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Abstract
We present a text-to-speech (TTS) system designed for the dialect of Bengali spoken in Bangladesh. This work is part of an ongoing
effort to address the needs of under-resourced languages. We propose a process for streamlining the bootstrapping of TTS systems for
under-resourced languages. First, we use crowdsourcing to collect the data from multiple ordinary speakers, each speaker recording small
amount of sentences. Second, we leverage an existing text normalization system for a related language (Hindi) to bootstrap a linguistic
front-end for Bangla. Third, we employ statistical techniques to construct multi-speaker acoustic models using Long Short-Term Memory
Recurrent Neural Network (LSTM-RNN) and Hidden Markov Model (HMM) approaches. We then describe our experiments that show
that the resulting TTS voices score well in terms of their perceived quality as measured by Mean Opinion Score (MOS) evaluations.
Keywords: Text-to-Speech, Under-resourced languages, Bangla

1. Introduction
Developing a text-to-speech (TTS) system is a major in-
vestment of effort. For the best concatenative unit-selection
systems (Hunt and Black, 1996), many hours of recording
are typical, and one needs to invest in careful lexicon devel-
opment, and complex rules for text normalization, among
other things. All of this requires resources, as well as cura-
tion from native-speaker linguists.
For low-resource languages it is often hard to find relevant
resources, so there has been much recent work on methods
for developing systems using minimal data (Sitaram et al.,
2013). The downside of these approaches is that the quality
of the resulting systems can be low and it is doubtful people
would want to use them.
We are therefore interested in approaches that minimize ef-
fort, but still produce systems that are acceptable to users.
This paper describes our development of a system for
Bangla, the main language of Bangladesh and a major lan-
guage of India, and in particular the speech, lexicon and
text normalization resources, all of which we are planning
to release, under a liberal open-source license.
A core idea is the use of multiple ordinary speakers, rather
than a single professional speaker (the normal approach).
There are two main justifications. First, voice talents are
expensive, so it is more cost-effective to record ordinary
people; but these quickly get tired reading aloud, limiting
how much they can read. We thus need multiple speakers
for an adequate database. Second, there is an added benefit
of privacy: we can create a natural-sounding voice that is
not identifiable as a specific individual.
Unit selection (Hunt and Black, 1996) is a dominant ap-
proach to speech synthesis, but it is not suitable when work-
ing with multiple speakers, one obvious reason being that
the system will often adjoin units from different speakers,
resulting in very unnatural output. Instead we adopt a sta-
tistical parametric approach (Zen et al., 2009). In statis-
tical parametric synthesis the training stage uses multiple
speaker data by estimating an averaged representation of
various acoustic parameters representing each individual
speaker. Depending on the number of speakers in the cor-
pus, their acoustic similarity and ratio of speaker genders,
the resulting acoustic model can represent an average voice

that is very humanlike yet cannot be identified as any spe-
cific recorded speaker.
This paper is organized as follows: We describe the crowd-
sourcing approach to assemblying the speech database in
Section 2.. The TTS system architecture is introduced in
Section 3.. Next, experimental results are presented in Sec-
tion 4.. While this paper mostly focuses on Bangla spoken
in Bangladesh, we also describe the initial experiments with
the West Bengali dialect of Bangla spoken in India. Finally,
Section 5. concludes the paper and discusses venues for fu-
ture research.

2. Crowdsourcing the Speakers
We were familiar with collecting data from multiple speak-
ers from data collection efforts for automatic speech recog-
nition (Hughes et al., 2010). There, our goal was at
least 500 speakers, of varying regional accents in differ-
ent recording environments, recorded using mobile phones.
For TTS, very different criterion is conventional: a profes-
sional standard dialect speaker in a recording studio. But
this is expensive and cannot scale if one wants to cover the
world’s many low-resource languages.
New statistical parametric synthesis methods (Zen et al.,
2009) allow for building a voice from multiple speakers,
but one still needs speakers that are acoustically similar.
To achieve this, we held an audition to find Bangla speak-
ers with compatible voices. Fifteen Bangladeshi employ-
ees at Google’s Mountain View campus auditioned. From
that sample, we sent a blind test survey to 50 Bangladeshi
Googlers to vote for their top two preferences. Using the
top choice – a male software engineer from Dhaka – as our
reference, we chose 5 other male Dhaka speakers with sim-
ilar vocal characteristics.
Our experience with crowd-sourced ASR data collection
taught us the importance of good data collection tools.
ChitChat is a web-based mobile recording studio that al-
lows audio data to be collected and managed simply. Each
speaker is presented with a series of sentences assigned to
them for recording. The tool records at 48 kHz, detecting
audio clipping to ensure quality, and ambient noise prior
to recording each sentence, with a high noise level trigger-
ing an alert preventing further recording. Audio can be up-
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loaded to the server or stored locally for later uploading. A
sample screenshot of the ChitChat UI is shown in Figure 1.

