alon, 43
Rupasinghe, Thejan, 260

Søgaard, Anders, 65
Sahlgren, Magnus, 149
Salaka, Viraj, 260
Samarajeewa, Chamod, 254
Saroufim, Carl, 14
Sawhney, Ramit, 167
Sekulic, Ivan, 72
Senarath, Yasas, 211
Shah, Rajiv, 167
Shi, Haoyue, 8
Sidorov, Grigori, 123

Simko, Marian, 217
Singh, Raj, 167
Strapparava, Carlo, 123
Sun, Baohua, 309
Sun, Yuqi, 8

Thayasivam, Uthayasanker, 211
Thelwall, Mike, 266
Tiedemann, Jörg, 24

Ucan, Alaettin, 182
Urena Lopez, L. Alfonso, 195

van den Beukel, Sven, 286
Vandekerckhove, Reinhild, 328

Walpola, Malaka, 254
wang, wenting, 205
Warushavithana, Menuka, 260
Witon, Wojciech, 248
Wu, Chien-Sheng, 292
Wu, Hao, 189

Xiang, Rong, 91, 140
Xiong, Dan, 91
Xu, Peng, 292

Yang, Lin, 309
Young, Charles, 309

Zhang, Wenhan, 309
Zhou, Qimin, 189

	Program
	Identifying Affective Events and the Reasons for their Polarity
	Deep contextualized word representations for detecting sarcasm and irony
	Implicit Subjective and Sentimental Usages in Multi-sense Word Embeddings
	Language Independent Sentiment Analysis with Sentiment-Specific Word Embeddings
	Creating a Dataset for Multilingual Fine-grained Emotion-detection Using Gamification-based Annotation
	IEST: WASSA-2018 Implicit Emotions Shared Task
	Amobee at IEST 2018: Transfer Learning from Language Models
	IIIDYT at IEST 2018: Implicit Emotion Classification With Deep Contextualized Word Representations
	NTUA-SLP at IEST 2018: Ensemble of Neural Transfer Methods for Implicit Emotion Classification
	Sentiment analysis under temporal shift
	Not Just Depressed: Bipolar Disorder Prediction on Reddit
	Topic-Specific Sentiment Analysis Can Help Identify Political Ideology
	Saying no but meaning yes: negation and sentiment analysis in Basque
	Leveraging Writing Systems Change for Deep Learning Based Chinese Emotion Analysis
	Ternary Twitter Sentiment Classification with Distant Supervision and Sentiment-Specific Word Embeddings
	Linking News Sentiment to Microblogs: A Distributional Semantics Approach to Enhance Microblog Sentiment Classification
	Aspect Based Sentiment Analysis into the Wild
	The Role of Emotions in Native Language Identification
	Self-Attention: A Better Building Block for Sentiment Analysis Neural Network Classifiers
	Dual Memory Network Model for Biased Product Review Classification
	Measuring Issue Ownership using Word Embeddings
	Sentiment Expression Boundaries in Sentiment Polarity Classification
	Exploring and Learning Suicidal Ideation Connotations on Social Media with Deep Learning
	UTFPR at IEST 2018: Exploring Character-to-Word Composition for Emotion Analysis
	HUMIR at IEST-2018: Lexicon-Sensitive and Left-Right Context-Sensitive BiLSTM for Implicit Emotion Recognition
	NLP at IEST 2018: BiLSTM-Attention and LSTM-Attention via Soft Voting in Emotion Classification
	SINAI at IEST 2018: Neural Encoding of Emotional External Knowledge for Emotion Classification
	EmoNLP at IEST 2018: An Ensemble of Deep Learning Models and Gradient Boosting Regression Tree for Implicit Emotion Prediction in Tweets
	HGSGNLP at IEST 2018: An Ensemble of Machine Learning and Deep Neural Architectures for Implicit Emotion Classification in Tweets
	DataSEARCH at IEST 2018: Multiple Word Embedding based Models for Implicit Emotion Classification of Tweets with Deep Learning
	NL-FIIT at IEST-2018: Emotion Recognition utilizing Neural Networks and Multi-level Preprocessing
	UWB at IEST 2018: Emotion Prediction in Tweets with Bidirectional Long Short-Term Memory Neural Network
	USI-IR at IEST 2018: Sequence Modeling and Pseudo-Relevance Feedback for Implicit Emotion Detection
	EmotiKLUE at IEST 2018: Topic-Informed Classification of Implicit Emotions
	BrainT at IEST 2018: Fine-tuning Multiclass Perceptron For Implicit Emotion Classification
	Disney at IEST 2018: Predicting Emotions using an Ensemble
	Sentylic at IEST 2018: Gated Recurrent Neural Network and Capsule Network Based Approach for Implicit Emotion Detection
	Fast Approach to Build an Automatic Sentiment Annotator for Legal Domain using Transfer Learning
	What Makes You Stressed? Finding Reasons From Tweets
	EmojiGAN: learning emojis distributions with a generative model
	Identifying Opinion-Topics and Polarity of Parliamentary Debate Motions
	Homonym Detection For Humor Recognition In Short Text
	Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
	Learning representations for sentiment classification using Multi-task framework
	Super Characters: A Conversion from Sentiment Classification to Image Classification
	Learning Comment Controversy Prediction in Web Discussions Using Incidentally Supervised Multi-Task CNNs
	Words Worth: Verbal Content and Hirability Impressions in YouTube Video Resumes
	Predicting Adolescents' Educational Track from Chat Messages on Dutch Social Media
	Arabizi sentiment analysis based on transliteration and automatic corpus annotation
	UBC-NLP at IEST 2018: Learning Implicit Emotion With an Ensemble of Language Models

