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Abstract

Code pre-trained language models (CPLMs)
have received great attention since they can
benefit various tasks that facilitate software de-
velopment and maintenance. However, CPLMs
are trained on massive open-source code, rais-
ing concerns about potential data infringement.
This paper launches the study of detecting
unauthorized code use in CPLMs, i.e., Code
Membership Inference (CMI) task. We de-
sign a framework BUZZER for different set-
tings of CMI. BUZZER deploys several infer-
ence techniques, including signal extraction
from pre-training tasks, hard-to-learn sample
calibration and weighted inference, to identify
code membership status accurately. Extensive
experiments show that CMI can be achieved
with high accuracy using BUZZER. Hence,
BUZZER can serve as a CMI tool and help
protect intellectual property rights. The imple-
mentation of BUZZER is available at: https:
//github.com/KDEGroup/Buzzer.

1 Introduction

Recently, various code pre-trained language mod-
els (CPLMs) like CodeBERT (Feng et al., 2020)
and Code Llama (Rozière et al., 2023) have sprung
up and shown strong capabilities. CPLMs are pre-
trained over massive code data that is publicly avail-
able in platforms like GitHub and StackOverflow.
Then, CPLMs can be fine-tuned or directly used for
code-related tasks like code refactoring (Liu et al.,
2023a) and code search (Wang et al., 2022a) even
when the downstream tasks do not have much data,
reducing the intellectual burden of developers and
facilitating software development and maintenance

However, using code data to train CPLMs may
cause patent infringement and legal violations.
GitHub recently introduced a programming tool
Copilot1. Copilot is powered by OpenAI Codex,

* Corresponding Author.
1https://github.com/features/copilot

a GPT based CPLM. However, Copilot has faced
allegations of violating open-source licenses (In-
foQ, 2022) since it is trained on code that may
be collected from open-source projects. Although
it is still under debate whether using open-source
code to train CPLMs causes intellectual property
infringement, the lawsuit has alerted researchers
and companies who work on CPLMs: code data
from open-source projects is not free training data.

To help protect the intellectual property rights
on code data, this paper studies a new task named
Code Membership Inference (CMI) for CPLMs
which identifies whether a well-trained CPLM used
a certain code snippet as its training data. A CMI
method for CPLMs can serve as a tool to detect
unauthorized data use and provide potential evi-
dence when a lawsuit similar to Copilot’s case is
filed in the future. We propose a CMI framework
BUZZER for detecting unauthorized data use in dif-
ferent settings of CMI. The contributions of this
work are summarized as follows:

1. We define two levels of inference for CPLMs:
white-box inference and black-box inference.
They have different knowledge w.r.t. CPLMs
and training data. White-box inference is hard
to achieve, but it can help us understand the
upper bound of the accuracy of CMI, while
black-box inference is more likely to succeed
in practice.

2. For the two settings, our proposed BUZZER

applies various inference techniques, includ-
ing signal extraction from pre-training tasks,
hard-to-learn sample calibration and weighted
inference, to identify code membership status
accurately.

3. We have conducted CMI on representative
CPLMs. Experimental results show that
BUZZER can achieve promising accuracy.
Additionally, we find that the accuracy of
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BUZZER in black-box inference is not much
worse than that in white-box inference, show-
ing that CMI can be achieved with high accu-
racy in practice.

2 Related Work

2.1 Code Pre-trained Language Model
Prevalent CPLMs (Feng et al., 2020; Guo et al.,
2021, 2022) typically adopt a multi-layer Trans-
former architecture (Vaswani et al., 2017) with N
Transformer blocks (we call them hidden layers
in this paper). Given a code snippet c, CPLM en-
codes it into high-dimension representation vectors.
Before feeding c into the CPLM, it is natural to
tokenize c into a series of tokens {c1 · · · cn}. Then,
tokens will be encoded by the CPLM into repre-
sentation vectors {h1, · · · ,hn} that can be further
used in downstream code-related tasks. Note that,
CPLMs can also encode the corresponding descrip-
tions {o1 · · · om} of c (e.g., method comment) writ-
ten in natural language into token representations
{r1, · · · , rm} (Feng et al., 2020).

According to their model architectures, recent
works can be categorized into three types:

• Encoder Based Models. Encoder-only
CPLMs typically follow the design of
BERT (Liu et al., 2019). CodeBERT (Feng
et al., 2020) uses masked language modeling
and replaced token detection tasks for pre-
training. GraphCodeBERT (Guo et al., 2021)
models code data from a structural perspective
and it uses edge prediction and node align-
ment as the pre-training tasks.

