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Abstract

We propose a method to automatically align WordNet synsets and Wikipedia articles to obtain a sense

inventory of higher coverage and quality. For each WordNet synset, we first extract a set of Wikipedia

articles as alignment candidates; in a second step, we determine which article (if any) is a valid

alignment, i.e. is about the same sense or concept. In this paper, we go significantly beyond state-

of-the-art word overlap approaches, and apply a threshold-based Personalized PageRank method for

the disambiguation step. We show that WordNet synsets can be aligned to Wikipedia articles with a

performance of up to 0.78 F1-Measure based on a comprehensive, well-balanced reference dataset

consisting of 1,815 manually annotated sense alignment candidates. The fully-aligned resource as

well as the reference dataset is publicly available.1

1 Introduction

Lexical semantic resources often used as sense inventories are a prerequisite in automatic processing of

human language. In the last few years, there has been a rise in research aligning different resources to

overcome the knowledge acquisition bottleneck and coverage problems pertinent to any single resource.

In this paper, we address the task of aligning WordNet noun synsets and Wikipedia articles to obtain a

sense inventory of higher coverage and quality. WordNet, a lexical database for English, is extensively

used in the NLP community and is a de-facto standard resource in many NLP tasks, especially in current

WSD research (Fellbaum, 1998). WordNet’s manually defined comprehensive taxonomy motivates many

researchers to utilize it. However, as WordNet is maintained by only a small group of experts, it is hard to

cope with neologisms, named entities, or rare usages on a large scale (Agirre and Edmonds, 2006; Meyer

and Gurevych, 2010). In order to compensate for WordNet’s lack of coverage, Wikipedia has turned

out to be a valuable resource in the NLP community. Wikipedia has the advantage of being constantly

updated by thousands of voluntary contributors. It is multilingual and freely available containing a

tremendous amount of encyclopedic knowledge enriched with hyperlink information.

In the past, researchers have explored the alignment of Wikipedia categories and WordNet synsets (e.g.,

Toral et al. (2008); Ponzetto and Navigli (2009)). However, using the categories instead of the articles

causes three limitations: First, the number of Wikipedia categories (about 0.5 million in the English

edition) is much smaller compared to the number of articles (about 3.35 million). Secondly, the category

system in Wikipedia is not structured consistently (Ponzetto and Navigli, 2009). And finally, disregarding

the article level neglects the huge amount of textual content provided by the articles.

Therefore, attempts to align WordNet synsets and Wikipedia articles (instead of categories) have been

recently made. This has three major benefits. First of all, as WordNet and Wikipedia were found to

be partly complementary on the word sense level, an aligned resource would increase the coverage of

1http://www.ukp.tu-darmstadt.de/data/sense-alignment
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senses (Wolf and Gurevych, 2010). Second, word senses contained in both resources can then be rep-

resented by relational information from WordNet and encyclopedic information from Wikipedia in a

multilingual manner yielding an enriched knowledge representation. And finally, the third major benefit

of the alignment is the ability to automatically acquire sense-tagged corpora in a mono- and multilin-

gual fashion. For each WordNet synset, the text of the aligned Wikipedia article (or all sentences or

paragraphs in Wikipedia that contain a link to the article) can be automatically extracted similar to the

approach proposed by Mihalcea (2007). Automatically generated sense-tagged corpora can be used to,

e.g., counter the bottleneck of supervised WSD methods that rely on such sense-tagged text collections,

which are rare. Further, due to the cross-lingual links in Wikipedia, also corpora in different languages

can be constructed easily.

Our contribution to this paper is two-fold. First, we propose a novel two-step approach to align WordNet

synsets and Wikipedia articles. We model the task as a word sense disambiguation problem applying

the Personalized PageRank algorithm proposed by Agirre and Soroa (2009) as it is state-of-the-art in

WSD and combine it with a word overlap measure, which increases the overall performance. Second,

we generate and introduce a well-balanced reference dataset for evaluation consisting of 1,815 manually

annotated sense alignment candidates. WordNet synsets and their corresponding Wikipedia article can-

didates are sampled along their distinctive properties such as synset size, domain, or the location in the

WordNet taxonomy. An evaluation on this dataset let us generalize the performance to a full alignment

between WordNet and Wikipedia, which is publicly available for further research activities.

