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Abstract 

Inference rule discovery aims to identify entailment relations between predicates, e.g., ‘X ac-
quire Y à X purchase Y’ and ‘X is  author  of  Y à X write Y’. Traditional methods discover 
inference rules by computing distributional similarities between predicates, with each predicate 
is represented as one or more feature vectors of its instantiations. These methods, however, have 
two main drawbacks. Firstly, these methods are mostly context-insensitive, cannot accurately 
measure the similarity between two predicates in a specific context. Secondly, traditional meth-
ods usually model predicates independently, ignore the rich inter-dependencies between predi-
cates. To address the above two issues, this paper proposes a graph-based method, which can 
discover inference rules by effectively modelling and exploiting both the context and the inter-
dependencies between predicates. Specifically, we propose a graph-based representation—
Predicate Graph, which can capture the semantic relevance between predicates using both the 
predicate-feature co-occurrence statistics and the inter-dependencies between predicates. Based 
on the predicate graph, we propose a context-sensitive random walk algorithm, which can learn 
context-specific predicate representations by distinguishing context-relevant information from 
context-irrelevant information. Experimental results show that our method significantly outper-
forms traditional inference rule discovery methods. 

1 Introduction 

Inference rule discovery aims to identify entailment relations between predicates, such as ‘X acquire Y 
à X purchase Y’ and ‘X is author of Y à X write Y’, with each predicate is a textual pattern with (two) 
variable slots (X and Y in above). Inference rules are important in many fields such as Question Answer-
ing (Ravichandran and Hovy, 2002), Textual Entailment (Dagan et al., 2006) and Information Extraction 
(Hearst, 1992). For example, given the problem “Which company purchases WhatsApp?”, a QA system 
can extract the answer “Facebook” from the sentence “Facebook acquires WhatsApp for $19 billion” 
based on the inference rule ‘X acquire Y à X purchase Y’. 

Given a set of predicates and their instantiations in a large corpus, most traditional methods identify 
inference rules by computing distributional similarities between predicates, where each predicate is rep-
resented as one or more feature vectors of its variable instantiations. For example, given the predicates 
and  their  instantiations  in  Figure  1,  we  can  represent  ‘X acquire Y’  as  {X=‘Google’, Y=‘YouTube’, 
X=‘children’, Y=‘skill’} and measure the similarity between ‘X acquire Y’ and ‘X purchase Y’ based on 
their common features {X=‘Google’, Y=‘YouTube’}. To achieve the above goal, many similarity 
measures have been proposed for inference rule discovery, such as DIRT Similarity (Lin and Pantel, 
2001), Balanced-Inclusion similarity (Szpektor and Dagan, 2008) and Soft Set Inclusion similarity 
(Nakashole et al., 2012), etc. 

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 
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Figure 1. Some predicates and their variable instantiations 

These distributional similarity based methods, however, have two main drawbacks: 
Firstly, these methods are mostly context-insensitive, cannot accurately measure the similarity be-

tween two predicates in a specific context. Due to the ambiguity of predicates, a predicate may have 
different meanings under different contexts (In this paper, as the same as Melamud et al. (2013), the 
context of a predicate is specified by the predicate’s given arguments). For example, the predicate ‘X 
acquire Y’ should have different meanings under context (Google, YouTube)  and  context  (children, 
skill), because it corresponds to two different senses of acquire in these two contexts. Unfortunately, 
traditional methods mostly use the same representation to represent a predicate in different contexts, 
therefore may learn invalid inference rules. For example, given two predicates ‘X acquire Y’  and ‘X 
purchase Y’, traditional context-insensitive methods will return the same similarity between them in 
contexts (Google, YouTube) and (children, skill). However, ‘X acquire Y à X purchase Y’ is not a valid 
rule in context (children, skill).  Based on the above discussion, we believe that context-specific predi-
cate representation is critical to the success of inference rule discovery. 