• Decoder Based Models. Decoder based
CPLMs only utilize multi-layer transformer
decoders, and they are known for their en-
hanced generalization capabilities in genera-
tive tasks (Liu et al., 2023b). IntelliCode (Svy-
atkovskiy et al., 2020) and CodeGPT (Lu
et al., 2021) follow the objective of GPT-2,
employing the next token prediction task for
pre-training. Based on Llama2 (Touvron et al.,
2023), CodeLlama (Rozière et al., 2023) ex-
pands the model input length to 16k tokens
and performs the pre-training task of fill-in-
the-middle (Bavarian et al., 2022). DeepSeek-
Coder (Guo et al., 2023) is pre-trained on a
vast dataset containing 87 programming lan-
guages with dependency parsing and repo-
level deduplication. It undergoes training for

both the next token prediction and fill-in-the-
middle tasks.

• Encoder-Decoder Based Models. Encoder-
Decoder based CPLMs contain both encoder
and decoder in transformer, and they perform
well for both understanding and generation
tasks. Jiang et al. propose TreeBERT (Jiang
et al., 2021), which utilizes tree structure of
abstract syntax trees (ASTs) and models them
as a set of composition paths to enhance the
understanding of code data. SPT-Code (Niu
et al., 2022) leverages ASTs to enhance se-
mantic representation. It improves the gen-
eration ability of CPLMs by setting up spe-
cial pre-training tasks, including Code-AST
prediction, Masked Sequence to Sequence
(MASS) (Song et al., 2019), and method
name generation. CodeT5 (Wang et al., 2021)
employs a unified framework to seamlessly
support both code understanding and gener-
ation tasks, and it allows multi-task learning.
UniXcoder (Guo et al., 2022) utilizes prefix
adapters to control the model behaviors and
leverages multimodal data for enhancing code
comprehension and code generation tasks.

2.2 Membership Inference

Membership Inference (MI) (Hu et al., 2022) aims
to ascertain whether a given data record is part of a
particular dataset used to train a specific model.

Shokri et al. (Shokri et al., 2017) study member-
ship inference by utilizing multiple shadow mod-
els to mimic the target model. Following Shokri,
Salem et al. (Salem et al., 2019) relax the restric-
tions by reduce the number of shadow models and
perform membership inference with less knowl-
edge of member data Yeom et al. (Yeom et al.,
2018) investigate the role of overfitting in mem-
bership inference for popular machine learning al-
gorithms. Li et al. (Li and Zhang, 2021) perform
membership inference by only accessing the final
predicted label, instead of acquiring the logits or
probabilities.

For language models, Song et al. (Song and
Raghunathan, 2020) study membership inference
for word embedding models by calculating the av-
erage similarity in a sliding window. Mahloujifar
et al. (Mahloujifar et al., 2021) leverage the seman-
tic relationships preserved by word embeddings to
identify special word pairs. Jagannatha et al. (Ja-
gannatha et al., 2021) investigate the risk of training
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Figure 1: Overview of our BUZZER framework. Firstly, it samples three disjoint datasets, Dt, Ds and Dc, to
construct target, shadow and calibrated models, respectively. After that, it extracts model signals with calibration
and trains white-box and black-box classifiers for CMI.

data leakage in clinical models. Mireshghallah et
al. (Mireshghallah et al., 2022) introduce a refer-
ence model and give the determination based on the
likelihood ratio threshold. CMI is a specific type of
membership inference (MI) (Hu et al., 2022). Yang
et al. (Yang et al., 2023) studies the code mem-
bership inference task for auto-regressive models.
Their work is closely related to ours. Differently,
our method can be applied to CPLMs with other
architectures in addition to auto-regressive CPLMs.

3 Code Membership Inference in CPLMs

3.1 Task Definition
We first give the definition of the CMI task:
Definition 1 (Code Membership Inference)
Given a tokenized code snippet {c1, c2, · · · , cn},
a tokenized corresponding natural language
descriptions {r1, r2, · · · , rm} and the target
CPLM M, the adversary adopts an inference
model to determine whether c is in the training
data of M.

Instead of giving “hard prediction”, the infer-
ence model can output a continuous confidence
score indicating the probability of c being the code
member data. Then, the adversary uses a threshold
θ to yield the prediction:

A(c) = 1 [I(c) > θ] , (1)

where 1 is the indicator function, θ is a chosen
threshold, I(·) is the inference model that produces
the confidence score, and A(·) is the membership
indicator.

3.2 Knowledge Level
The knowledge of the adversary on M is critical
to the success of CMI. We define two inference

settings with different knowledge levels:

1. White-Box Inference: The adversary has
complete knowledge of M (e.g., model ar-
chitecture, training objectives, and the trained
model parameters). Moreover, the adversary
can access a considerable amount of the train-
ing data, converting the problem into a su-
pervised classification problem. In practice,
this is hard to achieve from the outside model
provider.

