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ABSTRACT 

Parse trees are indispensable to the existing tree-based translation models. However, there exist 
two major challenges in utilizing parse trees: 1) For most language pairs, it is hard to get parse 
trees due to the lack of syntactic resources for training. 2) Numerous parse trees are not 
compatible with word alignment which is generally learned by GIZA++.  Therefore, a number of 
useful translation rules are often excluded. To overcome these two problems, in this paper we 
make a great effort to bypass the parse trees and induce effective unsupervised trees for tree-
based translation models. Our unsupervised trees depend only on the word alignment without 
utilizing any syntactic resource or linguistic parser. Hence, they are very beneficial for the 
translation between resource-poor languages. Our experimental results have shown that the 
string-to-tree translation system using our unsupervised trees significantly outperforms the string-
to-tree system using parse trees.  

KEYWORDS : Tree-based translation; Unsupervised tree; EM algorithm.  
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1 Introduction 

Recently, tree-based models1 have been widely studied in statistical machine translation (SMT). 
The existing tree-based models include string-to-tree models (Galley et al., 2006; Marcu et al., 
2006; Shen et al., 2008), tree-to-string models (Quirk et al., 2005; Liu et al., 2006; Huang et al., 
2006;), and tree-to-tree models (Eisner, 2003; Ding and Palmer, 2005; Cowan et al., 2006; Zhang 
et al., 2008; Liu et al., 2009). Due to the effective use of syntactic information, tree-based models 
have achieved comparable (Liu et al., 2009) and even better performance over phrase-based 
models (Marcu et al., 2006). 
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FIGURE 1 – Rule extraction for string-to-tree translation model: (a) using parse trees versus (b) 
using our unsupervised trees. 

In the existing tree-based translation models, parse trees are essential to extracting translation 
rules. FIGURE 1(a) illustrates the rule extraction process of string-to-tree translation model. The 
parse tree is usually generated by a linguistic parser which is trained on a manually annotated 
corpus, such as Treebank. However, the manually annotated corpus is always too inadequate to 
fully display the strengths of tree-based models. In particular, traditional tree-based systems can 
not work at all for language pairs without any syntactic resource, which has greatly restricted 
their application. 

From FIGURE 1(a), we can also discover that syntactic parsing is completely independent of word 
alignment. The separation of parser and alignment leads to a severe incompatibility problem 
between them. Together with the widely existing parsing errors, numerous useful translation rules 
are excluded during rule extraction. 

To overcome the above two problems of current tree-based models, in this paper, we give up 
using parse trees and induce better alternatives for tree-based translation models. The alternative 
tree structures depend only on the word alignment without utilizing any syntactic resource or 
linguistic parser (see FIGURE 1(b) for illustration). Specifically, the entire process of inducing 
such tree structures for tree-based translation models is summarized as follows: 

1. Based on a word aligned parallel corpus, we first transform those aligned bilingual sentence 
pairs into packed forests.  

                                                           ͳ The translation models using parse trees on one side or both sides are defined as tree‐based models here. 
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2. Based on the obtained packed forests, we design an EM algorithm to learn an effective 
synchronous tree substitution grammar (STSG) and then acquire Viterbi tree structures 
according to the achieved STSG. 

In step 1, in order to create a packed forest for a bilingual sentence pair, we first segment the 
sentence pair into several shorter ones to reduce the huge generation space of tree structures. 
Then, according to frontier node assumption, we compress all the tree structures with the largest 
number of frontier nodes into a packed forest. We will detail the process of constructing packed 
forest in Section 3. After all packed forests are generated, we exploit an EM algorithm in step 2 
to learn an STSG and then generate Viterbi tree structures for translation. The adopted EM 
algorithm will be elaborated in Section 4.  

Obviously, the above process of inducing tree structures is unsupervised. The syntactic resources 
and linguistic parsers are not necessary. Hence, comparing with parse trees, the proposed 
unsupervised trees can be applied to build translation models for more language pairs. 
Furthermore, by maximizing the number of frontier nodes, the unsupervised trees are compatible 
with word alignment and thus could achieve a better rule coverage for translation. 

