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Abstract

With recent advances in the areas of knowledge engineering and information extraction, the task
of linking textual mentions of named entities to corresponding ones in a knowledge base has
received much attention. The rich, structured information in state-of-the-art knowledge bases
can be leveraged to facilitate this task. Although recent approaches achieve satisfactory accuracy
results, they typically suffer from at least one of the following issues: (1) the linking quality
is highly sensitive to the amount of textual information; typically, long textual fragments are
needed to capture the context of a mention, (2) the disambiguation uncertainty is not explicitly
addressed and often only implicitly represented by the ranking of entities to which a mention
could be linked, (3) complex, joint reasoning negatively affects the efficiency.

We propose an entity linking technique that addresses the above issues by (1) operating on a
textual range of relevant terms, (2) aggregating decisions from an ensemble of simple classifiers,
each of which operates on a randomly sampled subset from the above range, (3) following lo-
cal reasoning by exploiting previous decisions whenever possible. In extensive experiments on
hand-labeled and benchmark datasets, our approach outperformed state-of-the-art entity linking
techniques, both in terms of quality and efficiency.

1 Introduction

Named-entity linking (NEL) is the task of establishing a mapping from textual mentions of named entities
to canonical representations of those entities in a knowledge base. Often, textual mentions are ambigu-
ous; that is, a mention could refer to multiple named entities, but only one of them is correct in the given
textual context. Resolving these ambiguities is often referred to as named entity disambiguation (NED),
which is a highly challenging aspect of an NEL process. More specifically, a robust NEL algorithm has
to robustly resolve ambiguities and thus build on robust NED methods. The NED problem, however, is
often ill-posed, as only the right context and background knowledge can help disambiguate entities. In
many cases, the contextual information is implicit in nature and may be latently spread across various
passages or documents, and background knowledge may not be sufficient, which makes the disambigua-
tion task challenging even for human readers. As an example, consider the sentence: “London spent
$80,000 ($2,040,000 in current value) to build a 15,000-square-foot stone mansion (‘Wolf House’) on
the property.” A human reader knows that in general money is spent by people, but sometimes also city
councils can spend money, and hence, in the above sentence “London” may refer to a person or to the
city of London. However, when considering the contextual information, especially the key phrase “Wolf
House”, and the fact that this was the name of the mansion of the writer Jack London, the disambiguation
of “London” becomes obvious.

The NED problem is abundant, and the above subtleties place it right at the heart of many artificial
intelligence applications, such as semantic search, machine translation, business intelligence, topic de-
tection, text summarization, machine vision, and many more. In the context of information systems,
the problem has been addressed in many different flavors and settings, e.g., in the structured setting of
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record-linkage and duplicate detection, where the goal is find database records that refer to the same
named entity (Bhattacharya and Getoor, 2007; Naumann and Herschel, 2010), in the semi-structured set-
ting of cleaning XML data (Weis and Naumann, 2005) or annotating Web tables (Limaye et al., 2010), in
the context of enriching Wikipedia information boxes (Wu and Weld, 2008), for the alignment of knowl-
edge bases (Aumueller et al., 2005; Lacoste-Julien et al., 2013), and most prominently, in the setting of
Natural Language Processing (Bagga and Baldwin, 1998; Mann and Yarowsky, 2003; Fleischman and
Hovy, 2004; Bunescu and Pasca, 2006; Cucerzan, 2007), which is also the setting of this work.

In the latter setting, the proliferation of clean knowledge bases with rich semantic relations between
Web entities, e.g., DBpedia (Auer et al., 2007), Freebase (Bollacker et al., 2008), or YAGO (Suchanek
et al., 2007), has given rise to novel, reliable NEL techniques (see Section 2) that exploit the semantic
relatedness between entities for the linking process (Shen et al., 2012; Hoffart et al., 2011b; Hoffart et
al., 2012).

Our disambiguation model builds on a majority-voting strategy that employs a bagging of multiple
ranking classifiers, thus the name BEL: Bagging for Entity Linking. Each ranking classifier operates on
a randomly sampled subset of terms surrounding the mention in focus. These terms are sampled from a
so-called textual range of relevant terms, i.e., terms that are most promising for determining the context
of the mention. Finally, based on the sampled terms, each ranking classifier proposes a ranked list of
candidate entities and the mention is linked to the entity that is proposed as top-ranked candidate by the
majority of the classifiers.