2. Black-Box Inference: The adversary knows
the core architecture (e.g., Transformer) and
pre-training objectives of M. Such informa-
tion is typically available via public technical
reports (e.g., technical reports of CodeLlama
and CodeT5 are publicly available). Hence,
compared to white-box inference, black-box
inference is a more practical setting of CMI.

3.3 Our Proposed BUZZER

This section illustrates the details of BUZZER. As
depicted in Fig. 1, BUZZER is designed for han-
dling both white-box and black-box settings of
CMI. First, it samples disjoint datasets to construct
target, shadow and calibration models. Then, it
extracts model signals with calibration and trains
white-box and black-box classifiers.

3.3.1 Overview of Two Types of CMI

White-Box Inference. Taking advantage of the
prior knowledge on the considerable amount of
training data, the adversary can train an inference
model to infer membership status. The adversary
can mix known code member data and other code
data (code non-member data) that is very unlikely
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to be the code member data to construct the infer-
ence model’s training data. Code non-member data
can be sampled from the population of the dataset
D that are not included in the description of the
training data sources of M. This way, white-box
inference becomes a binary classification problem.

The next question is how to define the behav-
ior of M w.r.t. a certain code snippet c. Recall
that the input tokens of c are first encoded by the
embedding layer and the embeddings are passed
to the first hidden layer. There are multiple hid-
den layers in a CPLM, and each of them applies a
non-linear function on the inputs from preceding
layer. The overall forward propagation process can
be described as follows:

Hi+1 = Layeri (Hi) , (2)

where Hi refers to the output of the i-th hidden
layer and Layeri(·) indicates the i-th hidden layer.
Hidden layers are key components that enable the
CPLM to understand code data. Therefore, after
feeding c to M, we can regards the outputs of
hidden layers as the behavior of M.

In white-box inference, BUZZER first sample a
target dataset Dt and a calibration dataset Dc to
construct a target model and a calibration model
(see Sec. 3.3.3), respectively. For an interested
code snippet c, a signal extractor (see Sec. 3.3.2)
undertakes several pre-training tasks of the target
CPLM’s on the target model and the calibration
model to extract signals. These signals will then
be fed into a inference model to derive the CMI
outcome.

Black-Box Inference. In black-box inference, the
adversary lacks access to the M’s member data,
raising a challenge for CMI: the adversary lacks la-
beled member and non-member data for supervised
binary classification as in white-box inference.

To overcome this problem, BUZZER samples a
shadow dataset Ds to train a shadow model. The
shadow model is designed to imitate M with simi-
lar structure and training algorithms. The adversary
knows the member data (i.e., Ds) and non-member
data of the shadow model. Therefore, the adver-
sary can use the shadow model to replace the tar-
get model in the black-box setting and infer code
member status. For an interested code snippet c,
the signal extractor undertakes several pre-training
tasks of the target CPLM’s on the shadow model
and the calibration model to extract signals. These
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Figure 2: Overview of the signal extractor. It returns
signals w.r.t. the pre-training tasks.

signals will then be fed into the inference model
for the CMI task.

Difference between White-box Inference and
Black-box Inferencec: The primary distinction
lies in the white-box’s ability to access the training
data of M, while the black-box setting lacks such
access. During the training phase, the white-box
inference employs both member and non-member
data of M to train its inference model, whereas
the black-box inference utilizes member and non-
member data of the shadow model. During the
testing phase, both white-box and black-box set-
tings conduct tests on member and non-member
data of M. More details can be found in 4.1.4.

3.3.2 Signal Extractor
The signal extractor captures CPLM’s behavior
when encountering member or non-member data.
It extracts signals, which serves as input features to
subsequent inference models, from a code snippet.

One question is how to define the signal of
CPLMs, which should be highly correlated with
both member samples and non-member samples.
An intuitive approach is using task-specific loss val-
ues as signals. As the CPLM has captured member
data well, encountering member data could results
in lower loss of CPLM. Likewise, the loss values
for non-member data generally turn to be lower.

Fig. 2 depicts the design of the signal extractor.
For a code snippet, the signal extractor undertakes
several pre-training tasks, which are consistent
with the target CPLM’s original pre-training tasks,
on the target/shadow/calibration model. Through
these tasks, we acquire the loss values w.r.t. input
code snippet which serves as the signals. These
signals will be used as input features for the subse-
quent inference model.

3.3.3 Calibration Model
Non-member samples can still produce strong sig-
nals indicating a high probability of being member
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data, whereas a member sample may yield the op-
posite result, since they are over-represented or
under-represented in the data distribution (Watson
et al., 2022). Hence, we design a calibration model
to tackle such hard-to-learn samples. The calibra-
tion model adopts the same model architecture as
the target CPLM. The calibration model is utilized
to determine sample difficulty and it is pre-trained
using a dataset, which is disjoint from both the
shadow model dataset and the target model dataset,
and the same pre-training tasks as the target CPLM.