2 Related work

The alignment of WordNet and Wikipedia has been an active area of research for several years with the

goal of creating an enriched ontology. One of the first attempts proposed a new resource YAGO inte-

grating WordNet and Wikipedia consisting of more than 1 million entities and 5 million facts (Suchanek

et al., 2007). The set of entities contains all WordNet synsets and Wikipedia articles with titles that are

not represented as terms in WordNet. Thus, they ignore ambiguous entities, e.g., the British rock band

Queen is not covered as the term queen is already contained in WordNet.

Other approaches automatically align WordNet with the categories of Wikipedia instead of the articles.

Toral et al. (2008) enrich WordNet with named entities mined from Wikipedia. Therefore, the noun

is-a hierarchy of WordNet is mapped to the Wikipedia categories determining the overlap of articles

belonging to the category and the instances for each of the senses of a polysemous word in WordNet.

Ponzetto and Navigli (2009) applied a knowledge-rich method which maximizes the structural over-

lap between the WordNet taxonomy and the category graph extracted from Wikipedia. Based on the

mapping information, the taxonomy automatically generated from the Wikipedia category graph is re-

structured to enhance the quality. Toral et al. (2009) disambiguate WordNet noun synsets and Wikipedia

categories using multiple text similarity measures similar to our approach. A Wikipedia category is

thereby represented by its main article or an article, which has the same title string as the category. Wu

and Weld (2008) integrate the Wikipedia’s infobox information with WordNet to build a rich ontology

using statistical-relational learning.

Ruiz-Casado et al. (2005) proposed a method to align WordNet synsets and Wikipedia articles (instead

of categories). They align articles of the Simple English Wikipedia to their most similar WordNet synsets

depending on the vector-based similarity of the synset’s gloss and the article text. Recently, Ponzetto and

Navigli (2010) presented a method based on a conditional probability p(s|w) of selecting the WordNet

sense s given the Wikipedia article w, whereas the conditional probability relies on a normalized word

overlap measure of the textual sense representation. Both approaches, however, have the following

two major drawbacks: first, the algorithms are modeled such that they always assume a counterpart in

WordNet for a given Wikipedia article, which does not hold for the English Wikipedia (see Section 4).

Second, the algorithms always assign the most likely WordNet synset to a Wikipedia article, not allowing

multiple alignments. However, due to the different sense granularities in WordNet and Wikipedia, some

Wikipedia articles might be assigned to more than one WordNet synset. Based on these observations,
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there is a need for a better approach yielding none, one, or more than one alignment for a given synset or

article. We will describe a novel idea to tackle this in the next section.

3 Methodology

Automatic sense alignment aims to match senses of different resources that have the same meaning.2 In

general, one sense is given and the task is to find a correspondent within another resource, in case one ex-

ists. Thereby, automatic sense alignment meets two subgoals. At first, all potential alignment candidate

senses for a given sense have to be extracted. Secondly, these extracted candidates have to be scored to

select the sense(s) that match in meaning. For example, given the WordNet synset wn =<schooner: sail-

ing vessel used in former times> and the two Wikipedia alignment candidate articles wp1 =<Schooner:

A schooner is a type of sailing vessel ...> and wp2 =<Schooner (glass): A schooner is a type of glass

used for ...>; the article wp1 should be aligned with the synset wn, while the second should not be

aligned. The recall of the extraction step can highly influence the performance of the whole alignment

process. If a sense is not extracted in the first step, it cannot be selected in the alignment step either.

In Section 3.1, we state how we extract Wikipedia alignment candidate articles for a given synset. In the

subsequent Section 3.2, we describe how we determine the article that is aligned to the synset (if any at

all). As almost all Wikipedia articles refer to nouns, we focus on this part-of-speech.

3.1 Candidate extraction

In order to extract Wikipedia articles for a given WordNet synset, we follow the procedure introduced by

Wolf and Gurevych (2010). We shortly summarize this method here: Let wn be a WordNet synset with

a set of synonyms {s1, · · · , sn} of size n. For each synonym s ∈ wn, we extract all Wikipedia articles

wp ∈ WPwn that match one of the following constraints:

a) the article title matches s, e.g., the article Window is retrieved for the synonym term Window,

b) the article title is of the form s (description tag), e.g., Window (computing),

c) the article has a redirect that matches s or is of the form s (description tag), e.g., Chaff (counter-

measure) has a redirect Window (codename) and, thus, is retrieved for the synonym term Window,

d) the article is linked in a hyperlink, in which the link anchor text matches s, e.g., the article

Bandwagon effect is retrieved for the term bandwagon, as there exist a hyperlink of the form

[[Bandwagon effect|bandwagon]]. Only hyperlinks that occur in at least 3 different articles are

taken into account in order to reduce noise.