Secondly, traditional methods usually model predicates independently, ignore the rich inter-depend-
encies between predicates. It is clear though, that there are rich inter-dependencies between predicates. 
For example, ‘X buy Y’ is a synonym of ‘X purchase Y’, and ‘Y be acquired by X’ is the passive form of 
‘X acquire Y’. These dependencies can be exploited to enhance inference rule discovery in many ways. 
For instance, we can collect richer instantiation co-occurrence statistics per predicate by combining the 
statistics of semantically similar predicates, or enforce global coherence between the representations of 
semantically similar predicates. Ignoring these useful inter-dependencies, traditional methods often suf-
fer from the data sparsity problem. For example, if we represent predicates using only their instantia-
tions, we cannot identify the inference rule ‘X acquire Y à X buy Y’ in Figure 1, because ‘X acquire Y’ 
and ‘X buy Y’ don’t share any common features. 

To address the above two problems, this paper proposes a graph-based method, which can effectively 
exploit both the context of a predicate and the inter-dependencies between predicates for accurate infer-
ence rule discovery. Specifically, we propose a graph-based representation, called Predicate Graph, 
which can capture the semantic relevance between predicates and features by encoding both the predi-
cate-feature co-occurrence statistics and the rich inter-dependencies between predicates. For example, 
the predicate graph will model the semantic relevance between the predicate ‘X buy Y’ and the feature 
X=‘Google’ in Figure 1 by taking advantage of the synonym relation between ‘X buy Y’ and ‘X purchase 
Y’. Based on the predicate graph, we propose a context-sensitive random walk algorithm, which can 
learn context-specific predicate representations by distinguishing context-relevant information from 
context-irrelevant information. For example, to learn the representation of ‘X acquire Y’ under context 
(people, language), our method will identify (Google, YouTube) and (Facebook, WhatsApp) in Figure 
1 as context-irrelevant and will identify (children, skill) as context-relevant. 

We have evaluated our method on a publicly available dataset. The experimental results show that, 
using context-specific predicate representations and taking advantage of inter-dependencies between 
predicates, our method can significantly outperform traditional inference rule discovery methods. 

This paper is structured as follows. Section 2 briefly reviews related work. Section 3 describes the 
proposed method. Section 4 presents and discusses experimental results. Finally we conclude this paper 
in Section 5. 

X buy Y

X purchase Y

X acquire Y

X learn Y

(Facebook, WhatsApp)

(Google, YouTube)

(children, skill)

Predicate Variable Instantiation
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2 Related Work 

Many approaches have been proposed for inference rule discovery, and most of them are distributional 
similarity based methods. Based on the distributional hypothesis, traditional methods differ in their fea-
ture representations and their similarity measures. For predicate representation, some methods represent 
predicates  using  one  feature  vector,  where  each  feature  is  a  pair  of  argument  instantiations  such  as  
X=‘children’-Y=‘skill’(Szpektor et al., 2004; Sekine, 2005; Nakashole et al., 2012; Dutta et al., 2015); 
some methods represent predicates using two or more feature vectors, one for each argument slot (Lin  
and  Pantel,  2001; Bhagat et al., 2007), e.g., one feature vector for slot X and one for slot Y. To compute 
the similarity between predicates, many similarity measures have been proposed, such as DIRT Similar-
ity (Lin and Pantel, 2001), Balanced-Inclusion similarity (Szpektor and Dagan, 2008) and Soften Set 
Inclusion similarity (Nakashole et al., 2012), etc. Hashimoto et al. (2009) proposed a conditional prob-
ability based directional similarity measure to acquire verb entailment pairs on a large scale corpus. As 
discussed in above, the main drawbacks of these methods are that they are context-insensitive and model 
predicates independently. 

Having observed that the meaning of a predicate is context-sensitive, several recent methods try to 
model the context of a predicate using class-based model or latent topic model. The class-based models 
represent the context of a predicate using ontological type signatures (Pantel et al., 2007; Nakashole et 
al., 2012), e.g., <singer, song> for ‘X sing Y’, based on the assumption that two predicates in a rule must 
have the same type signature. The shortcomings of the class-based context models are that they need a 
fine-grained ontology and it is often very challenging to determine the fine-grained types of arguments. 
The latent topic based model represents the context of a predicate as a vector in a low dimensional space, 
such as the LSA-based model (Szpektor et al., 2008) and the LDA based model (Ritter et al., 2010; Dinu 
and Lapata, 2010). Based on the context vector, the similarity between two predicates are computed by 
combining both the context vector similarity and the feature vector similarity (Szpektor et al., 2008), or 
by first learning predicate similarity per topic, then combining the per-topic similarities using context 
vector (Melamud et al., 2013). Currently, most of the context-sensitive methods focus on developing an 
extra context model, by contrast our method focuses on the learning of context-specific predicate repre-
sentations, without the need of an extra context model. 