In summary, the main contributions of this work are:

1. A novel ensemble-based disambiguation approach that exploits the terms that surround a textual
mention to best capture its context; a parsimonious linking model that combines the above method
with a prior probability (similar to the one presented in (Fader et al., 2009), (Hoffart et al., 2011b),
or (Lin et al., 2012)) of a candidate named entity being referred to by a given mention yields a
highly efficient linking process.

2. An analysis of the disambiguation impact of the components used in BEL on the final linking
decision.

3. A detailed quality and efficiency comparison with the state-of-the-art methods of Cucerzan
(2007), Hoffart et al. (2011b), and Hoffart et al. (2012) on multiple real-world and synthetic datasets;
apart from being more efficient, BEL also achieves a linking quality that is comparable to or even
better than that of the above methods.

The remainder of the paper is organized as follows: The next section discusses related work. Section 3
is devoted to our NEL approach. The experimental evaluation is presented in Section 4, before we
conclude in Section 5.

2 Background and Related Work

There is a vast array of literature on the topic of resolving ambiguous mentions of named entities. We
focus on relevant disambiguation strategies for the NEL problem and leave aside natural language pro-
cessing (NLP) techniques on named entity recognition and part-of-speech tagging; although, admittedly,
for the recognition of entity mentions, such techniques are indispensable. In this work, we assume such
NLP techniques are given and use the Stanford NER Tagger (Finkel et al., 2005) to reliably recognize
textual mentions of named entities. Another field that we bypass is that of record linkage or duplicate
detection, where the focus is on comparing sets of database records and identifying mappings between
records referring to the same entity. Obviously, record linkage methods operate on structured data, such
as database entries with a predefined set of attributes (commonly with a known value range), which is
different from our NLP setting.

In traditional methods, each mention and each named entity is represented by a vector of terms occur-
ring in its textual context. Vector-based similarity measures are applied to capture the affinity between
a mention and a named entity. The feature values can go beyond simple unigram terms and consist
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of compound terms, such as bigrams, key phrases, encyclopedic facts, or categorical descriptions. For
example, Pedersen et al. (2005) employed salient bigrams to represent the context of a mention; Mann
and Yarowsky (2003) included biographic facts into the vector representation of a named entity, whereas
Cucerzan (2007) extended the term-based feature set of a Wikipedia entity by information from other
articles linking to it, but instead of using the whole article text, only some key phrases and immediate
Wikipedia categories were included. Bunescu and Pasca (2006), after deriving an entity dictionary from
Wikipedia, for a given mention, rank entities by a kernel-based similarity between the textual context of
the mention and the Wikipedia text and categories of the candidate entity. The mention is linked to the
most similar entity.

The disambiguation problem has also been formulated as a probabilistic reasoning problem. For ex-
ample, Fleischman and Hovy (2004) trained a maximum entropy model to infer the probability that two
mentions represent the same entity and used a modified agglomerative clustering algorithm to cluster
mentions using the probabilistic similarity measure. Similarly, Sil et al. (2012) used a log-linear model
to represent the probability of a named entity being referred to by a mention. For both above methods,
the selection of features and efficient strategies for learning their weights are crucial, as ideally all fea-
ture weights should be learned in a joint fashion, which can be computationally expensive and is often
impeded by the “curse of dimensionality”.

Note that many of the above techniques model the implicit relatedness between terms (and term com-
pounds), where the general idea is that two terms are related if many Web pages contain both of them.
Measures building on this idea were refined and extended in (Milne and Witten, 2008) and (Huang et
al., 2012), especially for the relatedness between Wikipedia articles. Such implicit relatedness can lead
to a large candidate space; to effectively prune this space, entity prominence priors have been integrated
in various recent disambiguation models, e.g., (Fader et al., 2009; Hoffart et al., 2011b; Lin et al., 2012).