3.2 Candidate alignment

Given the set of Wikipedia candidates WPwn extracted for synset wn, we have to classify each Wikipedia

article wp ∈ WPwn as being a valid alignment or not with respect to wn. Therefore, we first calculate

similarities between synset–article pairs of a given training set. In a second step, we learn a threshold

corresponding to the minimum similarity a sense pair should have to be aligned. This threshold is then

used to fully align WordNet and Wikipedia.

Sense similarity. The basis of our new approach for sense alignment is the PageRank algorithm (Brin

and Page, 1998) relying on a lexical-semantic knowledge base, which is modeled as a graph G =
(V,E). As knowledge base we use WordNet 3.0 extended with manually disambiguated glosses from

the “Princeton Annotated Gloss Corpus”3. The vertices v ∈ V represent the synsets; the edges (undi-

rected and unweighted) represent semantic relations between synsets, such as hyponym and hypernym

relations.

2We do not differentiate between the terms sense and concept in this paper as they both refer to the same ‘artifact’ and

only differ in representation. Concepts in WordNet are described by the entire synset, e.g. the synset <design, plan>. Senses,

however, are words tagged with a sense number, e.g. design N #2, which means the word check as a noun in its second sense.
3http://wordnet.princeton.edu/glosstag.shtml
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Figure 1: Schematic illustration of the basic ppr (left) and direct pprd (right) approach.

The PageRank algorithm ranks the vertices in a graph according to their importance within the set. Let

M be a (n × n) transition probability matrix, where Mji =
1

outdegreei
, if there exist a link from vertex i

to vertex j. Then, the PageRank vector pr over the graph G is equivalent to resolve:

pr = cMpr + (1− c)v , (1)

whereas c is a damping factor between 0 and 1, and v is an n-dimensional vector whose elements are 1

n
.

An element of the PageRank vector denotes the probability for the corresponding vertex that a jumper,

randomly following the edges in the graph, ends at that vertex, i.e. the importance of that vertex.

Now, vector v can be personalized by assigning stronger initial probabilities to certain vertices in the

graph. This personalized version of the PageRank algorithm (Agirre and Soroa, 2009) is used in our

approach in two different ways (see Figure 1):

In the basic version ppr , we represent both, Wikipedia articles and WordNet synsets as bag-of-words

(abbreviated as b in the following). The textual representation is tokenized and lemmatized using the

TreeTagger (Schmid, 1994); standard stopword removal is applied. For a given synset–article pair, we

calculate two Personalized PageRank vectors. For each Personalized PageRank vector, we initialize

vector v depending on the terms occurring in b:

vi =

{

1

m
if a synonymous word of synseti in WordNet occurs in b

0 else ,
(2)

where m is the number of synsets with a synonymous word occurring in b. For example, given the Word-

Net synset <payment, defrayal, defrayment: the act of paying money> with its bag-of-words (payment,

defrayal, defrayment, act, paying, money), we assign each synset, i.e. vertex in the graph, a weight, for

which at least one of its synonymous words occurs in the bag-of-words. Then, the PageRank vector is a

semantic representation over all WordNet synsets for the given bag-of-words.

In the direct version ppr d, the WordNet synset is directly represented in v by assigning a weight of 1

to the corresponding vector element. It induces that the WordNet synset is already disambiguated and

thus, motivates the use of the Personalized PageRank algorithm on the WordNet graph. Only for the

Wikipedia article, the vector v is built up according to Eq. 2.