Since the existing tree-based translation models are usually restricted by parse trees, using 
unsupervised trees would be a promising direction for these models. To our best knowledge, this 
paper is the first effort to introduce effective unsupervised tree structures for tree-based 
translation models. The most significant contribution of this paper lies in this point. In order to 
achieve this goal, a series of useful techniques are employed innovatively and meaningfully in 
the paper. Moreover, the experimental results show that our unsupervised trees significantly 
outperform the parse trees in the state-of-the-art string-to-tree translation system. 

2 Related Work 

Our work focuses on inducing effective unsupervised tree structures, and meanwhile, resolving 
the incompatibility problem between tree structures and word alignment for tree-based translation. 

Several researchers have studied unsupervised tree structure induction for different objectives. 
Blunsom et al. (2008, 2009, 2010) utilized Bayesian methods to learn synchronous context free 
grammar (SCFG) from a parallel corpus. The obtained SCFG grammar is further used in a 
phrase-based and hierarchical phrase-based system (Chiang, 2007). Denero and Uszkoreit (2011) 
adopted a parallel parsing model to induce unlabeled tree structures for syntactic pre-reordering. 
Different from above works, we concentrate on producing effective and labeled unsupervised 
trees for tree-based translation models. Moreover, since most of the current tree-based translation 
models are based on synchronous tree substitution grammar (STSG), our unsupervised trees are 
thus learned according to STSG, rather than SCFG.  

On relieving the incompatibility problem between tree structures and word alignment for 
translation, previous works mainly focus on two directions: 

One direction is to adapt the parse tree structure. Wang et al., (2007) binarized the parse trees and 
adopted an EM algorithm to select the best binary tree from their parallel binarization forest. Mi 
et al., (2008b) and Liu et al., (2009) compressed thousands of parse trees into packed forests. 
Zhang et al. (2011a) applied a CKY binarization method on parse trees to get binary forests for 
forest-to-string model. Burkett and Klein (2012) adopted a transformation-based method to learn 
a sequence of monolingual tree transformations for translation. They differ from our work in that 
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they were all based on parse trees. Compared with them, we construct effective unsupervised tree 
structures according to the word alignment and do not need any syntactic resource. 

The other direction is to integrate the alignment information into parsing. Burkett and Klein 
(2008) and Burkett et al. (2010) made efforts to do joint parsing and alignment. They utilized the 
bilingual Treebank to train a joint model and achieved better results on both parsing and word 
alignment. Liu et al. (2012) re-trained the linguistic parsers bilingually based on word alignment. 
Our work is different from theirs in that we are pursuing better unsupervised tree structures for 
better translation performance. 

As a whole, compared with previous works, our unsupervised trees are generated fully depending 
on word alignment. Therefore, by using our tree structures, the incompatibility problem between 
tree structures and word alignment can be well resolved. 

3 Packed Forest Generation 

In this section, we introduce how to compress all the reasonable tree structures into a packed 
forest for the given flat sentence. Packed forest is a compact representation of many tree 
structures. Generally, it is a pair ,V E 

E
 where V is the set of forest nodes and E is the set of 

hyperedges. Each hyperedge e  is a pair ( ), ( )h e t e   where h(e) is its head node and t(e) 
denotes the vector of its tail nodes. FIGURE 2 illustrates a packed forest that encodes two different 
tree structures. 

FIGURE 2 – An example of packed forest that encodes two different tree structures. In the FIGURE, 
shaded nodes denote frontier nodes 

3.1 Space Reduction 

Basically, there are an exponential number of possible tree structures for a given sentence. These 
tree structures result in a very huge packed forest. For example, considering a sentence of length 
L, there will be 0.5  non-leaf nodes in the forest (each span corresponds to one node). In 
addition, a forest node covering m (m>=2) words emits m-1 binary hyperedges

( 1)L L 
2, leading to 

 hyperedges in total3( )LO b
                                                          

3. Consequently, there would be an exponential num er of parameters 
 ʹ ary structure serves as the basic un )n our forest, the bin it, which will be demonstrated later.  ͵ There are a total of  3

2
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        edges, including the edges linking to the leaf nodes.  
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for the STSG achieved from the forests. Such many parameters would cause a difficult estimation 
problem, especially for the EM algorithm adopted in this paper. Therefore, to reduce the huge 
generation space of tree structures, we first segment the bilingual sentence pair into several 
shorter ones and then impose frontier node assumption to construct the packed forest. 

