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Abstract

In the literature, most of the previous studies
on English implicit discourse relation recog-
nition only use sentence-level representations,
which cannot provide enough semantic infor-
mation in Chinese due to its unique paratac-
tic characteristics. In this paper, we propose a
topic tensor network to recognize Chinese im-
plicit discourse relations with both sentence-
level and topic-level representations. In par-
ticular, besides encoding arguments (discourse
units) using a gated convolutional network to
obtain sentence-level representations, we train
a simplified topic model to infer the latent
topic-level representations. Moreover, we feed
the two pairs of representations to two fac-
tored tensor networks, respectively, to capture
both the sentence-level interactions and topic-
level relevance using multi-slice tensors. Ex-
perimentation on CDTB, a Chinese discourse
corpus, shows that our proposed model sig-
nificantly outperforms several state-of-the-art
baselines in both micro and macro F1-scores.

1 Introduction

As a critical component of discourse parsing, dis-
course relation recognition focuses on determining
how two adjacent discourse units (e.g., clauses,
sentences, and sentence groups), called argu-
ments, semantically connect to one another. Ob-
viously, identifying discourse relations can help
many downstream NLP applications, such as auto-
matic summarization, information extraction and
question answering.

In principle, the discourse connectives between
two arguments are important for recognizing the
relationship between them. For explicit dis-
course relation recognition where the discourse
connectives explicitly exist in the text, a simple
frequency-based mapping table can achieve high
performance due to the critical role of a connective
in determining the discourse relations (Xue et al.,

2016). For implicit discourse relation recognition,
it is much more challenging due to missing an ex-
act connective and it normally depends on the un-
derstanding of the whole text (Pitler et al., 2009).

This paper focuses on recognizing implicit dis-
course relations in Chinese. In contrast to English,
which is a hypotactic language (formal cohesion),
Chinese is a paratactic language (semantic cohe-
sion) that tends to pro-drop clause connectives.
Our statistics indicate that the implicit relations
in the Chinese CDTB corpus account for 75.2%,
while the proportion in the English PDTB corpus
declines to only 40%. Hence, recognizing implicit
discourse relations in Chinese becomes more cru-
cial than in English.

In the literature, most of previous studies fo-
cused on English, with only a few on Chinese.
Compared with traditional feature-based methods
(Pitler et al., 2009; Lin et al., 2009; Wang et al.,
2017; Kong and Zhou, 2017) that directly rely on
feature engineering, recent neural network models
(Liu et al., 2017; Qin et al., 2017; Guo et al., 2018;
Bai and Zhao, 2018) can capture deeper semantic
cues and learn better representations (Zhang et al.,
2015). In particular, most neural network-based
methods encode arguments using variants of Bi-
LSTM or CNN (Qin et al., 2016; Guo et al., 2018)
and propose various models (e.g., the gated rel-
evance network, the encoder-decoder model, and
interactive attention) to measure the semantic rel-
evance (Chen et al., 2016; Cianflone and Kosseim,
2018; Guo et al., 2018)

Due to the large differences between the hy-
potactic English language and the paratactic Chi-
nese language, English-based models, which rely
heavily on sentence-level representations, may not
function well on Chinese. Due to its paratactic na-
ture, Chinese is flooded with a broad range of flex-
ible sentence structures and semantic cohesion,
such as ellipses, references, substitutions, and con-
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junctions. Therefore, Chinese discourse parsing
relies heavily on the deep semantics of arguments,
especially topic continuity (Lei et al., 2018). In
many cases, considering only the sentence-level
representation is not enough for Chinese implicit
discourse relation recognition, and we need vari-
ous semantic clues beyond the sentence-level, e.g.,
at the topic level. Take the following two argu-
ments as examples:

[一九九一年至一九九五年，中国的对
外开放以高速向前推进 (From 1991 to 1995,
China’s opening was moving forward at a high
speed)]Arg1 [国民经济更加广泛地参与国际
分工与国际交换，中外经济技术合作与交流
已渗入到中国经济生活的各个领域 (the na-
tional economy is more widely involved in the in-
ternational division of labor and international ex-
change, and the economic and technological co-
operation and exchanges between China and for-
eign countries had penetrated into various fields
of China’s economic life)]Arg2

Although there is an Elaboration relation be-
tween the above two arguments, it is difficult
to obtain sufficient information for identifying
this potential association by directly matching
the words in Arg1 (e.g., “speed” and “moving”)
and those in Arg2 (e.g., “economic” and “ex-
changes”). To identify their Elaboration relation,
the most crucial clue may be the fact that they be-
long to the same topic, i.e., China’s opening is
an international economic event. Therefore, it is
critical for implicit discourse relation recognition
to capture such topic information as an important
clue.

In this paper, we propose a Topic Tensor Net-
work (TTN) to recognize implicit discourse re-
lations in Chinese using both sentence-level and
topic-level representations. First, we introduce a
GCN-based (Gated Convolutional Network) en-
coder to learn the sentence-level representations.
Then, we train a Simplified Topic Model (STM)
to infer the latent topic-level representations to
provide additional semantic clues. Finally, we
feed the two pairs of representations to two Fac-
tored Tensor Networks (FTNs) to model both the
sentence-level interactions and topic-level rele-
vance using multi-slice tensors. We summarize the
contributions of our work as follows:

• Compared with previous works that were fo-
cused on sentence-level representations, we
incorporate additional topic-level representa-

tions to capture the deep semantic interac-
tions among arguments.

• We introduce the simplified topic model STM
to infer the latent topic-level representations
and employ such topic-level relevance to rec-
ognize Chinese implicit discourse relations.

• We propose the factored tensor network FTN
to model the complex semantic interactions,
and it has the advantage of significantly re-
ducing the complexity of the original model
(Guo et al., 2018).

2 Related Work

Most previous studies evaluated their models on
PDTB (Prasad et al., 2008) and RST-DT (Carl-
son et al., 2003), which are two English discourse
corpora that were available up to now. PDTB is
the largest English discourse corpus with 2312 an-
notated documents from Wall Street Journal using
the PTB-style predicate-argument structure. RST-
DT is another popular English discourse corpus,
which annotates 385 documents from Wall Street
Journal using the RST tree scheme.

Basically, previous studies can be categorized
into traditional models that focus on linguistically
informed features (Pitler et al., 2009; Lin et al.,
2009; Feng and Hirst, 2014; Wang et al., 2017),
and neural network methods (Liu and Li, 2016;
Chen et al., 2016; Guo et al., 2018; Bai and Zhao,
2018). Especially, Zhou et al., (2010) attempted
to predict implicit connectives. Qin et al. (2017),
Shi et al. (2017) and Xu et al. (2018) attempted
to leverage explicit examples for data augmenta-
tion. Other studies resorted to unlabeled data to
perform multi-task or unsupervised learning (Liu
et al., 2016; Lan et al., 2017).

Since discourse relation recognition is essen-
tially a classification problem, what those neural
network methods need to consider is how to model
the arguments and how to incorporate their seman-
tic interactions. From this regard, most of them
focused on improving representations or incorpo-
rating the complex interactions. Bai and Zhao
(2018) proposed a deep enhanced representation
to represent arguments at the character, subword,
word, and sentence levels. Chen et al. (2016) in-
troduced a gated relevance network to model both
the linear and nonlinear correlations between two
arguments. Guo et al. (2018) used a neural ten-
sor network to capture the interactive features with
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Figure 1: The overall framework of our Topic Tensor Network.

a multi-slice tensor. Among others, Qin et al.
(2017) applied an adversarial method to transfer
the discriminability of connectives to implicit fea-
tures through competition, while Xu et al. (2018)
expanded the training set by cooperating active
learning with explicit-to-implicit relation transfor-
mation.