Given two Personalized PageRank vectors pprwn and pprwp for the WordNet synset wn and the

Wikipedia article wp, we calculate their similarity using the χ2 measure.4

simppr(wn,wp) = 1− χ
2(pprwn, pprwp) = 1−

∑

i

(pprwni
− pprwpi)

2

pprwni
+ pprwpi

(3)

4This vector distance measure has shown the best overall performance compared to the cosine and euclidean distance in our

experiments.
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Learning classifier. Based on the similarity, the sense pair has to be classified as alignment (class 1)

or non-alignment (class 0) formally defined as:

c(wn,wp) =

{

1 if sim(wn,wp) > t

0 else ,
(4)

where sim(wn,wp) is the similarity of a WordNet synset and a Wikipedia article, and t is a real valued

threshold. We apply 10-fold cross-validation to determine the threshold. We measure the performance of

classification by means of F1-Measure (see Section 5) and iteratively search (from 0 to 1 in 0.001 steps)

for a threshold that maximizes the performance on the training fold. A threshold-based classification

scheme induces that a WordNet synset can be aligned to none, one, or more than one Wikipedia article,

which is the main potential of our approach compared to existing methods. However, in the scope of this

paper, we assign at most one Wikipedia article (if any) to a WordNet synset (the one with the highest

similarity above the threshold) as this yields the best performance (see Section 5).

Word overlap measure. For comparison, we also applied the standard cosine word overlap similarity

measure cos used in existing sense alignment approaches (e.g., Ruiz-Casado et al. (2005)). We deter-

mine the similarity of the bag-of-words vectors of the WordNet synset and Wikipedia article calculating

the cosine between them. According to Eq. 4 we also learn a classifier based on the cosine similarity.

Combination of the classifiers’ output. Finally, we experiment with a heuristic, classifying only those

synset–article pairs as alignment, for which the Personalized PageRank-based classifier and the cosine-

based classifier, i.e. cppr and ccos, or cpprd and ccos, return an alignment to further increase the precision.

Baselines. We implemented two different baselines. The baseline rand randomly selects a Wikipedia

article from the extracted candidate set for each synset. The baseline mfs (most frequent sense) assigns

always the most frequently linked Wikipedia article of the candidate set defined as the article with the

highest number of incoming links. For example, for the synset wn =<tree: a tall perennial woody plant

having a main trunk [...]> suppose we extract the two Wikipedia articles, namely wp1 =<Tree: A tree

is a perennial woody plant.> and wp2 =<Tree (data structure)>. In this case, the sense wp1 is aligned

to the synset wn as it has 4,339 inlinks, about 4,000 more than the article wp2. Both, the rand and mfs

baseline always return a one-to-one alignment.

4 Well-balanced reference dataset

Publicly available evaluation datasets as provided by Fernando and Stevenson (2010) and Wolf and

Gurevych (2010), are either quite small or follow a different annotation scheme. Others consist of ran-

domly sampled synsets, which do not properly represent the distribution of synsets in WordNet following

specific properties. For example, the dataset used in (Ponzetto and Navigli, 2010) consists of only 2 sense

pairs, whose lemmas are monosemous in WordNet and Wikipedia (e.g. the lemma specifier corresponds

to one synset in WordNet and one article in Wikipedia). As this property holds for one-third of all Word-

Net noun synsets, it is crucial for the choice of the alignment method and thus, should be represented in

the evaluation dataset adequately. Therefore, our goal in this paper is to compile a well-balanced dataset

to cover different domains and properties.

Synsets can be characterized with respect to their so-called assigned Unique Beginner, their synset size,

and their location within the WordNet taxonomy. The Unique Beginners group synsets in semantically

related fields (Fellbaum, 1998) such as entity (subsuming animals, persons, plants, artifacts, body and

food related synsets), abstraction, psychological features, shapes, states, and locations. The synset size

refers to the number of synonymous word senses in the synset. A synset can further be characterized

by its location within the WordNet taxonomy defined as the shortest path between the given synset and

the synset entity, which is the root element of all noun synsets. In addition, we distinguish between
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Property # synsets in WordNet # sampled synsets # manually aligned synsets

Synset size
=1 42,054 160 110

> 1 40,061 160 111

Path length to root

0-5 8,586 60 33

6-10 67,082 200 143

11-16 6,447 60 45

Unique Beginner
Entity 47,330 160 118

Non-Entity 34,785 160 103

# extracted WP candidates
=1 23,991 160 108

> 1 46,569 160 113

Total # 82,115 320 221

Table 1: Sampling by properties and # manual alignments

Annotator A B C majority

# non-alignments 1,586 1,571 1,605 1,588

# alignments 229 244 210 227

Table 2: Annotations per class

A–B A–C B–C

AO .9697 .9741 .9724

κ .8663 .8782 .8742

Table 3: Inter-annotator agreement

synsets for which more than one Wikipedia candidate article is returned. In summary, for example, the

synset <article, clause: a separate section of a legal document> has a synset size of 2, is assigned to the

Unique Beginner communication, has a shortest path to the root element of length 6, and has 5 extracted

Wikipedia candidate articles.