The hard-to-learn calibration process (“CAL” in
Fig. 1) is illustrated in Eq. 3, where signalcali rep-
resents the final calibration value of ith sample
and signalti denotes the signal of the target model
(white-box inference) or the shadow model (black-
box inference), signalci indicates the signal of the
calibration model, and ϵ prevents division by zero.

signalcali =
signalti

signalci + ϵ
. (3)

3.3.4 Weighted Inference Model
The inference model incorporates multiple signals
from the signal extractor to generate the final pre-
diction score. A higher score assigned by the in-
ference model to a code snippet indicates higher
likelihood of belonging to the target model’s mem-
ber data. The inference model is designed to take
signals from two types of pre-training tasks:

• Signals from generative pre-training tasks:
The signals generated from generative pre-
training tasks (e.g., Bimodal Dual Generation,
BDG) (Wang et al., 2021). For these signals,
we utilize a one-layer self-attention based net-
work with 12 heads to learn the feature.

• Signals from non-generative pre-training
tasks: The signals generated from non-
generative pre-training tasks (e.g., Masked
Language Modeling, MLM) (Feng et al.,
2020). For these signals, we utilize a three-
layer multi-layer perceptron based network to
learn the feature.

Consider a target CPLM with pre-training tasks
such as MLM and BDG. Initially, signals are ex-
tracted from the loss values of the pre-training
tasks. Subsequently, the inference model adopts
two different sub-networks, which take different
types of signals as input, to predict the confidence
scores. For signals generated from generative pre-
training tasks (e.g., BDG), sub-networks with the

self-attention mechanism are employed. For sig-
nals from non-generative pre-training tasks (e.g.,
MLM), sub-networks with three-layer MLP with
ReLU are utilized. Finally, BUZZER weights the
confidence scores of different sub-networks as the
final confidence score in Eq. 1.

The loss function of the inference model is illus-
trated in Eq. 4, which is designed to maximize the
model output of a member sample and minimize
that of a non-member sample.

L(Θ,m, n) = α− C(m) + C(n), (4)

where m and n represent the member and non-
member sample, respectively. C(m) is the output
of inference model and α is a hyper-parameter.

4 Experiments

4.1 Settings
4.1.1 Evaluation Metrics
We adopt Area Under the Curve (AUC) as the main
evaluation metrics, which assesses a model’s ca-
pability to differentiate between positive and neg-
ative samples. AUC is widely used in evaluat-
ing MI (Li and Zhang, 2021; Mireshghallah et al.,
2022; Zhang et al., 2021; Wang et al., 2022b). We
also consider True Positive Rates (TPR) at low
False Positive Rates (FPR) as the evaluate met-
ric (Carlini et al., 2022). Specifically, we compare
TPR values of different methods when the target
FPR values are low (1%, 0.1% and 0.01%).

4.1.2 CPLMs
We choose four representative CPLMs as tar-
get models, including CodeBERT2 (Feng et al.,
2020), CodeT53 (Wang et al., 2021), Deepseek-
Coder4 (Guo et al., 2023) and CodeLlama5 (Roz-
ière et al., 2023). CodeBERT is a BERT based bi-
modal CPLM. CodeT5 is an encoder-decoder based
CPLM. DeepseekCoder is a decoder-only model
and we adopt deepseek-coder-1.3b-base with 1.3B
parameters. CodeLlama is a decoder-only model
based on Llama 2 and we adopt codellama-7b-base
with 7B parameters. For CodeBERT and CodeT5,
we pre-train them from scratch to generate target
models, resulting CodeBERT with 125M parame-
ters and CodeT5 with 220M parameters. For larger

2https://github.com/microsoft/CodeBERT
3https://github.com/salesforce/CodeT5
4https://huggingface.co/deepseek-ai/

deepseek-coder-1.3b-base
5https://huggingface.co/codellama/

CodeLlama-7b-hf
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CPLMs DeepseekCoder and CodeLlama, we con-
tinue training based on their released models to
generate target models.

4.1.3 CMI Baselines
We compare BUZZER with three CMI baselines:

• FastText (Joulin et al., 2017): It is a text clas-
sification library, which can be used to intu-
itively demonstrate whether there are distribu-
tional differences between member data and
non-member data. We train FastText with the
member data and the non-member data of M,
and use it to directly assess whether a code
snippet is member or non-member data.

• Perturbation (Carlini et al., 2021): It per-
turbs a code snippet by converting case and
calculates the L2 distance before and after
the transformation to determine whether it is
member data.

• Perplexity (Carlini et al., 2021; Inan et al.,
2021; Oh et al., 2023): It calculates the per-
plexity of an interested data record to deter-
mine whether it is member data. The intuition
behind it is that the member data may have
lower perplexity. Perplexity is commonly
used for the CMI task.