Recent research has also investigated the jointly learning of inference rules. Kok and Domingos 
(2008) and Yates and Etzioni (2009) learned inference rules by clustering predicates using relational 
clustering algorithms. Berant et al.(2010) and Berant et al.(2011) proposed two global learning methods, 
which first classify each pair of predicates using a local classifier, then these local results are globally 
rescored using Integer Linear Programming(ILP) algorithm. Nakashole et al. (2012) proposed a prefix-
tree mining algorithm, which can arrange predicates into a semantic taxonomy. The current joint learn-
ing methods mostly employ a meta-classification schema, i.e., the inter-dependencies between predi-
cates are used to adjust the pair-wise predicate similarities, therefore their predicate representations still 
suffer from the data sparsity problem. In contrast our method exploits the inter-dependencies for better 
predicate representation, which can effectively resolve the data sparsity problem. 

3 Graph-Based Context-Sensitive Inference Rule Discovery 

This section describes our graph-based method for context-sensitive inference rule discovery. We first 
construct a graph, which can effectively capture the semantic relevance between predicates and features. 
Then we propose a context-sensitive random walk algorithm, which can learn accurate, context-sensitive 
predicate representations. Finally, we discover inference rules by computing similarities between con-
text-sensitive predicate representations. 

3.1 The Predicate Graph Representation 
Generally,  there are  two kinds of  information which can be exploited to represent  a  predicate:  1)  its  
variable instantiations in a corpus, such as the instantiations (Google, YouTube) and (children, skill) in 
Figure 1 for representing predicate ‘X acquire Y’; 2) the information from semantically similar predi-
cates, for example, the instantiation (Google, YouTube)  of  ‘X purchase Y’  can  be  used  to  enrich  the  
representation of ‘X buy Y’. In this paper, we uniformly encode the above two kinds of information using 
a graph representation, named Predicate Graph, which is defined as follows: 
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A Predicate Graph is a weighted graph G=(V, E), where the node set V contains all predicates and 
all features of these predicates; each edge between a predicate and a feature represents a co-occurrence 
relation between them; each edge between two predicates represents a semantic-dependent relation 
between them. 

 
Figure 2. A predicate graph demo 

Figure 2 demonstrates a predicate graph, which is constructed using the information in Figure 1. We 
can see that, the instantiation information of predicates is modelled by co-occurrence edges between 
(predicate, feature),  such as  the edges between (‘X buy Y’, Y=‘WhatsApp’) and between (‘X buy Y’, 
X=‘Facebook’). The inter-dependencies between predicates are modelled by semantic-dependent edges 
between predicates, e.g., the edge between (‘X buy Y’, ‘X purchase Y’). Based on the co-occurrence and 
the semantic-dependent edges, both the explicit and the implicit semantic relevance between predicates 
and features can be captured using the paths between them. For example, the implicit semantic relevance 
between the feature X=‘Google’ and the predicate ‘X buy Y’ can be modelled through the path 
X=‘Google’‒‘X purchase Y’‒‘X buy Y’. 

The Construction of Predicate Graph. Given a set of predicates and their instantiations in a large 
corpus, we construct predicate graph by first adding all predicates and all features as nodes, then we link 
these nodes using the following two types of edges: 

-  Co-occurrence Edge. We take each argument instantiation of a predicate p as a feature f of p and 
add a co-occurrence edge between them, the pointwise mutual information (PMI) between p and 
f is used as the edge’s weight; 

- Semantic-Dependent Edge. To encode inter-dependencies between predicates, we add a semantic-
dependent edge between a predicate p and each of its semantically similar predicates. We use the 
same edge weight α for all semantic-dependent edges, and which will be empirically tuned. Spe-
cifically, given a predicate p, we find its semantically similar predicates as follows: 1) we identify 
its active/passive verb form as its semantically similar predicate, e.g., ‘Y be acquired by X’ will 
be identified as  a  semantically similar  predicate  of  ‘X acquire Y’; 2) we generate semantically 
similar predicate candidates by replacing each verb/noun in the predicate p with its synonyms/hy-
pernyms in WordNet 3.0. If a predicate candidate is a valid predicate (i.e., it is one of the given 
predicates), we take it as a semantically similar predicate of p. For example, (‘X buy Y’, ‘X pur-
chase Y’) and (‘X be maker of Y’, ‘X be creator of Y’) will be identified semantically similar using 
the synonym relations between (buy, purchase) and between (maker, creator). 