Other techniques model explicit, relationship-based similarities between entities; for example, Du et
al. (2013) employed similarity measures that captured the average pair-wise proximity between candidate
entities in the knowledge graph, as well as their average pair-wise conceptual similarity by means of the
lowest-common-ancestor classes. (Hoffart et al., 2011b; Hoffart et al., 2012) exploited the hypernymy-
and key-phrase-based relatedness, between the k candidate entities in the knowledge base, to jointly link
k mentions occurring in the same paragraph. A prior probability of a candidate entity being referred to
by a mention was combined with the above relatedness measures in an objective maximization function.
The intuition behind the hypernymy-based relatedness was that in order for k mentions (that occur in
the same textual context) to be linked correctly to l ≤ k named entities in the knowledge base, the l
entities should jointly exhibit a high “semantic” relatedness, which in (Hoffart et al., 2011b) is referred
to as coherence. Despite this principled modeling of the NEL problem in (Hoffart et al., 2011b; Hoffart
et al., 2012) and the impressive quality results reported in those works, efficiency seems to be the main
bottleneck of such collective inference models. We argue that a Web-scale NEL process should avoid
complex reasoning strategies wherever possible. Concerns along these lines have been also expressed
in (Lin et al., 2012), where the authors highlight the need for the application of NEL techniques at Web
scale.

The approach presented in this paper, BEL, avoids complex, coherence-based joint reasoning. It also
avoids the processing of long textual passages, where multiple mentions have to occur. Instead, we show
that a careful light-weight, independent reasoning on the linking of mentions can lead to a linking quality
that is comparable to and sometimes even better than the one achieved by the above methods.

3 The BEL Algorithm

In this work, the focus is not on the recognition of named entity mentions in a text but rather on their
disambiguation once the mentions are known. Throughout this work we assume that a reliable named
entity recognition tool is available. BEL relies on the Stanford NER Tagger (Finkel et al., 2005) to
recognize textual mentions of named entities. Once the mentions have been recognized, BEL retrieves
promising candidate entities from the knowledge base and employs a careful, majority-voting algorithm
to take the best possible linking decision based on the textual context of the mentions. The method is
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described in the following subsections.

3.1 High-Level Overview of the BEL Algorithm

Algorithm 1 gives a high-level overview of the BEL approach. The only assumption we make is that
the textual corpus from which the knowledge base has been derived is freely available. For example, the
textual corpus of knowledge bases such as YAGO or DBpedia is Wikipedia, which is an open source of
information about the entities in the two knowledge bases.

Exemplarily, in Algorithm 1, we use the YAGO knowledge base to highlight the main idea of the
algorithm. YAGO is a clean knowledge base with structured information about a large proportion of the
entities contained in Wikipedia, thus being a popular representative of many state-of-the-art knowledge
bases derived from Wikipedia.

Once the set of mentions has been derived from a given document (line 1), for each mention, a list of
promising candidates is derived from Wikipedia. The candidates are ranked by a so-called “prominence”
score, representing the probability of a Wikipedia article (i.e., the entity represented by the article) being
referred to by the mention (lines 2, 3). In case the list of candidates is empty, the corresponding mention
is linked to a designated entity, ENULL, meaning that the mention cannot refer to a YAGO entity (lines
4, 5). The same holds for the case that the top-ranked candidate occurs in Wikipedia but not in YAGO
(lines 7 - 9). Otherwise, the joint majority decision of multiple bagged ranking classifiers is computed
(lines 11 - 13). Only if there is a majority consensus about a candidate (i.e., the candidate is ranked as
top candidate by the majority of the classifiers), the mention is linked to that candidate; otherwise, the
mention is linked to ENULL (lines 14 - 18).
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Figure 1: Strategy for generating ranking classifiers,
each of which operates on a randomly sampled sub-
set Si(m) from a set R(m) of relevant terms sur-
rounding m and assigns contextual similarity scores
to the candidate entities based on that subset.

In addition, for efficiency reasons, BEL exploits previous disambiguation decisions whenever possible.
If a mention occurs multiple times in a document and was already reliably linked b times to the same
named entity in YAGO, the previous linking decisions (for that mention) are reused without rerunning
the disambiguation process (i.e., in the experimental evaluation of BEL, the default value of b is 2). This
heuristics may lead to incorrect linkings, but in empirical evaluations on real-world datasets the algorithm
has shown a robust quality behavior, while being highly efficient (see Section 4).

The runtime of the algorithm is dominated by the computation of the contextual similarity scores of
each ranking classifier. More specifically, since the parameters needed by each classifier are precom-
puted, each classifier needs only O(N log N) steps to propose a context-based ranking of the N candi-
dates derived by the “prominence” score. Since the classifiers operate independently from each other,
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the algorithm allows parallel computation of the contextual similarity scores. However, in this work we
have implemented a sequential version, which for K different ranking classifiers has a complexity of
O(KN log N).