Figure 1: Screenshot of ChitChat UI.

For the recordings we used an ASUS Zen fanless laptop
with a Neumann KM 184 microphone, a USB converter
and preamp, together costing under US$2000. We recorded
our volunteers over 3 days in an anechoic studio in June
2015. Each recorded about 250 phrases, averaging 45 min-
utes, mined from Bangla and English Wikipedia. Volun-
teers were first instructed on the “bright” style of voice
we were interested in. After a supervised practice run of
10–15 minutes, the remainder was recorded independently
while being observed remotely using ChitChat’s admin fea-
tures. Recordings were stopped if the voice sounded tired
or mouth-dry. The sessions yielded about 2000 utterances.

3. System Architecture
A typical parametric synthesizer pipeline consists of train-
ing and synthesis parts. Similar to Automatic Speech
Recognition (ASR) pipeline (Gales and Young, 2008), the
training process consists of two steps: data preparation and
acoustic model training (Zen and Sak, 2015). During the
data preparation step one extracts a parametric representa-
tion of the audio from the speech corpus. A typical acous-
tic representation includes spectral, excitation and funda-
mental frequency parameters, and pertinent linguistic pa-
rameters are extracted as well, which take into account
linguistic and prosodic contexts for the current phoneme.
Once acoustic and linguistic parameters are extracted, dur-
ing the acoustic model training stage we use machine learn-
ing techniques to estimate faithful statistical representations
of the acoustic and linguistic parameters extracted by the
previous step.

3.1. Phonology and Lexicon
As with any TTS system, our Bangla system requires a
phoneme inventory and a grapheme-to-phoneme conver-
sion system. While the latter might be done with simple
grapheme-to-phoneme rules, Bangla spelling is sufficiently
mismatched with the pronunciation of colloquial Bangla to
warrant a transcription effort to develop a phonemic pro-
nunciation dictionary.
Consider the Bangla word for telescope, which is tran-
scribed in IT3 transliteration (Prahallad et al., 2012)

Orthog-
raphy “দরূবী}ণ”

IT3
Translit-
eration

d uu ra b ii k shha nd a

IPA /dur.bik.khɔn/

Figure 2: Transcriptions for Bangla word for telescope.

as d uu ra b ii k shha nd a and in IPA as
/dur.bik.khOn/ (Figure 2).
In this example there are several mismatches between the
actual pronunciation and what we would expect on the ba-
sis of the spelling: the orthographic long vowel diacritics
transliterated as uu and ii are actually pronounced as the
short vowels /u/ and /i/, and the cluster k shh is actually
pronounced /k.kh/. The final letter transcribed as nd a has
an inherent vowel, which is not pronounced in this case, but
in other cases would be /o/ or /O/. Indeed, the determina-
tion of the pronunciation of the inherent vowel (as /null/,
/o/ or /O/) is a major issue in Bangla.
The ambiguity of the inherent vowel between /o/ and /O/
gives rise to systematic homographs in the verb paradigm.
For example, the frequently occurring verb form transliter-
ated as ka r e can be pronounced /ko.re/ (perfect par-
ticiple) or /kO.re/ (3rd person familiar, simple present).
This ambiguity is systematic in Bangla and generally af-
fects verb stems with open-mid vowels. We deal with these
and other homographs in a rule-based disambiguation com-
ponent as part of text normalization.
The sometimes complex and often unpredictable corre-
spondence between surface orthography and phonemic pro-
nunciation motivates the need for a hand curated pronun-
ciation dictionary. While we are aware of preceding ef-
forts, e.g. the speech corpus described in (Alam et al., 2010;
Habib et al., 2011), we were unable to find sufficient exist-
ing resources that are available for commercial use. In an
effort to partially remedy this situation, we have made our
own pronunciation dictionary available1 under a permissive
open-source license.
Our phonological representation closely follows
the description of Bangladeshi colloquial Bangla
in (Ud Dowla Khan, 2010). It uses 39 segmental phonemes,
much fewer than the 47 phonemes used by (Prahallad et
al., 2012). A team of five linguists transcribed more
than 65,000 words into a phonemic representation. This
includes mostly words in Bengali script, as well as nearly
5,000 words in Latin script, including English words and
foreign entity names. The transcription effort utilized
a version of our phonemic transcription tools (Ainsley
et al., 2011) and quality control methodology (Jansche,
2014). Our transcribers were further aided by the output
of a pronunciation model, which was used to pre-fill the