3.1.1 Bilingual Sentence Segmentation 

Bilingual sentence segmentation is to segment a sentence pair into several short sub-sentence 
pairs whose source sub-sentence and target sub-sentence are translations to each other. 
Theoretically, in a sub-sentence pair, all included words cannot align to words outside it. 
However, since many words are wrongly aligned via the automatic word alignment, numerous 
correct aligned sub-sentence pairs are often excluded under this restriction. Therefore, to relax 
the restriction, we adopt the following constrains after analyzing the erroneous alignments4: (a) 
the bidirectional length ratios of a sub-sentence pair must be all smaller than 1:3; (b) as a sub-
sentence pair, it must contain more than 4 words on each side; (c) in a sub-sentence pair, more 
than 30% words on each side must be aligned to its counterparts; (d) considering all the 
alignment links emitted by a sub-sentence, the erroneous ones (align to words outside the sub-
sentence pair) account for at most 30% of all links.  

To guarantee the segmentation accuracy, we only extract split point candidates based on the 
punctuations5 which always denote the boundary of sub-sentences. Complying with the above 
constraints, we traverse all the split point candidates to search for the optimal split point with 
minimum number of wrongly aligned words (i.e., minimizing the number of words that align to 
words outside the sub-sentence pair). Then we segment the sentence pair into two shorter ones at 
that split point. We recursively segment the newly acquired sub-sentence pairs until no split point 
candidate is left. FIGURE 3(a) shows the segmentation result of an example sentence pair. 

After bilingual sentence segmentation, only the spans inside the sub-sentence pairs are used in 
the forest. Under this condition, a large amount of useless spans are discarded and the forest is 
effectively simplified. For example, in FIGURE 3(b), the span “meet again, but” in the English 
sentence is discarded because it does not belong to any sub-sentence pair. 

Note that the method of bilingual sentence segmentation we use here is only a simple 
segmentation strategy. It can also be substituted by any other segmentation methods. Additionally, 
after sentence segmentation, we realign words based on the sub-sentence pairs to get a new 
alignment where all words in a sub-sentence pair align to the words inside it. 

3.1.2 Frontier Node Assumption 

Bilingual sentence segmentation leads to a great space reduction for constructing packed forests. 
However, even after sentence segmentation, the generation space of tree structures would be still 
very large, especially when the sub-sentence is very long. In order to further simplify the space, 
we take advantage of the following assumption during forest construction: 

Frontier Node Assumption: The more frontier nodes the tree structure has, the more reasonable 
it is for translation. 

                                                           Ͷ The heuristic values in the constraints are chosen by a series of survey and experiments on a well‐aligned corpus.  ͷ We use {。  ，  㧦  㧧  ？  ！} and {.  ,  :  ;  ?  !} as split anchors for Chinese and English, respectively.  We take the position before and after the punctuations as split point candidates. 
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Frontier nodes are utilized to factor a tree structure into several fragments for rule extraction 
(Galley et al., 2004). Formally, a frontier node is a node that meets the following constraint: the 
span of the node and its dominated span at the other side are consistent with word alignment6. 
For example, in FIGURE 2, node PRP…RB’s span is {we meet again} and it dominates span {我

们 再次 见面} at the other side. These two spans are consistent with word alignment. Therefore, 
node PRP…RB is a frontier node.  

Our frontier node assumption makes sense in tree-based translation model. This is because with 
the purpose of achieving better rule coverage, we tend to extract small minimal rules as many as 
possible and generate larger rules by composing them. Maximizing the number of frontier nodes 
supports this goal, while producing many interior (non-frontier) nodes hinders it (DeNero and 
Klein, 2007). Hence, in the forest constructor, we follow this assumption and only consider the 
tree structures with the largest number of frontier nodes. 