3.2 Bagging of Ranking Classifiers for Majority Voting
The main idea behind BEL is to leverage different contextual representations of a mention. Each such
representation is used by one ranking classifier to rank the candidate entities by their similarity to that
representation. As shown in lines 14 and 15 of Algorithm 1, the mention is linked to the candidate that
is ranked as top entity by the majority of the classifiers. This idea gives rise to several questions: (1)
How to derive the different contextual representations of a mention? (2) How to compute the similarity
between a contextual representation and a candidate entity? (3) How to prune the candidate space in such
a way that only the most promising entities are considered by each of the ranking classifiers?

Obviously, the latter question is focused on efficiency; to address it, we exploit a precomputed index,
constructed by exploiting the intra-Wikipedia links and the Wikipedia Redirect Pages. For every mention
m, the index contains entities that might refer to it along with a probabilistic “prominence” score P (e|m)
by which a candidate entity e might refer to the mention. To compute this “prominence” score, we collect
all terms that occur in a Wikipedia article or redirect-page and are hyperlinked to another Wikipedia
article. From this collection we derive relative frequencies by which a Wikipedia entity (i.e., specific
article) was hyperlinked from a given term. For example, Jordan is hyperlinked to the article about the
country of Jordan 60% of the time, 20% of the time it is hyperlinked to the basketball player Michael
Jordan, etc. These relative frequencies are estimations of the probability of an entity given a mention
P (e|m). Empirically (see also Figure 2a in the evaluation section) we have found out that when ranked
by this score, the top-40 candidate entities already yield a overwhelming coverage rate of ≈92.4% for
the correct entity. For top-100 this coverage rate increases only marginally (by only ≈0.5%). Thus
considering only the top-40 entities in the candidate lists (which in general might contain hundreds or
even thousands of entities), is not only an efficient but also an effective pruning strategy.

The second question involves the semantics of the similarity score. Suppose that Si(m) stands for
the i’th contextual representation of the mention m. Our model is probabilistic in nature and holistic
in the sense that the above “prominence” score P (e|m) just falls off the model by following principled
mathematical derivations. We start by reasoning about the probability of a candidate entity e given the
mention m and its context Si(m):

P (e|Si(m), m) =
P (Si(m)|m, e)P (m|e)P (e)

P (Si(m)|m)P (m)
(1)

=
P (e|m)P (Si(m)|m, e)

P (Si(m)|m)
(2)

∝ P (e|m)P (Si(m)|m, e) (3)
∝ logP (e|m) + logP (Si(m)|m, e) (4)

The last two steps in the above derivation mean that ranking the candidate entities by the similar-
ity score P (e|m)P (Si(m)|m, e) or by logP (e|m) + logP (Si(m)|m, e) yields the same ranking as
P (e|Si(m), m). Note that in general Si(m) depends on the entity e and not on the mention m. Hence,
we can estimate P (Si(m)|m, e) as P (Si(m)|e). So the final similarity score is given by:

Sim(e, Si(m), m) := logP (e|m) + logP (Si(m)|e) (5)

We estimate P (Si(m)|e) as the probability of Si(m) being generated by a language model (Zhai and
Lafferty, 2004) on the terms describing e in Wikipedia. Those terms are collected from the Wikipedia
article of e after removing stop words. Such a language model is described by means of frequency
parameters θe. We construct it by indexing the terms and their frequencies in the corresponding
Wikipedia articles. Figure 1 depicts the general idea behind our approach. For different contextual
representations S1(m), ..., Sn(m) of a mention m, the ranking classifier responsible for Si(m) computes
Sim(e, Si(m), m) for each candidate entity e and ranks the candidates by this score. Finally m is linked
to the candidate that is ranked as the top entity by the majority of the ranking classifiers. This majority
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voting strategy reduces the uncertainty of the linking process and leads to higher precision than a single
ranking classifier, while still maintaining a high recall.

The final question concerns the computation of the contextual representations Si(m) of a mention m.
We derive such representations by randomly sampling terms that occur in the local vicinity of a mention
in the text. More specifically, to generate a contextual representation Si(m) from a range of N relevant
terms around a mention m, we uniformly sample N times with replacement. We run the same procedure
for all n representations. This sampling technique is known as bootstrapping (Breiman, 1996) and has
been shown to have several advantages over other sampling procedures, such as increasing the contextual
diversity and mitigating strong dependencies between features. Indeed, in the experiments, the bagging
of the ranking classifiers lead to a significant improvement of ≈2.5% in terms of precision compared to
the simple case where no bagging is used (see Section 4).