1https://github.com/googlei18n/
language-resources/tree/master/bn/data
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Input “এġ 3cm হয়” (“X is 3cm”)

Internal

{ name: "এġ" }
{ measure {

decimal { integer_part: "3" }
units: "centimeter" } }

{ name: "হয়" }

Output “এġ িতন ƾসিŮিমটার হয়”

Figure 3: Example of a basic Kestrel workflow. The output
corresponding to the measure phrase is shown in bold.

transcriptions of words so that transcribers could focus on
correcting transcriptions, rather than entering them from
scratch. The pronunciation model also provides important
clues about the consistency and inherent difficulty of
transcription. Trained on 37,000 words, the pronunciation
model achieves a token-level accuracy of 81.5%. Further
analysis revealed that the most frequent phoneme-level
error made by the pronunciation model was the realization
of the inherent vowel (confusing /null/, /o/ and /O/),
followed by the confusion of /s/ and /S/, as well as con-
fusions involving semi-vowels. Without these errors the
overall token-level accuracy would be 90.5%, which means
that about half of the token-level errors are due to these
difficult aspects of Bangla orthography and phonology.
In order to make our system available on mobile devices we
employ LOUDS-based compression techniques (Fuketa et
al., 2013) to encode the pronunciation lexicon into com-
pressed representation of approximately 500 kB that is also
fast enough for access.

3.2. Text Normalization
The first stage of text-to-speech synthesis is text normal-
ization. This is responsible for such basic tasks as tok-
enizing the text, splitting off punctuation, classifying the
tokens and deciding how to verbalize non-standard words,
i.e. things like numerical expressions, letter sequences,
dates, times, measure and currency expressions (Sproat
et al., 2001). The Google text normalization system,
Kestrel (Ebden and Sproat, 2015), handles several differ-
ent kinds of linguistic analysis, but here we focus on the
tokenization/classification and verbalization phases, which
use grammars written in Thrax (Tai et al., 2011).
The stages of analysis in Kestrel are best illustrated by ex-
ample shown in Figure 3. Consider Bangla input corre-
sponding to English sentence “X is 3cm”. The Bangla
Kestrel system will first tokenize this into three tokens,
consisting of two ordinary words, and a measure expres-
sion. The output of this phase is represented using protocol
buffers (Google, 2008), which can be represented serially
(and omitting some irrelevant detail) in the “Internal” step
of Figure 3.
The two ordinary words just have a name field, but the mea-
sure token has a couple of fields one specifying the unit and
the other the amount. The output of the tokenizer/classifier

Archive Type Original (kB) Compressed (kB) Ratio
rewrite 117 22 ×5.3
tokenize/classify 5,501 1,714 ×3.2
verbalize 14,190 3,330 ×4.3
total 19,808 5,066 ×3.9

Table 1: FST grammars and their disk footprint (in kilo-
bytes).