3.2 Context-Sensitive Random Walk Algorithm 
In this section, we describe how to accurately represent a predicate in a specific context. Specifically, 
given a predicate p, its context c and all features {f1, f2, …, fn}, we represent predicate p as a vector: 

ሬሬ⃗࢜  = ଵݓ) ଶݓ, , … ݓ, 	) 

where ݓ  is the relevance score between predicate p and feature fi under context c. In following we first 
develop a context-insensitive random walk algorithm which can estimate context-insensitive relevance 
score between a predicate p and a feature f, then we extend the algorithm by taking context into consid-
eration. For simplicity, we assign each node in predicate graph G=(V, E) an integer index from 1 to |V|, 
and use it to represent the node. 

Context-Insensitive Random Walk. Given a predicate graph G=(V, E), the relevance score between 
a predicate p and a feature f can be naturally modelled as the relevance score between the two nodes in 
G corresponding to p and f.  Estimating  relevance  score  between  two  nodes  in  a  graph  is  one  of  the  

X buy Y

X purchase Y

X acquire Y

X learn Y

X=Facebook

Y=WhatsApp

X=Google

Y=YouTube

X=children

Y=skill
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fundamental tasks in graph mining, and many algorithms have been developed. In this paper we estimate 
the context-insensitive relevance score between two nodes using one of the most widely used algorithm 
– Random Walk with Restart (RWR) (Tong et al., 2006), which can be fast computed and has been 
successfully used in many applications, like personalized PageRank (Haveliwala, 2003), image retrieval 
(He et al., 2004), etc. 

Specifically, RWR models the relevance score between node i and node j in a graph G as the steady-
state probability ri,j, i.e., the probability of a random walk starts from node i will  end  at  node  j. For 
example, the relevance between (‘X acquire Y’, X=‘Facebook’) in Figure 2 will be computed by starting 
random walks from the predicate node ‘X acquire Y’, then estimate the probability of these random 
walks ending at the feature node X=‘Facebook’. 

The random walk used in RWR is specified as follows: consider a random particle that starts from 
node s that indicates predicate p, at each step the particle iteratively transmits to its neighbourhood with 
probability that is proportional to their edge weights, and it also has a restart probability λ ∈ [0, 1] to 
return to the start node s: 

P(i → j) = ቐ
(1 − (ߣ

ݓ
∑ ݓ

						transmit	to	neighorhood	݆

ݏ	node	start	to	restart																			ߣ				
 

 
where P(i → j) is the probability of transmit from node i to node j at each step, and wij is the edge weight 
between node i and node j. RWR can also be written in matrix form: 

௦ݎ⃗ = (1 − ௦ݎ⃗ۻ(ߣ +  ௦⃗݁ߣ

where ⃗ݎ௦ is the n×1 relevance score vector, with rs,j is the relevance score of node j with respect to start 
node s, and ݁⃗௦ is n×1 starting vector with the sth element 1 and 0 for others; M is the neighbourhood 
transition matrix with M୧୨ = ݓ ∑ ⁄ݓ . 

Using RWR, the relevance score between a predicate p and a feature f can effectively summarize the 
semantic relevance information between them by exploiting the global structure of predicate graph. For 
example, in Figure 2 all the paths between ‘X buy Y’ and X=‘Facebook’ will be used to estimate the 
relevance score between them, such as the direct edge ‘X buy Y’— X=‘Facebook’ and the indirect path 
‘X buy Y’—‘X purchase Y’— X=‘Facebook’. To demonstrate the effect of RWR, Table 1 shows the state-
steady probability of the random walk starting from ‘X acquire Y’. We can see that RWR can effectively 
exploit both the inter-dependencies between predicates and the predicate-feature co-occurrence infor-
mation. For example, although ‘X acquire Y’ doesn’t co-occur with X=‘Facebook’ in Figure 2, RWR 
can still estimate the relevance score between them as 0.045. 