3.3 Recognizing Non-YAGO Entities

For an improved accuracy of the linking process, it is also crucial to reliably recognize true negatives,
i.e., mentions that refer to entities that are not present in the underlying knowledge base. In case of the
YAGO knowledge base, we first check whether the most prominent Wikipedia entity for a given mention
is presented in YAGO; if this is not the case, the mention is classified as a non-YAGO entity. Note
that many entities from Wikipedia are not present in YAGO, either due to recently added articles, or to
articles that represent concepts1. Furthermore, a flexible threshold is used to recognize a non-YAGO
entity. It is calculated as the maximum similarity score among the Wikpedia entities in the candidate
list that are not present in the knowledge base, or as a default “prominence” score, when there is no
such entity. If none of the candidates has a higher score than the threshold, the corresponding classifier
proposes ENULL as the best candidate. Also, in the simple case that the retrieved list of candidates
is empty, the mention is classified as a non-YAGO entity. Although, these strategies are relatively
straight-forward, they lead to a notable improvement in the recognition of true negatives. Further
investigation of more elaborate strategies for the reliable detection of true negatives is part of our future
work agenda.

3.4 Efficiency Aspects

For a better overview of the key efficiency aspects that are leveraged by BEL, we give here a succinct
summary:

• Early pruning of the candidate space while maintaining a high coverage of promising candidates

• Local and independent reasoning strategy based on sliding windows and bootstrapping aggregation
for the disambiguation process

• Highly efficient, in-memory processing of randomly sampled subsets

• Previous disambiguation decisions are exploited whenever possible; e.g., for people, locations, or
company names that reoccur in a similar form in a document, the disambiguation process is run
only once.

As it will be shown in the next section, the above considerations lead to a highly efficient linking process
that often outperforms the evaluated state-of-the-art techniques, both in terms of quality and efficiency.

4 Experimental Evaluation

4.1 Datasets

Three datasets were used to evaluate the BEL approach. As a knowledge base for evaluation, we used
YAGO2 (Hoffart et al., 2011a).

1In YAGO, the concepts have been derived from WordNet.
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Table 1: Datasets overall information

CoNLL-YAGO CUCERZAN KORE
articles 76 336 50
mentions (total) 1431 5343 148
mentions (non-YAGO) 279 936 7
word count (avg.) 173 384 12

CoNLL-YAGO: This dataset contains 76 randomly picked Reuters news articles of CoNLL 2003
data (Tjong Kim Sang and De Meulder, 2003). We have manually labeled the mentions, which are
recognized by the Stanford NER Tagger (Finkel et al., 2005), to the corresponding entities in YAGO2.
CUCERZAN: This dataset consists of 350 Wikipedia articles that were randomly selected by S.
Cucerzan to evaluate his approach (Cucerzan, 2007). The annotated entities in this corpus are named
entities derived from the hyperlinks of mentions in these 350 Wikipedia articles. Since some of the arti-
cles are not available anymore in the Wikipedia archive, we have recovered 336 out of the 350 articles of
the original corpus.
KORE: This small dataset was produced in the realm of AIDA (Hoffart et al., 2012). It is a synthetic
corpus consisting of 50 very short articles, where each article contains one or more hand-crafted sen-
tences about different ambiguous mentions of named entities. This dataset is quite difficult, as the named
entities in this corpus are ambiguous with sparse context.

4.2 Evaluated Approaches

We compared BEL to three other prominent approaches (Hoffart et al., 2011b; Hoffart et al., 2012;
Cucerzan, 2007), which, as reported in the corresponding papers, outperform many state-of-the-art al-
gorithms in terms of disambiguation and linking quality. Experience-wise, we can confirm that the very
recent AIDA approaches (Hoffart et al., 2011b; Hoffart et al., 2012) have indeed raised the bar for many
entity linking methods. In our experiments, these algorithms showed a highly reliable behavior, even
with respect to difficult disambiguation tasks.

The AIDA approach comes in different versions: In its original version (Hoffart et al., 2011b), it ex-
ploits a graph-based connectivity between candidate entities of multiple mentions (i.e., graph coherence,
e.g., derived from the type, subclassOf edges of the knowledge graph or from the incoming links in
Wikipedia articles) to determine the most promising linking of the mentions. We refer to this version of
AIDA as AIDA-GRAPH. In another version that has been optimized for datasets such as KORE (Hoffart
et al., 2012), AIDA’s coherence model has been extended to recognize key-phrases for named entities,
which are then used to determine a similarity score based on key-phrase overlap between candidate
entities. We refer to this version as AIDA-KORE.

