@inproceedings{soni-etal-2017-post,
title = "Post-Processing Techniques for Improving Predictions of Multilabel Learning Approaches",
author = "Soni, Akshay and
Pappu, Aasish and
Ni, Jerry Chia-mau and
Chevalier, Troy",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-2011",
pages = "61--66",
abstract = "In Multilabel Learning (MLL) each training instance is associated with a set of labels and the task is to learn a function that maps an unseen instance to its corresponding label set. In this paper, we present a suite of {--} MLL algorithm independent {--} post-processing techniques that utilize the conditional and directional label-dependences in order to make the predictions from any MLL approach more coherent and precise. We solve constraint optimization problem over the output produced by any MLL approach and the result is a refined version of the input predicted label set. Using proposed techniques, we show absolute improvement of 3{\%} on English News and 10{\%} on Chinese E-commerce datasets for P@K metric.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="soni-etal-2017-post">
<titleInfo>
<title>Post-Processing Techniques for Improving Predictions of Multilabel Learning Approaches</title>
</titleInfo>
<name type="personal">
<namePart type="given">Akshay</namePart>
<namePart type="family">Soni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aasish</namePart>
<namePart type="family">Pappu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jerry</namePart>
<namePart type="given">Chia-mau</namePart>
<namePart type="family">Ni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Troy</namePart>
<namePart type="family">Chevalier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In Multilabel Learning (MLL) each training instance is associated with a set of labels and the task is to learn a function that maps an unseen instance to its corresponding label set. In this paper, we present a suite of – MLL algorithm independent – post-processing techniques that utilize the conditional and directional label-dependences in order to make the predictions from any MLL approach more coherent and precise. We solve constraint optimization problem over the output produced by any MLL approach and the result is a refined version of the input predicted label set. Using proposed techniques, we show absolute improvement of 3% on English News and 10% on Chinese E-commerce datasets for P@K metric.</abstract>
<identifier type="citekey">soni-etal-2017-post</identifier>
<location>
<url>https://aclanthology.org/I17-2011</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>61</start>
<end>66</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Post-Processing Techniques for Improving Predictions of Multilabel Learning Approaches
%A Soni, Akshay
%A Pappu, Aasish
%A Ni, Jerry Chia-mau
%A Chevalier, Troy
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F soni-etal-2017-post
%X In Multilabel Learning (MLL) each training instance is associated with a set of labels and the task is to learn a function that maps an unseen instance to its corresponding label set. In this paper, we present a suite of – MLL algorithm independent – post-processing techniques that utilize the conditional and directional label-dependences in order to make the predictions from any MLL approach more coherent and precise. We solve constraint optimization problem over the output produced by any MLL approach and the result is a refined version of the input predicted label set. Using proposed techniques, we show absolute improvement of 3% on English News and 10% on Chinese E-commerce datasets for P@K metric.
%U https://aclanthology.org/I17-2011
%P 61-66
Markdown (Informal)
[Post-Processing Techniques for Improving Predictions of Multilabel Learning Approaches](https://aclanthology.org/I17-2011) (Soni et al., IJCNLP 2017)
ACL