Denero and Uszkoreit (2011) utilized a similar heuristic to construct their unlabeled trees. They 
required that all spans in their trees must align continuously to the other side. Unlike their 
heuristic, our frontier node assumption only maximizes the number of frontier nodes. The interior 
nodes are also permitted in the tree structure, which is more flexible and appropriate for 
constructing forests. 
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FIGURE 3 – (a) An example of bilingual sentence segmentation. (b) The ultimate packed forest of 
the example sentence pair in (a). 

3.2 Node Labeling 

To create packed forests for sentences, a problem that must be resolved is how to label the forest 
nodes without any syntactic knowledge. Xiong et al. (2006) showed that the boundary word of a 
phrase is a very effective indicator for phrase reordering. Zollmann and Vogel (2011) labeled 
hierarchical rules with word classes of boundary words and achieved better translation 

                                                            A node’s dominated span at the other side refers to the minimum continuous span covering all the words that are reachable from the node via word alignment. Two spans are consistent with word alignment means that words in one span only align to words in the other span via word alignment, and vice versa.  
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performance. Inspired by their work, we combine word classes of boundary words to label forest 
nodes. We divide the non-leaf forest nodes into three groups: one-word node, dominating only 
one word in the sentence, and accordingly, two-word node, and multi-word node. Naturally, a 
one-word node is labeled by the class of its dominating word; a two-word node is labeled by 
combining the classes of the two words, such as “C1+C2”; a multi-word node, whose leftmost 
word’s class is C1 and rightmost word’s class is Cn, is labeled with “C1…Cn”. In this paper, 
POS tags are employed to serve as the word classes7. For example, in FIGURE 3(b), the forest 
node covering phrase “we meet again” is a multi-word node and is labeled with “PRP…RB”. Our 
labeling strategy is similar to (Zollmann and Vogel 2011). The difference is that we are labeling 
our forest nodes, while they labeled hierarchical rules to substitute the original single non-
terminal X. 

3.3 Forest Constructor 

In tree-based translation models, the binary structure has shown its efficiency on improving 
translation quality (Wang et al., 2007; Zhang et al., 2011a). Inspired by this, we take the binary 
structure as the basic unit of our forest. 

After sentence segmentation, we first build a forest for each sub-sentence pair. Initially, we create 
a POS node for each word and then perform a CKY-style algorithm to construct forests. FIGURE 4 
illustrates the main process of building forest for a sub-sentence pair in FIGURE 3(a). From 
FIGURE 4 we can see that, the algorithm continuously inspects each span8 in a bottom-up manner 
and creates forest nodes to represent the spans. 

During the above process, we check every split point in each span and generate an edge9 for that 
split point. To comply with the frontier node assumption, we only preserve the edges maximizing 

[ , ]F i j : 

                  [ , ] argmax { [ , ] [ , ] [ , ]}kF i j F i k F k j Fron i j    (1) 

where [ , ]F i j
)j

 denotes the number of frontier nodes in the sub-tree whose root node is span [ , . 
 refers to the split point of span [ , . 

]i j
( ,k i ]i j [ , ]Fron i j

]i j

 is an indicator function whose value is 
1 if the node for span [ ,  is a frontier node and 0 otherwise. Obviously, Equation (1) 
guarantees that the sub-tree rooted at span [ ,  carries the largest number of fronter nodes. 
Consequently, in a bottom-up manner, when we arrive at the node covering the whole sentence, 
we can achieve all the tree structures with the larget number of frontier nodes. 