Cucerzan (2007) finds a linking of mentions to Wikipedia entities, such that the sum of vector-based
similarities between the candidate entities and the document (containing the mentions) as well as the sim-
ilarities between pairs of candidate entities is maximized. We refer to this method as LED (Large-scale
Entity Disambiguation). The original work has been conducted at Microsoft and the code is proprietary.
Hence, we had to re-implement the algorithm according to the descriptions in the paper. To make sure
that algorithm was correctly implemented, we evaluated it on the original dataset, and achieved results
comparable to those presented in the original paper. Note that, since many entities from Wikipedia are
not present in YAGO, the task of linking mentions of the CUCERZAN dataset to YAGO is different from
the original task addressed in (Cucerzan, 2007), where mentions were linked to Wikipedia articles.

4.3 Parameter Analysis for BEL

For BEL, the parameters are optimized to deal with common natural-language articles on the Web (e.g.,
articles from encyclopedic pages or news sites). The same parameter settings are used on all three
datasets described above to show the performance of BEL on different types of corpora. To achieve such
a common setting of the parameters, we trained BEL on articles sampled from the above datasets, each
of which exhibits specific textual characteristics.
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4.3.1 Pruning Candidate Lists
In BEL, each mention is assigned a list of candidates. In general, such a list could contain hundreds or
even thousands of entities. However, the mention should be linked to at most one entity in the list.
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Figure 2: Parameter analysis experiments (in %): (a) Correct Entity Coverage Rate. (b) Performance of
bagging strategy in precision in comparison to the performance of a single classifier.

We randomly picked 1000 mentions from the three datasets to analyze the impact of the candidate
list size. The coverage rate (i.e., the relative frequency by which the correct entity is contained in the
list) in relation to the list size is shown in Figure 2a. The lists are sorted by decreasing “prominence”
scores (see Section 3). In this experiment, 139 mentions have no corresponding entity in YAGO, while
61 correct entities are missing, which means that the maximum coverage rate that a candidate selection
strategy can achieve is 800/861 ≈ 92.92%. As the curve shows, most of the correct entities are indeed
located within the top positions of the candidate lists. Therefore, we prune the ranked lists by selecting
the top-40 candidates for further processing.

4.3.2 Range of Relevant Terms
As mentioned earlier, the bagging of classifiers is aimed at capturing the contextual information of
a mention by randomly sampling terms surrounding it, a process that is repeated several times, once
for every ranking classifier. As a sampling procedure we employ bootstrapping (Breiman, 1996),
which captures the diversity of contextual information derived from the original range, while mitigating
dependencies between terms. We analyze the quality of this bagging strategy mainly based on two
criteria: (1) the size of the range of relevant terms, and (2) the bagging size (i.e., number of randomly
sampled subsets).
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Figure 3: Performance of the language model by increasing the size of the range of relevant terms.

The impact of the range size on the linking quality is intricate, in the sense that a larger range contains
more noise, while a smaller one has sparser context. In BEL, the range of relevant terms is empirically
calibrated, by evaluating the performance of BEL on different range sizes after removing stop words and
non-English terms. To avoid any bias from the “prominence” score and to focus only on the context,
we set the logP (e|m)-component of the scoring function to 0. Figure 3 shows the average performance
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based on 10-fold cross validation on all evaluation datasets. The F1-measure achieves maximum when
the range of relevant terms contains 55 terms, which is also in agreement with the optimal setting found
by Gooi and Allan (2004). Thus, we define the size of the range to be 55. When a document contains
less terms, BEL takes the whole text into account.

The bagging strategy of BEL encourages the contextual diversity, while it reduces the linking uncer-
tainty by employing majority voting. Here, to show the impact of our bagging strategy, we randomly pick
80% articles from our datasets for different bagging sizes. Since the bagging strategy is mainly affected
by contextual information, we turn off the component responsible for the “prominence” score and run
BEL 10 times for each bagging size on these articles. In Figure 2b, the black horizontal line with preci-
sion 67.56% is the baseline derived from the single language model classifier. The black dots denote the
average precisions and the error bars show the corresponding standard deviation. As the figure shows, by
increasing the bagging size the precision increases, while the standard deviation decreases. Considering
the precision, efficiency, and stability of the algorithm, we use 199 subsets as the default setting (an odd
number of voters is more likely to avoid ties when there are two top-ranked candidates by the voters).
Note that, the linking process is stricter and thus leads to a decreased recall. However, the experimental
result shows that the impact of the bagging strategy on the increase of precision is consistently higher
than its impact on the decrease of the F1-measure; the precision increases from 67.56% to 69.73%, while
the F1-measure decreases from 75.82% to 75.32%. Moreover, in our opinion, it is better to suggest that
a mention is not in the knowledge base than link it to a wrong entity.