In comparison, previous studies on Chinese im-
plicit discourse relation recognition were mainly
carried out on CDTB (Li et al., 2014) and CDTB-
ZX (Zhou and Xue, 2015). CDTB includes 500
newswire documents annotated with a connective-
driven dependency tree scheme, while CDTB-
ZX only contains 164 documents from Xinhua
Newswire annotated with PDTB-style discourse
relations.

Basically, most of the previous studies followed
the English studies. Kong and Zhou (2017) con-
structed an end-to-end Chinese discourse parser,
which used contextual features, lexical features
and dependency tree features to recognize dis-
course relations with a maximum entropy classi-
fier. Rönnqvist et al. (2017) proposed a Bi-LSTM
model with attention mechanism to link two argu-
ments by inserting special labels. Liu et al. (2017)
provided a memory augmented attention model
that used memory slots to store the interactions be-
tween two input arguments.

3 Topic Tensor Network for Implicit
Discourse Relation Recognition

In this section, we describe our topic tensor net-
work TTN with the overall architecture as shown

in Figure 1. TTN has four major components: (1)
a simplified topic model (STM) to infer the la-
tent topic distributions of arguments as topic-level
representations; (2) a GCN-based encoder to gen-
erate sentence-level representations; (3) two fac-
tored tensor networks (FTNs) to jointly model the
sentence-level interactions and the topic-level rel-
evance; and (4) an MLP classifier, which produces
the final discourse relation labels.

In particular, the GCN-based encoder extracts
hierarchical features from the long text of argu-
ments by stacking multiple gated convolution lay-
ers, and fully represents the sentence-level seman-
tic information. STM provides additional topic in-
formation for the MLP classifier to recognize dis-
course relations at a higher level. On this basis,
the two pairs of representations are fed into two
FTNs, respectively, which use multi-slice tensors
to jointly model the sentence-level interactions
and the topic-level relevance. Compared with the
neural tensor network used in Guo et al. (2018),
our FTN greatly reduces the computational com-
plexity due to the tensor factorization. Hence, we
can set more tensor slices to capture more complex
interaction features.

Formally, the word sequence Ek =
{w1,w2, ...,wL} and the BoW (Bag-of-Words)
representation Bk ∈ RV of arguments are the
input of our model, where L is the sequence
length and V is the vocabulary size. Each
word wi in an argument is represented as the
combination of its word embedding ei and POS
(Part-Of-Speech) embedding pi. The two word
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sequences E1 and E2 of the two arguments are
fed into the GCN-based encoder to obtain the
sentence-level representations, and the BoW
representations B1 and B2 are sent to STM to
infer the latent topic-level representations. On
this basis, two FTNs are applied to capture the
interactive features between two arguments based
on the above representations. Finally, the MLP
classifier concatenates all of the features produced
by FTNs to predict the discourse relation label y.

3.1 Simplified Topic Model on Topic-level
Representation

Similar to the LDA-style topic models, we believe
that there is an association between the word dis-
tributionBk of an argument and its topic distribu-
tion Zk. For each Bk, we can infer a latent topic
distribution Zk ∈ RK through our topic model,
where K denotes the number of topics. Inspired
by the Neural Topic Model (NTM) (Zeng et al.,
2018; Miao et al., 2016), we propose a simpli-
fied topic model STM based on the Variational
AutoEncoder (VAE) (Kingma and Welling, 2013).
Unlike NTM, our model does not attempt to re-
construct the document during the decoding phase,
and it only restores the word distributions. Al-
though STM cannot learn the semantic word em-
beddings, it significantly reduces the training pa-
rameters to perform unsupervised training on the
discourse corpus with a small sample size.