Based on these distinctive properties, we sampled 320 noun synsets yielding 1,815 sense pairs to be

annotated, i.e. 5.7 Wikipedia articles per synset on average. The exact proportion of synsets with respect

to their properties is detailed in Table 1 in the first four columns.

The manual sense alignment is performed by three human annotators. The annotators were provided

sense alignment candidate pairs, each consisting of a WordNet synset and a Wikipedia article. The anno-

tation task was to label each sense pair either as alignment or not. Table 2 outlines the class distribution

for three annotators and the majority decision.

The most sense alignment candidates were annotated as non-alignments; only between 210 and 244

sense pairs were considered as alignments (extracted for 320 WordNet synsets). To assess the reliability

of the annotators’ decision, we computed the pairwise observed inter-annotator agreement AO and the

chance-corrected agreement κ (Artstein and Poesio, 2008)5. The agreement values are shown in Table 3.

The average observed agreement AO is 0.9721, while the multi-κ is 0.8727 indicating high reliability.

The final dataset was compiled by means of a majority decision. Given 1,815 sense alignment candidate

pairs, 1,588 were annotated as non-alignments, while 227 were annotated as alignments. 215 synsets

were aligned with one article, while 6 synsets were aligned with two articles. Interesting to note is that the

aligned samples are uniformly distributed among the different sampling dimensions as shown in Table 1

(right column). It demonstrates that WordNet synsets of different properties are contained in Wikipedia.

On the other side, 99 synsets, i.e. approx. 1/3 of the sampled synsets, could not be aligned. Most of

them are not contained in Wikipedia at all, e.g. the synset <dream (someone or something wonderful)>

or <outside, exterior (the region that is outside of something)>. Others are not explicitly encoded on

the article level such as the synset <quatercentennial, quatercentenary (the 400th anniversary (or the

celebration of it))>, which is part of the more general Wikipedia article <Anniversary>.

5 Experiments

In our experiments, we represent a WordNet synset either by itself (in the direct version pprd ) or by

its set of synonymous word senses and its gloss and examples (in the basic version ppr ). Optionally,

we include hyponym and hypernym synsets to extend the sense representation of a synset: (SYN): the

5Note: “As the class distribution is highly skewed, the test for reliability in such cases is the ability to agree on the rare

categories [. . . ]” (Artstein and Poesio, 2008). This, in fact, is the category/class, in which we are most interested in.
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WordNet Wikipedia
cos pprd pprd + cos ppr ppr + cos

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

SYN P+T .691 .907 .719 .921 .726 .923 .707 .914 .727 .927

+HYPO P+T .694 .908 .701 .916 .716 .931 .700 .912 .718 .926

+HYPER P+T .726 .921 .708 .918 .737 .935 .756 .928 .774 .940

+HYP2 P+T .725 .927 .713 .920 .720 .937 .741 .923 .756 .940

SYN P+T+R .684 .907 .721 .921 .738 .936 .707 .913 .725 .926

+HYPO P+T+R .689 .910 .711 .918 .729 .936 .698 .910 .721 .927

+HYPER P+T+R .719 .917 .724 .928 .748 .937 .762 .938 .755 .940

+HYP2 P+T+R .727 .920 .729 .929 .739 .937 .747 .932 .761 .940

SYN P+T+C .698 .909 .754 .930 .756 .937 .726 .918 .743 .931

+HYPO P+T+C .702 .910 .739 .927 .747 .938 .722 .917 .740 .930

+HYPER P+T+C .738 .925 .752 .931 .765 .943 .765 .935 .781 .945

+HYP2 P+T+C .732 .923 .739 .928 .757 .942 .746 .930 .769 .942

SYN P+T+R+C .699 .912 .736 .926 .752 .939 .719 .916 .734 .929

+HYPO P+T+R+C .695 .911 .736 .926 .735 .936 .711 .914 .727 .928

+HYPER P+T+R+C .718 .917 .744 .930 .758 .940 .776 .940 .772 .943

+HYP2 P+T+R+C .724 .918 .751 .932 .756 .939 .762 .936 .769 .942

rand – .527 .857

mfs – .534 .860

Table 4: Results for the automatic alignment

given synset; (HYPER): all hypernym synsets of the given synset; (HYPO): all hyponym synsets of the

given synset; (HYP2): all hypernym and hyponym synsets of the given synset.