is then passed to the verbalizer, which for the non-standard
tokens decides how to verbalize them. In the case of the
measure expression at hand this would verbalize to the nat-
ural language word sequence as shown in the “Output” step
of Figure 3. The natural language string corresponding to
the measure phrase is shown in bold.
The Thrax grammar development environment allows the
grammar developer to easily write rules that, for exam-
ple, transmute units, like “centimeter”, into other languages
(like Bangla), as well as write rules that describe how to
read numbers. See, again (Ebden and Sproat, 2015) for a
few examples of rules used in the Google English and Rus-
sian TTS systems, and (Tai et al., 2011) and (Sproat, 2015)
more generally for how to develop grammars in Thrax.
For our Bangla system we benefited from already having
a grammar for verbalizing numbers (used in ASR), and in
addition we had a well worked-out set of Kestrel grammars
for the related language Hindi. Our target is Bangladesh,
where very few people speak Hindi, but Bangla is also spo-
ken in West Bengal in India. We therefore asked an In-
dian speaker of Bangla to translate all the Hindi content
(about 1,500 strings) in our Kestrel grammars into Bangla.
The Hindi grammars were then converted using the Bangla
translations. Inevitably some tweaking of the result was re-
quired. To date the grammars have required six changes to
fix problems, and we are continuing to fix text normaliza-
tion issues as they arise. Given this relatively small number
of problems, we believe that bootstrapping a system from
a closely related language can be a reasonable approach if
one is short of engineering resources to devote to the new
language.
The various components of the normalization system are ef-
ficiently represented in our system as archives of finite state
transducers (FSTs) (Allauzen et al., 2007). There are three
main FST archives: the rewrite grammar handles the basic
rewriting of the incoming text and necessary unicode nor-
malization, the tokenizer and classifier grammar is respon-
sible for text tokenization and detection of critical verbal-
ization categories. Finally the verbalization grammar con-
verts main verbalization categories into natural language
text (Ebden and Sproat, 2015). In the final system each
grammar archive is losslessly compressed. The sizes of
various Thrax FSTs before and after compression (and the
corresponding compression ratios) are given in Table 1.
The Bangla Kestrel grammars will be released along with
the voice data. Also, in order for these to be useful, have
developed a lightweight version of Kestrel called Spar-
rowhawk. This has been released as open-source and is in
the process of being integrated with Festival.
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3.3. Synthesizer
The synthesis stage consists of two steps: First, a sen-
tence is decomposed into corresponding linguistic param-
eters and acoustic model is used to predict a sequence of
optimal acoustic parameters that correspond to linguistic
ones. Second, the signal processing component, a vocoder,
is used to reconstruct speech from the acoustic parame-
ters (Kawahara et al., 2008). In our system we use the state-
of-the-art Vocaine algorithm (Agiomyrgiannakis, 2015) for
the vocoding stage.
We have explored two acoustic modeling approaches. It
is important to note in both approaches that we train all the
speakers together and that the statistical nature of the acous-
tic modeling has the effect of averaging out the differences
between the speakers in the original dataset. While the re-
sulting acoustic parameters do not represent any particular
person they can still nevertheless be used to reconstruct nat-
urally sounding speech.
The first approach uses Hidden Markov Models (HMMs),
and is a well-established parametric synthesis tech-
nique (Yoshimura et al., 1999) In this approach we model
the conditional distribution of an acoustic feature sequence
given a linguistic feature sequence using HMMs.
One of the main limitations of HMMs is the frame inde-
pendence assumption: HMM models typically assume that
each frame is sampled independently despite concrete pho-
netic evidence for strong correlations between consecutive
frames in human speech. One promising alternative ap-
proach that provides an elegant way to model the correla-
tion between neighboring frames is Recurrent Neural Net-
works (RNNs) originally proposed in (Tuerk and Robinson,
1993). RNNs can also use all the available input features to
predict output features at any given frame. In RNN-based
approaches a neural network acoustic model is trained to
map the input linguistic parameters to output acoustic pa-
rameters. In our work we use Long Short Term Memory
(LSTM) architecture that has excellent properties for mod-
eling the temporal variation in acoustic parameters and es-
pecially long-term dependencies between them (Fan et al.,
2014; Zen and Sak, 2015). LSTM models can be quite
compact, making them particularly suitable for deployment
on mobile devices.