Similar to NTM, we can interpret our STM as a
VAE: a neural network encoder p(Z|B) first com-
presses the BoW representation Bk into a contin-
uous hidden vector Zk, and then an MLP decoder
g(Z) restores Zk to Bk. Since STM is an unsu-
pervised model, we can only use the existing BoW
representation Bk to learn the latent topic distri-
bution Zk ∼ N (µ,σ2). The inference network
p(Z|B) is defined as follows:

µ = fµ(fh(B)) (1)

logσ2 = fσ(fh(B)) (2)

where fh(·) is a single layer neural network with
ReLU as the activation function, and fµ(·), fσ(·)
are simple linear transformations. For the BoW
representation Bk of the argument, the inference
network generates its own parameters µk,σ2

k that
parameterize the normal distribution N (µk,σ

2
k),

and we can further sample the latent topic distri-
bution Zk corresponding to the argument. To re-
duce the variance in the stochastic estimation, we

follow (Rezende et al., 2014) to sample Z by the
reparametric method and sample ε ∼ N (0, I) as
follows:

Z = µ+ ε · σ (3)

We hope that our STM can reconstruct the orig-
inal input B as much as possible using the topic
distribution Z while adding Gaussian noise to the
result generated by the encoder to increase the ro-
bustness of the decoder. Therefore, the loss func-
tion of STM is defined as follows:

LSTM = EZ∼p(Z|B)[− log q(B|Z)]+KL(q(Z)‖p(Z|B))
(4)

where q(Z) is a standard normal distribution
N (0, I). It is worth mentioning that reducing the
reconstruction loss can make the decoder have the
generative ability. We calculate the reconstruction
loss by calculating the binary cross entropy be-
tween the BoW representation Bk and B̂k recon-
structed by the decoder. Since decreasing the KL
(Kullback-Leibler) divergence makes all p(Z|B)
approximate the standard normal distribution, the
noise can be prevented from being zero with the
result as follows.

KL(q(Z)‖p(Z|B)) =
1

2
(− logσ2 + µ2 + σ2 − 1) (5)

Given the BoW representation Bk, our STM
can infer its latent topic distribution Zk to provide
topic-level representations.

3.2 GCN-based Encoder on Sentence-level
Representation

Most previous studies used Bi-LSTM or 1D CNN
to encode input sequences. However, CNN lacks
visibility when capturing global information due
to its limited view of the convolution kernel, while
Bi-LSTM training is time-consuming due to its
cyclic structure, especially for long texts, such as
arguments. To address the above issues, Dauphin
et al. (2017) proposed a Gated Convolutional Net-
work (GCN) to extract hierarchical features from
long texts by stacking multiple gated convolu-
tional layers and mitigate the vanishing gradient
problem by using gate units. In this paper, we
choose GCN as our text encoder.

National Institute of Child Health and Human
Development (2000) found that when readers re-
peatedly read text in detail with specific learning
aims, they could improve not only their reading
fluency, but also their comprehension of the text.
Following He et al. (2016), we introduce the resid-
ual into GCN by adding the input of each layer
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to its output so that the original input information
can be passed to the back layers. Specifically, for
the input sequence with N words E ∈ RN×D,
where D is the sum of the size of the word em-
bedding and POS embedding, each gated convolu-
tional layer hl is computed as follows:

hl(X) = (X ·W +b)⊗σ(X ·V +c)+X (6)

where X ∈ RN×D is the input of layer hl (ei-
ther the input sequence E or the outputs of pre-
vious layers), W ∈ RC×D×D, b ∈ RD,V ∈
RC×D×D, c ∈ RD are model parameters, and
C is the size of the convolution kernel. σ(·) is
the sigmoid function and ⊗ is the element-wise
product between matrices. After stacking L lay-
ers on top of the input, we can obtain the seman-
tic representation sequence of the argument H =
hL ◦ ...◦h1(E) ∈ RN×D. Finally, the Mean Pool-
ing operation is performed to obtain the respec-
tive argument representations on the sequences
H1 = {h1L1, ..., hNL1} and H2 = {h1L2, ..., hNL2}
corresponding to the two arguments:

R1 =
1

N

N∑
i=1

hiL1, R2 =
1

N

N∑
i=1

hiL2 (7)

As a result, in the GCN-based encoder, we stack
multiple gated convolution layers with the resid-
ual structure to learn the sentence-level represen-
tations, which can take advantage of the paral-
lel computing of convolutional networks, and also
control the flow of information through the gate
units similar to LSTM.