Context 
 Feature No Context X=Microsoft 

Y=Nokia 
X=people 

Y=language 
 X=Facebook 0.045 0.055 0.003 
 Y=WhatsApp 0.045 0.055 0.003 
 X=Google 0.064 0.092 0.073 
 Y=YouTube 0.064 0.092 0.073 
 X=children 0.119 0.080 0.163 
 Y=skill 0.119 0.080 0.163 

Table 1. The representations of ‘X acquire Y’ in different contexts 
 (λ=0.1 and semantic-dependent edge weight = 0.5) 

Context-Sensitive Random Walk. The main problem of the above random walk algorithm is that it 
is context-insensitive, cannot accurately represent a predicate in different contexts. For example, the 
above algorithm will return the same representation for ‘X acquire Y’ in contexts (Microsoft, Nokia) and 
(people, language), although it corresponds to different senses of acquire. 

To learn context-specific predicate representations, we extend RWR algorithm by also taking context 
into consideration. Specifically, the start point of our algorithm is to distinguish context relevant infor-
mation from context irrelevant information. For example, to represent ‘X acquire Y’ in the context (peo-
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ple, language), the features X=‘Facebook’, X=‘Google’, Y=‘WhatsApp’ and Y=‘YouTube’ will be iden-
tified as context-irrelevant and their relevance scores will be reduced, meanwhile the features X=‘chil-
dren’ and Y=‘skill’ will be identified as context-relevant and their relevance scores will be increased. 
To achieve the above goal, we revise the transition probability of RWR using a context-sensitive node-
dependent restart probability: 

P(i → j|c) = ቐ
൫1 − ,൯ߣ

ݓ
∑ ݓ

							transmit	to	neighorhood	݆

,ߣ				 																				restart	to	start	node	ݏ
 

where λc,i is the restart probability at node i in context c, which depends on the context relevance between 
node i and context c. For instance, in Figure 1, to learn the representation of ‘X acquire Y’ in context 
(people, language), our method will set a high restart probability to context-irrelevant nodes X=‘Face-
book’, X=‘Google’, Y=‘WhatsApp’ and Y=‘YouTube’, in contrast our method will set a low restart prob-
ability to context-relevant nodes X=‘children’ and Y=‘skill’. Based on the context-sensitive random 
walk, we can easily identify context-relevant information: once a random walk hits a context-irrelevant 
node, it will jump to the start node, then the relevance scores of all nodes which are semantically similar 
to the context-irrelevant node will be reduced. The context-sensitive random walk algorithm can also be 
written in matrix form: 

௦ݎ⃗ = ۷)ۻ − )⃗ݎ௦ + (1ሬ⃗ 		⃗ݎ௦)݁⃗௦ 

where  = diag(λୡ,ଵ, λୡ,ଶ, … , λୡ,୬) is the diagonal matrix of node-dependent restart probabilities, I is the 
identity matrix and 1ሬ⃗  is a 1×n vector with all entries 1. 

To compute the context-sensitive node-dependent restart probability λc,i, we first measure the context 
relevance between a feature f and context c.  In  this  paper,  the context  of  a  predicate  p is its variable 
instantiation (X=x, Y=y), such as (X=‘Microsoft’, Y=‘Nokia’) for ‘X acquire Y’. Then we measure the 
context relevance using the word similarity between feature f and the corresponding argument of context 
c: 

CR(f, c) = 	Sim(f୵, cୱ) 

where fw is the word content of feature f (e.g., people for X=‘people’), fs is the slot signature of feature 
f (e.g., X for X=‘people’), and cfs is the word in the slot fs of context c. In this paper, the similarity 
between two words is the cosine similarity between their word vectors (Pennington et al., 2014), using 
a publicly available pre-trained word vectors1. 