4.1.4 Data
For CodeBERT and CodeT5, we choose CSN6 (Hu-
sain et al., 2019) dataset since their authors pre-
train CodeBERT and CodeT5 over CSN. CSN
dataset contains over 6 million code snippets from
open-source projects on GitHub, spanning six pro-
gramming languages (Python, Java, JavaScript, Go,
Ruby, and PHP). Due to limited computational re-
source, we only use python code snippets of CSN.
Code snippets are associated with metadata such
code description written in natural language. We
sample disjoint segments of CSN to pre-train target,
shadow and calibration models. Specifically, we
sample 100,000 data records for pre-training the
target model, 50,000 for pre-training the shadow
model and the calibration model, respectively. For
testing, we sample 10,000 member data records
and 10,000 non-member data records.

For DeepseekCoder and CodeLlama, we adopt
Magicoder-Evol-Instruct-110k (MEI)7 (Wei et al.,

6https://github.com/github/CodeSearchNet
7https://huggingface.co/datasets/ise-uiuc/

Magicoder-Evol-Instruct-110K

Table 1: Performance of white-box and black-box infer-
ence. “-” indicates the values are almost zero.

Method AUC
TPR

0.01%FPR 0.10%FPR 1.00%FPR

FastText 0.500 - - -
CodeBERTperb 0.505 0.00% 0.12% 0.90%

CodeT5perb 0.499 0.03% 0.15% 1.01%
DeepseekCoderppl 0.501 0.30% 0.30% 1.21%

CodeLlamappl 0.670 2.23% 2.23% 8.50%

CodeBERTwb 0.603 0.06% 0.28% 2.36%
CodeT5wb 0.869 0.04% 1.42% 12.16%

DeepseekCoderwb 0.722 1.16% 5.05% 16.33%
CodeLlamawb 0.980 22.57% 43.01% 83.80%

CodeBERTbb 0.602 0.03% 0.26% 2.42%
CodeT5bb 0.859 0.14% 1.65% 12.06%

DeepseekCoderbb 0.721 1.08% 5.01% 16.33%
CodeLlamabb 0.979 21.90% 41.07% 83.45%

2023). Noted that MEI is generated by GPT-4 and
the data leakage issue can be avoided. Specifically,
we sample 30,000 data records of MEI for training
the target model, 20,000 for training the shadow
model and the calibration model, respectively. For
testing, we sample 5,000 member data records and
5,000 non-member data records.

4.1.5 Environment and Hyper-Parameters

We run the experiments on a machine with two
Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz,
256 GB main memory and eight NVIDIA GeForce
RTX 3090. We implement CodeBERT and CodeT5
following their original papers since only their pre-
training implementations are not public available.
For training CodeLlama, we utilize deepspeed8 and
ZERO 1 optimization with cpu offload (Rajbhan-
dari et al., 2020). We set the batch size to 64 and
learning rate to 5e-5. Other hyper-parameters are
set according to original papers.

4.2 Experimental Results

4.2.1 Overall Performance

Tab. 1 provides the overall results. The abbrevia-
tions bb and wb stand for black-box BUZZER and
white-box BUZZER, respectively. perb and ppl
indicate Perturbation and Perplexity, respectively.
From Tab. 1, we have the following findings:

• Member data and non-member data can not
be easily separated according to code features
(i.e., data distribution), as evidenced by the
results of FastText: it achieves an AUC score
close to 0.5.

8https://github.com/microsoft/DeepSpeed
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• BUZZER consistently shows superior perfor-
mance than baselines FastText, Perturbation
and Perplexity, showing the effectiveness of
BUZZER.

• The AUC of white-box inference is not
much higher than that of black-box inference.
Hence, we can conclude that knowing the dis-
tribution of the training dataset of the target
model has a relatively minor impact on the in-
ference accuracy. In other words, CMI in the
black-box setting can be achieved with high
accuracy.

• The AUC scores for CodeT5 (~0.8),
DeepseekCoder (~0.7) and CodeLlama (~0.9)
are much higher than that of CodeBERT
(~0.6). A possible reason is that they have
different model structures and parameter sizes.
Recent works have found larger language
models tend to over-memorized training
data (member data) than smaller language
models (Tirumala et al., 2022; Carlini et al.,
2023), which may demonstrate why the AUC
for CodeBERT, the smallest CPLM, is lowest.

• To investigate whether BUZZER suffers from
high false positive rate, we show TPR under
different FPR (0.01%, 0.1%, 1%) in Tab. 1.
We can see that BUZZER overcomes the high
FPR issue, a common problem in existing MI
works (Watson et al., 2022) since the TPR of
BUZZER is much higher than TPR of the base-
lines under a low FPR. BUZZER shows much
higher TPR on larger CPLMs DeepseekCoder
and CodeLlama. The over-memorizing char-
acteristic of larger language models (Tirumala
et al., 2022; Carlini et al., 2023) may be the
reason.