3.3 Factored Tensor Network on Joint
Representations

Traditional methods for modeling the semantic
relevance between two arguments capture the lin-
ear and nonlinear interactions using various text
matching models, such as Bilinear model (Jenat-
ton et al., 2012) and Single Layer Network (Col-
lobert and Weston, 2008). Based on these meth-
ods, Socher et al. (2013) proposed a Neural Ten-
sor Network (NTN) to combine the advantages of
these two models and showed the ability of the ten-
sor to model complex informative interactions in
knowledge graphs.

Following Guo et al. (2018), we use two NTNs
to capture the interactive features between the se-
mantic representations R1,R2, and between the

topic distributions Z1,Z2 as follows:

T (x,y) = fn

(
x>M [1:m]y +U

[
x
y

]
+ s

)
(8)

where fn(·) is a standard nonlinear function,M ∈
Rd×d×m is a 3rd-order transformation tensor,U ∈
Rm×2d and s ∈ Rm are parameters. The tensor
product x>M [1:m]y results in a vector c ∈ Rm,
where each entry is computed by slice i of the ten-
sor M as ci = x>M [i]y, and it is equivalent to
including m Bilinear models that simultaneously
capture multiple linear interactions between vec-
tors. However, it increases the parameters and the
computational complexity of the model; therefore,
we adopt tensor factorization (Pei et al., 2014),
which uses two low rank matrices to approximate
each tensor sliceM [i], as follows:

M [i] ⇒ J [i]K [i] (9)

where J [i] ∈ Rd×r,K [i] ∈ Rr×d and r � d.
We named our model FTN (Factored Tensor

Network). Compared with the original NTN (Guo
et al., 2018), our FTN greatly reduces the number
of parameters. Hence, it can set more tensor slices
and make the training process easier. In particu-
lar, for semantic representations R1,R2 ∈ RD,
the parameter d in FTN is set to D, and for topic
distribution Z1,Z2 ∈ RK , it is set to K.

FTN can model not only the sentence-level in-
teractions between argument representations but
also the relevance between topic-level represen-
tations, which can be regarded as topic-level in-
teractions. Finally, we concatenate the sentence-
level interactions T (R1,R2) and the topic-level
relevance T (Z1,Z2) and send them to a two-layer
neural network classifier, which first applies a non-
linear transformation and then computes the prob-
abilities of each relation by a softmax layer.

3.4 Joint Learning
To simultaneously update the parameters in all
components of TTN, we jointly tackle the topic
modeling and the classification, and define the loss
function of the overall model to combine the two
effects as follows.

L = LSTM + λLMLP (10)

where LSTM represents the loss of STM and
LMLP is the cross entropy loss of the classifier. λ
is the trade-off parameter controlling the balance
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between the topic model and the MLP classifier.
To prevent overfitting, a dropout operation is per-
formed on the parameter vector input to the soft-
max layer.

4 Experimentation

4.1 Experiment Settings

Due to the small number of documents in CDTB-
ZX, we evaluate our model on CDTB (Li et al.,
2014) with 500 annotated newswire articles from
CTB (Xue et al., 2005). CDTB contains 7310 an-
notated relations (implicit: 5496) which can be di-
vided into 4 classes and 17 categories. To make
full use of this corpus, we erase the existing con-
nectives information and treat all samples as im-
plicit discourse relation samples.

Following previous work (Kong and Zhou,
2017), we choose the same 450 documents as the
training set and the remaining 50 documents as the
testing set. We also evaluate TTN on the four top-
level classes in CDTB, and transform all of the
non-binary trees into left binary trees. Table 1
summarizes the statistics of the four CDTB rela-
tions, i.e., Causality, Coordination, Elaboration,
and Transition.