Finally, the context-sensitive node-dependent restart probability of node i is computed as: 

λ୧,ୡ = ቊ
λ + β	(1 − λ)൫1.0 − CR(i, c)൯					if	i	is	a	feature

																		λ															if	i	is	a	predicate
 

where λ is the global restart probability used for smoothing, β is used to control the impact of context 
relevance in context-sensitive random walk, which will be empirically tuned. 

Table 2 shows the learned context-specific representations of ‘X acquire Y’ in different contexts. We 
can see that our algorithm can effectively learn context-specific representations: the most important 
features are X=‘Google’ and Y=‘Youtube’ in context (X=‘Microsoft, Y=‘Nokia’), by contrast the most 
important features are X=‘children’ and Y=‘skill’ in context (X=‘people’, Y=‘language’). 

3.3 Context-Sensitive Inference Rule Discovery 
Based on the above algorithm, each predicate in a specific context is represented as the context-specific 
steady-state probability vector ⃗ݎ௦.  To discover  inference rules,  we first  compute similarities  between 
predicates, then two predicates p and q in context c will form an inference rule if their similarity is above 
a threshold. Specifically, because each representation ⃗ݎ௦ can be viewed as a distribution over nodes, we 
measure the similarity between two predicates using the Kullback–Leibler divergence between  ⃗ݎ and 
 : (Kullback & Leibler, 1951)ݎ⃗

                                                
1 http://www-nlp.stanford.edu/data/glove.840B.300d.txt.gz 
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KL൫⃗ݎห⃗ݎ൯ = ݎ,


୧

× ln	(
,ݎ


ݎ ,
 ) 

Notice that KL divergence is a distance measure: the smaller the KL divergence between ⃗ݎ and ⃗ݎ, the 
more similar the two predicates p and q. 

4 Experiments 

In this section, we evaluate the performance of our method and compare it with traditional methods. 

4.1 Experimental Settings 
Corpus. In this paper, we use the ReVerb corpus (Fader et al., 2011) as the inference rule discovery 

corpus, which contains about 15 million publicly available unique open extractions. Each extraction in 
ReVerb is an instantiation of a predicate in the form (x, predicate, y), such as (Facebook, acquire, In-
stagram) and (Paris, is capital of, France).  Before inference rule discovery, we apply some clean-up 
preprocessing to the ReVerb extractions: we remove all predicates occurring in less than 50 times and 
all arguments occurring in less than 10 times. 

Evaluation. For  evaluation,  we  use  the  publicly  available  dataset  constructed  by  Zeichner  et  al.  
(2015)2. The dataset contains 6567 instantiated inference rules, where each one is manually labeled as 
correct or incorrect. For example, ‘X be crucial to Y à X be important in Y’ is labeled as correct with 
instantiation (oil prices, decisions), and ‘X own Y à X purchase Y’ is labeled as incorrect with instanti-
ation (we, these items). For evaluation, we remove all inference rules whose predicates are not within 
the ReVerb corpus. Finally the evaluation dataset contains 5688 inference rules (2213 are correct and 
3475 are incorrect). We split the dataset randomly in 2 subsets: 80% for testing and 20% for validating. 

To assess the performance of different methods, we compute similarity scores for all annotated testing 
inference rules using different methods, and outputted the ranked inference rules of different methods 
using their similarity scores. 

As the same as Melamud et al. (2013), we compare different methods by measuring Mean Average 
Precision (MAP) (Manning et al., 2008) of the inference rule ranking outputted by different methods. 
To compute MAP values and corresponding statistical significance, we randomly split test set into 30 
subsets and computed Average Precision on every subset, the average over all subsets are used as the 
final MAP value. 

Baselines. We compare our method with three types of inference rule discovery methods:  

1) We evaluate two distributional similarity based context-insensitive baselines. One follows the 
DIRT similarity in (Lin and Pantel, 2001), we denote it as DIRT. The other uses the Balanced-
Inclusion similarity in (Szpektor and Dagan, 2008), we denote it as BINC. 

2) We evaluate a latent topic model based context-sensitive method. We follow the method de-
scribed in Melamud et al. (2013), a two level model which computes context-sensitive similarity 
using two predicates’ word-level vectors biased by topic-level context representations. We apply 
their method on two base word-level similarities, the LIN similarity and the BINC similarity, cor-
respondingly denoted as WT-LIN and WT-BINC. 