4.2.2 Impact of Data Characteristics
Next, we study the impacts of different code charac-
teristics on the inference results. In other words, we
are interested in the factors that affect how BUZZER

makes membership status predictions. We investi-
gate three common code features:

• Code Length: Code length refers to the
length of a code snippet. Longer code snippets
can provide more information.

• Depth of AST: The abstract syntax tree is
an important feature that distinguishes code
from natural language. The depth of the code

Table 2: Impact of the calibration model (AUC).

Method
White Box Black Box

w/ cal w/o cal w/ cal w/o cal

CodeBERT 0.603 0.523 0.602 0.524
CodeT5 0.869 0.732 0.859 0.719

DeepseekCoder 0.722 0.514 0.721 0.514
CodeLlama 0.980 0.817 0.979 0.809

abstract syntax tree may affect the inference
results.

• Node Number of AST: An AST node repre-
sents a fundamental component of the struc-
ture of a code snippet. Thus the number of
AST node may affect the inference results.

Fig. 3 reports the distributions of the confidence
scores of code snippets predicted by CodeBERTwb

and CodeT5wb. Due to page limit, we only show
the results of CodeBERT and CodeT5. First, we
obtain the values for the three features of each code
snippet. Next, we group the code data into intervals
with equal length, and arrange intervals in ascend-
ing order based on the corresponding feature. The
x axis of Fig. 3 represents the intervals. The left y
axis is the number of code samples in each interval
and the right y axis denotes the confidence score.
We normalize the scores to a range between 0 and
1 via min-max normalization. The bar charts in
Fig. 3 represents the number of samples in each
group, while the line graphs show the average con-
fidence scores of each group. Subsequently, we ex-
amine the scores assigned by the inference model
to different groups and analyze whether any spe-
cific patterns emerge across the intervals.

From Fig. 3, we can observe the long-tail distri-
butions of code snippets grouped by the three code
features. If we consider both confidence scores
and number of code snippets for each interval, then
we can find that, for CodeT5, the predicted con-
fidence scores are positively correlated with code
length, depth of AST, and number of AST nodes.
Differently, for CodeBERT, they are negatively cor-
related. The differences are possibly caused by
their model structures. For CodeT5, it is encoder-
decoder structure, which consists of bidirectional
attention and unidirectional attention mechanisms.
When the sequence is long, tokens closer to the
beginning of the sequence in the decoder receive
more attention, leading to stronger training signals.
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Figure 3: Impact of different code features.

Figure 4: Impact of calibration.

Table 3: Impact of Training Data Size (AUC).

Model
Data Number

20K 10K 5K

DeepseekCoderbb 0.721 0.696 0.657

Table 4: HumanEval (pass@1) of the target model.

Method Before After

DeepseekCoder 0.34 0.36
CodeLlama 0.30 0.42

4.2.3 Analysis of Calibration Model

Tab. 2 displays the inference results with and with-
out the calibration model. It is evident that the cali-
bration model can significantly improve the CMI
performance. Specifically, for CodeBERT, it in-
creases the AUC score by 0.08, and for CodeT5,
by 0.14. For DeepseekCoder and CodeLlama, the
effect of calibration on black-box inference is more
significant. The calibration model is effective in
both white-box inference and black-box inference.

Fig. 4 further shows the improvements brought

by the calibration model. We bucketize the data
w.r.t. code length in a similar way as Sec. 4.2.2.
Note that a higher AUC score indicates that
the model can better separate member and non-
member data, i.e., the gap between the confidence
scores of member and non-member data is larger.
In Fig. 4 (a), the minimum score of member data
with calibration is around 0.52 (the blue curve
in Fig. 4 (a)), while the maximum score of non-
member data with calibration is around 0.41 (the
blue curve in Fig. 4 (b)). The gap with calibration
is 0.11. The minimum score of member data with-
out calibration is around 0.62 (the orange curve
in Fig. 4 (a)), while the maximum score of non-
member data without calibration is around 0.59
(the orange curve in Fig. 4 (b)). The gap without
calibration is 0.03, which is smaller than the gap
with calibration (0.11). Hence, we can conclude
that calibration increase the gap between member
and non-member data, resulting in higher AUC.

4.2.4 Impact of Training Data Size

To investigate how the size of training data for
constructing BUZZER affects the performance, we
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report the effects of different data size on BUZZER

over DeepseekCoder in black-box setting in Tab. 3.
Note that the results of DeepseekCoderbb in Tab. 1
is reported using default training data size 20K.
From Tab. 3, we can see that, as the size of training
data decreases, AUC of BUZZER declines. How-
ever, when the training data size is small (5K),
BUZZER can still achieve an AUC score of 0.657,
showing that it can be effective even when not
much training data is available.