BEL has been evaluated with respect to its linking quality and efficiency. The employed evaluation
measures and the results are presented in the following subsections.

4.3.3 Evaluation Measures
For the quality evaluation, we have measured precision, recall, and the F1-measure of each of the above
approaches on the mentioned datasets.

A true positive (tp) is a mention that has been correctly linked to a YAGO entity. An incorrect linking
is defined to be a false positive (fp). Furthermore, a true negative (tn) refers to a mention that is correctly
identified as an entity that does not occur in YAGO (i.e., non-YAGO entity). The remaining cases are
defined as false negatives (fn). Precision is then defined as P = tp/(tp+fp) and recall as R = tp/(tp+
fn). The F1-measure is obtained from the harmonic mean of precision and recall as F = 2PR/(P +R).

For the efficiency evaluation, we have measured the runtime (in seconds) of each approach on each
dataset.

4.3.4 Evaluation of Linking Quality
The results of the quality evaluation are shown in Table 2, along with the corresponding confidence
intervals, which are calculated by repeating 30 times a random sampling of subsets containing 60% of
the documents from each dataset. For each dataset, the results computed on all documents are within
the intervals that correspond to a confidence level of 99% according to the Student’s t-distribution to
show that although some of the datasets are of moderate size, the 99% confidence interval of the scores
computed on the sampled subsets is relatively small.

As it can be seen, BEL significantly outperforms all the other approaches on the CoNLL-YAGO
dataset, especially on precision. Also, for the CUCERZAN dataset, the quality of BEL is compara-
ble to that of AIDA-GRAPH and AIDA-KORE, and it significantly outperforms LED. Moreover, in
terms of precision, BEL performs also on this latter dataset significantly better than the other approaches
(i.e., from a statistical point of view). Together with BEL’s impressive efficiency (see Section 4.3.5),
the precision-related quality is a crucial scalability aspect, since when processing a high throughput of
documents it is highly important that the produced linkings be rather correct.

For the KORE dataset, AIDA-KORE outperforms other approaches. However, it should be noted that
KORE is a very challenging dataset and that the AIDA-KORE approach has been specifically tailored
to such datasets. Also note that although the AIDA-KORE algorithm shows a high linking quality in
the experiments, it is the least efficient approach, since it performs complex joint reasoning over groups
of candidate entities and mentions. In our experiments, we had to wait more than 15 hours for the
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evaluation results of this approach for KORE dataset, since the mentions contained in this corpus are
highly ambiguous.

In comparison to a greedy linking strategy, where a mention is simply linked to the most prominent
entity according to the “prominence” score, which is our baseline BEL-PROM, BEL performs much
better on all three datasets. This fact highlights the importance of the contextual similarity component in
the model.

Table 2: Evaluation results (in %).

Method Precision Recall F1

C
oN

L
L

-Y
A

G
O LED 62.35 96.13 75.63

(-1.92,+0.25) (-0.43,+0.27) (-1.50,+0.18)

AIDA-GRAPH 78.67 96.29 86.59
(-0.80,+1.23) (-0.20,+0.64) (-0.41,+0.82)

AIDA-KORE 77.11 96.21 85.61
(-0.86,+0.80) (-0.64,+0.25) (-0.67,+0.47)

BEL-PROM 68.37 97.40 80.30
(-0.89,+1.30) (-0.25,+0.32) (-0.61,+0.97)

BEL 81.40 95.72 87.98
(-1.33,+0.78) (-0.38,+0.25) (-0.85,+0.46)

C
U

C
E

R
Z

A
N

LED 63.47 96.94 76.72
(-0.40,+1.01) (-0.11,+0.24) (-0.28,+0.75)

AIDA-GRAPH 81.30 94.64 87.47
(-0.57,+0.16) (-0.28,+0.17) (-0.40,+0.11)