3) We evaluate the global learning method proposed in Berant et al. (2011), which use ILP solvers 
to performance global optimization over local classification results—We denote it as ILP. For 
comparison, we directly use the inference rule resource3 released by Berant et al. (2011), which 
was also learned from the ReVerb corpus. 

For our graph-based method, we tune its parameters on the validating dataset, and the final parameters 
used in our method are as follows: the global restart probability λ=0.1, the weight of the semantic de-
pendent edge α = 4.0, and the context relevance restart weight β=0.7. 

                                                
2 http://u.cs.biu.ac.il/~nlp/resources/downloads/annotation-of-rule-applications/ 
3http://www-nlp.stanford.edu/joberant/homepage_files/resources/ACL2011Resource.zip 
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4.2 Experimental Results and Discussions 
We conduct experiments on the test dataset using all baselines. For our method, we use two different 
settings: one uses context-insensitive random walk – we denote it as RWR-CI, and the other uses context-
sensitive random walk—we denote it as RWR-CS. The overall results are presented in Table 2.  

System MAP 
DIRT 0.401 
BINC 0.424 
WT-LIN 0.482 
WT-BINC 0.500 
ILP 0.513 
RWR-CI 0.511 
RWR-CS 0.576 

Table 2. The overall results of different methods 
From Table 2, we can see that: 
1) By taking both the context and the inter-dependencies between predicates into consideration, our 

method can achieve significant performance improvement over traditional methods. Compared 
with the distributional similarity based baselines DIRT and BINC, RWR-CS achieved 44% and 
36% MAP improvements. Compared with the latent topic model based context-sensitive base-
lines WT-LIN and WT-BINC, RWR-CS achieved 20% and 15% MAP improvements. Compared 
with the global learning baseline ILP, RWR-CS achieved 12% MAP improvement. 

2) Context-sensitive similarity is critical for inference rule discovery. By taking the context into 
consideration, WT-LIN, WT-BINC and RWR-CS correspondingly achieved 20%, 18% and 13% 
MAP improvements over their context-insensitive counterparts—DIRT, BINC and RWR-CI. 

3) The predicate inter-dependency can enhance the performance of inference rule discovery. By 
taking advantage of the rich inter-dependencies, both ILP and RWR-CI achieve performance im-
provements over the two baselines which model predicates independently: DIRT and BINC. 

To better understand the reasons why and how the graph-based method works well, we evaluate our 
method using different settings. The results are presented in Table 3. 

 Context-Insensitive 
Random Walk 

Context-Sensitive  
Random Walk 

Co-occurrence Edges 0.506 0.547 
+ Semantic-Dependent Edges 0.511 0.576 

Table 3. The results of the different settings of our method 
From Table 3, we can see that: 
1) The context-sensitive random walk algorithm can effectively capture the semantics of a predicate 

in a specific context: Using context-sensitive random walk algorithm, our method achieves MAP 
improvements on both predicate graph settings (co-occurrence edges only and all edges). 

2) The predicate inter-dependency and the context-sensitive random walk can reinforce each other: 
our method can achieve a 14% MAP improvement by both adding semantic-dependent edges and 
performing context-sensitive random walk, which is larger than the sum of the performance im-
provements by only adding semantic-dependent edges (1% improvement) and by only perform-
ing context-sensitive random walk (8% improvement). We believe this is because although the 
inter-dependencies between predicates can enrich predicate representation with more information, 
it may also introduce some irrelevant information. As a complement, the context-sensitive ran-
dom walk can filter out irrelevant information and retain only relevant information. 

5 Conclusions and Future Work 

This paper proposes a graph-based method for context-sensitive inference rule discovery. The ad-
vantages of our method are: 1) our method is context-sensitive, it can accurately represent the semantics 
of a predicate in a specific context; 2) our method can take advantage of the inter-dependencies between 
predicates for better predicate representation. Experiments verified the effectiveness of our method. 
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In future work, we aim to jointly model inference rule discovery and knowledge base completion, so 
that inference rules can be exploited to complete a knowledge base and the semantic knowledge in the 
given knowledge base can be used to enhance inference rule discovery. Furthermore, we also want to 
learn the distributed representations of predicates using deep neural networks. 
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