4.2.5 Effectiveness of Training Larger CPLMs
As we continue training with additional data over
the pre-trained DeepseekCoder and CodeLlama to
generate the target models, it is essential to inves-
tigate how the training affects the performance of
the two large CPLMs. Tab. 4 shows the perfor-
mance of DeepseekCoder and CodeLlama on the
HumanEval benchmark (Chen et al., 2021), a popu-
lar benchmark to evaluate code generation. We can
that see that the pass@1 rate has increased after our
training, indicating that the process of construct-
ing target models positively affects DeepseekCoder
and CodeLlama.

5 Conclusion

In this paper, we study CMI for authenticating data
compliance in CPLMs and propose a framework
BUZZER for inferring code membership. BUZZER

achieves promising results on various CPLMs as
shown in the experiments. BUZZER can serve as a
CMI tool and help protect the intellectual property
rights. In the future, we plan to further improve the
generalization ability of BUZZER to make it more
practical. We will also explore the idea of this work
on other multimodal pre-trained language models
beyond CPLMs.

6 Limitations

We study CMI using public code data that is not
originally designed for this task. In practice, the
code data that their owners care about may not
be publicly available, making it difficult to collect
them for the study of CMI. For such cases, it is dif-
ficult to assess the performance of BUZZER based
on the results reported in this paper.

Acknowledgments

This work was partially supported by National
Science and Technology Major Project (No.
2022ZD0118201), Natural Science Foundation of

Xiamen, China (No. 3502Z202471028) and Na-
tional Natural Science Foundation of China (No.
62002303, 42171456).

References
Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,

John Schulman, Christine McLeavey, Jerry Tworek,
and Mark Chen. 2022. Efficient training of lan-
guage models to fill in the middle. arXiv Preprint.
https://arxiv.org/abs/2207.14255.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang
Song, Andreas Terzis, and Florian Tramèr. 2022.
Membership inference attacks from first principles.
In IEEE Symposium on Security and Privacy, pages
1897–1914.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramèr, and Chiyuan Zhang.
2023. Quantifying memorization across neural lan-
guage models. In ICLR. https://openreview.
net/pdf?id=TatRHT_1cK.

Nicholas Carlini, Florian Tramèr, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úl-
far Erlingsson, Alina Oprea, and Colin Raffel. 2021.
Extracting training data from large language models.
In USENIX Security Symposium, pages 2633–2650.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. arXiv
Preprint. https://arxiv.org/abs/2107.03374.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In EMNLP (Findings), pages 1536–
1547.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. In ACL,
pages 7212–7225.

10601

https://arxiv.org/abs/2207.14255
https://openreview.net/pdf?id=TatRHT_1cK
https://openreview.net/pdf?id=TatRHT_1cK
https://arxiv.org/abs/2107.03374


Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundare-
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021.
Graphcodebert: Pre-training code representations
with data flow. In ICLR. https://openreview.
net/pdf?id=jLoC4ez43PZ.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2023. Deepseek-coder: When
the large language model meets programming–the
rise of code intelligence. arXiv Preprint. https:
//arxiv.org/abs/2401.14196.

Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dob-
bie, Philip S. Yu, and Xuyun Zhang. 2022. Member-
ship inference attacks on machine learning: A survey.
ACM Comput. Surv., 54(11s):235:1–235:37.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv Preprint. https://arxiv.org/
abs/1909.09436.

Huseyin A. Inan, Osman Ramadan, Lukas Wutschitz,
Daniel Jones, Victor Rühle, James Withers, and
Robert Sim. 2021. Training data leakage analy-
sis in language models. arXiv Preprint. https:
//arxiv.org/abs/2101.05405.

InfoQ. 2022. First open source copyright lawsuit chal-
lenges github copilot. https://www.infoq.com/
news/2022/11/lawsuit-github-copilot/.

Abhyuday Jagannatha, Bhanu Pratap Singh Rawat, and
Hong Yu. 2021. Membership inference attack suscep-
tibility of clinical language models. arXiv Preprint.
https://arxiv.org/abs/2104.08305.

Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and
Lei Lyu. 2021. Treebert: A tree-based pre-trained
model for programming language. In UAI, volume
161, pages 54–63.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomás Mikolov. 2017. Bag of tricks for efficient text
classification. In EACL, pages 427–431.

Zheng Li and Yang Zhang. 2021. Membership leakage
in label-only exposures. In CCS, pages 880–895.

Hao Liu, Yanlin Wang, Zhao Wei, Yong Xu, Juhong
Wang, Hui Li, and Rongrong Ji. 2023a. Refbert: A
two-stage pre-trained framework for automatic re-
name refactoring. In ISSTA, pages 740–752.