Relation Train Test
Causality 1213 119
Coordination 4618 515
Elaboration 1465 151
Transition 205 11

Table 1: Statistics of the discourse relations in CDTB.

We use HanLP1 as the NLP tool for word seg-
mentation and POS tagging, and use the Keras2

library to implement our model. We selected 10%
of the samples from the training set as the devel-
opment set to fine-tune the hyper-parameters, and
only give their final settings due to space limita-
tion.

The 300-dimensional pre-trained word embed-
dings are provided by Word2Vec (Mikolov et al.,
2013), and the dimension of the POS embeddings
is set to 50. The trade-off parameter λ in Equ.
(10) is set to 1.0. To alleviate the data sparseness
of the input BoW representations, we limit the vo-
cabulary to the top 5000 most frequent words, i.e.,
V = 5000.

1https://github.com/hankcs/HanLP
2https://keras.io/

In STM, the number of topics is set to 256, and
the number of neurons in the single-layer networks
fh(·), fµ(·), fσ(·) are set to 512, 256 and 256, re-
spectively. In addition, the generator g is imple-
mented by a two-layer network with a hidden layer
size of 512. In the GCN-based text encoder, the
number of layers L is set to 3, and the convolution
kernel size C is set to 3. In FTN, the number of
tensor slices m is set to 128, and r of the tensor
factorization is set to 10. The size of the nonlinear
transformation layer in the MLP classifier and the
droupout rate are set to 64 and 0.5, respectively.

4.2 Experimental Results

To exhibit the effectiveness of our TTN model,
we selected Bi-LSTM, CNN and GCN (Dauphin
et al., 2017) as baselines in addition to three state-
of-the-art models proposed in previous works: (1)
Liu&Li (Liu and Li, 2016): a multi-level attention
model that simulates the repeated reading process
by stacking multiple attention layers with external
memory; (2) Rönnqvist (Rönnqvist et al., 2017):
a Bi-LSTM model with attention mechanism that
first links argument pairs by inserting special la-
bels; and (3) Guo (Guo et al., 2018): a neural
tensor network that encodes the arguments by Bi-
LSTM and interactive attention. Among them,
GCN uses the same settings as our model. Fol-
lowing Liu and Li (2016), the hidden size for each
direction of Bi-LSTM is set to 350, the same as
the dimension of the word embeddings. Follow-
ing Qin et al. (2016), the convolution kernel size
and the number in CNN are set to 2 and 1024, re-
spectively. The three state-of-the-art models are
reproduced following their corresponding work.

The experimental results on CDTB are illus-
trated in Table 2. It shows that our TTN model
outperforms the other baselines in both the micro
and macro F1-scores. This indicated that topic-
level information is a vital evidence to reveal the
relationships among arguments and justify the ef-
fectiveness of our TTN model.

Compared with the basic recurrent neural net-
work Bi-LSTM, the CNN and GCN significantly
improve the micro and macro F1-scores due to
the powerful capabilities of convolution kernels to
capture features. Especially, GCN is better than
CNN because it can control the information flow
in the convolutional network using gate units and
extract hierarchical features by stacking multiple
layers. In addition, Liu&Li and Guo, two state-of-
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Model Caus. Coor. Elab. Tran. Micro-F1 Macro-F1
Bi-LSTM 37.4 79.8 51.8 73.7 68.7 61.1
CNN 41.2 81.5 52.5 80.0 71.4 64.4
GCN 46.2 82.4 51.4 76.2 71.5 64.6
Liu&Li 42.8 81.4 54.6 85.7 71.1 66.2
Rönnqvist 39.2 81.6 57.1 78.3 71.1 64.3
Guo 42.4 80.1 60.0 80.0 70.7 65.8
TTN 40.6 83.1 60.7 84.2 73.6 67.8

Table 2: Performance of six baselines and TNN with F1-scores.

the-art models on English implicit discourse rela-
tion recognition, and Rönnqvist, a state-of-the-art
model on Chinese, focus on extracting sentence-
level features from arguments and achieve similar
performance.