A Wikipedia article is represented by either its first paragraph6 as it usually contains a compact descrip-

tion of the article or its whole article text. The article title and additional assigned information such as

categories or redirects can also be taken into account: (P): first paragraph of Wikipedia article (with a

minimum length of 200 characters7); (TXT): the whole article text; (T): article title; (C): all categories

assigned to the article; (R): all redirects assigned to the article.

Table 4 lists the performance of our approach for different experimental settings.8 We evaluate our

approach in terms of F1-Measure (F1 =
2∗P∗R
P+R

), where P is the precision and R the recall. The precision

P determines the ratio of correct alignments to all alignments assigned by the algorithm. The recall R

identifies the number of correct alignments to the total number of correct alignments in the gold standard.

Further, we provide an accuracy measure Acc, which denotes the percentage of the correctly identified

alignments and non-alignments.

Similarity measure. Overall, the Personalized PageRank approach outperforms the cosine similar-

ity. cos achieves an F1-Measure of 0.738, while pprd reaches 0.754 and ppr even 0.776, which is a

performance gain of 2.1% and 5.1%, respectively. This, in fact, strengthens our motivation to employ se-

mantic relatedness based approaches instead of a simple word overlap approach. For example, the synset

<Johannesburg> and its corresponding Wikipedia article is not aligned based on the cosine approach as

only three terms overlap. However, the ppr and pprd approach classify the synset–article pair as align-

ment as there exists semantic relatedness between “large economy” and “commercial center” occurring

in the textual sense representations.

The performance differences between pprd and ppr correlate with the synset representation. On the one

hand, utilizing the SYN representation, pprd outperforms the ppr approach. This shows the effect of

disambiguating the WordNet synset beforehand. On the other hand, when presenting the synset together

with its hypernym or both, hypernyms and hyponyms, ppr yields the best performance. This might

be due to the fact that a Wikipedia article often contains more general terms, i.e. hypernym concepts,

especially within the first paragraph of a Wikipedia article.

All combinations yield higher performance compared to the stand-alone classifiers. For example, for

the setting SYN+HYPER and P+T+C, cos yields 0.738, ppr 0.765, and the combination of both 0.781

6Extracted with JWPL (Zesch et al., 2008) and some additional post-processing steps.
7We have not optimized this value for this task.
8As all experimental settings, in which the Wikipedia article was represented with its first paragraph instead of the whole

article text, yield higher performance, we report only these numbers here.
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Measure A B C

cos .688 .692 .676

pprd .711 .711 .690

pprd + cos .724 . 714 .716

ppr .737 .718 .716

ppr + cos .740 .730 .728

Table 5: Agreement (κ) between automatic and human annotators

automatic

alignment non-alignment

manual
alignment 178 49

non-alignment 51 1,537

Table 6: Confusion matrix (Setting: ppr + cos , SYN+HYPER, P+T+C)

performance, which is an improvement of 5.8% and 2.1% compared to the cos and ppr approach,

respectively. The performance gain originates from higher precision.

Sense representation. All similarity measures yield better performance representing the WordNet

synset together with their hypernym synsets regardless of the representation of the Wikipedia article.

As stated before, this might be due to the fact that Wikipedia articles often contain hypernym concepts

in their textual representation. Further, each synset has exactly one direct hypernym concept, while the

number of hyponym concepts is not limited. This can cause a very noisy description of a synset, not

focusing on the textual representation of the actual sense. When representing the Wikipedia sense, the

categories always boost the performance, while redirects are not helpful and can yield even a performance

drop. The reason might be that redirects contain much noisy information, e.g. spelling variations.

Baselines. The rand and the mfs baselines achieve an F1-Measure of 0.527 and 0.534, respectively.