]i j

For example, in FIGURE 4(c), span [0,3] (length L=3) has two split points and thus can be 
composed of span [0,1] and span [1,3], or span [0,2] and span [2,3]. However, just as FIGURE 4(c) 
shows, there are only 3 frontier nodes in the former case ([0,1] [1,3] [0,3] 3F F Fron   , here 

because node NN…VBP[0,3]  is not a frontier node), while there are 4 frontier [0,3] 0Fron 
                                                            Practically, we need a supervised POS tagger, which impairs the unsupervised property of our tree structure to s y unsuputomatic ome extent. Actually, the POS tags can be substituted by an ervised word classes here. )n future, we also p an to design an efficient algorithm to learn the node label a ally, rather than using a heuristic like here.  ͺ nl (ere the ǲspa ǳ is based on the POS nodes. For example in FIGURE 4, span Ͳ‐ʹ refers to the span of node sequence ǲNN PRPǳ. ͻ As  each  split  point  corresponds  to  two  adjacent  smaller  spans,  we  generate  an  edge  to  link  these  two  spans. Therefore, each edge we create here contains a head node and only two tail nodes.  
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nodes in the latter one ([0,2] [2,3] [0,3] 4F F Fron   ). Therefore, we only preserve the edge 
maximizing  for node NN…VBP[0,3], i.e., the edge composed of span [0,2] and span [2,3].  [0,3]F

In most cases, a forest node could emit more than one edge with the same largest number of 
frontier nodes. For example, in FIGURE 4(d), node NN…RB [0,4] (length L=4) emits two edges 
with 7 frontier nodes. One links node NN[0,1] and PRP…RB[1,4]. The other one connects node 
NN+PRP[0,2] and VPB+RB[2,4]. We preserve both of these two edges for node NN…RB [0,4]. 
Finally, we achieve the packed forest for the example sub-sentence pair in FIGURE 4(d). In 
addition, during the forest construction process, the lower nodes and edges not chosen to create 
upper level nodes will be discarded, such as node NN…VBP[0,3] in FIGURE 4(d). 

After we create a forest for each sub-sentence pair (named as sub-forest), we combine these sub-
forests together to generate a final binary forest for the whole sentence pair. The combination is 
also performed by a similar CKY-style algorithm. The only difference is that the span in this 
CKY algorithm is based on the root node of sub-forests. Then we add a goal root node labeled 
“ROOT” to the forest which will be used in the EM algorithm. As an example, FIGURE 3(b) 
illustrates the final packed forest of the example sentence pair in FIGURE 3(a). 
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FIGURE 4 – The main process of building forest with the CKY-style algorithm. Here, shaded 
nodes denote frontier nodes. L refers to the length of span. F[i,j] denotes the number of frontier 
nodes in the sub-tree whose root node is span [i,j]. For example, the sub-tree that roots at span 
[1,4] in (c) contains 5 frontier nodes. This is because F[1,2] = 1 for node PRP[1,2], and F[2,4] = 
3 for node VBP+RB[2,4], and node PRP…RB [1,4] is also a frontier node. 
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4 Learning Viterbi Tree via EM Algorithm 

In this section, we design an EM algorithm to learn an effective synchronous tree substitution 
grammar (STSG) and then acquire Viterbi tree structures based on the STSG. Denero and 
Uszkoreit (2011) mentioned that their unlabeled tree structures can also be obtained by a similar 
method. However, their method is based on SCFG. Our work is different from theirs in that the 
EM algorithm is based on STSG. We use STSG here because most of the current tree-based 
translation models are based on STSG. 

Given a parallel corpus with n sentence pairs, and the corresponding packed forest for each target 
sentence e, we aim to search for a series of trees  that maximize the likelihood of 
the whole corpus 10

*
1 2( , ,..., )e e ent t t

( , , )et f a , which is formulated as follows: 

1 2

*
1 2

( , , ... , ) 1

( , ,..., ) ( , , )arg max
e e en

n

e e en ei i i
t t t i

t t t p t f a


 
The probability of triple ( ,  is further computed by aggregating the rule probabilities 

 in each derivation d in the set of all derivations D. That is 
, )ei i it f a

( )p r

( , , ) ( )ei i i
D r d

p t f a p r



To get the derivation set D, we employ the algorithm of Mi et al., (2008a) to transform our 
induced packed forests into synchronous derivation forests. Practically, in order to reduce the 
complexity of the derivation forest, we only utilize the minimal STSG translation rules extracted 
by the method of Galley et al., (2004) and Mi et al., (2008b) to construct derivation forests11. 