AIDA-KORE 81.35 97.31 88.61
(-0.83,+0.03) (-0.25,+0.10) (-0.57,+0.03)

BEL-PROM 73.92 98.83 84.58
(-0.53,+0.29) (-0.11,+0.06) (-0.37,+0.20)

BEL 82.37 93.46 87.56
(-0.31,+0.25) (-0.71,+0.27) (-0.35,+0.12)

K
O

R
E

LED 40.14 100.00 57.28
(-3.30,+0.88) (-0.00,+0.00) (-3.52,+0.79)

AIDA-GRAPH 62.33 100.00 76.79
(-1.83,+0.93) (-0.00,+0.00) (-1.43,+0.68)

AIDA-KORE 66.67 94.95 78.33
(-2.29,+1.91) (-0.87,+1.82) (-1.60,+1.48)

BEL-PROM 31.29 100.00 47.67
(-1.83,+1.47) (-0.00,+0.00) (-2.23,+1.61)

BEL 54.55 76.61 63.72
(-2.40,+2.53) (-0.76,+2.20) (-1.72,+2.08)

Table 3: Efficiency comparison

Method KORE CoNLL-YAGO CUCERZAN
BEL 30.02s 244.34s 657.44s
LED 17.70s 288.52s 552.26s
AIDA-GRAPH 615.35s 1,202.66s 2,897.43s
AIDA-KORE >15h >11h >25h
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4.3.5 Efficiency Evaluation
The lean algorithmic design of BEL enables a highly efficient linking process. For the efficiency com-
parison, we used a Pentium 3.1GH machine with 8GB of main memory. The indexes for the language
models of YAGO2 entities, as well as the indexed YAGO2 knowledge base (that was used by all ap-
proaches for the linking) were maintained in a PostgreSQL 9.1 database.

For each dataset, Table 3 shows the runtime of each approach. Obviously, the joint reasoning strategy
of AIDA-GRAPH comes at high efficiency costs; on all datasets it has been outperformed by the other
approaches. While LED is slightly more efficient than BEL on the KORE and CUCERZAN datasets,
as shown in Table 2, it often pays a high cost in terms of quality, and BEL also outperforms it in terms
of efficiency on the CoNLL-YAGO dataset. Note that the runtime of LED and BEL are both practically
viable from a user’s perspective. The AIDA-KORE approach, on the other hand, lacks practical viability,
since it needs several hours to process even moderately sized datasets (e.g., approx. 11 hours for the
CoNLL-YAGO dataset). For the CUCERZAN dataset, which is the largest one, although the F1-measure
of AIDA-KORE is approximately 1% higher than BEL, one needs to wait more than 25 hours to get the
result. Instead, BEL can finish the linking process in around 11 minutes.

4.3.6 Discussion
Both, the “prominence” score and the contextual score derived from the proposed bagging strategy have
advantages and limitations; they are orthogonal in nature, and their individual strengths are manifested
in different ways in the final decision of the algorithm. The value of the “prominence” score has a
high impact on the final decision, when BEL is run on articles about famous people, organizations,
locations, products, events etc. Typical examples of articles that contain such entities are news reports,
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scholarly articles containing encyclopedic knowledge, and product descriptions. In contrast, the bagged
language models have a high impact on the final decision in cases where the occurring mentions are
highly ambiguous but contain valid key information surrounding the mention. Examples for such articles
can be found in all three datasets we have used.

Although in many cases, linking the mention to the most prominent candidate entity leads to the correct
decision (e.g., “Australia” refers most probably to the country), this strategy is not reliable for many
ambiguously used mentions. For example, in one article of CoNLL-YAGO dataset, the named entity
“Australia National Cricket Team” in YAGO, was also often referred to by “Australia”. Nevertheless,
BEL was able to establish a linking to the correct named entity.

The datasets we have annotated and a preliminary online-demo of the algorithm are available online2.

5 Conclusion

The focus of this work has been on lean and light-weight classification algorithms, which as an ensemble
provide a reliable and efficient linking strategy. The comparison of our approach, BEL, with state-of-
the-art techniques on manually-labeled, benchmark datasets shows that BEL indeed fulfills the above
criteria. Especially on longer, real-world texts, BEL shows an unprecedented quality and efficiency
behavior. Further research is needed to understand how such an approach can be optimized for short
texts containing highly ambiguous mentions of named entities. We are convinced that BEL provides a
robust basis for further research in this area.
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