They always assign a sense even only 221 of 320 synsets can be aligned to Wikipedia. If we only

consider the 221 synsets for which an alignment exist, the mfs baseline achieves an F1-Measure of 0.76,

i.e. for 146 out of 221 synsets the aligned Wikipedia article is the most frequent sense as we defined it in

Section 3.2.

Upper bound. The human annotators show a pairwise agreement κ between 0.866 and 0.878, which

serves as an upper bound for this task. For each measure and its best performing experimental setting as

listed in Table 4, we calculate the agreement with the annotators’ alignments (see Table 5). The combined

approach ppr + cos achieves the highest agreement values κ, between 0.728 and 0.740. These values

show that the automatic annotation is fairly reliable.

5.1 Error analysis

We manually analyzed the alignments generated by the best performing experimental setup (ppr + cos,

SYN+HYPER, P+T+C). For synsets corresponding to more than one extracted Wikipedia candidate, the

average number of Wikipedia candidates is around 10, which, indeed, makes the alignment step very

challenging for some synsets. For example, for the synset <mission, military mission (an operation

that is assigned by a higher headquarters)> 30 Wikipedia candidates were extracted in total, whereas

only the article with the title <Military operation> was aligned manually. 10 out of the 30 are articles

about space flight missions and Christian missionary. Most of the remaining 19 refer to city names, song

titles, and other named entities. Our approach returns the highest similarity for the article <Military

operation>, which demonstrates that the alignment works well in this example.

As listed in Table 6, the best performing experimental setup correctly aligned 178 of the 227 manual

alignments. The remaining 49 manual alignments were not assigned. Instead, 51 additional sense can-
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didate pairs were incorrectly considered as alignment. It is noticeable that the errors are almost equally

distributed among the distinctive properties a synset can have as defined in Section 4. We could not

observe that a specific synset property causes the majority of errors.

Most of the 51 false positives are due to highly related sense alignment candidates, e.g. (cottonseed, cot-

tonseed oil), (electroretinogram, electroretrinography), or (insulin shock, insulin shock therapy). These

sense alignment candidates have either the same stem but different suffixes or one part is a holonym or

meronym of the other part. This knowledge can be used to apply additional post-processing steps to

boost the performance. Further, even if they are non-aligned manually as they do not describe the same

sense, the concepts are highly related, and thus, the alignment might be useful in specific tasks.

Most of the 49 manual alignments that could not be aligned automatically are due to the differences how

senses are defined in WordNet and Wikipedia. For example, the WordNet synset <payment, defrayal,

defrayment: the act of paying money> and the manually aligned Wikipedia article <Payment: A payment

is the transfer of wealth from one party (such as person or company) to another ...> could not be aligned

automatically. In this example, the textual similarity or relatedness is not sufficient to classify them as a

valid alignment. This fact shows that other types of knowledge should be additionally integrated in the

alignment approach, such as structural or taxonomic knowledge.

6 Conclusions

We have presented a novel two-step approach to automatically align English Wikipedia articles and

WordNet synsets. We have shown that a threshold-based method models the task properly yielding

none, one, or more than one alignment of a Wikipedia article for a given WordNet synset. This is dif-

ferent to previous sense alignment approaches. Further, we have shown that it is important to employ

semantic relatedness measuring the similarity of textual sense representations. Our approach to the auto-

matic alignment shows an encouraging performance of 0.78 F1-Measure and 94.5% accuracy based on a

comprehensive, well-balanced reference dataset consisting of 1,815 manually annotated sense alignment

candidates.

We have created a fully-aligned resource with our best performing setting (ppr + cos , SYN+HYPER,

P+T+C, threshold: 0.439 for ppr , 0.048 for cos ), in which two-thirds of all WordNet noun synsets are

aligned with one article from the English Wikipedia. On the one hand, this fact supports our assumption

and overall motivation that both resources are partly complementary at the sense level (one-third of all

noun synsets are not in Wikipedia). On the other hand, for the two-thirds of WordNet noun synsets, the

alignment yields relational information from WordNet and encyclopedic information from Wikipedia.

We believe that this new resource and the enhanced knowledge therein can boost the performance of

various NLP systems that previously had to rely on a single resource only. We already started research

on integrating the aligned resource in WSD and semantic relatedness tasks. The fully-aligned resource

as well as the reference dataset are publicly available at http://www.ukp.tu-darmstadt.de/

data/sense-alignment for further research activities.
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