Using the synchronous derivation forests, the rule probabilities are estimated by the inside-
outside algorithm (Graehl and Knight, 2004). Here, leaf(r) and root(r) denote the leaf non-
terminals and root node of rule r respectively. The inside and outside probabilities of forest node 
N are defined as follows, 

( ) ( )

: ( ) ( ) { }

( ) ( ) ( )

( ) ( ) ( ( )) ( )

l

l

IN IN l

r R N N leaf r

OUT OUT IN l

r N leaf r N leaf r N

p N p r p N

p N p r p root r p N

 

  

     
     

 
 



 

where R(N) denotes the set of matched rules rooted at node N. Therefore, the process of EM 
algorithm is shown as follows: 

                                                           ͳͲ nd a  is the word  )n the triple, te refers to the target tree structures,  f denotes the source language sentences, aalignment between them.  ͳͳ We follow the highest attachment strategy in ȋGalley et al., ʹͲͲȌ to deal with unaligned words.  
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E-step: the expected count for each occurrence of rule r in a derivation forest is computed as:

: ( ) ( )

( )
( )

( )
a a

a
r root r root r

c r
p r

c r


 
M-step: the expected counts of rules, c(r), are used to update the probabilities of rules:

( )

( ) ( ( )) ( )
l

OUT IN l
N leaf r

p r p root r p N
 

 

After the EM algorithm, we traverse the derivation forest to obtain the Viterbi derivation and 
its corresponding best tree structure. Then the acquired tree structures can be applied to any 
traditional tree-based translation system. 

*d

5 Experiments 

5.1 Experimental Setup 

In order to verify the effectiveness of our unsupervised tree structures, we compare them with 
linguistic parse trees based on string-to-tree translation. Here we experiment on Chinese-to-
English translation, for which English parse trees can be easily obtained. Our training data is the 
FBIS corpus containing about 7.1 million Chinese words and 9.2 million English words. We 
generate the final symmetric word alignment using GIZA++ and the grow-diag-final-and balance 
strategy. We train a 5-gram language model on the target part of the training corpus and the 
Xinhua portion of English Gigaword corpus. We use the NIST MT 2003 evaluation data as the 
development set, and adopt NIST MT04 and MT05 as the test set. The final translation quality is 
evaluated in terms of case-insensitive BLEU-4 with shortest length penalty. The statistical 
significance test is performed using the re-sampling approach (Koehn, 2004). 

Our baseline system is an in-house string-to-tree system (named s2t) based on Galley et al. (2006) 
and Marcu et al. (2006). The English side of the training corpus is parsed with Berkeley parser 
(Petrov et al., 2006). We extract the minimal GHKM rules (Galley et al., 2004) and the rules of 
SPMT Model 1 (Marcu et al., 2006) with phrases up to length L=5 on the source side. Then we 
extract the composed rules by composing two or three adjacent minimal GHKM rules (Galley et 
al., 2006). The beam size of the decoder is set as 500. We further implement head binarization on 
the English parse trees and apply the achieved binary trees to another string-to-tree system 
(abbreviated as s2t-hb) with the same settings of s2t. In addition, we also run the state-of-the-art 
hierarchical phrase-based system Joshua (Li et al., 2009) for comparison. 

For inducing our unsupervised tree structures, we use Urheen12 to get the POS tags of the English 
corpus. Just as we described in section 3.1.1, we reuse GIZA++ and the grow-diag-final-and 
strategy to re-align words based on the sub-sentence pairs and then combine the alignment result 
together to get a new word alignment for the whole sentence pair. We perform the EM algorithm 
to capture the final tree structures by 20 iterations. Then we build a string-to-tree system using 
our induced unsupervised tree structures (abbreviated as s2t-IT). Different from the above 

                                                           ͳʹ  http://www.openpr.org.cn/index.php/NLP‐Toolkit‐for‐Natural‐Language‐Processing/ 
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baseline system, the beam size of our s2t-IT system is set as 300 to get a comparable translation 
speed to the baseline system. 