4. Experiments
4.1. Experimental Setup
We experimented with a multi-speaker Bangla corpus total-
ing 1,891 utterances (waveforms and corresponding tran-
scriptions) from five speakers selected during crowdsourc-
ing process described in Section 2.. The script contains
total of 3,681 unique Bangla words which are covered
by 40 monophones from Bangla phonology given in Sec-
tion 3.1.. Phone-level alignments between the acoustic data
and its corresponding transcriptions have been generated
using HMM-based aligner bootstrapped on the same cor-
pus.
In order to account for phonemic effects such coarticulation
the monophones were expanded using the full linguistic
context. In particular, for each phoneme in an utterance we
take into account its left and right neighbors, stress infor-
mation, position in a syllable, distinctive features and so on,

resulting in 271 distinct contexts. Expanding monophones
in this fashion resulted in 21,917 unique full-context mod-
els to estimate.
The speech data was downsampled from 48 kHz to 22 kHz,
then 40 mel-cepstral coefficients (Fukada et al., 1992), log-
arithmic fundamental frequency (log F0) values, and 5-
band aperiodicities (0–1, 1–2, 2–4, 4–6, 6–8 kHz) (Zen
et al., 2007) were extracted every 5 ms. The output fea-
tures of LSTM-RNNs were phoneme-level durations. The
output features of the acoustic LSTM-RNNs were acous-
tic features consisting of 40 mel-cepstral coefficients, log
F0 value, and band 5 aperiodicity. To model log F0 se-
quences, the continuous F0 with explicit voicing modeling
approach (Yu and Young, 2011) was used; voiced/unvoiced
binary value was added to the output features and log F0
values in unvoiced frames were interpolated.
We built three parametric speech synthesis systems. The
first configuration is an HMM system, which fits well on a
mobile device (Gutkin et al., 2010). This system is essen-
tially similar to the one described in (Zen et al., 2007). We
also build two LSTM-RNN acoustic models that are essen-
tially the same apart from the number of the input features.
The LSTM-RNN configuration with fewer (270) features
is slightly smaller, portable (we excluded one feature that
is resource-intensive to compute) and fast enough to run
on a modern mobile device. In addition, for the embed-
ded configuration we use audio equalizer to boost the audio
volumes on the device. No dynamic range compression is
employed for this configuration. Further details of LSTM-
RNN configurations are given in (Zen and Sak, 2015). For
all the configurations, at synthesis time, predicted acous-
tic features were converted to speech using the Vocaine
vocoder (Agiomyrgiannakis, 2015).
To subjectively evaluate the performance of the above con-
figurations we conducted a mean opinion score (MOS)
tests. We used 100 sentences not included in the training
data for evaluation. Each subject was required to evaluate
a maximum of 100 stimuli in the MOS test. Each item was
required to have at least 8 ratings. The subjects used head-
phones. In the MOS tests, after listening to a stimulus, the
subjects were asked to rate the naturalness of the stimulus
in a 5-scale score (1: Bad, 2: Poor, 3: Fair, 4: Good, 5:
Excellent). 13 native Bangladeshi Bangla speakers partici-
pated in the experiment. Each participant had an average of
minute and a half to rate each stimuli.

4.2. Results and Discussion
The results of MOS evaluations are shown in Table 2. In ad-
dition to regular MOS estimate we also report robust MOS
estimate which is a mean opinion score computed using
trimmed means (smallest and largest value are removed be-
fore computing a mean response for each stimuli).
The MOS scores reported in Table 2 indicate that the three
multi-speaker configurations are acceptable to the evalu-
ators both in terms of naturalness and intelligibility – all
the scores centering around the median between “Fair” and
“Good”. The embeded LSTM-RNN configuration is pre-
ferred over server LSTM-RNNs. Since the number of input
features for both models only differs by one, we hypothe-
size that the quality difference is due to the use of an audio
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Model Type 5-scale MOS 5-scale Robust MOS
Server LSTM-RNN 3.403±0.098 3.424±0.101
Embedded LSTM-RNN 3.519±0.102 3.526±0.106
HMM 3.430±0.091 3.394±0.102