Our TTN model outperforms all of the base-
lines with large gains from 2.1 to 4.9 in the micro
F1-score and significant gains from 1.6 to 6.7 in
the macro F1-score. Compared with the baselines,
TTN not only captures the interactive features at
sentence-level, but also considers the topic-level
relevance among arguments. This result shows
that TTN can recognize the discourse relations at
a higher level to improve the performance of Chi-
nese implicit discourse relation recognition. Dif-
ferent from Liu&Li, TTN not only learns the ar-
gument representations by stacking multiple lay-
ers with residuals to simulate the repeated read-
ing, but also models the deep semantic interactions
through factored tensor networks. Different from
Guo, TTN not only reduces the complexity of the
tensor network using tensor factorization, but also
models the sentence-level and topic-level interac-
tions together.

5 Analysis and Discussion

5.1 Impact on Different Relations

Table 2 also compares the F1-scores on different
relations. We can find that our TTN achieves the
highest F1-scores in the Elaboration and Coordi-
nation relations, and it achieves a comparable per-
formance in the Transition relation. However, it
reduces the F1-score in the Causality relation by
5.6, compared with GCN.

To explain the reasons behind this, we con-
duct experiments on some variants of TTN with
the results shown in Table 3. We choose the
gated convolutional network (GCN) as the Base
model with its parameters being set the same as

our model. To analyze the contribution of the
topic-level representation and the factored tensor
modeling method separately, we add our simpli-
fied topic model (STM) and our factored tensor
network (FTN) to the Base model, respectively.

The results shows that STM gives the latent
topic distributions of arguments and there is a
significant improvement (+8.6) in recognizing the
Elaboration relation. The existence of an Elabo-
ration relation between two arguments means that
the content of one argument is a further expla-
nation of the other, and these arguments usually
have similar topic distributions. Hence, STM es-
sentially provides additional topic distribution fea-
tures to TNN, which help in recognizing the Elab-
oration relation. Equally, STM can also improve
the performance of recognizing the Coordination
relation because two arguments with the Coordi-
nation relation are equally important at the seman-
tic level, and their contents describe different as-
pects of one thing or different parts of a certain
behavior; hence, they are also similar at the topic
level in most cases. However, this does not apply
to the Causality relation and there is a large drop
(-9.8) with the lowest F1-score among all four re-
lations. The reason behind this may be due to
the fact that the recognition of the Causality re-
lation relies more on the logical connection, and
arguments with the Causality relation are not sim-
ilar at the topic level in most cases. Hence, STM,
which simply introduces topical information to the
Base model, does not help and even may harm the
recognition. Take the following two arguments as
examples:

[出口快速增长， (Exports have grown
rapidly,)]Arg1 [成为推动经济增长的重要力
量。 (become an important force driving eco-
nomic growth.)]Arg2
Arg1 is the reason for Arg2, and hence the

relation between them is Causality. However,
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Model Caus. Coor. Elab. Tran. Micro-F1 Macro-F1
Base(GCN) 46.2 82.4 51.4 76.2 71.5 64.6
+STM 36.4 82.9 60.0 73.7 73.1 64.1
+FTN 41.3 82.7 55.3 84.2 72.5 66.4

Table 3: Comparison of Base, STM and FTN on the F1-score.

Model Caus. Coor. Elab. Tran. Micro-F1 Macro-F1
TTN 40.6 83.1 60.7 84.2 73.6 67.8
NTN(Guo) 39.6 82.1 56.2 84.2 72.6 66.4

Table 4: Comparison of TTN and NTN(Guo) on the F1-score.

from the perspective of the topic, the words in the
two arguments revolve around the same topic of
“economic growth”. Therefore, our STM will di-
rectly infers the similar topic distribution from the
words of these two arguments and interfere with
the recognition of the Causality relation.