Besides, using the new alignment, we also run the s2t and s2t-hb system with the same settings as 
the abovementioned s2t and s2t-hb systems (We mark the systems using the new word alignment 
as re-align systems). 

5.2 Experimental Results 

The translation results of different systems are shown in TABLE 1. As we can see, the 
performance of the baseline string-to-tree system significantly outperforms the hierarchical 
phrase-based system Joshua, which verifies the superiority of our baseline s2t system. 

System MT04 MT05 All 

Joshua 30.71 27.86 29.59

s2t (baseline) 33.73* 30.25* 32.75*

s2t-hb 34.09 30.99* 32.92
s2t 33.53 29.30 32.29

s2t-hb 33.88 30.49* 32.61re-align 
s2t-IT 34.71# 31.55# 33.53#

Number of sentences 1788 1082 2870

TABLE 1 – Results (in case-insensitive BLEU-4 scores) of different systems. The “*” and “#” 
denote that the result are significantly better than the adjacent above system and all the other 
systems respectively (p<0.01). 

TABLE 1 also demonstrates the effectiveness of binary structures. It can be clearly seen that 
whether we do re-alignment or not, the head binarization approach can always help to improve 
the s2t system (lines 2-5). Besides, as we can see from TABLE 1, the performances of the re-align 
s2t and s2t-hb system are slightly worse than the s2t and s2t-hb system. It indicates that the 
sentence segmentation method might be harmful to the traditional translation system. We will 
explore the reason in the next section. 

The system using our induced unsupervised trees (s2t-IT) achieves the best performance among 
all the systems. It significantly outperforms the baseline s2t system by 0.98 and 1.3 BLEU points 
on MT04 and MT05 respectively. Furthermore, as shown in TABLE 1, even using the head 
binarization approach, the performance of the best s2t-hb system is still lower than that of our 
s2t-IT system by 0.61 BLEU points on the combined test set. Obviously, the above comparisons 
strongly demonstrate that our induced unsupervised trees are much more appropriate than parse 
trees for the string-to-tree translation model. 

5.3 Analysis and Discussion 

The improvement of translation performance has strongly verified the effectiveness of our 
induced unsupervised tree structures. We further conduct a series of deep analysis on the result. 

We first adopt FIGURE 5, which depicts an example of our unsupervised tree structure and a 
traditional parse tree structure, to explain the superiority of our unsupervised trees. Comparing 
these two structures, we can see that our unsupervised tree structure carries more frontier nodes 
and thus can be factored into more small sub-structures. Consequently, the resulted minimal rules 
tend to be more general and smaller. For example, in FIGURE 5, rule (c) and (d) are the minimal 
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rules extracted from the unsupervised tree structure and the parse tree structure respectively to 
translate Chinese phrase “有利于 (you-li-yu)”. Obviously, rule (c) is much smaller and can be 
utilized without any limit while rule (d) cannot, since rule (d) requires that the translation after “is 
conducive to” must be dominated by an “S” node. Additionally, we can further acquire many big 
rules by composing several small minimal rules. On the above basis, our induced unsupervised 
trees are much more conducive to extracting both general enough rules and specific enough rules, 
which leads to a better rule coverage and translation quality. 

 

FIGURE 5 – Different tree structures and extracted example rules: (a) the unsupervised tree 
structures (b) the binary tree structures produced by berkeley parser (The node “NP-COMP” is 
created by the head binarization approach). The shaded nodes in the FIGURE denote frontier nodes. 
(c) and (d) are the minimal rules extracted from the structures in (a) and (b) respectively. 

To further demonstrate the above analysis, TABLE 2 shows the average number of frontier nodes 
per tree structure (#Aver-Frontier-Nodes) and the grammar size (#RULES) of different systems. 
As we can see, the string-to-tree systems using parse trees benefit from the head binarization 
approach which helps to recall frontier nodes (from 33.9 to 40.4 for s2t system and 32.0 to 38.6 
for the re-aligned s2t system). 