Table 2: Subjective 5-scale MOS scores: regular (MOS)
and trimmed (Robust MOS) estimates for speech samples
produced by LSTM-RNN and HMM configurations.

equalization post-processing step which is employed in the
embedded LSTM-RNN system.
Interestingly enough, the HMM system did reasonably
well: according to regular MOS score it is second behind
the embedded LSTM-RNN. According to the robust MOS
scores, the HMM system comes out worst out of the three
systems but it is not very far behind the server LSTM. The
difference in robust MOS scores between the two systems
is 0.03, which is not very significant. We hypothesize that
this is due to the size of the training corpus – HMM config-
uration may generalize reasonably well on a small dataset,
whereas LSTM-RNNs may struggle with a small amount of
data because there are too many parameters to estimate. In
order to verify this hypothesis we performed an experiment
described in Section 4.2.1. below.
Following the subjective listening tests, the native speakers
used the system in real-life scenarios (e.g., as part of ma-
chine translation). Out of approximately 25 bugs reported
most of them were pronunciation errors due to the errors
in lexicon transcription (or missing pronunciations) or text
normalization issues. No reported problems are related to
the actual quality of acoustic models.

4.2.1. West Bengali Experiment
Bangla is also spoken in West Bengal in India. As part
of our Bangla data collection efforts we assembled a cor-
pus representing West Bengali dialect of Bangla using the
same crowd-sourcing techniques (described in Section 2.).
This dataset consists of 1,366 utterances recorded by 10
native Bangla speakers from West Bengal. Phonological
and lexical configuration is mostly shared with the setup
for Bangladesh.
Because this corpus is smaller (by 525 utterances) than the
Bangladeshi corpus (described in Section 4.1.) we are inter-
ested to know how our parametric models fare on smaller
corpora. To this end, we built three parametric synthesis
systems (two of them based on LSTM-RNNs and one on
HMM acoustic models). We then performed an MOS eval-
uation of these three configurations. The rater pool consists
of 9 native speakers of Bangla from West Bengal. We used
100 sentences not included in the training data for evalu-
ation. These are the same sentences that we used in eval-
uating the Bangladeshi Bangla dialect. Each subject was
required to evaluate a maximum of 100 stimuli in the MOS
test. Each item was required to have at least 8 ratings. The
results of these experiments scores are shown in Table 3.
Similar to Bangladeshi Bangla (Table 2) we report both
MOS and trimmed (robust) MOS scores.
The best MOS score of 3.691±0.104 (corresponding ro-
bust MOS of 3.682±0.113) is displayed by the HMM sys-

Model Type 5-scale MOS 5-scale Robust MOS
Server LSTM-RNN 2.879±0.107 2.871±0.110
Embedded LSTM-RNN 3.406±0.092 3.428±0.096
HMM 3.691±0.104 3.682±0.113

Table 3: West Bengali subjective 5-scale MOS scores:
regular (MOS) and trimmed (Robust MOS) estimates for
speech samples produced by LSTM-RNN and HMM con-
figurations.

tem which seems to confirm our initial hypothesis that both
LSTM-RNN configurations have too many parameters to
be estimated reliably on this smaller dataset. Since the rater
pool for West Bengali Bangla is different from the rater
pool we used for Bangladeshi Bangla it is not easy to es-
tablish a correlation between different configurations used
in the experiments. What is clear, however, is that there is
definitely a room for improving the performance of LSTM-
RNN configurations by, for example, performing regular-
ization (Zaremba et al., 2014; Sak et al., 2014) or simply
by decreasing the dimensionality of the input feature space.

5. Conclusion and Future Work
We described the process of constructing a multi-speaker
acoustic database for Bangladeshi dialect of Bangla by the
means of crowdsourcing. This database is used to bootstrap
statistical parametric speech synthesis system that scores
reasonably well in terms naturalness and intelligibility ac-
cording to mean opinion score (MOS) criteria. We belive
that the proposed approach will allow us to scale better to
further under-resourced languages. While the results of
our experiments are encouraging, there is still further re-
search required into improving the scalability of the lin-
guistic components: phonological definitions, lexica and
text normalization. We would like to focus on this line of
research next.
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