Our neural factored tensor networks (FTNs) are
capable of modeling complex semantic interac-
tions between two arguments using multiple Bi-
linear models and single layer neural network.
Therefore, after the addition, a certain improve-
ment has been achieved in recognizing most re-
lations (except for Causality). Especially, it im-
proves the F1-scores of the Elaboration and Tran-
sition relations by 3.9 and 8.0, respectively.

5.2 Impact of Tensor Factorization

To further verify the impact of tensor factoriza-
tion, we compare it with Guo et al. (2018). Ta-
ble 4 illustrates the results, where NTN(Guo) is a
modified version of our TTN, which uses the NTN
model proposed by Guo et al. (2018) to replace
our FTN.

Since NTN(Guo) does not use the tensor factor-
ization operation, its parameter number and com-
putational complexity increase greatly. The pa-
rameters of factored tensor network in our model
are reduced by approximately 20 times, compared
with NTN(Guo). If it directly adopts our param-
eter settings, the model will have serious over-
fitting, and it will not even recognize the Transi-
tion relation, which is only a small proportion of
the training set. Therefore, following (Guo et al.,
2018), we set the tensor number to a very small
value. It shows that NTN(Guo) has a performance
degradation of 1.0 and 1.4 in micro and macro F1-
scores, respectively, indicating that the tensor fac-
torization operation in our model is very effective.

In addition, our neural tensor network can set more
tensor slices to model the complex interactions be-
tween two arguments.

5.3 Error Analysis

Table 5 illustrates the error statistics of our TTN
model. It shows that 51.3% of the Causality
samples, 33.8% of the Elaboration samples, and
18.2% of the Transition samples are incorrectly
identified as Coordination. This indicates that the
error mainly occurs when judging whether a sam-
ple is Coordination. This may be due to two rea-
sons, which are that the number of Coordination
samples accounts for more than half of the train-
ing set (61.6%) and that many argument pairs with
non-Coordination relations are similar at both the
text level and the topic level. Take the following
two arguments as examples:

Model Caus. Coor. Elab. Tran.
Caus. - 51.3% 15.1% 0%
Coor. 5.4% - 7.8% 0%
Elab. 6.0% 33.8% - 0%
Tran. 9.1% 18.2% 0% -

Table 5: Percentages of misclassified samples.

[甘肃省积极实施科技兴农战略，推广增产
措施 (Gansu Province promotes various agricul-
tural applicable technologies and production in-
crease measures)]Arg1 [农业获得较好收成，全
年粮食总产量达七十六点六亿公斤 (Agricul-
ture has achieved a good harvest, and the annual
total grain output reached 7.66 billion kg)]Arg2

In above samples, since Arg1 is the reason
for Arg2, the discourse relation between them is
Causality. However, there is a strong sentence-
level correlation between the words in Arg1 (e.g.,
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“agricultural” and “production”) and those in Arg2
(e.g., “harvests”, “gain”, and “output”). More-
over, these two arguments are all about agricul-
ture. Therefore, there is a strong similarity in the
topic distribution, too.

6 Conclusion

In this paper, we propose a topic tensor network
TTN to recognize implicit discourse relations in
Chinese with both the sentence-level and topic-
level representations. In addition to using a GCN-
based encoder to obtain the sentence-level argu-
ment representations, we train a STM to infer the
latent topic distribution as the topic-level represen-
tations. Moreover, we feed the two pairs of rep-
resentations to two FTNs, respectively, to model
the sentence-level interactions and topic-level rel-
evance among arguments. Evaluation on CTDB
shows that our proposed TTN model significantly
outperforms several state-of-the-art baselines in
both micro and macro F1-scores. In the fu-
ture work, we will focus on how to mine differ-
ent representations for different discourse relation
types and apply the topic information to other lan-
guages.
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