Xin Liu, Daniel McDuff, Geza Kovacs, Isaac R.
Galatzer-Levy, Jacob E. Sunshine, Jiening Zhan,
Ming-Zher Poh, Shun Liao, Paolo Di Achille, and
Shwetak N. Patel. 2023b. Large language mod-
els are few-shot health learners. arXiv Preprint.
https://arxiv.org/abs/2305.15525.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. arXiv Preprint. https://arxiv.org/abs/
1907.11692.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
2021. Codexglue: A machine learning benchmark
dataset for code understanding and generation. In
NeurIPS Datasets and Benchmarks.

Saeed Mahloujifar, Huseyin A Inan, Melissa Chase,
Esha Ghosh, and Marcello Hasegawa. 2021. Mem-
bership inference on word embedding and beyond.
arXiv Preprint. https://arxiv.org/abs/2106.
11384.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit
Uniyal, Taylor Berg-Kirkpatrick, and Reza Shokri.
2022. Quantifying privacy risks of masked lan-
guage models using membership inference attacks.
In EMNLP, pages 8332–8347.

Changan Niu, Chuanyi Li, Vincent Ng, Jidong
Ge, Liguo Huang, and Bin Luo. 2022. Spt-
code: Sequence-to-sequence pre-training for learning
source code representations. In ICSE, pages 1–13.

Myung Gyo Oh, Leo Hyun Park, Jaeuk Kim, Jaewoo
Park, and Taekyoung Kwon. 2023. Membership
inference attacks with token-level deduplication on
korean language models. IEEE Access, 11:10207–
10217.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: memory optimizations
toward training trillion parameter models. In SC,
page 20.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for
code. arXiv Preprint. https://arxiv.org/abs/
2308.12950.

Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal
Berrang, Mario Fritz, and Michael Backes. 2019.
Ml-leaks: Model and data independent membership
inference attacks and defenses on machine learning
models. In NDSS.

Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. 2017. Membership inference attacks
against machine learning models. In IEEE Sympo-
sium on Security and Privacy, pages 3–18.

10602

https://openreview.net/pdf?id=jLoC4ez43PZ
https://openreview.net/pdf?id=jLoC4ez43PZ
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/2101.05405
https://arxiv.org/abs/2101.05405
https://www.infoq.com/news/2022/11/lawsuit-github-copilot/
https://www.infoq.com/news/2022/11/lawsuit-github-copilot/
https://arxiv.org/abs/2104.08305
https://arxiv.org/abs/2305.15525
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2106.11384
https://arxiv.org/abs/2106.11384
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950


Congzheng Song and Ananth Raghunathan. 2020. In-
formation leakage in embedding models. In CCS,
pages 377–390.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: masked sequence to sequence
pre-training for language generation. In ICML, vol-
ume 97, pages 5926–5936.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and
Neel Sundaresan. 2020. Intellicode compose: code
generation using transformer. In ESEC/SIGSOFT
FSE, pages 1433–1443.

Kushal Tirumala, Aram H. Markosyan, Luke Zettle-
moyer, and Armen Aghajanyan. 2022. Memorization
without overfitting: Analyzing the training dynam-
ics of large language models. In NeurIPS, pages
38274–38290.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schel-
ten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Au-
rélien Rodriguez, Robert Stojnic, Sergey Edunov,
and Thomas Scialom. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv Preprint.
https://arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun
Xiong, Wei Dong, and Xiangke Liao. 2022a. Bridg-
ing pre-trained models and downstream tasks for
source code understanding. In ICSE, pages 287–298.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. In EMNLP, pages 8696–
8708.

Zihan Wang, Na Huang, Fei Sun, Pengjie Ren, Zhumin
Chen, Hengliang Luo, Maarten de Rijke, and
Zhaochun Ren. 2022b. Debiasing learning for mem-
bership inference attacks against recommender sys-
tems. In KDD, pages 1959–1968.

Lauren Watson, Chuan Guo, Graham Cormode, and
Alexandre Sablayrolles. 2022. On the importance
of difficulty calibration in membership inference at-
tacks. In ICLR. https://openreview.net/pdf?
id=3eIrli0TwQ.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv Preprint. https://arxiv.org/
abs/2312.02120.

Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi,
Dongsun Kim, DongGyun Han, and David Lo. 2023.
Gotcha! this model uses my code! evaluating mem-
bership leakage risks in code models. arXiv Preprint.
https://arxiv.org/abs/2310.01166.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. 2018. Privacy risk in machine learning:
Analyzing the connection to overfitting. In CSF,
pages 268–282.

Minxing Zhang, Zhaochun Ren, Zihan Wang, Pengjie
Ren, Zhumin Chen, Pengfei Hu, and Yang Zhang.
2021. Membership inference attacks against recom-
mender systems. In CCS, pages 864–879.

10603

https://arxiv.org/abs/2307.09288
https://openreview.net/pdf?id=3eIrli0TwQ
https://openreview.net/pdf?id=3eIrli0TwQ
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2310.01166

