@inproceedings{blohm-etal-2018-comparing,
title = "Comparing Attention-Based Convolutional and Recurrent Neural Networks: Success and Limitations in Machine Reading Comprehension",
author = "Blohm, Matthias and
Jagfeld, Glorianna and
Sood, Ekta and
Yu, Xiang and
Vu, Ngoc Thang",
editor = "Korhonen, Anna and
Titov, Ivan",
booktitle = "Proceedings of the 22nd Conference on Computational Natural Language Learning",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K18-1011",
doi = "10.18653/v1/K18-1011",
pages = "108--118",
abstract = "We propose a machine reading comprehension model based on the compare-aggregate framework with two-staged attention that achieves state-of-the-art results on the MovieQA question answering dataset. To investigate the limitations of our model as well as the behavioral difference between convolutional and recurrent neural networks, we generate adversarial examples to confuse the model and compare to human performance. Furthermore, we assess the generalizability of our model by analyzing its differences to human inference, drawing upon insights from cognitive science.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="blohm-etal-2018-comparing">
<titleInfo>
<title>Comparing Attention-Based Convolutional and Recurrent Neural Networks: Success and Limitations in Machine Reading Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Blohm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Glorianna</namePart>
<namePart type="family">Jagfeld</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekta</namePart>
<namePart type="family">Sood</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ngoc</namePart>
<namePart type="given">Thang</namePart>
<namePart type="family">Vu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Conference on Computational Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Titov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a machine reading comprehension model based on the compare-aggregate framework with two-staged attention that achieves state-of-the-art results on the MovieQA question answering dataset. To investigate the limitations of our model as well as the behavioral difference between convolutional and recurrent neural networks, we generate adversarial examples to confuse the model and compare to human performance. Furthermore, we assess the generalizability of our model by analyzing its differences to human inference, drawing upon insights from cognitive science.</abstract>
<identifier type="citekey">blohm-etal-2018-comparing</identifier>
<identifier type="doi">10.18653/v1/K18-1011</identifier>
<location>
<url>https://aclanthology.org/K18-1011</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>108</start>
<end>118</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparing Attention-Based Convolutional and Recurrent Neural Networks: Success and Limitations in Machine Reading Comprehension
%A Blohm, Matthias
%A Jagfeld, Glorianna
%A Sood, Ekta
%A Yu, Xiang
%A Vu, Ngoc Thang
%Y Korhonen, Anna
%Y Titov, Ivan
%S Proceedings of the 22nd Conference on Computational Natural Language Learning
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F blohm-etal-2018-comparing
%X We propose a machine reading comprehension model based on the compare-aggregate framework with two-staged attention that achieves state-of-the-art results on the MovieQA question answering dataset. To investigate the limitations of our model as well as the behavioral difference between convolutional and recurrent neural networks, we generate adversarial examples to confuse the model and compare to human performance. Furthermore, we assess the generalizability of our model by analyzing its differences to human inference, drawing upon insights from cognitive science.
%R 10.18653/v1/K18-1011
%U https://aclanthology.org/K18-1011
%U https://doi.org/10.18653/v1/K18-1011
%P 108-118
Markdown (Informal)
[Comparing Attention-Based Convolutional and Recurrent Neural Networks: Success and Limitations in Machine Reading Comprehension](https://aclanthology.org/K18-1011) (Blohm et al., CoNLL 2018)
ACL