System #Aver-Frontier-Nodes #RULES

s2t (baseline) 33.9 15.5M 
s2t-hb 40.4 28.1M 

s2t 32.0 13.8M 
s2t-hb 38.6 26.2M re-align
s2t-IT 47.4 51.9M 

TABLE 2 – Average number of frontier nodes and grammar size for different string-to-tree 
systems. 

Furthermore, using our induced unsupervised trees, it accounts for 47.4 frontier nodes on average 
while there are only 33.9 frontier nodes at most in the traditional linguistic parse trees. Obviously, 
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this comparison indicates that our unsupervised trees are more compatible with the word 
alignment and are beneficial to extracting more useful translation rules. Just as column 
“#RULES” shows, our s2t-IT system obtains a total of 51.9M rules while the baseline s2t system 
only gets 15.5M rules at most. 

We have found that the sentence segmentation method might do harm to the traditional 
translation system in TABLE 1. TABLE 2 gives a faithful explanation on this phenomenon. As 
indicated by TABLE 2, after we do re-alignment, the number of frontier nodes decreases (from 
33.9 to 32.0 for s2t) and the grammar size is reduced at the same time. We believe that the 
reduced grammar leads to the worse performance of the re-align s2t and s2t-hb system. 
Intuitively, the deterioration caused by sentence segmentation would also affect our s2t-IT system. 
However, our s2t-IT system still significantly outperforms the baseline s2t system. More work 
would be devoted to alleviate the influence of sentence segmentation. 

We further investigate the used tags of tree nodes in our unsupervised trees. According to the 
statistics, there are a total of 2,862 tags for the non-leaf nodes in the final corpus of our 
unsupervised trees. With such many tags, a natural question is that does the grammar extracted 
from these tree structures suffer from a data sparseness problem? TABLE 3 answers this question 
in detail. In the TABLE, for example, line 2 denotes that the most frequent 143 tags (5% of all tags) 
account for 76.5% of all frontier nodes and 82.4% of all tree nodes. As illustrated in TABLE 3, 
87.0% frontier nodes and 90.3% tree nodes are labeled with the most frequent 286 tags (10% of 
all tags), indicating that the vast majority of our translation rules are composed of these tags. 
Compared with the 70 tags13 used in the linguistic parse trees, we believe our employed tags are 
both specific enough for distinguishing different rules and general enough for avoiding the data 
sparseness problem. 

#tag num #percentage of frontier nodes #percentage of tree nodes
85(3%) 
143(5%) 
228(8%) 

286(10%) 

429(15%) 
572(20%) 

… 

68.0% 
76.5% 
83.6% 
87.0% 

92.3% 
95.2% 

… 

75.8% 
82.4% 
87.7% 
90.3% 

94.2% 
96.4% 

… 

TABLE 3 – The proportion of frequently appearing tags in our induced tree structures. 

Conclusion and Perspectives 

In this paper, we propose effective unsupervised trees to substitute parse trees for tree-based 
translation models. Since current tree-based translation models are all driven by parse trees, this 
work creates a brand-new direction for them. We first roughly group the words into several sub-
sentence pairs by a bilingual sentence segmentation method. After that, we compress all the 
reasonable tree structures of sentence pairs into packed forests under frontier node assumption. 
Finally, we design an EM algorithm to learn an effective STSG and then select a best tree 
structure for each sentence pair. 

The unsupervised tree structures are constructed depending on the word alignment. Therefore, 
they are naturally compatible with word alignment and lead to a better rule coverage. 

                                                           ͳ͵ There are ͶͶ POS tags, ͷ clausal tags and ʹͳ phrasal tags for labeling the linguistic parse trees. 
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Experiments on string-to-tree translation system show that our unsupervised trees significantly 
outperform the parse trees. We believe that our method is quite beneficial for the translation 
between resource-poor languages.  

In the future, we plan to conduct more experiments on other tree-based models, such as tree-to-
string model and tree-to-tree model. Furthermore, we also plan to develop unsupervised methods 
to jointly induce the tree structure and word alignment for tree-based translation models. This 
issue is more difficult since the search space is much larger and we plan to employ Bayesian 
methods with sampling approach to fulfil this task. 
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