@inproceedings{hu-etal-2024-improving,
title = "Improving Factual Consistency in Abstractive Summarization with Sentence Structure Pruning",
author = "Hu, Dingxin and
Zhang, Xuanyu and
Zhang, Xingyue and
Li, Yiyang and
Chen, Dongsheng and
Litvak, Marina and
Vanetik, Natalia and
Yang, Qing and
Xu, Dongliang and
Zhou, Yanquan and
Li, Lei and
Li, Yuze and
Zhu, Yingqi",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.770",
pages = "8792--8803",
abstract = "State-of-the-art abstractive summarization models still suffer from the content contradiction between the summaries and the input text, which is referred to as the factual inconsistency problem. Recently, a large number of works have also been proposed to evaluate factual consistency or improve it by post-editing methods. However, these post-editing methods typically focus on replacing suspicious entities, failing to identify and modify incorrect content hidden in sentence structures. In this paper, we first verify that the correctable errors can be enriched by leveraging sentence structure pruning operation, and then we propose a post-editing method based on that. In the correction process, the pruning operation on possible errors is performed on the syntactic dependency tree with the guidance of multiple factual evaluation metrics. Experimenting on the FRANK dataset shows a great improvement in factual consistency compared with strong baselines and, when combined with them, can achieve even better performance. All the codes and data will be released on paper acceptance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hu-etal-2024-improving">
<titleInfo>
<title>Improving Factual Consistency in Abstractive Summarization with Sentence Structure Pruning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dingxin</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanyu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingyue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiyang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongsheng</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marina</namePart>
<namePart type="family">Litvak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Vanetik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qing</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongliang</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanquan</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuze</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yingqi</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>State-of-the-art abstractive summarization models still suffer from the content contradiction between the summaries and the input text, which is referred to as the factual inconsistency problem. Recently, a large number of works have also been proposed to evaluate factual consistency or improve it by post-editing methods. However, these post-editing methods typically focus on replacing suspicious entities, failing to identify and modify incorrect content hidden in sentence structures. In this paper, we first verify that the correctable errors can be enriched by leveraging sentence structure pruning operation, and then we propose a post-editing method based on that. In the correction process, the pruning operation on possible errors is performed on the syntactic dependency tree with the guidance of multiple factual evaluation metrics. Experimenting on the FRANK dataset shows a great improvement in factual consistency compared with strong baselines and, when combined with them, can achieve even better performance. All the codes and data will be released on paper acceptance.</abstract>
<identifier type="citekey">hu-etal-2024-improving</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.770</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>8792</start>
<end>8803</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Factual Consistency in Abstractive Summarization with Sentence Structure Pruning
%A Hu, Dingxin
%A Zhang, Xuanyu
%A Zhang, Xingyue
%A Li, Yiyang
%A Chen, Dongsheng
%A Litvak, Marina
%A Vanetik, Natalia
%A Yang, Qing
%A Xu, Dongliang
%A Zhou, Yanquan
%A Li, Lei
%A Li, Yuze
%A Zhu, Yingqi
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F hu-etal-2024-improving
%X State-of-the-art abstractive summarization models still suffer from the content contradiction between the summaries and the input text, which is referred to as the factual inconsistency problem. Recently, a large number of works have also been proposed to evaluate factual consistency or improve it by post-editing methods. However, these post-editing methods typically focus on replacing suspicious entities, failing to identify and modify incorrect content hidden in sentence structures. In this paper, we first verify that the correctable errors can be enriched by leveraging sentence structure pruning operation, and then we propose a post-editing method based on that. In the correction process, the pruning operation on possible errors is performed on the syntactic dependency tree with the guidance of multiple factual evaluation metrics. Experimenting on the FRANK dataset shows a great improvement in factual consistency compared with strong baselines and, when combined with them, can achieve even better performance. All the codes and data will be released on paper acceptance.
%U https://aclanthology.org/2024.lrec-main.770
%P 8792-8803
Markdown (Informal)
[Improving Factual Consistency in Abstractive Summarization with Sentence Structure Pruning](https://aclanthology.org/2024.lrec-main.770) (Hu et al., LREC-COLING 2024)
ACL
- Dingxin Hu, Xuanyu Zhang, Xingyue Zhang, Yiyang Li, Dongsheng Chen, Marina Litvak, Natalia Vanetik, Qing Yang, Dongliang Xu, Yanquan Zhou, Lei Li, Yuze Li, and Yingqi Zhu. 2024. Improving Factual Consistency in Abstractive Summarization with Sentence Structure Pruning. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 8792–8803, Torino, Italia. ELRA and ICCL.